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Abstract

We give an explicit combinatorial construction of final coalgebras for a modest generalization of
polynomial functors on Set. Type signatures are modeled as directed multigraphs instead of end-
ofunctors. The final coalgebra for a type signature F' involves the notion of Brzozowski derivative
on sets of paths in F.
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1 Introduction

Final F-coalgebras for endofunctors F' on Set are useful in defining semantics
of coinductive datatypes. The existence of final coalgebras under very gen-
eral conditions has been studied in several papers [1,2,3,4,5,7,11,12,14,15,16].
These studies are mostly undertaken from an abstract categorical viewpoint,
typically involving inverse limits, Cauchy completions, or bisimulation quo-
tients of large coproducts. Aside from a few specific examples [7,11], gen-
eral concrete constructions seem to be lacking. It is stated in [2] that “it is
well-known that a final coalgebra...can be described as the coalgebra of all
properly labelled ordered trees,” but this informal statement is not completely
accurate without further qualification; at any rate, its informality contrasts
sharply with the formality of the ensuing abstract development. An accessible
concrete construction would be of use to anyone interested in formal semantics
and logics for reasoning about coinductive datatypes.

! Thanks to Jean-Baptiste Jeannin, Bobby Kleinberg, Alexandra Silva, Navin Sivakumar,
and the anonymous reviewers for insightful comments.
2 Email: kozen@cs.cornell.edu

This paper is electronically published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs


mailto:kozen@cs.cornell.edu

KozEN

Of lesser concern, but still an issue, is that the traditional representation of
type signatures as polynomial functors on Set is not always adequate the case
of mutually recursively defined types; and even when it is, it can introduce
undesirable asymmetries.

Ordinary deterministic finite automata over an alphabet ¥ form a family
of coalgebras of a particularly simple form [11,13]. Final coalgebras of this
type can be constructed explicitly in terms of the Brzozowski derivative

Dy,(A) ={z | ax € A} (1)

for ACY* and a € X.

In this paper we give an explicit Brzozowski-like construction of final coal-
gebras for type signatures corresponding to polynomial functors on Set",
where V' is a set of sorts. However, instead of functors, we represent type
signatures as directed multigraphs with nodes designated as either existential
or universal.

This representation has a number of advantages. Normally, polynomial
functors on Set are built from product, coproduct, total and partial functions
from a fixed set, constant functors, and compositions thereof; but all these
can be modeled with existential and universal nodes. Many of the abstract
constructions impose finiteness conditions to ensure continuity, but we require
no such restrictions. Most importantly, the multigraph provides a platform
for a definition of a Brzozowski derivative on sets of paths.

2 Brzozowski Derivatives

Before proceeding with the construction in §3, it is instructive to review the
role of the Brzozowski derivative [6] in the construction of final coalgebras
for ordinary deterministic finite automata. Classically, a deterministic finite
automaton (DFA) over an alphabet ¥ consists of a finite set of states S, a
transition function ¢ : S — X — 5, a start state, and a set of accepting states
FCS.

As observed in [11,13], ignoring the start state, a DFA is just a coalgebra
for the polynomial endofunctor (X — —) x 2. In general, a coalgebra of this
signature consists of a set of states S (not necessarily finite) and a structure
map a : S — (X — 5) x 2. The value «(s) is a pair in (X — 5) x 2,
of which the first component determines the transition function ¢ and the
second determines whether s € F'.

Now associate with every state s the set of strings L(s) that would be
accepted by the automaton were s the start state. The map L satisfies the
two properties:

(i) If t = 0(s)(a), then L(t) = D4(L(s)), where D,(A) is the Brzozowski
2
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derivative of A with respect to a € ¥ as defined in (1). That is, the
string ax is accepted starting from the state s iff the string x is accepted
starting from the state 6(s)(a).

(ii) The null string € € L(s) iff s is an accept state.

Essentially, the subsets of ¥*, along with the Brzozowski derivatives D, and
a function E determining whether ¢ € A, form the final coalgebra for this
signature, and L is the unique coalgebra homomorphism from the DFA to
this final coalgebra. Formally, the transition function and accept states of the
final coalgebra are given by

D(A)(@) = Da(4) B(A) - {é e
ifeg A.
The relevant property that makes L a coalgebra homomorphism is that it
commutes with the structure maps of the two coalgebras. This is the content
of properties (i) and (ii) above. An example is illustrated in Fig. 1.
The Brzozowski derivatives D, and the homomorphism E can be defined
syntactically on regular expressions:

D,(e1 4+ e3) = Dy(e1) + Da(e2) E(ey +e3) = E(er) + Ees)
D,(e1e3) = D,(e1)es + E(e1)D,(e2) E(ejes) = E(eq)E(es)
Dy(e*) = D,(e)e* E(*) =1
1 ifa=0b,a,beXx
Da(b):{() ifa#b, a,beX Be) =0, bex
D,(1)=0 E(l)=1
D,(0)=0 E(0) =0.

This is a key ingredient of Kleene’s theorem establishing the equivalence of
finite automata and regular expressions [6]; see [13] for a thorough exposition.

3 Main Results

3.1 Directed Multigraphs

A directed multigraph is a structure G = (V, E, src, tgt) with nodes V', edges
E., and two maps src,tgt : £ — V giving the source and target of each edge,
respectively. We write e : s — t if s = srce and ¢t = tgte. When specifying
multigraphs, we will sometimes use the notation s = ¢ for the metastatement,
“There are exactly n edges from s to t.”

3
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Fig. 1. An automaton and its image in the final coalgebra. Final states (shown a darker color) map
to sets containing €. Transitions in the automaton correspond to derivatives in the final coalgebra.

A path is a finite alternating sequence of nodes and edges
S0 €0S51€152 ** Sp—1€n-1 Sn,

n > 0, such that e; : s; = 5,11, 0 < ¢ < n — 1. These are the arrows of the
free category generated by . The length of a path is the number of edges.
A path of length 0 is just a single node. The first and last nodes of a path p
are denoted srcp and tgt p, respectively. As with edges, we write p : s — t if
s =srcp and t = tgtp.

A multigraph homomorphism { : Gy — Gy isamap £ : V; — Vo, (. By —
E5 such that if e : s — ¢ then £(e) : {(s) — £(t). This lifts to a functor on the
free categories generated by G and Gs.

3.2 Type Signatures

A type signature is a directed multigraph F' along with a designation of each
node of F' as either existential or universal. The existential and universal
nodes correspond respectively to coproduct and product constructors. The
directed edges of the graph represent the corresponding destructors.

For example, consider an algebraic signature consisting of a binary function
symbol f, a unary function symbol g, and a constant ¢. This would ordinarily
be represented by the polynomial endofunctor F' = —2 4+ — + 1, or in OCaml
by

type t =Fof t xt | Gof t | C

We would represent this signature by a directed multigraph consisting of four
nodes {t, f, g, c}, of which ¢ is existential and f, g, ¢ are universal, along with
edges



KozEN

Fig. 2. A multigraph representing a single-sorted algebraic signature. Blue diamonds represent
existential nodes and red squares universal nodes.

The multigraph is illustrated in Fig. 2.

Here is a more involved example from [8]. In that paper, the state of a
computation of a higher-order language with closures is defined in terms of a
recursive type definition

Val = Const + Cl values
Cl = A\-Abs x Env  closures
Env = Var — Val closure environments

where Const is a fixed set of constants, A\-Abs is a fixed set of A-abstractions,
and Var is a fixed set of variables (the exact nature of these sets is not impor-
tant). The set of values is a solution to the recursive equation

Val = Const + (A-Abs x (Var — Val)),
which would ordinarily be modeled by an endofunctor
F = Const + (A-Abs x (Var — —))

on Set. In OCaml, we might write

type value = Const of int | Closure of closure
and closure = labs * env
and env = var -> value

We model this type signature by a multigraph with existential nodes Val,
Const, A-Abs, and Env and universal nodes Cl, 1, and a node for each B C Var.
The edges are

Val L5 Const Val L Cl
Cl & A\-Abs Cl - Env
Const % 1, ¢ = |Const]| A-Abs 4 1, d = |\-Abs|
Env & B, B C Var B Val, b= |B|

Note that we regard a partial function Var — Val on the fixed set Var as a
dependent coproduct ) 5y, Val?. This is modeled by an existential node to
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Val = Const + Cl

Fig. 3. A multigraph representing a multisorted signature.

select the domain B C Var, followed by a universal node to select the value of
the function Val® on that domain. The multigraph is illustrated in Fig. 3.

3.8  Coalgebras and Realizations

Let F be a type signature with nodes V. An F-coalgebra is a Vp-indexed
collection of pairs (As, «y), where the A are sets and the a; are set functions

> ereors Atgte, if s is existential
oy As N srce=s gte» . . ' )
[Lacems Atgte, if s is universal.

A morphism of F-coalgebras is a Vp-indexed collection of set maps hg that
commute with the ay in the usual way. This corresponds to the traditional
definition of an F-coalgebra for an endofunctor F on Set"'.

Coalgebras are equivalent to realizations. An F-realization is a directed
multigraph G along with a multigraph homomorphism ¢ : G — F', called a
typing, with the following properties.

o If ¢(u) is existential, then there is exactly one edge of G with source w.

o If /(u) is universal, then ¢ is a bijection between the edges of G' with source
u and the edges of F with source £(u).

A homomorphism of F-realizations is a multigraph homomorphism that com-
mutes with the typings.

Theorem 3.1 The categories of F-coalgebras and F'-realizations are equiva-
lent (in the sense of [10, §1V.4]).

Proof. We must exhibit a pair of functors between F-coalgebras and F-
realizations, one in each direction, and show that they are inverses up to
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natural isomorphisms.

We first construct a coalgebra from a given realization G with nodes Vg
and typing ¢ : G — F. For each node s of F, let Ay = {u € Vi | {(u) = s}
and define oy as follows:

o If s is existential and u € A,, let d : u — v be the unique edge in G with
srcd = u, let e = ¢(d), and let t = ¢(v) = tgte. Define as(u) = in.(v), where
ine : Ay — > ., Atgte is the natural injection into the coproduct.

o If s is universal and u € Ay, let a(u) € [, ., Atgte be the unique element
of the product such that for any edge d : © — v with srcd = u, if e = £(d)
and t = ((v) = tgte, then 7 (as(u)) = v, where 7, : [[,._, Atgte = A is
the natural projection from the product.

Conversely, given an F-coalgebra with data (As, ag), we can construct a
realization. The nodes of the realization are elements of the coproduct

> Ag= | A{ini(u) |ue A} (2)

seVp seVp

with £(ing(u)) = s for u € A;. If u € A and s is existential, then as(u) =
iNe(V) €D oy Atgte for some e : s — ¢t and v € A;. Add an edge (u, e) to the
realization with (u,e) : ing(u) — iny(v) and ¢({u,e)) = e. If u € A; and s is
universal, then ay(u) € [ . Atgre- For each e: s — ¢, let v, = me (o (u)) €
A;. Add an edge (u,e) to the realization with (u,e) : ing(u) — ing(v.) and
((u,e)) =e.

In this construction, we may take the edge (u,e) to be the ordered pair
(u,e). Because u and e determine v, s, and ¢ uniquely, each such ordered pair
appears at most once as an edge (u, €), so there is no danger of duplication.

To finish the proof, we must verify that these two constructions are inverses
up to natural isomorphisms. Given a realization G with typing ¢ : G —
F, applying the first construction followed by the second yields a realization
naturally isomorphic to G via an isomorphism that maps the node u to ing(,)(u)
and the edge d to (srcd, {(d)). It is easily checked that the maps are bijections
on nodes and edges, preserve adjacency, and commute with the typing maps.

Similarly, given a coalgebra with data (As, «;), performing the second
construction followed by the first yields a coalgebra with data

Al ={ing(u) | u € A}
ol A {Zsrce s Algre 1f s is existential,

) e
[locoms Atgee  if 5 is universal.

If s is existential, then o/ (ins(u)) = in.(iny(v)), where ag(u) = in.(v) and
t = tgte. If s is universal, then 7. (« ( s(u))) = ing(v), where m.(as(u)) =

7



KozEN

and t = tgte. It is routine to verify that the two coalgebras are naturally
isomorphic via the isomorphism with components ing : A, — AL

Note that the A’ are always pairwise disjoint, whereas the A; may not
be. However, this does not preclude isomorphism, because a morphism in the
category of F-coalgebras consists of a collection of set maps indexed by nodes
of F', which may take different values on the same element. O

3.4 Final Coalgebras

Realizations allow us to give a concrete construction of final coalgebras that is
reminiscent of the Brzozowski derivative on sets of strings (1). Here, instead
of strings, the derivative acts on certain sets of paths of the type signature.

Let F be a type signature. Construct a realization Rp,{r as follows. A
node of Rr is a set A of finite paths in F' such that

(i) A is nonempty and prefix-closed;
(ii) all paths in A have the same first node, which we define to be {z(A);

(iii) if p is a path in A of length n and tgt p is existential, then there is exactly
one path of length n + 1 in A extending p;

(iv) if p is a path in A of length n and tgtp is universal, then all paths of
length n 4+ 1 extending p are in A.

The edges of Rp are defined as follows. Let A be a set of paths in F' and e an
edge of F'. Define the Brzozowski derivative of A with respect to e to be

De(A) ={p| (srce)ep € A},

the set of paths obtained by removing the initial edge e from paths in A that
start with that edge. If A is a node of Rr and D.(A) is nonempty, we include
exactly one edge

(A,e) : A — D,(A)

in Rp and take {p((A,e)) = e. It is readily verified that tgt (A,e) = D.(A)
satisfies properties (i)—(iv) and that ¢g(D.(A)) = tgte, so {f is a typing.

Theorem 3.2 The realization Rp, g is final in the category of F-realizations.
The corresponding F'-coalgebra as constructed in Theorem 3.1 is final in the
category of F'-coalgebras.

Proof. Let G,/ be an arbitrary realization. The unique homomorphism h :
G,¢ — Rp, U is given by: h(s) is the set of paths in F' that are images under
¢ of paths in G starting with node s.

The second statement of the theorem follows from the equivalence of the
two categories (Theorem 3.1). O
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Fig. 4. A multisorted signature.

4 Discussion

4.1  Multisorted Signatures and Asymmetry

In the introduction, we mentioned that polynomial endofunctors on Set do
not appear to be adequate for modeling some coinductive types that deserve
to be regarded as polynomial types. We also mentioned that they can intro-
duce undesirable asymmetries. For example, it is not clear how to model the
mutually dependent coinductive types

type s = C of s * ¢t
and t = D of s *x t

using an endofunctor on Set; it appears that Set? is required. The multigraph
corresponding to this signature is illustrated in Fig. 4.

Endofunctors on Set are adequate in the single-sorted case. They are also
adequate in the multisorted example

Val = Const + Cl Cl = A-Abs x Env Env = Var — Val

of §3.2 because there is a node that meets all cycles; in fact, there are three
such nodes. However, we must still choose where to break the cycle, and this
is the undesirable asymmetry. In this case, we could choose any of the three
options

Fya = Const + (A-Abs x (Var — —))
Fei = A-Abs x (Var — (Const + —))
Feny = Var — (Const + (A-Abs x —)),

but then we would be left with the task of proving that the choice does not
matter.

We conjecture that endofunctors on Set are adequate exactly when there
exists a set of nodes A of the type signature such that every cycle contains
exactly one node of A.

4.2 Final Coalgebras as Labeled Trees

In this section, we wish to expand on the statement of Addmek [2] that “a final
coalgebra. .. can be described as the coalgebra of all properly labelled ordered
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trees” and draw a relationship to the Brzozowski construction of §3.4. In that
paper and [3], one finds an explicit tree-like construction for a single-sorted
polynomial signature such as the one illustrated in Fig. 2. Worrell [16] gives
a construction for unordered trees.

A subtlety arises when one tries to define labeled trees formally. The issue is
how to define the nodes and edges so that one obtains unique representatives
in the final coalgebra. For traditional algebraic signatures involving n-ary
functions f : A™ — A, one can define the nodes of the tree as a prefix-closed,
nonempty subset of w* such that if o is a node, then «i is a node for all
0 <7 < n, where n is the arity of the node’s label. This construction appears
for example in [3,9]. However, it is not immediately clear what to do for
unordered trees or more general type signatures. In [16], it is stated that “We
consider trees that are isomorphic as directed graphs. ..to be identical,” thus
trees are isomorphism classes. But of what?

Thinking about this issue leads naturally to idea of type signatures as
directed multigraphs F'. This allows us to construct labeled trees whose nodes
are paths in F. Instead of natural numbers, the children of a node are indexed
by the edges of F.

To characterize the elements of the final coalgebra as labeled trees, we can
start from the final realization Rp, {r constructed in §3.4. Each node A of Rp
corresponds to a labeled tree 7(A) as follows. The root of 7(A) is £r(A). The
nodes of 7(A) are the elements of A, which are paths in F'. There is an edge
in 7(A) from p to ¢ if p is a prefix of ¢ and their lengths differ by one. The
labeling function labels a path p with its final node tgt p. In this construction,
7(D.(A)) is the eth maximal proper subtree of 7(A).
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