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Abstract

This paper presents an approach for reducing speckle in three dimensional (3D) ultrasound images. A 2D speckle reduction technique,

speckle reducing anisotropic diffusion (SRAD), is explored and extended to 3D. 3D SRAD is advantageous in that, like 2D SRAD, it keeps

the advantages of the conventional anisotropic diffusion and the traditional speckle reducing filter, the Lee filter, by exploiting the

instantaneous coefficient of variation (ICOV). Besides, 3D SRAD uses 3D information; thus it overcomes the shortcoming of the 2D

technique that only uses 2D information. The algorithm of 3D SRAD is presented in the continuous domain as well as in the discrete domain.

Experiments have been performed on both synthetic and real 3D ultrasound images and the experimental results were compared with those

obtained by 3D anisotropic diffusion and the 3D Lee filter. The experimental results show that the quality of the 3D SRAD for speckle

reduction in 3D ultrasound images improves upon that of 3D anisotropic diffusion and 3D Lee filter in terms of edge preservation and the

smoothness of homogenous regions.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Ultrasound imaging is popular and plays a unique role

in clinical diagnosis and treatment because it is a non-

invasive, non-radiative, real-time and inexpensive imaging

modality [1,2]. There are two basic types of ultrasound

imaging systems: 2D and 3D ultrasound imaging. The

majority of current ultrasound imaging systems are two

dimensional. However, conventional 2D ultrasound ima-

ging has limitations in quantifying the volume of

structures of interest in the body, for only a two

dimensional frame is produced at any given time. In

many cases volume quantification is important in asses-

sing the progression of disease and tracking progression of

response to treatment. Thus, 3D ultrasound imaging has

drawn great attention in recent years [3–6].
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To develop a more accurate approach for volume

quantification, many approaches of 3D ultrasound image

reconstruction have been developed. Current practice

usually involves a 2D ultrasound machine and a position

sensor attached to the ultrasound scanner probe. The 2D

ultrasound machine provides slices of images through the

structure of interest. The position sensor provides the

relative position of these slices in space [7]. In the ‘I-beam’

method [8], shown in Fig. 1, a modified transducer provides

the information needed to reconstruct the 3D image from a

sequence of 2D slices captured by the modified linear 1D

array at the center. The two perpendicular tracking arrays on

each side of the central array provide the relative motion

information between all the image slices, which is required

when positioning and interpolating 2D slices in 3D volume

[8]. However, the presence of speckle is a problem. Speckle

in coherent imaging systems is the artifact caused by the

interference of energy from randomly distributed scatterers

[9]. In ultrasound imaging it is seen as a granular structure

caused by the essentially random interaction of the multiple

ultrasound waves scatterered from within the tissue [2].
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Fig. 1. I-beam transducer [8].

Fig. 2. Basic steps of the procedure of 3D volume measurement.
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Speckle degrades both the spatial resolution and contrast

quality in ultrasound images [5] and therefore makes the

interpretation of ultrasound image more difficult. Addition-

ally, it makes image segmentation difficult.

Speckle is not an additive noise, but rather a form of

multiplicative noise [10–15]. Noise reduction filters such as

conventional anisotropic diffusion and the Lee filter are not

effective for the purpose of speckle reduction. The

conventional anisotropic diffusion is effective for additive

noise, but not for multiplicative noise—including speckle.

The traditional speckle removal filters, such as the Lee filter

[14] and Frost filter [15] have major limitations in edge

preserving and feature preserving [12]. Thus, by combining

the advantages of the above two filters by exploiting the

instantaneous coefficient of variation, 2D SRAD was

developed [12,13]. Compared with the existing noise

reducing schemes, the results indicate that 2D SRAD excels

in terms of mean preservation, variance reduction and edge

localization in the presence of speckle noise [12].

3D SRAD is developed in this paper. 3D SRAD operates

directly on image volume instead of the 2D slice. Thus,

information between slices of 2D image are explored and

preserved.

The rest of this paper is organized as follows: in Section 2,

some background information on cardiovascular research

and 2D SRAD are introduced. Section 3 provides some

improvement of the 2D SRAD algorithm and Section 4

presents the algorithms for speckle reduction in 3D

ultrasound images. Three 3D filters (3D Anisotropic diffu-

sion, 3D SRAD and 3D Lee filter) for speckle reduction in 3D

ultrasound images are derived. Experimental results and

conclusion are presented in Sections 5 and 6, respectively.
2. Background
Fig. 3. 3D mouse LV reconstruction (scale: about 5 mm in each dimension).
2.1. Three dimensional ultrasound imaging

In this section some background knowledge of quanti-

tative ultrasound imaging of mouse hearts and the

importance of applying 3D SRAD in 3D ultrasound imaging

are introduced.

The aim of quantitative ultrasound imaging of mouse

hearts is to provide an effective high frequency quantitative

imaging technique for research related to human
cardiovascular disease which is the leading cause of death

in the United States. Heart failure frequently evolves in a

structured manner following a myocardial infarction (MI).

Left ventricular remodeling (LVR) is usually involved

following a significant anterior MI. However, excessive

LVR might cause increased left ventricular (LV) end-

systolic volume that is the main cause for patient mortality

after recovery from MI. To track the subsequent recovery

following MI, a non-invasive image tracking method is

needed for the study of heart anatomy and function. Due to

the features mentioned earlier, ultrasound imaging is more

advantageous than other tracking approaches such as

histology and MR imaging for this purpose [16,17].

To fulfill this task, an ultrasound transducer that is

compatible with high spatial resolution and 3D image

reconstruction is required. This transducer should be

capable of a spatial resolution of 200 mm laterally and

100 mm axially with a frame rate of 100C frames per

second. Also, this transducer should be able to provide the

information for the 3D position and orientation [11]. The

I-beam [8] method suits this purpose. After the 3D

reconstruction, image segmentation technique will be used

to automatically determine the endocardial and epicardial

surface. This enables a variety of significant cardiac

parameters to be calculated, including: end-systole LV

volume, end-diastole (ED) LV volume, LV ejection fraction

(EF), LV mass and cardiac output (CO) [11]. However,

speckle artifacts, unavoidable in coherent wave based

ultrasound imaging, make image segmentation difficult.

Thus, speckle reduction becomes a necessary precondition-

ing step prior to image segmentation and volume quantifi-

cation. The basic steps needed in the procedure of the

volume quantification are shown in Fig. 2. Among these

steps, step two is of our interest in this paper. Fig. 3 shows a

reconstructed 3D left ventricular of mouse heart.
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2.2. An existing effective algorithm for speckle

reduction—2D SRAD

The features of the speckle make the conventional

noise reduction filters such as anisotropic diffusion and

the Lee filter ineffective. 2D SRAD, a diffusion method

tailored to speckle reduction in ultrasound and radar

image, was derived. Combining the advantages of the

conventional anisotropic diffusion and the Lee filter,

2D SRAD inherits the partial differential equation format

of the conventional anisotropic diffusion and exploits the

instantaneous coefficient of variation (ICOV) in the same

way as the Lee filter utilizes the coefficient of variation

in adaptive filtering [12,13]. On the other hand,

2D SRAD overcomes the shortcomings of these two

filters.

2D SRAD is based on traditional anisotropic diffusion,

which is a nonlinear filtering method that encourages

diffusion in the homogeneous region while inhibits diffusion

at edges. The PDE of anisotropic diffusion is given as

follows in continuous domain [12,13]

vI

vt
Z div½cðjVIjÞVI�

Iðt Z 0Þ Z I0

8<
: (1)

where P is the gradient operator, div is the divergence

operator, k denotes the magnitude, c(x) is the diffusion

coefficient, and I0 is the initial image.

2D SRAD takes the format of the PDE of conventional

anisotropic diffusion. Given an intensity image I0(x, y)

having none zero-valued intensities over the image

domain U, the continuous form of SRAD is expressed as

follows [12]

vIðx; y; tÞ=vt ¼ div½cðx; y; tÞVIðx; y; tÞ�

Iðx; y; 0Þ ¼ I0ðx; yÞ; ðvIðx; y; tÞ=v~nÞjvU ¼ 0

(
(2)

where vU denotes the border of U, ~n is the outer normal to

the vU, c(x) is the diffusion coefficient, and q is the ICOV.

Observing Eqs. (1) and (2), we can see that the main

difference between the two PDEs lie in the choice of

diffusion coefficient c(x). In conventional anisotropic

diffusion, the diffusion coefficient is given by

cdðx; yÞ Z exp K
VIdðx; yÞ

k

� �2� �
(3)

where PId(x, y) is the directional derivative in direction d at

location (x, y). While in 2D SRAD the diffusion coefficient

is a function of q, the instantaneous coefficient of variation

[12]:

cðx; y; tÞ Z
1

1 C ½q2ðx; y; tÞKq2
0ðtÞ�=½q

2
0ðtÞð1 Cq2

0ðtÞÞ�
(4)
where q(x, y; t) is given by

qðx; y; tÞ Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jð1=2ÞðjVIj=IÞ2 K ð1=42ÞðV2I=IÞ2j

½1 C ð1=4ÞðV2I=IÞ�2

s
; (5)

and q0, the speckle scale computed from a homogenous

region, can be computed by

q0ðtÞ Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var½zðtÞ�

p

�zðtÞ
(6)

From Eqs. (2), (4) and (5), we can see that when q is

smaller, c will be larger, thus diffusion will be encouraged in

homogeneous region and inhibited at edges in 2D SRAD.

This is in accordance with the conventional anisotropic

diffusion, which does smoothing, where the local gradient

magnitude is low and inhibit diffusion, where the gradient

magnitude is relatively high.

Another filter relevant to 2D SRAD is the Lee filter. The

importance of the Lee filter to 2D SRAD lies in providing

prototype of coefficient of variation for q and q0.

The Lee filter, an adaptive speckle filter, was designed to

remove speckle in radar image. The equation is given as

follows [14]

Îs Z �Is CksðIs K �IsÞ (7)

where �Is is the mean value of the intensity within the filter

window hs; and ks is the adaptive filter coefficient

determined by

ks Z 1 KC2
u=C

2
s : (8)

where

C2
s Z ð1=jhsjÞ

X
p2h

ðIp K �IsÞ
2=ð�IsÞ

2; (9)

and C2
u is a constant for a given image and can be

determined by

C2
u Z

varðz0Þ

ð�z0Þ2
(10)

where var(z 0) and �z0 are the intensity variance and mean over

a homogeneous area of the image, respectively.

Comparing Eqs. (5) and (6) with Eqs. (9) and (10), we can

see that the speckle scale function of 2D SRAD (see Eq. (6))

directly takes the format of the coefficient of variation function

of Lee filter (see Eq. (10)). Besides, the ICOV function defined

in Eq. (5) is derived from Eq. (9) in the Lee filter [12,13].
3. Analysis and improvement of SRAD algorithm

One of the key steps in the SRAD algorithm is to choose

a homogenous region to compute q0. The choice of this

region will affect the diffusion results dramatically.

In order to develop a stable computation of q0(t), let’s

analyze the performance of the SRAD algorithm. Let

Pðx; y; tÞ Z ðq2ðx; y; tÞKq2
0ðtÞÞ=q

2
0ðtÞ (11)



Fig. 4. Comparison between original SRAD algorithm and improved SRAD algorithm; (a) original image [22] used to make an image with multiplicative noise

by exponential operation; (b) original SRAD algorithm; (c) Improved SRAD algorithm (lZ1.1).
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and

QðtÞ Z 1 Cq2
0ðtÞ (12)

thus c(x, y; t) can be expressed as

c x; y; t
� 


¼
1

1 þ Pðx; y; tÞ=QðtÞ
(13)

P(x;y;t) is the main part which affects the diffusion, and Q(t)

is used to normalize P(x, y; t) such that P(x, y; t) lies in the

range (K1,1). When q2ðx; y; tÞZq2
0ðtÞ; c(x, y; t) is 1; when

q2ðx; y; tÞOq2
0ðtÞ; c(x, y; t)!1; when q2ðx; y; tÞ!q2

0ðtÞ, c(x,

y; t)O1. Thus, if we assume that c(x, y; t) is the speed of

diffusion, then the diffusion will progress in different speeds

in different regions, which is a little different from

conventional anisotropic diffusion processing: in the region

similar to the selected homogenous region with q2ðx; y; tÞz
q2

0ðtÞ; the diffusion speed is moderate; in the region

smoother than the selected homogenous region with

q2ðx; y; tÞ!q2
0ðtÞ; the diffusion is faster; In the region

with q2ðx; y; tÞOq2
0ðtÞ; the diffusion is slower. Thus, q2

0ðtÞ

provides a reference point for diffusion. In fact, if q2
0ðtÞ is

computed using the most smooth region (assume that all

q2(x, y; t) is more than q2
0ðtÞ), the diffusion processing will

degrade into conventional anisotropic diffusion: in the

region similar to the selected homogenous region with

q2ðx; y; tÞzq2
0ðtÞ; the diffusion will be encouraged, and

diffusion will be inhibited, where gradient magnitude is

relatively high (with q2ðx; y; tÞOq2
0ðtÞ).

Now that q0(t) provides a reference point for diffusion,

we can use other technique to obtain it independent of

selecting a region to compute it. One way to replace q0 is to

use the mean of q(x, y; t), such that c(x, y; t) is modified as

cðx; y; tÞ ¼
1

1 þ ½q2ðx; y; tÞKq2
0ðtÞ�=½q

2
0ðtÞð1 þ q2

0ðtÞÞ�
(14)

where

q0ðtÞ ¼ l

ð ð
A

q2ðx; y; tÞdx dy=

ð ð
A

dx dy (15)
where A is the image domain and l is a parameter that can be

used to control the diffusion results. If we prefer to preserve

edges, we can realize it by selecting a suitable l. Eq. (14)

allows the diffusion to progress as follows: in the region

with contrast larger than the average contrast, the diffusion

speed is slower; in the region with contrast smaller than the

average contrast, the diffusion is faster; in the region with

contrast similar to the average contrast, the diffusion is

moderate. Fig. 4(c) shows the diffusion results using

Eq. (14). From Fig. 4(c), the edge preservation of the

resultant image obtained by the new algorithm is better than

that obtained by the original SRAD algorithm. In Fig. 4, the

image in Fig. 4(a) is the original image [22] with

multiplicative noise used as the input to the SRAD

algorithm.
4. Speckle reduction for 3D ultrasound images

As we have described in introduction, with the develop-

ment of 3D ultrasound imaging systems, we need to develop

techniques to perform speckle reduction for 3D ultrasound

images. One way to perform speckle reduction for 3D US

images is to perform speckle reduction for each 2D slice,

which is from the 3D images, using 2D speckle reduction

technique described in Section 2. Fig. 5 shows a result of

speckle reduction of 3D images using 2D SRAD. From

Fig. 5, we can find that the speckle reduction results are not

acceptable in that there are obvious block effects. The

reason is that this simple technique just uses 2D information

instead of 3D information. In order to develop an effective

speckle reduction technique for 3D US images, we extend

2D SRAD to 3D algorithm.
4.1. 3D anisotropic diffusion

The PDE of 3D anisotropic diffusion takes the similar

form as 2D anisotropic diffusion

vIðx; y; z; tÞ

vt
Z div½cðx; y; z; tÞVIðx; y; z; tÞ� (16)



Fig. 5. Speckle reduction using the improved 2D SRAD algorithm for a 3D US image; (a)–(c) are the original images arbitrarily sliced out from the speckled

experimental image volume along XY-, XZ-, YZ-planes, respectively. (d)–(f) are resultant images after diffusion corresponding to (a)–(c).
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Eq. (16) is equivalent to

vIðx; y; z; tÞ

vt
Z div½cðx; y; z; tÞVIðx; y; z; tÞ�

Z
v

vx
cðx; y; z; tÞ!

v

vx
Iðx; y; z; tÞ

� �

C
v

vy
cðx; y; z; tÞ!

v

vy
Iðx; y; z; tÞ

� �

C
v

vz
cðx; y; z; tÞ!

v

vz
Iðx; y; z; tÞ

� �
(17)

The above equation can be implemented using a finite dif-

ference method. Consider the difference approximation of

v

vx
cðx; y; z; tÞ!

v

vx
Iðx; y; z; tÞ

� �

which is expressed as

v

vx
cðx; y; z; tÞ!

v

vx
Iðx; y; z; tÞ

� �

z
v

vx
cðx; y; z; tÞ

1

Dx
½Iðx CDx; y; z; tÞK Iðx; y; z; tÞ�

� �

z
1

Dx2
fcðx; y; z; tÞ½Iðx CDx; y; z; tÞK Iðx; y; z; tÞ

K Iðx; y; z; tÞC Iðx KDx; y; z; tÞ�

C½cðx CDx; y; z; tÞKcðx; y; z; tÞ�½Iðx CDx; y; z; tÞ

K Iðx; y; z; tÞ�g
Z
1

Dx2
fcðx CDx; y; z; tÞ½Iðx CDx; y; z; tÞ

K Iðx; y; z; tÞ�Ccðx; y; z; tÞ½Iðx KDx; y; z; tÞ

K Iðx; y; z; tÞ�g (18)

Z
1

Dx2
fcðx CDx; y; z; tÞ½Iðx CDx; y; z; tÞK Iðx; y; z; tÞ�

Ccðx; y; z; tÞ½Iðx KDx; y; z; tÞK Iðx; y; z; tÞ�g

where ‘z’ means that the right of the equation is the

difference approximation of the left of the equation.

Similarly, we have

v

vy
cðx;y;z;tÞ!

v

vy
Iðx;y;z;tÞ

� �
z

1

Dy2
fcðx;yCDy;z;tÞ

!½Iðx;yCDy;z;tÞKIðx;y;z;tÞ�Ccðx;y;z;tÞ

!½Iðx;yKDy;z;tÞKIðx;y;z;tÞ�g (19)

v

vz
cðx;y;z;tÞ!

v

vz
Iðx;y;z;tÞ

� �
z

1

Dz2
fcðx;y;zCDz;tÞ

!½Iðx;y;zCDz;tÞKIðx;y;z;tÞ�Ccðx;y;z;tÞ

!½Iðx;y;zKDz;tÞKIðx;y;z;tÞ�g (20)

Inserting Eqs. (18)–(20) into (17) and letting DxZ1,

DyZ1, DzZ1, we obtain the difference approximation of
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dI(x, y, z; t)/dt which is expressed as

vIðx; y; z; tÞ

vt
zcðx C1; y; z; tÞ½Iðx C1;y; z; tÞKIðx;y; z; tÞ�

Ccðx;y; z; tÞ½Iðx K1;y; z; tÞKIðx;y; z; tÞ�

Ccðx;y C1; z; tÞ½Iðx;y C1; z; tÞKIðx;y; z; tÞ�

Ccðx;y; z; tÞ½Iðx;y K1; z; tÞKIðx;y; z; tÞ�

Ccðx;y; z C1; tÞ½Iðx;y; z C1; tÞKIðx;y; z; tÞ�

Ccðx;y; z; tÞ½Iðx;y; z K1; tÞKIðx;y; z; tÞ�:

ð21Þ

Thus, the discrete realization of anisotropic diffusion for

3D image can be obtained from Eq. (21) as follows

Iðx;y;z; t C1ÞZ Iðx;y;z; tÞCcðxC1;y; z; tÞ½IðxC1;y; z; tÞ

KIðx;y; z; tÞ�

Ccðx;y; z; tÞ½IðxK1;y; z; tÞKIðx;y; z; tÞ�

Ccðx;yC1;z; tÞ½Iðx;yC1; z; tÞKIðx;y; z; tÞ�

Ccðx;y; z; tÞ½Iðx;yK1; z; tÞKIðx;y; z; tÞ�

Ccðx;y; zC1; tÞ½Iðx;y; zC1; tÞKIðx;y; z; tÞ�

Ccðx;y; z; tÞ½Iðx;y;zK1; tÞKIðx;y; z; tÞ�:

ð22Þ

From Eq. (22), we can find that the key problem in

anisotropic diffusion is the choice of c(x, y, z; t). Similar to

2D anisotropic diffusion, c(x, y, z; t) can be chosen as

follows:

cðx; y; z; tÞ ¼ exp K
VIðx; y; z; tÞ

k

� �2� �
; (23)

or

cðx; y; z; tÞ ¼
1

1 þ VIðx;y;z;tÞ
k

� �2 : (24)

4.2. 3D SRAD Algorithm

From Yu and Acton’s work on 2D SRAD [12], we know

that the traditional anisotropic diffusion is not suitable for

speckle reduction in 2D US image, thus an improved

version of anisotropic diffusion using ICOV was developed.

Similarly, for 3D US images, the 3D anisotropic diffusion

filter Eqs. (16)–(18) is also not suitable for speckle reduction

in 3D US image (see Section 5). Thus we developed 3D

SRAD algorithm for 3D US images.
4.2.1. 3D SRAD algorithm in continuous domain

3D SRAD algorithm is derived from 2D SRAD

algorithm. Similar to 2D SRAD, the continuous form of

3D SRAD can be obtained using 3D image I(x, y, z; t) to
replace two dimensional image I(x, y; t) in (2)

vIðx; y; z; tÞ=vt Z div½cðqÞVIðx; y; z; tÞ�

Iðx; y; z; 0Þ Z I0ðx; y; zÞ; ðvIðx; y; z; tÞ=v~nÞjvU Z 0

(
(25)

where vU denotes the border of U, ~n is the outer normal to

the vU and the diffusion coefficient c(q) is given by

cðqÞ Z
1

1 C ½q2ðx; y; z; tÞKq2
0ðtÞ�=½q

2
0ðtÞð1 Cq2

0ðtÞÞ�
(26)

where q(x, y, z; t) is called 3D instantaneous coefficient of

variation which can be derived in the same way to obtain the

instantaneous coefficient of variation in 2D SRAD [21]

qðx; y; z; tÞ Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=3ÞðjVIj=IÞ2 K ð1=6Þ2ðV2I=IÞ2

ð1 C ð1=6ÞðV2I=IÞÞ2

s
(27)

Let’s consider how to obtain the 3D instantaneous

coefficient of variation. Modifying Eq. (25) in [12] into

Eq. (28)

C2
i;j;k Z

I2
i;j;k C 1

j �hsj
V2I2

i;j;k

h i
Ii;j;k C 1

j �hsj
V2Ii;j;k

h i2
K1: (28)

In the continuous domain, we have [12]

V2I2 Z 2jVIj2 C2IV2I (29)

In the discrete domain, (29) can be represented as follows

V2I2
i;j;k Z jV1Ii;j;kj

2 C jV2Ii;j;kj
2 C2Ii;j;kV2Ii;j;k: (30)

where P1Ii,j,k and P2Ii,j,k are obtained by

V1Ii;j;k Z ½Ii;j;k K IiK1;j;k; Ii;j;k K Ii;jK1;k; Ii;j;k K Ii;j;kK1� (31)

V2Ii;j;k Z ½IiC1;j;k K Ii;j;k; Ii;jC1;k K Ii;j;k; Ii;j;kC1 K Ii;j;k�: (32)

Let jPIi,j,kj
2 be discretized as the average of jP1Ii,j,kj

2

and jP2Ii,j,kj
2, and substituting Eqs. (31) and (32) into

Eq. (28), then we have [21]

C2
i;j;k Z

1
3
jVIi;j;kj

2 K 1
36
ðV2Ii;j;kÞ

2

Ii;j;k C 1
6

V2Ii;j;k

� �2 : (33)

Denoting the special case of Ci,j,k, which is computed

over �hs; by qi,j, then qi,j can be viewed as a discretization of

q Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=3ÞðjVIj=IÞ2 K ð1=6Þ2ðV2I=IÞ2

ð1 C ð1=6ÞðV2I=IÞÞ2

s
: (34)
4.2.2. Numerical implementation of 3D SRAD algorithm

Eq. (25) can be solved numerically using four-stage

iterative method [12]. Let the time step be Dt and the spatial

step be h in x, y and z directions, then the time and

space coordinates can be discretized as: tZnDt,

nZ0,1,2,.; xZih, yZjh, zZkh; iZ0,1,2,.MK1,

jZ0,1,2,.NK1, kZ0,1,2,.KK1, where Mh!Nh!Kh



:
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is the size of the image support. Let In
i;j;k Z Iðih; jh; kh; n DtÞ;

then the three stages can be described as:

Stage 1. Computing the derivative approximations and

the Laplacian approximation

V1In
i;j;k Z

In
iC1;j;k K In

i;j;k

h
;
In
i;jC1;k K In

i;j;k

h
;
In
i;j;kC1 K In

i;j;k

h

� �
;

(35)

V2In
i;j;k Z

In
i;j;k K In

iK1;j;k

h
;
In
i;j;k K In

i;jK1;k

h
;
In
i;j;k K In

i;j;kK1

h

� �
;

(36)

V2In
i;j;k

Z
In
iC1;j;kCIn

iK1;j;kCIn
i;jC1;kCIn

i;jK1;kCIn
i;j;kC1CIn

i;j;kK1K6In
i;j;k

h2

(37)

The symmetric boundary conditions are used

In
K1;j;k ZIn

0;j;k; In
M;j;k ZIn

MK1;j;k; jZ0;1;2;.;N K1;

k Z0;1;2;.;K K1:
(38)

In
i;K1;k ZIn

i;0;k; In
i;N;k ZIn

i;NK1;k; iZ0;1;2;.;MK1;

k Z0;1;2;.;K K1:
(39)

In
i;j;K1 ZIn

i;j;0; In
i;j;K ZIn

i;j;KK1; iZ0;1;2;.;MK1;

jZ0;1;2;.;N K1:
(40)

Stage 2. Computing the diffusion coefficient c(q)

cn
i;j Z c q

1

In
i;j;k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jV1In

i;j;kj
2 C jV2In

i;j;kj
2

q
;

1

In
i;j;k

V2In
i;j;k

 !" #
:

(41)

Stage 3. Computing the divergence of c($)PI

dn
i;j;k Z

1

h2
½cn

iC1;j;kðI
n
iC1;j;k KIn

i;j;kÞCcn
i;j;kðI

n
iK1;j;k KIn

i;j;kÞ

Ccn
i;jC1;kðI

n
i;jC1;k KIn

i;j;kÞ�C
1

h2
½cn

i;j;kðI
n
i;jK1;k KIn

i;j;kÞ

Ccn
i;j;kC1ðI

n
i;j;kC1 KIn

i;j;kÞCcn
i;j;kðI

n
i;j;kK1 KIn

i;j;kÞ� ð42Þ

with symmetric boundary conditions:

dn
K1;j;k Zdn

0;j;k; dn
M;j;k Zdn

MK1;j;k; jZ0;1;2;.;N K1;

kZ0;1;2;.;K K1:
(43)

dn
i;K1;k Zdn

i;0;k; dn
i;N;k Zdn

i;NK1;k; iZ0;1;2;.;MK1;

kZ0;1;2;.;K K1:
(44)
dn
i;j;K1 Zdn

i;j;0; dn
i;j;K Zdn

i;j;KK1; iZ0;1;2;.;MK1;

jZ0;1;2;.;NK1:
(45)

Stage 4. The numerical approximation to the differential

equation is given by

InC1
i;j Z In

i;j C
Dt

6
dn

i;j: (46)

Similar to [12], (46) is also called the SRAD update

function for 3D SRAD. In numerical implementation, h is

set to 1, and empirically Dt is set to 0.05.

4.3. 3D Lee filter

For comparison, we also developed a 3D Lee filter. The

3D Lee filter has the same form the 2D Lee filter in (7)–(10),

with the only difference lying in that we will use the 3D

image I(x, y, z) instead of the 2D image I(x, y).
5. Experimental results

5.1. Images

3D synthetic radio frequency (rf) ultrasound images

generated using the method in [18] and real 3D ultrasound

images obtained by I-beam are used in the experiments. The

reason for using synthetic images is the need for quantitative

analysis. Three 3D synthetic images and five 3D US images

were used in the experiments. The size of the synthetic rf

images is 512!128!50 (in units of pixels) in x, y and z

directions, respectively. The size of the real 3D ultrasound

images image is 473!149!41 (in units of pixels) in x, y

and z directions, respectively.

5.2. Performance metrics

Two performance metrics were used in our experiments

to measure the algorithm performance, one is called contrast

measure which is used to measure the performance in the

homogenous region. The other measure is the Pratt’s figure

of merit [19], which is used to measure the edge

preservation.

5.2.1. Contrast measure

The metric is based on a local contrast measure. Let

I(x, y, z) be the pixel value at the coordinates (x, y, z) and its

2nC1 neighborhood, then the local contrast at the pixel

(x, y, z) is defined as

Cðx; y; zÞ Z
Imaxðx; y; zÞK Iminðx; y; zÞ

Imaxðx; y; zÞC Iminðx; y; zÞ
(47)

where Imax(x, y, z) and Imin(x, y, z) are the maximum and

minimum values of the pixels in its 2nC1 neighborhood,

respectively.



Fig. 6. Experimental results obtained by 3D anisotropic diffusion; (a), (c)

and (e) are the original speckled rf images arbitrarily sliced out from the

speckled rf image volume along XY-, XZ-, YZ-planes, respectively. (b), (d)

and (f) Resultant images after diffusion corresponding to (a), (c) and (e).

Table 1

Contrast measured in homogenous region using 3D synthetic radio

frequency ultrasound images

Image no. Original AD 3D

SRAD

2D

SRAD

Lee filter

1 0.5452 0.0231 0.0012 0.2573 0.1892

2 0.5070 0.0236 0.0056 0.3687 0.1743

3 0.6123 0.0235 0.0040 0.3895 0.0805

Table 2

FOM measured for 3D synthetic radio frequency ultrasound images

Image no. Original AD 3D

SRAD

2D

SRAD

Lee filter

1 0.0969 0.4423 0.6937 0.332 0.3826

2 0.0981 0.1814 0.5159 0.1057 0.1214

3 0.0929 0.1723 0.6021 0.1643 0.1525
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The metric used to measure performance of the diffusion

algorithm in a region can be represented by the average

contrast in that region, which is defined as

C Z

P
ðx;y;zÞ2U Cðx; y; xÞ

N
(48)

where U is an image region and N is pixel number in the

region. A good diffusion algorithm should produce the

following effect: the homogenous region in the image after

diffusion should have much less contrast than that in the

homogenous region in the image before diffusion.

5.2.2. Pratt’s quality measurement [12,19]

The performance used for measuring the performance of

edge preservation is Pratt’s quality measurement. The

metric can be expressed as [19]

FOM Z

XIA

iZ1

1

1 CaðdðiÞ2Þ

maxðIA; IIÞ
(49)

where IA is the number of edge pixels detected and II is the

number of ideal pixels. d(i) is the Euclidean distance

between the ith detected pixel and the nearest ideal pixel. a

is a scaling constant, with a suggested value of 1/9 [19]. In

the experiments, a 3D edge detection technique based on

[20] is used to detect the edges in the images.

5.3. Results

Sections 5.3.1 and 5.3.2 provides comparison results: one

is the comparison results among the 3D filters, the other is

the comparison results between the 2D SRAD algorithm and

the 3D SRAD algorithm.

5.3.1. Results for 3D synthetic radio frequency (rf)

ultrasound images

We first present the experimental results using the three

3D synthetic radio frequency ultrasound images. Fig. 6(a),

(c) and (e) are the original speckled rf images arbitrarily

sliced out from the speckled rf image volume along XY-,

XZ-, YZ-planes, respectively and Fig. 6(b), (d) and (f) are the

resultant images after diffusion corresponding to Fig. 6(a),

(c) and (e). By comparing the original images (a), (c) and (e)

with the corresponding resultant images in each figure, we

can observe qualitatively that the speckle is effectively

removed after the 3D SRAD is applied. Table 1 summarizes

the performance of diffusion in two different regions: one is

the region composed of the boundary pixels of the ball, the

other region is composed of all the pixels except the pixels

from the ball boundary. The locations of the pixels in the

boundary are marked before we put the speckles into the

original image. Tables 1 and 2 clearly show that the 3D

SRAD improves upon the performance of 3D Lee filter,

traditional anisotropic diffusion and the 2D SRAD in

contrast reduction in the homogeneous region and in the

preservation of edges.
5.3.2. Results for real ultrasound images

The second experiment uses real ultrasound image

obtained using the prototype I-beam transducer. Five 3D

ultrasound images were used in the experiments. The

resultant images are compared to original images and

displayed in 2D. Resultant images displayed in 2D are

obtained by arbitrarily slicing from the 3D resultant image.

Fig. 7(a)–(c) are the original images arbitrarily sliced out

from a 3D speckled real ultrasound image volume along XY-,



Fig. 7. (a)–(c) are the original images arbitrarily sliced out from the speckled experimental image volume along XY-, XZ-, YZ-planes, respectively. (d)–(f)

Resultant images after diffusion corresponding to (a)–(c) using 3D SRAD.

Q. Sun et al. / Computerized Medical Imaging and Graphics 28 (2004) 461–470 469
XZ-, YZ-planes, respectively and Fig. 7(d)–(f) are the resultant

images after diffusion corresponding to Fig. 7(a)–(c).

From Fig. 7, we observe that the diffusion results are good.

It reduced the speckles but preserved the edge of the image.

Besides visual checking, we also performed the quantitative

analysis. In order to perform quantitative analysis, for each

3D image, we used three 2D images sliced from it. The 2D

images sliced from the 3D images are the 2D images sliced

along XY-, XZ-, YZ-planes, respectively. We compared the

diffusion effect in the homogenous region before and after the

diffusion. From each 2D image, we chose the region which is

the mouse heart as the homogenous region and computed the

contrast before and after the diffusion. For each 3D image,

the contrast is the average of the contrasts of its three 2D

images sliced out from it. Table 3 lists performance measured

used the metric in Eq. (48). From Table 3, we have clearly

found that the 3D SRAD performs better than Lee filter, AD

filter and 2D SRAD.

We have implemented our algorithm using Matlab on a

1.5 GHz Pentium 4. For the 3D real ultrasound data set, the

entire computation time was about 25 minutes. We anticipate

that the speed can be made at least 10 times faster

by modifying the Matlab code to C/CCC code. As

the technique is parallelizable, opportunities for further
Table 3

CONTRAST measured in homogenous region for real ultrasound images

obtained by I-beam

Image no. Original AD 3D

SRAD

2D

SRAD

Lee filter

1 0.2911 0.1821 0.0913 0.2561 0.2046

2 0.3112 0.1918 0.0824 0.2761 0.2134

3 0.3032 0.1631 0.1456 0.2675 0.1821

4 0.2941 0.1023 0.1077 0.2516 0.2133

5 0.4636 0.1215 0.0645 0.33 0.2301
improvement in computational expense exist via multi-

processor implementation on a architecture such as the

Mercury Adapdev.
6. Conclusion

In this paper 2D speckle reducing anisotropic diffusion,

which is effective for speckle reduction in 2D ultrasound

image is explored and extended into 3D. This development

has significance for several ultrasound imaging projects in

the area of cardiovascular disease diagnosis and cancer

detection, such as the quantitative ultrasound imaging of

mouse heart, high resolution 3D transrectal ultrasound, etc.

The importance of 3D SRAD lies in its role as the

preconditioning step prior to the image segmentation,

which in turn is the preconditioning step prior to the volume

quantification. Experiment results on synthetic radio fre-

quency ultrasound image and experimental ultrasound image

proved the effectiveness of 3D SRAD algorithm.
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