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I. INTRODUCTION
Let ZUn be a given series with the sequences of partial

sums {S,} and let 2={4,} be a monotonic

non-decreasing sequence of natural numbers with

Ay —A, <land 4, =1.
The sequence-to-sequence transformation

V,()=7 3,

/In v=n-4,+1

n+1

defines the generalised de-la Vallee Poussin means of the

sequence {S,} generated by A .

The series Zun is said to be summable |V,i| , if the

sequence {Vn(/”t)} is of bounded variation, i.e. to say

(LEINDLER [03])
Z[le(ﬂ“)_vn (/1] <®©
n=1

We say that the series Zun is summable |V,/”t|k,
k>1,if

[}

> AN, () -V, (2) <o

n=1

The series Zun is also summable [\/,/1;)/|k, k>1,
y 20 if

> AN () -V, (4) <o

n=1

on taking 4, =nand y =0, this summability reduces
|C,ZI4k and for k=1 and }/:0 this is the same as

summability [\/,/1| :

Let f(t) be a 2 7r -periodic and L-integrable function over
(— 7z,7z') We assume, as we may without any loss of
generality that
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o0

iAn(t) =>(a, cosnt +b, sinnt)

n=1
is the Fourier series of f(t) .
We write

¢(t)=%{f(x+t)+ F(x—t)=2f (x)}

and

Il. THEOREM

In this paper, we shall prove the following theorem.
If {un } is a convex sequence such that

nu, (log n)@ 1

3 o <o, (|5| < Ej (1)
n(lo n)@ AU

> < @

and

t s

J'|¢5(u}k du = O{t(log %) },ﬂ >0,

0

and 1<k <2 3)

U, A, (t)

Then the series Z

(2p+25+k-1) '

{floglh+1)} 2
at t=x is summable [\/,/”L;}/|k, ogyg%.
Ontaking A4, =1, k=1,6=0 and y =0

theorem, we obtain the theorem of SINGH [08] which is a an
extension of a well-known result of PATI [06].

in our

I1l. LEMMAS

We need the following lemmas for the proof of our
theorem.

.Lemma A : (JAIN, GANGULY and MADAN [02])
If (3) holds, then

38,00~ (¢ -
- O(n(log n)@*ﬂ j ,

P>0,and 1<k <2 (4)

.Lemma B : (JAIN, GANGULY and MADAN [02])
If (3) holds and




VA

L
=23 Al

tZe:r;T (x)" = ( Iogn[] )

.Lemma C : (JAIN, GANGULY and MADAN [02])

nu
If {un} is a convex sequence such that Z—Z” <0,
n

Then
(i) ilog(n +1)Au, =O(1), asm—> 00

n=1

(i) inlog(n +1)A%u_ =0O(1), asm—> o0

n=1

IV. PROOF OF THE THEOREM

For k=1and y =0 the theorem directly follows on taking

the series Z IOg n+1§ﬁ+5 in place of Zu An

and applying the condition (1), (2) and (3) ( with k=1 and
y =0 ) instead of the set of conditions used by SHARMA
and JAIN [07] in the proof of their theorem.

Therefore, we prove our theorem for 1<k<2 only.

Let C Vn+1(ﬂ’; X)_Vn (/1’ X),
Where Vi (/1; X) is the n-th de-la Vallee Poussin mean of

. u, A, (t
Seres Z (2/?)+2(>‘+k—1)

{log(n +1)}
By an easy computation, we have
n+1
Cn . Z{(ﬂhﬂ_ﬂ’nxv_n_l)—'_/q’n}x
ﬂ“ 2“n+]_ v=n-A4,+2
uAD
(2p+25+k-1)
{log(v+1)}

Therefore, in order to prove the theorem, it is sufficient to
show that

- _ k
Y AHAC,| <
n=1
5):
Let m  bethe summation over all n satisfying Ay =4
i)
Z > A

and " be the summation over all n where Anaa n,
Ay =4

When n+l — “*n

n

Abel’s transformation gives that

C =

n
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\
x A (2p+25+k-1)

r{log(v+1)}

un—ﬁ.n+2 v,

@25+ 1)
(=2, +2)flogn—4, +3)} =

x {nfh\ (x)} .

r=1

u

+ = (2p+25+k-1) {ni‘, I’A(X)}
y o

(n+1){log(n+2 r=1

=L+ L2+ L2, say

n

By Minkowski’s inequality, it is therefore, sufficient to
prove that

(i)
Z%‘”k_l L, ‘< o, forr=1.2,3
Now,
(iz)ﬂ/}k+k—l
n=1 " -
0 1
= O(l)z g X
k
x “ V|Tv (X)|A —~ (2f+25+k-1)
VNl +2 vilog(v+1)} 2
i) 1
= O(l)z g X
n+1 uv
X Z V|Tv (X)|k A (2p+25+k-1)
VN7 +2 v{log(v+1)}
= u
:O(l)ZV|Tv(X)|kA V(2ﬂ+25+k—l) X
v=1 v{log(v+1)}
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n+4,-1 1

X
1-k
n=v ﬂ’n
\

—O@W> VT, (x) A A
ol )| {V{log(wl)} }

Using Abel’s transformation again, by Lemma B. We
easily have

(Zi):iyk+k—1 k

u

(2p+25+k-1)

= O(l)i n*(log n)@*ﬂ x

uV

xAz{
n{log(n+1)}

© (1-25)

o> n(logn) 2 Au, 2+

n=1

(2ﬁ'+25+k -1)

+ O(l)z Iogn = Au A+

( 26)
+0(1)Z 2 A

Iog n

=0(1)
by Lemma C(i), C(ii) and hypothesis (1).

®)

Further, Applying Abel’s transformation and Lemma B, it

is easy to see that
Q) AK+k-1 Q) AK+k-1
Zﬂ’n n + Zﬂ’n n
n n
u

- oa@n(x)lk

n

2, {log(n+1)}

. (1-20)
- o3 nAun(I;gﬂ(n) 2

n=1
(1-26)
nu, Iogn) :

ﬂ}k

(2p+25+k-1)"™n

(6)

by hypothesis (1) and (2).
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(i)
z we have, with the aid of
n

Now, in order to estimate

Abel’s transformation, that

1 n
[Cal < [
v=n-A4,+2

ZV|TV (X) X

n’n+l

u

v{log(v +1)}

N—Ap41 (XX X

un—in+2

A{(A, +v—-21-1)}

(2p+25+k-1)

+(n—4, + )T

X

(2p+25+k-1) +

(n—24, +2){log(n— A, +3)}
Au

n-'n+l

(n+1){log(n+2)}
=M +M?+M?, sa

+(N+L)T, . (x)

(2p+25+k-1)

By Minkowski’s inequality, it is therefore sufficient to
prove that

%ﬂfmk—l‘M r[¥

Now,

< oo, forr=1,2,3

1

k—pk+1
ﬂ“n

<3
<

n

%):%mk—l‘Mi

n

{ Zn:V|TV (X] X
v=n-4,+2

}

u

\

X {%A(
v{log(v+1)}

+

(2+25+k-1)

]

{ Zn:v|TV (x)4, x
v=n-A4,+2

(2p+25+k-1)

v{log(v+1
i)

b

ZW

1

X A[
v{log(v +1)}
AT, (x) %

{vn/1+2

u

(2p+25+k-1)

(i)

+ {Z ﬂk K+1
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N, =
(ii) 1 n
— k ok
_O(l)z[ﬂk—ml ZV|TV (X] A, %
n n v=n—-4,+2
u
\
x A (2p+25+k-1)
vilog(v+1)] 2
=O(1)iv|T (x) 2 ul x
v (2p+25+k-1)
v vilog(v+1)} 2
i) 1
X —_—
k—k+1
nxv /li’n
= 0@ VT, (x)A a
= O( )ZV| v XX (2p+26+k1)
vl vilog(v+1)} 2
=0(1). by (5)
And similarly,
N,=

|Tv(x)|k Ky,
(2p+25+k-1)

n n v=n-4,+2 {lOg(V+1)} 2

- k
=0 (1) Z |TV(X) UV

(2p+25+k-1)

A M log(v+1))

=0 (1), by (6)

T_herefore,

ﬁw—l\m; “—o@).

Finally,

%lwk-l‘,vl 2‘k . %):/I;mk-l‘M 3¢ _
e T, (x]kun

=0()3, oy
1 2-*{log(n +1)}(2ﬁ 7

=0 (1). By (6)
This is complete proof of theorem.
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