

Digital Image Processing (DIP) 25-157

Lecturer: E. Fatemizadeh

- Course Information:
 - Type: Graduated
 - Credits: 3
 - Prerequisites: Digital Signal Processing (25155)
 - Convolution
 - DFT/FFT
 - Filtering

- Reference(s):
 - Digital Image Processing*, by: R. C. Gonzalez and R. E. Woods, 3rd Ed., 2008, Prentice Hall.
 - Fundamentals of Digital Image Processing,
 by: A. K. Jain, 1989, Prentice Hall.
 - The Image Processing Handbook, by: J. C. Russ, 4th Edition, 2002, CRC Press.

- Evaluation:
 - Middle: 40%
 - Final: 40%
 - Homework: 10% (Paper and Compute Based)
 - Research Project: 10%
 - In depth paper (one) study (Simulation and Judgment)
 - Experiments on real data

• Journals:

- IEEE Trans. on Image Processing
- IEEE Trans. on Medical Imaging
- Signal Processing, Image Communication (Elsevier Science)
- IEEE Trans. on Visualization and Computer Graphics
- IEEE Trans. on Pattern Analysis and Machine Intelligence
- Pattern Recognition, (Pergamon-Elsevier)
- Pattern Recognition Letters (Elsevier)
- IEEE Trans. on Biomedical Engineering
- IEEE Trans. on Information Technology in Biomedicine
- IEEE Trans. on Signal Processing
- Signal Processing (Elsevier Science)

- Course Contacts and Links:
 - URL: http://ee.sharif.edu/~dip
 - Course Lecture Notes
 - Course Email: dip@ee.sharif.edu
 - Electronic Homework submission (NOT .rar)!
 - Submission rule:
 - Subject: DIPn:stdnum
 - My email: fatemizadeh@{sharif.edu, gmail.com}

- Digital Image Processing:
 - First Q's:

Is it a Two Dimensional Signal Processing?

- Answer:

Not Exactly!

- An Images is completely different from 2D Signal.
 - Human Vision/Perception/Intelligibility
 - Quantization
 - Eye illusion

Eye illusion

The squares marked A and B are the same shade of gray.

- Digital Image Processing:
 - DSP
 - Human Vision
 - Other forms of mathematics (i.e. Morphology)
 - Art
 - Heuristic Inference
 - Pattern Recognition

Old and Historical Digital Images

- Our General Definition of image:
 - A physical property(ies) of an object.
 - Not necessarily visible.
- Main Physical Property:
 - Electromagnetic Radiation:
 - From Radio Waves to Cosmic rays
- A categorization:
 - Single Channel
 - Multi Channels

• Electromagnetic Spectrum:

Some Physical Properties (Gamma Ray):

Bone Scan

PET

Gamma **Radiation from** reactor valve

Some Physical Properties (X-Ray):

Chest X-Ray

Angiography

Circuit Board

Cygnus Loop

CT

Some Physical Properties (Ultraviolet):

Normal Corn

Smut Corn

UV imaging

Cygnus Loop

Microscopy (Visible Light):

Cholesterol

Taxon (Anti cancer)

Nickel Oxide Thin Film

Superconductor

CD Surface

- A Sample of Multi Channels imaging:
 - Satellite imaging (NASA LANDSAT)

Band No.	Name	Wavelength (μm)	Characteristics and Uses
1	Visible blue	0.45-0.52	Maximum water penetration
2	Visible green	0.52-0.60	Good for measuring plant vigor
3	Visible red	0.63-0.69	Vegetation discrimination
4	Near infrared	0.76-0.90	Biomass and shoreline mapping
5	Middle infrared	1.55–1.75	Moisture content of soil and vegetation
6	Thermal infrared	10.4–12.5	Soil moisture; thermal mapping
7	Middle infrared	2.08–2.35	Mineral mapping

- A Sample of Multi Channels imaging:
 - Satellite imaging

Multispectral image of Hurricane Andrew:

Geographical infrared images (1):

Geographical infrared images (2):

- Visual Spectrum:
 - Inspection

- Visual Spectrum:
 - Biometrics
 - OCR

Radar Image of Mountain (Microwave Band):

Magnetic Resonance Imaging – MRI (RF):

- Multichannel Pulsar Images:
 - Gamma, X-Ray, Optical, Infrared, and Radio

- Ultrasonic Images (Seismic):
 - Oil/Gas/Water trap

- Ultrasonic Images (Medical):
 - Infants, Thyroid, Muscle

Scanning Electron Microscope (SEM):

Synthetic Images:

- DIP applications (1):
 - Image Recovering:
 - Reconstruction and Restoration
 - Image Quality Enrichment:
 - Enhancement and Denoising.
 - Data Redundancy Reduction:
 - Image Compression (tiff, jpg, png, jp2, ...)
 - Automatic Detection and Recognition:
 - OCR, Medical/Industrial CAD, ...
 - Authentication:
 - Face, Signature, Fingerprint, Palm, Gesture, Retina Iris.

- DIP applications (2):
 - Machine Vision
 - Machine Recognition/Verification

Fundamental Steps in Image Processing:

Outputs of these processes generally are images

Components of an Image Processing System:

An Example of Image Processing Results:

