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ABSTRACT 

We present and compare adaptive detection algorithms de- 
veloped for synthetic aperture radar (SAR) targets in struc- 
tured clutter, utilizing both generalized likelihood ratio (GLR) 
tests and maximal invariant (MI) tests. We consider the 
problem of detecting a target straddling a known boundary 
between two independent clutter regions inducing a clutter 
covariance matrix with block diagonal structure. GLR and 
MI tests are presented for various clutter scenarios: two to- 
tally unknown clutter types, one of the clutter types known 
except for its variance, and one of the clutter types com- 
pletely known. Numerical comparisons will illustrate that 
GLR tests and MI tests are complementary-neither test strat- 
egy uniformly outperforms the other-suggesting that it may 
be worthwhile to hybridize these tests for overall optimal 
performance. 

\ 

1. INTRODUCTION 

In automatic target recognition, the most important issue is 
reliable detection which is robust to target and clutter vari- 
ability, yet maintains the highest possible discrimination ca- 
pability. In the past, most adaptive radar and array detection 
problems have been formulated under the general assump- 
tion that the target has known form but unknown amplitude 
in Gaussian noise whose covariance matrix is totally un- 
known or unstructured. The nature of this assumption led 
to the application of the generalized multivariate analysis 
of variance (GMANOVA) model to the measurements, and 
the subsequent development of many detection algorithms. 
With this assumption and the GMANOVA model, Kelly [ 13 
derived the constant false alarm rate (CFAR) test using the 
generalized likelihood ratio (GLR) principle and in so doing 
proved that the test is an optimal maximal invariant (MI) test 
as well. 

However, when a prior structure of the clutter covari- 
ance matrix exists, one can expect an improvement in per- 
formance by exploiting this a priori structure. Also when 

This work was supported in pari by AFOSR under MURI grant: 
F49620-97-0028. 

tractable, the reduced parameterization of the structured co- 
variance can be introduced and the GLR test can be applied. 
For adaptive arrays, Bose and Steinhardt [2] proposed an MI 
detector which outperforms the Kelly’s test when the clutter 
covariance matrix is assumed to have a certain known block 
diagonal structure. This work was the springboard in [3] for 
synthetic aperture radar (SAR) imaging target detection in 
the difficult deep hide scenario where the target parks along 
a known boundary separating two adjacent clutter regions. 
Indeed, under the assumption that the two clutter types are 
statistically independent, the spatial covariance has a simi- 
lar block diagonal structure to that in [2] and this structure 
was used in [3] to derive another MI test. 

In this paper we extend the work reported in [3] by de- 
riving the GLR test and comparing the invariant methods of 
[2] and [3]. Derivations of the GLR and MI test statistics for 
the case of structured covariance are not trivial, and the de- 
tails are omitted due to space limitations. Here we compare 
the GLR tests to the MI tests on the basis of simulation for 
the deep hide scenario when the boundary can be accurately 
estimated. 

2. GLR VS. INVARIANCE PRINCIPLES 

Fig. 5 displays the magnitude of a complex valued SAR 
clutter image of a rural scene consisting of two clutter types 
(forest canopy and grass field) separated by a boundary. The 
deep hide target detection problem treated in this paper is to 
detect a target that straddles the boundary between regions 
A and B. We make the assumptions that the complex clut- 
ter image is circular Gaussian with zero mean and that two 
spatial samples taken respectively from region A and region 
B are uncorrelated. By centering a I-pixel wide vertical 
window with fixed vertical extent at the boundary (or its es- 
timate) in Fig. 5 and sliding it over the image from left to 
right we obtain a reduced image (Fig. 7) with a horizon- 
tal boundary. Any of the vectors repacked from the clutter- 
alone image chips shown in Fig. 7 will be multivariate com- 
plex Gaussian with zero mean and covariance matrix R hav- 
ing block diagonal structure. Then by concatenating these 
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where 3 is the n-dimensional target signature with unknown 
amplitude a, e, is the unit vector [l, 0,. . . , 0IT, and wec(N) N 

CN(Q, R @ I,), i.e. N follows a multivariate zero-mean 
complex normal distribution with covariance R @ I,. Note 
that the first column g1 is the primary data which may con- 
tain the target. The goal is to construct a test that a given 
chip contains clutter alone (Ho) vs. clutter plus target ( H I )  
where target spatial structure is known . We separate the 
clutter scenarios into three different cases: 

(totally unknown clutter in regions A and B) 

0 Case 2: R = 1 % ay1 1 
L J 

(clutter known in region B up to variance a') 

0 Case 3: R = 12 :1 
L .I 

(clutter known exactly in region B) 

where RA > 0, RB > 0, and a2 > 0. 
Since there exists no uniformly most powerful test for 

these structured covariance matrices, the invariance princi- 
ple is applied as well as the mainstay GLR method in an at- 
tempt to find good sub-optimal CFAR tests. It can be shown 
that the GLR tests have explicit forms only requiring rooting 
a complex quartic equation in the complex target amplitude 
parameter a. GLR test statistics are listed in Table 1 where 
the measurement matrix is partitioned as 

where each column corresponds to pixel values in a different 
chip. The known target signature is 5 = [sz &] H ,  and 

H -1 
p(a ,  xA)  = ( g A 1  - ~ Z A ) ~ ( X A Z X A ~ )  (&A1 - ~ S A )  

T 
q(a, XB) = t r { ( X B  - asBeT)H(xB - aSBe1 1). 

Here the subscripts denote the two different regions A and 
B, gA1 (mA x 1) and gBl(mB x 1) denote pixels in the chip 
which is being tested for containing the target. 

As described in [4], the MI test is constructed by ap- 
plying the likelihood ratio test to a statistic called the m a -  
imal invariant. The maximal invariant is the lowest dimen- 
sion statistic summarizing the data yet preserving target vs. 
clutter discrimination capability for the specific uncertainty 
structures of cases 1, 2, or 3. Using the maximal invariant 
approach, Bose and Steinhardt [2] derived an MI test for 
Case 2, and the Kelly's test [ 11 can be easily modified to fit 

vectors we obtain the measurement X = [gl, . . . ,E,]; 

X = a z g T + N  
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Table 1. GLR tests for Case 1,  2 and 3. (The notation '?' 
denotes 'unknown' quantity in the model) 

Case 1 .  However, using a different function of the maximal 
invariant we have obtained another MI test for each case 
which reduces exactly to the unstructured GLR test when a 
target is entirely contained in one of regions A or B. The MI 
tests are listed in Table 2 where 

Table 2. MI tests for Case 1. 2 and 3 

3. NUMERICAL COMPARISONS 

To compare the performance of the GLR and MI tests de- 
rived under the three structured covariance assumptions, ROC 
curves are generated for each case. In Figs. 1-3, the proba- 
bility of detection (Po) is calculated empirically as a func- 
tion of the probability of false alarm (PFA) by varying thresh- 
olds on the GLR and MI test statistics. Note that Kelly's 
structured test is matched to Case 1 ,  and Bose and Stein- 
hardt's MI test is matched to Case 2. In all cases, these 
figures confirm that the tests derived under the matched as- 
sumption outperform those which are mismatched. 

Of particular interest, however, are the crossings in the 
low PFA regions between the GLR tests and the MI tests. 
In Fig. 1,  we can observe the gains in PD of MI test 1 
over GLRT 1 for PFA < 0.1. Moreover, it should be noted 
that the structured Kelly's test is outperformed by MI test 
1 in low PFA and by GLRT 1 in high PFA. Also in Case 
2 (Fig. 2), both MI test 2 and GLRT 2 outperform Bose 
and Steinhardt's matched test and it appears that MI test 2 
slightly outperforms GLRT 2 for low PFA. These obser- 
vations also hold for mismatched cases: between MI test 1 
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and GLRT 1 in Case 2/3 (Figs. 2/3), and between MI test 2 
and GLRT 2 in Case 1 (Figs. 1). For Case 3 (Fig. 3), the 
ROC curves for GLRT 2 and MI test 2 approach those of the 
matched GLRT 3 and MI test 3 since large number of pixels 
( m ~ n  = 60 x 61) provide sufficiently accurate estimates of 
the variance in region B. 

The relative advantage of MI vs. GLR tests are more 
closely investigated in Fig. 4 where we only considered 
Case 1, but similar results were observed for the other cases. 
In (a), we increased n with fixed SNR and could remove the 
crossing. In (b), however, by increasing SNR we could only 
move the point of the crossing towards low PFA. In addi- 
tion, as illustrated in (c), with a large number of chips (n) we 
could not separate MI and GLR tests by decreasing SNR. 

Next, we considered an application to the real image in 
Fig. 5. The boundary was hand extracted and the 9 x 7 
SLICY target from Fig. 6 was inserted so that it straddles 
the boundary. With the realigned image in Fig. 7, MI test 
1 and GLRT 1 statistics are calculated and maximized pixel 
by pixel (Fig. 8). Both tests detected the target in column 
300, yet in this experiment the GLRT 1 statistic exhibits 
slightly higher detectiblity at the true target location. 

4. CONCLUSION 

The deep hide scenario considered in this paper complicates 
the design of optimal target detectors. This scenario gives 
rise to block diagonal constraints imposed by the clutter co- 
variance structure. Both GLR and MI tests can be derived 
under these constraints. Numerical results indicate that nei- 
ther GLR nor MI tests dominate the other in terms of ROC 
performance. The GLRT outperforms the MI test only when 
high estimator accuracy is attainable, e.g. for a large num- 
ber of samples, but otherwise MI test is better especially in 
low PFA. Therefore, MI test not only plays an important 
role as an alternative to GLRT, but also has the desirable 
property of reliable performance in low PFA with a small 
number of data. 
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Fig. 1. ROC curves for Case 1 with S N R  = 22dB ( m ~  = 
5 0 , m ~  = 50,n = 51). 

‘FA 

Fig. 2. ROC curves for Case 2 with S N R  = 10dB ( m ~  = 
40,mB = 60,n = 61). 

‘FA 

Fig. 3. ROC curves for Case 3 with S N R  = lOdB ( m ~  = 
40, mB = 60, n = 61). 
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(a) S N R  = 7dB 
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(b) n = 61 

(c) n = 81 

Fig. 4. Comparison of GLR and MI tests for Case 1 by (a) 
varying n with fixed SNR, (b) increasing SNR with small n, 
and (c) decreasing SNR with large n (WLA = 60, mg = 40). 
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Fig. 5. SAR clutter image with SLICY target in the bound- 
ary at column 300. The data from which this rural scene is 
reproduced is downloaded from the MSTAR SAR database 
at the Center for Imaging Science (www.cis.jhu.edu). 

Fig. 6. SLICY canonical target image at azimuth = 163" 
and elevation = 39" obtained from the MSTAR database. 

Fig. 7. Image realigned along the extracted boundary. SL- 
ICY target is located at column 300. 
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Fig. 8. Test values obtained along the boundary by (a) MI 
test 1 and (b) GLRT 1. 
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