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Preface

The purpose of these notes is be used to introduce Electrical Engineering students to Electrical
Machines, Power Electronics and Electrical Drives. They are primarily to serve our students at
MSU: they come to the course on Energy Conversion and Power Electronics with a solid background
in Electric Circuits and Electromagnetics, and many want to acquire a basic working knowledge
of the material, but plan a career in a different area (venturing as far as computer or mechanical
engineering). Other students are interested in continuing in the study of electrical machines and
drives, power electronics or power systems, and plan to take further courses in the field.

Starting from basic concepts, the student is led to understand how force, torque, induced voltages
and currents are developed in an electrical machine. Then models of the machines are developed, in
terms of both simplified equations and of equivalent circuits, leading to the basic understanding of
modern machines and drives. Power electronics are introduced, at the device and systems level, and
electrical drives are discussed.

Equations are kept to a minimum, and in the examples only the basic equations are used to solve
simple problems.

These notes do not aim to cover completely the subjects of Energy Conversion and Power
Electronics, nor to be used as a reference, not even to be useful for an advanced course. They are
meant only to be an aid for the instructor who is working with intelligent and interested students,
who are taking their first (and perhaps their last) course on the subject. How successful this endeavor
has been will be tested in the class and in practice.

In the present form this text is to be used solely for the purposes of teaching the introductory
course on Energy Conversion and Power Electronics at MSU.

E.G.STRANGAS

E. Lansing, MichiganandPyrgos, Tinos
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A Note on Symbols

Throughout this text an attempt has been made to use symbols in a consistent way. Hence a script
letter, sayv denotes a scalar time varying quantity, in this case a voltage. Hence one can see

v = 5 sin ωt or v = v̂ sinωt

The same letter but capitalized denotes the rms value of the variable, assuming it is periodic.
Hence:

v =
√

2V sinωt

The capital letter, but now bold, denotes a phasor:

V = V ejθ

Finally, the script letter, bold, denotes a space vector, i.e. a time dependent vector resulting from
three time dependent scalars:

v = v1 + v2e
jγ + v3e

j2γ

In addition to voltages, currents, and other obvious symbols we have:
B Magnetic flux Density (T)
H Magnetic filed intensity (A/m)
Φ Flux (Wb) (with the problem that a capital letter is used to show a time

dependent scalar)
λ, Λ, λλλ flux linkages (of a coil, rms, space vector)
ωs synchronous speed (in electrical degrees for machines with more than

two-poles)
ωo rotor speed (in electrical degrees for machines with more than two-poles)
ωm rotor speed (mechanical speed no matter how many poles)
ωr angular frequency of the rotor currents and voltages (in electrical de-

grees)
T Torque (Nm)
<(·), =(·) Real and Imaginary part of·

x



1
Three Phase Circuits and Power

Chapter Objectives

In this chapter you will learn the following:

• The concepts of power, (real reactive and apparent) and power factor

• The operation of three-phase systems and the characteristics of balanced loads inY and in∆

• How to solve problems for three-phase systems

1.1 ELECTRIC POWER WITH STEADY STATE SINUSOIDAL QUANTITIES

We start from the basic equation for the instantaneous electric power supplied to a load as shown in
figure 1.1

������

������

+

v(t)

i(t)

Fig. 1.1 A simple load

p(t) = i(t) · v(t) (1.1)

1



2 THREE PHASE CIRCUITS AND POWER

wherei(t) is the instantaneous value of current through the load andv(t) is the instantaneous value
of the voltage across it.

In quasi-steady state conditions, the current and voltage are both sinusoidal, with corresponding
amplitudeŝi andv̂, and initial phases,φi andφv, and the same frequency,ω = 2π/T − 2πf :

v(t) = v̂ sin(ωt + φv) (1.2)

i(t) = î sin(ωt + φi) (1.3)

In this case the rms values of the voltage and current are:

V =

√
1
T

∫ T

0

v̂ [sin(ωt + φv)]2 dt =
v̂√
2

(1.4)

I =

√
1
T

∫ T

0

î [sin(ωt + φi)]
2
dt =

î√
2

(1.5)

and these two quantities can be described by phasors,V = V
6 φv andI = I

6 φi .
Instantaneous power becomes in this case:

p(t) = 2V I [sin(ωt + φv) sin(ωt + φi)]

= 2V I
1
2

[cos(φv − φi) + cos(2ωt + φv + φi)] (1.6)

The first part in the right hand side of equation 1.6 is independent of time, while the second part
varies sinusoidally with twice the power frequency. The average power supplied to the load over
an integer time of periods is the first part, since the second one averages to zero. We define as real
power the first part:

P = V I cos(φv − φi) (1.7)

If we spend a moment looking at this, we see that this power is not only proportional to the rms
voltage and current, but also tocos(φv − φi). The cosine of this angle we define as displacement
factor, DF. At the same time, and in general terms (i.e. for periodic but not necessarily sinusoidal
currents) we define as power factor the ratio:

pf =
P

V I
(1.8)

and that becomes in our case (i.e. sinusoidal current and voltage):

pf = cos(φv − φi) (1.9)

Note that this is not generally the case for non-sinusoidal quantities. Figures 1.2 - 1.5 show the cases
of power at different angles between voltage and current.

We call the power factor leading or lagging, depending on whether the current of the load leads
or lags the voltage across it. It is clear then that for an inductive/resistive load the power factor is
lagging, while for a capacitive/resistive load the power factor is leading. Also for a purely inductive
or capacitive load the power factor is 0, while for a resistive load it is 1.

We define the product of the rms values of voltage and current at a load as apparent power,S:

S = V I (1.10)
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Fig. 1.2 Power at pf angle of0o. The dashed line shows average power, in this case maximum
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Fig. 1.3 Power at pf angle of30o. The dashed line shows average power

and as reactive power,Q

Q = V I sin(φv − φi) (1.11)

Reactive power carries more significance than just a mathematical expression. It represents the
energy oscillating in and out of an inductor or a capacitor and a source for this energy must exist.
Since the energy oscillation in an inductor is1800 out of phase of the energy oscillating in a capacitor,
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Fig. 1.4 Power at pf angle of90o. The dashed line shows average power, in this case zero
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Fig. 1.5 Power at pf angle of180o. The dashed line shows average power, in this case negative, the opposite
of that in figure 1.2

the reactive power of the two have opposite signs by convention positive for an inductor, negative for
a capacitor.

The units for real power are, of course,W , for the apparent powerV A and for the reactive power
V Ar.
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Using phasors for the current and voltage allows us to define complex powerS as:

S = VI∗ (1.12)

= V
6 φvI

6 −φi (1.13)

and finally

S = P + jQ (1.14)

For example, when

v(t) =
√

(2 · 120 · sin(377t +
π

6
)V (1.15)

i(t) =
√

(2 · 5 · sin(377t +
π

4
)A (1.16)

thenS = V I = 120 · 5 = 600W , while pf = cos(π/6− π/4) = 0.966 leading. Also:

S = VI∗ = 120 6 π/6 56 −π/4 = 579.6W − j155.3V Ar (1.17)

Figure 1.6 shows the phasors for lagging and leading power factors and the corresponding complex
powerS.

S

S
jQ

jQ

P

P
V

V

I

I

Fig. 1.6 (a) lagging and (b) leading power factor

1.2 SOLVING 1-PHASE PROBLEMS

Based on the discussion earlier we can construct the table below:

Type of load Reactive power Power factor
Reactive Q > 0 lagging

Capacitive Q < 0 leading
Resistive Q = 0 1
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We also notice that if for a load we know any two of the four quantities,S, P , Q, pf , we can
calculate the other two, e.g. ifS = 100kV A, pf = 0.8 leading, then:

P = S · pf = 80kW

Q = −S

√
1− pf2 = −60kV Ar , or

sin(φv − φi) = sin [arccos 0.8]
Q = S sin(φv − φi)

Notice that hereQ < 0, since thepf is leading, i.e. the load is capacitive.
Generally in a system with more than one loads (or sources) real and reactive power balance, but

notapparent power, i.e.Ptotal =
∑

i Pi, Qtotal =
∑

i Qi, butStotal 6=
∑

i Si.
In the same case, if the load voltage wereVL = 2000V , the load current would beIL = S/V

= 100 · 103/2 · 103 = 50A. If we use this voltage as reference, then:

V = 2000 6 0V

I = 50 6 φi = 50 6 36.9o

A

S = V I∗ = 2000 6 0 · 506 −36.9o

= P + jQ = 80 · 103W − j60 · 103V Ar

1.3 THREE-PHASE BALANCED SYSTEMS

Compared to single phase systems, three-phase systems offer definite advantages: for the same power
and voltage there is less copper in the windings, and the total power absorbed remains constant rather
than oscillate around its average value.

Let us take now three sinusoidal-current sources that have the same amplitude and frequency, but
their phase angles differ by1200. They are:

i1(t) =
√

2I sin(ωt + φ)

i2(t) =
√

2I sin(ωt + φ− 2π

3
) (1.18)

i3(t) =
√

2I sin(ωt + φ +
2π

3
)

If these three current sources are connected as shown in figure 1.7, the current returning though node
n is zero, since:

sin(ωt + φ) + sin(ωt− φ +
2π

3
) + sin(ωt + φ +

2π

3
) ≡ 0 (1.19)

Let us also take three voltage sources:

va(t) =
√

2V sin(ωt + φ)

vb(t) =
√

2V sin(ωt + φ− 2π

3
) (1.20)

vc(t) =
√

2V sin(ωt + φ +
2π

3
)

connected as shown in figure 1.8. If the three impedances at the load are equal, then it is easy
to prove that the current in the branchn − n′ is zero as well. Here we have a first reason why
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Fig. 1.7 Zero neutral current in aY -connected balanced system
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+ +
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v

v v

’
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1

32

Fig. 1.8 Zero neutral current in a voltage-fed,Y -connected, balanced system.

three-phase systems are convenient to use. The three sources together supply three times the power
that one source supplies, but they use three wires, while the one source alone uses two. The wires
of the three-phase system and the one-phase source carry the same current, hence with a three-phase
system the transmitted power can be tripled, while the amount of wires is only increased by50%.

The loads of the system as shown in figure 1.9 are said to be inY or star. If the loads are connected
as shown in figure 1.11, then they are said to be connected in Delta,∆, or triangle. For somebody
who cannot see beyond the terminals of aY or a∆ load, but can only measure currents and voltages
there, it is impossible to discern the type of connection of the load. We can therefore consider the
two systems equivalent, and we can easily transform one to the other without any effect outside the
load. Then the impedances of aY and its equivalent∆ symmetric loads are related by:

ZY =
1
3
Z∆ (1.21)

Let us take now a balanced system connected inY , as shown in figure 1.9. The voltages
between the neutral and each of the three phase terminals areV1n = V

6 φ, V2n = V
6 φ− 2π

3 , and
V3n = V

6 φ+ 2π
3 . Then the voltage between phases1 and2 can be shown either through trigonometry

or vector geometry to be:
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Fig. 1.9 Y Connected Loads: Voltages and Currents
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Fig. 1.10 Y Connected Loads: Voltage phasors

V12 = V1 −V2 =
√

3V
6 φ+ π

3 (1.22)

This is shown in the phasor diagrams of figure 1.10, and it says that the rms value of the line-to-line
voltage at aY load,Vll, is

√
3 times that of the line-to-neutral or phase voltage,Vln. It is obvious

that the phase current is equal to the line current in theY connection. The power supplied to the
system is three times the power supplied to each phase, since the voltage and current amplitudes and
the phase differences between them are the same in all three phases. If the power factor in one phase
is pf = cos(φv − φi), then the total power to the system is:

S3φ = P3φ + jQ3φ

= 3V1I∗1
=

√
3VllIl cos(φv − φi) + j

√
3VllIl sin(φv − φi) (1.23)

Similarly, for a connection in∆, the phase voltage is equal to the line voltage. On the other hand,
if the phase currents phasors areI12 = I

6 φ, I23 = I
6 φ− 2π

3 andI31 = I
6 φ+ 2π

3 , then the current of
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Fig. 1.11 ∆ Connected Loads: Voltages and Currents

line 1, as shown in figure 1.11 is:

I1 = I12 − I31 =
√

3I
6 φ−π

3 (1.24)

To calculate the power in the three-phase,Y connected load,

S3φ = P3φ + jQ3φ

= 3V1I∗1
=

√
3VllIl cos(φv − φi) + j

√
3VllIl sin(φv − φi) (1.25)

1.4 CALCULATIONS IN THREE-PHASE SYSTEMS

It is often the case that calculations have to be made of quantities like currents, voltages, and power,
in a three-phase system. We can simplify these calculations if we follow the procedure below:

1. transform the∆ circuits toY ,

2. connect a neutral conductor,

3. solve one of the three 1-phase systems,

4. convert the results back to the∆ systems.

1.4.1 Example
For the 3-phase system in figure 1.12 calculate the line-line voltage, real power and power factor at
the load.

First deal with only one phase as in the figure 1.13:

I =
120

j1 + 7 + j5
= 13.026 −40.6o

A

Vln = I Zl = 13.02 6 −40.6o

(7 + j5) = 111.976 −5o

V

SL,1φ = VL I∗ = 1.186 · 103 + j0.847 · 103

PL1φ = 1.186kW, QL1φ = 0.847kV Ar

pf = cos(−5o − (−40.6o)) = 0.814 lagging
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Fig. 1.12 A problem withY connected load.
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Fig. 1.13 One phase of the same load

For the three-phase system the load voltage (line-to-line), and real and reactive power are:

VL,l−l =
√

3 · 111.97 = 193.94V

PL,3φ = 3.56kW, QL,3φ = 2.541kV Ar

1.4.2 Example
For the system in figure 1.14, calculate the power factor and real power at the load, as well as the
phase voltage and current. The source voltage is400V line-line.

+ +

+

’
n’

120V

j1Ω

18+j6 Ω

Fig. 1.14 ∆-connected load
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First we convert the load toY and work with one phase. The line to neutral voltage of the source
is Vln = 400/

√
3 = 231V .

n

+ +

+

’
n’

Ω

j1

231V
6+j2

Ω

Fig. 1.15 The same load converted toY

+

’

Ω

j1

231V
6+j2

Ω I L

Fig. 1.16 One phase of theY load

IL =
231

j1 + 6 + j2
= 34.446 −26.6o

A

VL = IL(6 + j2) = 217.86 −8.1o

V

The power factor at the load is:

pf = cos(φv − φi) = cos(−8.1o + 26.6o) = 0.948lag

Converting back to∆:

Iφ = IL/
√

3 = 34.44/
√

3 = 19.88A

Vll = 217.8 ·
√

3 · 377.22V

At the load
P3φ =

√
3Vll IL pf =

√
3 · 377.22 · 34.44 · 0.948 = 21.34kW

1.4.3 Example
Two loads are connected as shown in figure 1.17. Load 1 draws from the systemPL1 = 500kW at
0.8 pf lagging, while the total load isST = 1000kV A at 0.95 pf lagging. What is the pf of load 2?
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Ω

Load 1

load 2 

Power System

Fig. 1.17 Two loads fed from the same source

Note first that for the total load we can add real and reactive power for each of the two loads:

PT = PL1 + PL2

QT = QL1 + QL2

ST 6= SL1 + SL2

From the information we have for the total load

PT = ST pfT = 950kW

QT = ST sin(cos−1 0.95) = 312.25kV Ar

Note positiveQT since pf is lagging
For the loadL1, PL1 = 500kW , pf1 = 0.8 lag,

SL1 =
500 · 103

0.8
= 625kV A

QL1 =
√

S2
L1 − P 2

L1 = 375kV Ar

QL1 is again positive, since pf is lagging.
Hence,

PL2 = PT − PL1 = 450kW (1.26)

QL2 = QT −QL1 = −62.75kV Ar

and

pfL2 =
PL2

SL2
=

450√
4202 + 62.752

= 0.989 leading.
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Notes

• A sinusoidal signal can be described uniquely by:

1. as e.g.v(t) = 5 sin(2πft + φv),

2. by its graph,

3. as a phasor and the associated frequency.

one of these descriptions is enough to produce the other two. As an exercise, convert between
phasor, trigonometric expression and time plots of a sinusoid waveform.

• It is the phase difference that is important in power calculations, not phase. The phase alone of
a sinusoidal quantity does not really matter. We need it to solve circuit problems, after we take
one quantity (a voltage or a current) as reference, i.e. we assign to it an arbitrary value, often
0. There is no point in giving the phase of currents and voltages as answers, and, especially
for line-line voltages or currents in∆ circuits, these numbers are often wrong and anyway
meaningless.

• In both 3-phase and 1-phase systems the sum of the real power and the sum of the reactive
power of individual loads are equal respectively to the real and reactive power of the total load.
This is not the case for apparent power and of course not for power factor.

• Of the four quantities, real power, reactive power, apparent power and power factor, any two
describe a load adequately. The other two can be calculated from them.

• To calculate real reactive and apparent Power when using formulae 1.7, 1.10 1.11 we have to
use absolute not complex values of the currents and voltages. To calculate complex power
using 1.12 we do use complex currents and voltages and find directly both real and reactive
power.

• When solving a circuit to calculate currents and voltages, use complex impedances, currents
and voltages.

• Notice two different and equally correct formulae for 3-phase power.





2
Magnetics

Chapter Objectives

In this chapter you will learn the following:

• How Maxwell’s equations can be simplified to solve simple practical magnetic problems

• The concepts of saturation and hysteresis of magnetic materials

• The characteristics of permanent magnets and how they can be used to solve simple problems

• How Faraday’s law can be used in simple windings and magnetic circuits

• Power loss mechanisms in magnetic materials

• How force and torque is developed in magnetic fields

2.1 INTRODUCTION

Since a good part of electromechanical energy conversion uses magnetic fields it is important early
on to learn (or review) how to solve for the magnetic field quantities in simple geometries and under
certain assumptions. One such assumption is that the frequency of all the variables is low enough
to neglect all displacement currents. Another is that the media (usually air, aluminum, copper, steel
etc.) are homogeneous and isotropic. We’ll list a few more assumptions as we move along.

2.2 THE GOVERNING EQUATIONS

We start with Maxwell’s equations, describing the characteristics of the magnetic field at low fre-
quencies. First we use:

∇ ·B = 0 (2.1)

15



16 MAGNETICS

the integral form of which is:

∫
B · dA ≡ 0 (2.2)

for any path. This means that there is no source of flux, and that all of its lines are closed.
Secondly we use ∮

H · dl =
∫

A

J · dA (2.3)

where the closed loop is defining the boundary of the surfaceA. Finally, we use the relationship
betweenH, the strength of the magnetic field, andB, the induction or flux density.

B = µrµ0H (2.4)

whereµ0 is the permeability of free space,4π10−7Tm/A, andµr is the relative permeability of the
material, 1 for air or vacuum, and a few hundred thousand for magnetic steel.

There is a variety of ways to solve a magnetic circuit problem. The equations given above, along
with the conditions on the boundary of our geometry define aboundary value problem. Analytical
methods are available for relatively simple geometries, and numerical methods, like Finite Elements
Analysis, for more complex geometries.

Here we’ll limit ourselves to very simple geometries. We’ll use the equations above, but we’ll add
boundary conditions and some more simplifications. These stem from the assumption of existence
of an average flux pathdefined within the geometry. Let’s tackle a problem to illustrate it all. In

r

g

i

airgap

Fig. 2.1 A simple magnetic circuit

figure 2.1 we see an iron ring with cross sectionAc, average diameterr, that has a gap of lengthg
and a coil around it ofN turns, carrying a currenti. The additional assumptions we’ll make in order
to calculate the magnetic field density everywhere are:

• The magnetic flux remains within the iron and a tube of air, the airgap, defined by the cross
section of the iron and the length of the gap. This tube is shown in dashed lines in the figure.

• The flux flows parallel to a line, the average flux path, shown in dash-dot.
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• Flux density is uniform at any cross-section and perpendicular to it.

Following one flux line, the one coinciding with the average path, we write:
∮

H · dl =
∫

J · dA (2.5)

where the second integral extends over any surface (a bubble) terminating on the path of integration.
But equation 2.2, together with the first assumption assures us that for any cross section of the
geometry the flux,Φ =

∫
Ac

B · dA = BavgAc, is constant. Since both the cross section and the flux
are the same in the iron and the air gap, then

Biron = Bair

µironHiron = µairHair

(2.6)

and finally

Hiron(2πr − g) + Hgap · g = Ni[
µair

µiron
(2πr − g) + g

]
Hgap = Ni

l

Hr

Hy2y1H

Hl

y y

c

g

A
A

c
y

Fig. 2.2 A slightly complex magnetic circuit

Let us address one more problem: calculate the magnetic field in the airgap of figure 2.2,
representing an iron core of depthd . Here we have to use two loops like the one above, and we have
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a choice of possible three. Taking the one that includes the legs of the left and in the center, and the
outer one, we can write:

Hl · l + Hy1 · y + Hc · c + Hg · g + Hc · c + Hy1 · y = Ni (2.7)

Hl · h + 2Hy1 · y + Hr · l + 2Hy2 · y = Ni

Applying equation 2.3 to the closed surface shown shaded we also obtain:

Bl Ay −Bc Ac −BrAy = 0

and of course

Bl = µ Hl, Bc = µ Hc, Br = µ Hr Bg = µ0Hg

The student can complete the problem. We notice though something interesting: a similarity
between Kirchoff’s equations and the equations above. If we decide to use:

Φ = B A (2.8)

R =
l

Aµ
(2.9)

F = Ni (2.10)

then we notice that we can replace the circuits above with the one in figure 2.3, with the following
correspondence:

-

+

R

R

R

R

R

R

y2

r
c2

c1

c3

l

y1R

Fig. 2.3 Equivalent electric circuit for the magnetic circuit in figure 2.2
.

Magnetic Electrical
F , magnetomotive force V , voltage, or electromotive force

Φ, flux I, current
R, reluctance R, resistance
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This is of course a great simplification for students who have spent a lot of effort on electrical
circuits, but there are some differences. One is the nonlinearity of the media in which the magnetic
field lives, particularly ferrous materials. This nonlinearity makes the solution of direct problems a
little more complex (problems of the type: for given flux find the necessary current) and the inverse
problems more complex and sometimes impossible to solve without iterations (problems of the type:
for given currents find the flux).

2.3 SATURATION AND HYSTERESIS

Although for free space a equation 2.3 is linear, in most ferrous materials this relationship is nonlinear.
Neglecting for the moment hysteresis, the relationship betweenH andB can be described by a curve
of the form shown in figure 2.4. From this curve, for a given value ofB or H we can find the other
one and calculate the permeabilityµ = B/H.

Fig. 2.4 Saturation in ferrous materials

In addition to the phenomenon of saturation we have also to study the phenomenon of hysteresis
in ferrous materials. The defining difference is that if saturation existed alone, the flux would be a
unique function of the field intensity. When hysteresis is present, flux density for a give value of
field intensity,H depends also on the history of magnetic flux density,B in it. We can describe the
relationship between field intensity,H and flux densityB in homogeneous, isotropic steel with the
curves of 2.5. These curves show that the flux density depends on the history of the magnetization of
the material. This dependence on history is called hysteresis. If we replace the curve with that of the
locus of the extrema, we obtain the saturation curve of the iron, which in itself can be quite useful.

Going back to one of the curves in 2.5, we see that when the current changes sinusoidally between
the two values,̂i and−î, then the point corresponding to(H,B) travels around the curve. During
this time, power is transferred to the iron, referred to as hysteresis losses,Physt. The energy of these
losses for one cycle is proportional to the area inside the curve. Hence the power of the losses is
proportional to this surface, the frequency, and the volume of iron; it increases with the maximum
value ofB:

Physt = kfB̂x 1 < x < 2 (2.11)
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Fig. 2.5 Hysteresis loops and saturation

If the value ofH, when increasing towardŝH, does so not monotonously, but at one point,H1,
decreases toH2 and then increases again to its maximum value,Ĥ, a minor hysteresis loop is created,
as shown in figure 2.6. The energy lost in one cycle includes these additional minor loop surfaces.

Fig. 2.6 Minor loops on a hysteresis curve
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B r

Hc H

B

Fig. 2.7 Hysteresis curve in magnetic steel

2.4 PERMANENT MAGNETS

If we take a ring of iron with uniform cross section and a magnetic characteristic of the material
that in figure 2.7, and one winding around it, and look only at the second quadrant of the curve, we
notice that forH = 0, i.e. no current in an winding there will be some nonzero flux density,Br. In
addition, it will take current in the winding pushing flux in the opposite direction (negative current)
in order to make the flux zero. The iron in the ring has became a permanent magnet. The value
of the field intensity at this point is−Hc. In practice a permanent magnet is operating not at the
second quadrant of the hysteresis loop, but rather on a minor loop, as shown on figure 2.6 that can
be approximated with a straight line. Figure 2.8 shows the characteristics of a variety of permanent
magnets. The curve of a permanent magnet can be described by a straight line in the region of
interest, 2.9, corresponding to the equation:

Bm =
Hm + Hc

Hc
Br (2.12)

2.4.1 Example
In the magnetic circuit of figure 2.10 the length of the magnet islm = 1cm, the length of the air gap
is g = 1mm and the length of the iron isli = 20cm. For the magnetBr = 1.1T , Hc = 750kA/m.
What is the flux density in the air gap if the iron has infinite permeability and the cross section is
uniform?
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Fig. 2.8 Minor loops on a hysteresis curve

Since the cross section is uniform,B is the same everywhere, and there is no current:

Hi · 0.2 + Hg · g + Hm · li = 0

for infinite iron permeabilityHi = 0, hence,

Bair
1
µo

g + (Bm − 1.1)
(

Hc

Br

)
li = 0

⇒ B · 795.77 + (B − 1.1) · 6818 = 0
B = 0.985T

2.5 FARADAY’S LAW

We’ll see now how voltage is generated in a coil and the effects it may have on a magnetic material.
This theory, along with the previous chapter, is essential in calculating the transfer of energy through
a magnetic field.

First let’s start with the governing equation again. When flux through a coil changes for whatever
reason (e.g. change of the field or relative movement), a voltage is induced in this coil. Figure 2.11
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B r

Hc

H

B

B
m

H
m

Fig. 2.9 Finding the flux density in a permanent magnet

m
l

g

Fig. 2.10 Magnetic circuit for Example 2.4.1

shows such a typical case. Faraday’s law relates the electric and magnetic fields. In its integral form:

∮

C

E · dl = − d

dt

∫

A

B · dA (2.13)
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and in the cases we study it becomes:

v(t) =
dΦ(t)

dt
(2.14)

ΦV

Fig. 2.11 Flux through a coil

If a coil has more than one turns in series, we define as flux linkages of the coil,λ, the sum of the
flux through each turn,

λ =
∑

i

Φi (2.15)

and then:

v(t) =
dλ(t)

dt
(2.16)

2.5.1 Example
For the magnetic circuit shown belowµiron = µo ·105, the air gap is1mm and the length of the iron
core at the average path is1m. The cross section of the iron core is0.04m2. The winding labelled
‘primary’ has 500 turns. A sinusoidal voltage of60Hz is applied to it. What should be the rms
value of it if the flux density in the iron (rms) is0.8T? What is the current in the coil? The voltage
induced in the coil will be

But if B(t) = B̂ sin(2πft) ⇒ Φ(t) = AB̂ sin(2πft)

⇒ Φ(t) = 0.04(
√

2 · 0.8) sin(377t)Wb

e1(t) =
dΦ
dt

⇒ e1(t) = 500
[
0.04

√
2 · 0.8 · 377 sin(377t +

π

2
)
]

V

⇒ E1 =
ê1√
2

= 500 · 0.04 · 0.8 · 377 = 6032V
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g

primary secondary

Fig. 2.12 Magnetic circuit for Example 2.5.1

To calculate the current we integrate around the loop of the average path:

Hironl + Hairg = Ni

biron = Bair =
√

2 · 0.8 sin(377t) ⇒ Hair =
√

2 · 0.8
µo

sin(377t)A/m

⇒ Hiron =
√

2 · 0.8
µo · 105

sin(377t)A/m

Finally

500 · i =
√

2 · 0.8 sin(377t)
µo

(
1

105
+

1 · 10−3

1

)

⇒ i = 1.819 sin(377t)A ⇒ I =
î√
2

= 1.286A

2.6 EDDY CURRENTS AND EDDY CURRENT LOSSES

When the flux through a solid ferrous material varies with time, currents are induced in it. Figure
2.13 gives a simple explanation: Let’s consider a ring of irondefined within the materialshown in
black and a fluxΦ through it, shown in grey. As the flux changes, a voltagee = dΦ/dt is induced
in the ring. Since the ring is shorted, and has a resistanceR, a current flows in it, and Joule losses,
Peddy = e2/R, result. We can consider a multitude of such rings in the material, resulting into Joule
losses, but the method discussed above is not the appropriate one to calculate these losses. We can,
though, estimate that for sinusoidal flux, the flux, voltage, and losses are:
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Fig. 2.13 Eddy currents in solid iron

Φ = Φ̂ sin(ω t) = AB̂ sin(ω t) (2.17)

e = ωΦ̂ cos(ω t) = 2πAfB̂ cos(ω t) (2.18)

Peddy = k f2B̂2 (2.19)

which tells us that the losses are proportional to the square of both the flux density and frequency.
A typical way to decrease losses is to laminate the material, as shown in figure 2.14, decreasing the
paths of the currents and the total flux through them.

Iron insulation

Fig. 2.14 Laminated steel
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2.7 TORQUE AND FORCE

Calculating these is quite more complex, since Maxwell’s equations do not refer directly to them.
The most reasonable approach is to start from energy balance. Then the energy in the firlesWf is
the sum of the energy that entered through electrical and mechanical sources.

Wf =
∑

We +
∑

Wm (2.20)

This in turn can lead to the calculation of the forces since

K∑

k=1

fkdxk =
J∑

j=1

ejijdt− dWf (2.21)

Hence for a small movement,dxk, the energies in the equation should be evaluated and from
these, forces (or torques),fk, calculated.

Alternatively, although starting from the same principles, one can use the Maxwell stress tensor
to find forces or torques on enclosed volumes, calculate forces using the Lorenz force equation, here
F = liB, or use directly the balance of energy. Here we’ll use only this last method, e.g. balance
the mechanical and electrical energies.

In a mechanical system with a forceF acting on a body and moving it at velocityv in its direction,
the powerPmech is

Pmech = F · v (2.22)

This eq. 2.22, becomes for a rotating system with torqueT , rotating a body with angular velocity
ωmech:

Pmech = T · wmech (2.23)

On the other hand, an electrical sourcee, supplying currenti to a load provides electrical power
Pelec

Pelec = e · i (2.24)

Since power has to balance, if there is no change in the field energy,

Pelec = Pmech ⇒ T · wmech = e · i (2.25)

Notes

• It is more reasonable to solve magnetic circuits starting from the integral form of Maxwell’s
equations than finding equivalent resistance, voltage and current. This also makes it easier to
use saturation curves and permanent magnets.

• Permanent magnets do not have flux density equal toBR. Equation 2.12defines the relation
between the variables, flux densityBm and field intensityHm in a permanent magnet.

• There are two types of iron losses: eddy current losses that are proportional to the square of
the frequency and the square of the flux density, and hysteresis losses that are proportional to
the frequency and to some powerx of the flux density.
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Transformers

Although transformers have no moving parts, they are essential to electromechanical energy conver-
sion. They make it possible to increase or decrease the voltage so that power can be transmitted at
a voltage level that results in low costs, and can be distributed and used safely. In addition, they can
provide matching of impedances, and regulate the flow of power (real or reactive) in a network.

In this chapter we’ll start from basic concepts and build the equations and circuits corresponding
first to an ideal transformer and then to typical transformers in use. We’ll introduce and work with
the per unit system and will cover three-phase transformers as well.

After working on this chapter, you’ll be able to:

• Choose the correct rating and characteristics of a transformer for a specific application,

• Calculate the losses, efficiency, and voltage regulation of a transformer under specific operating
conditions,

• Experimentally determine the transformer parameters given its ratings.

3.1 DESCRIPTION

When we see a transformer on a utility pole all we see is a cylinder with a few wires sticking out.
These wires enter the transformer through bushings that provide isolation between the wires and
the tank. Inside the tank there is an iron core linking coils, most probably made with copper, and
insulated. The system of insulation is also associated with that of cooling the core/coil assembly.
Often the insulation is paper, and the whole assembly may be immersed in insulating oil, used to
both increase the dielectric strength of the paper and to transfer heat from the core-coil assembly to
the outer walls of the tank to the air. Figure 3.1 shows the cutout of a typical distribution transformer

29
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Surge suppressor

Coil
Core

LV bushing

HV bushing

oil
Insulating

Fig. 3.1 Cutaway view of a single phase distribution transformer. Notice only one HV bushing and lightning
arrester

3.2 THE IDEAL TRANSFORMER

Few ideal versions of human constructions exist, and the transformer offers no exception. An ideal
transformer is based on very simple concepts, and a large number of assumptions. This is the
transformer one learns about in high school.

Let us take an iron core with infinite permeability and two coils wound around it (with zero
resistance), one withN1 and the other withN2 turns, as shown in figure 3.2. All the magnetic flux is
to remain in the iron. We assigndotsat one terminal of each coil in the following fashion: if the flux

i2

+

2

m

+

1

1 ee

i
Φ

Fig. 3.2 Magnetic Circuit of an ideal transformer

in the core changes, inducing a voltage in the coils, and the dotted terminal of one coil is positive
with respect its other terminal, so is the dotted terminal of the other coil. Or, the corollary to this,
current into dotted terminals produces flux in the same direction.
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Assume that somehow a time varying flux,Φ(t), is established in the iron. Then the flux linkages
in each coil will beλ1 = N1Φ(t) andλ2 = N2Φ(t). Voltages will be induced in these two coils:

e1(t) =
dλ1

dt
= N1

dΦ
dt

(3.1)

e2(t) =
dλ2

dt
= N2

dΦ
dt

(3.2)

and dividing:
e1(t)
e2(t)

=
N1

N2
(3.3)

On the other hand, currents flowing in the coils are related to the field intensityH. If currents
flowing in the direction shown,i1 into the dotted terminal of coil 1, andi2 out of the dotted terminal
of coil 2, then:

N1 · i1(t)−N2i2(t) = H · l (3.4)

but B = µironH, and sinceB is finite andµiron is infinite, thenH = 0. We recognize that this is
practically impossible, but so is the existence of an ideal transformer.

Finally:
i1
i2

=
N2

N1
(3.5)

Equations 3.3 and 3.5 describe this ideal transformer, a two port network. The symbol of a
network that is defined by these two equations is in the figure 3.3. An ideal transformer has an

N N1 2

Fig. 3.3 Symbol for an ideal transformer

interesting characteristic. A two-port network that contains it and impedances can be replaced by an
equivalent other, as discussed below. Consider the circuit in figure 3.4a. Seen as a two port network

E1

E1 E2
V2
+

1

2

+

I 1 Z I

+
V2

+
E

1

V

+

+ +

I 1

V1

+

Z’ I2

1 NN 2

N 2N

2

(a)

E1

E1 E2
V2
+

1

2

+

I 1 Z I

+
V2

+
E

1

V

+

+ +

I 1

V1

+

Z’ I2

1 NN 2

N 2N

2

(b)

Fig. 3.4 Transferring an impedance from one side to the other of an ideal transformer
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with variablesv1, i1, v2, i2, we can write:

e1 = u1 − i1Z (3.6)

e2 =
N2

N1
e1 =

N2

N1
u1 − N2

N1
i1Z (3.7)

v2 = e2 =
N2

N1
e1 =

N2

N1
u1 − i2

(
N2

N1

)2

Z (3.8)

which could describe the circuit in figure 3.4b. Generally a circuit on a side1 can be transferred to
side2 by multiplying its component impedances by(N2/N1)2, the voltage sources by(N2/N1) and
the current sources by(N1/N2), while keeping the topology the same.

3.3 EQUIVALENT CIRCUIT

To develop the equivalent circuit for a transformer we’ll gradually relax the assumptions that we had
first imposed. First we’ll relax the assumption that the permeability of the iron is infinite. In that
case equation 3.4 does not revert to 3.5, but rather it becomes:

N1i1 −N2i2 = RΦm (3.9)

whereR is the reluctance of the path around the core of the transformer andΦm the flux on this path.
To preserve the ideal transformer equations as part of our new transformer, we can spliti1 to two
components: onei′1, will satisfy the ideal transformer equation, and the other,i1,ex will just balance
the right hand side. Figure 3.5 shows this.

1

i

+

e ?

i’1

1

2

+

--

i
1, ex

N

e

N2

21 i

ideal transformer

Fig. 3.5 First step to include magnetizing current

i1 = i′1 + i1,ex (3.10)

N1i1,ex = RΦm (3.11)

N1i1(t)−N2i2(t) = H · l (3.12)
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We can replace the current source,i1,ex, with something simpler if we remember that the rate of
change of fluxΦm is related to the induced voltagee1:

e1 = N1
dΦm

dt
(3.13)

= N1
d (N1i1,ex/R)

dt
(3.14)

=
(

N2
1

R
)

di1,ex

dt
(3.15)

Since the currenti1,ex flows through something, where the voltage across it is proportional to its
derivative, we can consider that this something could be an inductance. This idea gives rise to the

equivalent circuit in figure 3.6, whereLm = N2
1
R Let us now relax the assumption that all the flux has

i 1 i 1
’

e1

+

i 2

+

2

-
1 2N N

e

i
1, ex

-

ideal transformer

Fig. 3.6 Ideal transformer plus magnetizing branch

to remain in the iron as shown in figure 3.7. Let us call the flux in the ironΦm, magnetizing flux, the
flux that leaks out of the core and links only coil 1,Φl1, leakage flux 1, and for coil 2,Φl2, leakage
flux 2. SinceΦl1 links only coil 1, then it should be related only to the current there, and the same
should be true for the second leakage flux.

Fig. 3.7 If the currents in the two windings were to have cancelling values ofN · i, then the only flux left
would be the leakage fluxes. This is the case shown here, designed to point out these fluxes.
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Φl1 = N1i1/Rl1 (3.16)

Φl2 = N2i2/Rl2 (3.17)

whereRl1 andRl2 correspond to paths that are partially in the iron and partially in the air. As these
currents change, so do the leakage fluxes, and a voltage is induced in each coil:

e1 =
dλ1

dt
= N1

(
dΦm

dt

)
+ N1

dΦl1

dt
= e1 +

(
N2

1

Rl1

)
di1
dt

(3.18)

e2 =
dλ2

dt
= N2

(
dΦm

dt

)
+ N2

dΦl2

dt
= e2 +

(
N2

2

Rl2

)
di2
dt

(3.19)

If we defineLl1
.= N1

2

Rl1
, Ll2

.= N2
1

Rl2
, then we can arrive to the equivalent circuit in figure 3.8. To this

1 e1
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i1, ex
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1 1
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Fig. 3.8 Equivalent circuit of a transformer plus magnetizing and leakage inductances

circuit we have to add:

1. The winding (ohmic) resistance in each coil,R1,wdg, R2,wdg, with lossesP1,wdg = i21R1,wdg,
P22,wdg = i22R2,wdg, and

2. some resistance to represent iron losses. These losses (at least the eddy-current ones) are
proportional to the square of the flux. But the flux is proportional to the square of the induced
voltagee1, hencePiron = ke2

1. Since this resembles the losses of a resistance supplied by
voltagee1, we can develop the equivalent circuit 3.9.

3.3.1 Example
Let us now use this equivalent circuit to solve a problem. Assume that the transformer has a
turns ratio of 4000/120, withR1,wdg = 1.6Ω, R2,wdg = 1.44mΩ, Ll1 = 21mH, Ll2 = 19µH,
Rc = 160kΩ, Lm = 450H. assume that the voltage at the low voltage side is60Hz, V2 = 120V ,
and the power there isP2 = 20kW , at pf = 0.85 lagging. Calculate the voltage at the high voltage
side and the efficiency of the transformer.

Xm = Lm ∗ 2π60 = 169.7kΩ
X1 = 7.92Ω

X2 = 7.16mΩ
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Fig. 3.9 Equivalent circuit for a real transformer

From the power the load:

I2 = PL/(VLpf)6 −31.80
= 196.13366 −31.80

A

E2 = V2 + I2 (Rwdg,2 + jXl2) = 120.98 + j1.045V

E1 =
(

N1

N2

)
E2 = 4032.7 + j34.83V

I′1 =
(

N2

N1

)
I2 = 5.001− j3.1017A

I1,ex = E1

(
1

Rc
+

1
jXm

)
= 0.0254− j0.0236A

I1 = I1,ex + I′1 = 5.0255− j3.125A

V1 = E1 + I1 (Rwdg,1 + jXl,1) = 4065.5 + j69.2V = 4066 6 0.90
V

The power losses are concentrated in the windings and core:

Pwdg,2 = I2
2Rwdg,2 = 196.132 · 1.44 · 10−3 = 55.39W

Pwdg,1 = I2
1Rwdg,1 = 5.9182 · 1.6 = 56.04W

Pcore = E2
1/Rc = 4032.82/(160 · 103) = 101.64W

Ploss = Pwdg,1 + Pwdg,2 + Pcore = 213.08W

η =
Pout

Pin
=

Pout

(Pout + Ploss)
=

20kW

20kW + 213.08W
= 0.9895
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3.4 LOSSES AND RATINGS

Again for a given frequency, the power losses in the core (iron losses) increase with the voltage
e1 (or e2). These losses cannot be allowed to exceed a limit, beyond which the temperature of the
hottest spot in the transformer will rise above the point that will decrease dramatically the life of the
insulation. Limits therefore are put toE1 andE2 (with a ratio ofN1/N2), and these limits are the
voltage limits of the transformer.

Similarly, winding Joule losses have to be limited, resulting in limits to the currentsI1 andI2.
Typically a transformer is described by its rated voltages,E1N andE2N , that give both the limits

and turns ratio. The ratio of the rated currents,I1N/I2N , is the inverse of the ratio of the voltages
if we neglect the magnetizing current. Instead of the transformer rated currents, a transformer is
described by its rated apparent power:

SN = E1NI1N = E2NI2N (3.20)

Under rated conditions, i.e. maximum current and voltage, in typical transformers the magnetizing
currentI1,ex, does not exceed 1% of the current in the transformer. Its effect therefore on the voltage
drop on the leakage inductance and winding resistance is negligible.

Under maximum (rated) current, total voltage drops on the winding resistances and leakage
inductances do not exceed in typical transformers 6% of the rated voltage. The effect therefore of
the winding current on the voltagesE1 andE2 is small, and their effect on the magnetizing current
can be neglected.

These considerations allow us to modify the equivalent circuit in figure 3.9, to obtain the slightly
inaccurate but much more useful equivalent circuits in figures 3.10a, b, and c.

3.4.1 Example
Let us now use these new equivalent circuits to solve the previous problem 3.3.1. We’ll use the circuit
in 3.10b. Firs let’s calculate the combined impedances:

Rwdg = Rwdg,1 +
(

N1

N2

)2

Rwdg,2 = 3.2Ω

Xl = Xl,1 +
(

N1

N2

)2

Xl,2 = 15.8759Ω

then, we solve the circuit:

I2 = PL/(VL · pf) 6 −31.80
= 196.13366 −31.80

A

E2 = V2

I′1 = I2 ·
(

N2

N1

)
= 5 + j3.102A

E1 = E2 ·
(

N1

N2

)
= 4000V

I1,ex = E1

(
1

Rc
+

1
jXm

)
= 0.0258− j0.0235A

I1 = I1,ex + I′1 = 5.0259− j3.125A

V1 = E1 + I′1 (Rwdg + jXl) = 4065 + j69.45V = 4065 6 10
V
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Fig. 3.10 Simplified equivalent circuits of a transformer

The power losses are concentrated in the windings and core:

Pwdg = I ′1Rwdg = 110.79W

Pcore = V 2
1 /Rc = 103.32W

Ploss = Pwdg + Pcore = 214.11W

η =
Pout

Pin
=

Pout

(Pout + Ploss)
=

20kW

20kW + 221.411W
= 0.9894

3.5 PER-UNIT SYSTEM

The idea behind the per unit system is quite simple. We define a base system of quantities, express
everything as a percentage (actually per unit) of these quantities, and use all the power and circuit
equations with these per unit quantities. In the process the ideal transformer in 3.10 disappears.

Working in p.u. has a some other advantages, e.g. the range of values of parameters is almost the
same for small and big transformers.

Working in the per unit system adds steps to the solution process, so one hopes that it simplifies
the solution more than it complicates it. At first attempt, the per unit system makes no sense. Let us
look at an example:
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3.5.1 Example
A load has impedance10 + j5Ω and is fed by a voltage of100V . Calculate the current and power
at the load.

Solution 1 the current will be

IL =
VL

ZL
=

100
10 + j5

= 8.946 −26.570
A

and the power will be

PL = VLIL · pf = 100 · 8.94 · cos(26.57) = 800W

Solution 2Let’s use the per unit system.

1. define a consistent system of values for base. Let us chooseVb = 50V , Ib = 10A. This means
thatZb = Vb/Ib = 5Ω, andPb = Vb · Ib = 500W , Qb = 500V Ar, Sb = 500V A.

2. Convert everything to pu.VL,pu = VL/Bb = 2pu, ZL,pu = (10 + j5)/5 = 2 + j1 pu.

3. solve in the pu system.

IL,pu =
VL,pu

ZL,pu
=

2
2 + j1

= 0.8946 −26.570
pu

PL,pu = VLpuIL,pu · pf = 2 · 0.894 · cos(26.570) = 1.6 pu

4. Convert back to the SI system

IL = IL,pu · Ib = 0.894 · 10 = 8.94A

Pl = PL,pu · Pb = 1.6 · 500 = 800W

The second solution was a bit longer and appears to not be worth the effort. Let us now apply this
method to a transformer, but be shrewder in choosing our bases. Here we’ll need a base system for
each side of the ideal transformer, but in order for them to be consistent, the ratio of the voltage and
current bases should satisfy:

V1b

V2b
=

N1

N2
(3.21)

I1b

I2b
=

N2

N1
(3.22)

⇒ S1b = V1bI1b = V2bI2b = S2b (3.23)

i.e. the two base apparent powers are the same, as are the two base real and reactive powers.
We often choose as bases the rated quantities of the transformer on each side, This is convenient,

since the transformer most of the time operates at rated voltage (making the pu voltage unity), and
the currents and power are seldom above rated, above1pu.

Notice that the base impedances on the two sides are related:

Z1,b =
V1,b

I1,b
(3.24)

Z2,b =
V2,b

I2,b
=

(
N2

N1

)2
V1,b

I1,b
(3.25)

Z2,b =
(

N2

N1

)2

Z1,b (3.26)
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We notice that as we move impedances from the one side of the transformer to the other, they get

multiplied or divided by the square of the turns ratio,
(

N2
N1

)2

, but so does the base impedance, hence

the pu value of an impedance stays the same, regardless on which side it is.
Also we notice, that since the ratio of the voltages of the ideal transformer isE1/E2 = N1/N2,

is equal to the ratio of the current bases on the two sides on the ideal transformer, then

E1,pu = E2,pu

and similarly,
I1,pu = I2,pu

This observation leads to an ideal transformer where the voltages and currents on one side are
identical to the voltages and currents on the other side, i.e. the elimination of the ideal transformer,
and the equivalent circuits of fig. 3.11 a, b. Let us solve again the same problem as before, with

l1R Lwdg,1 R wdg,2 L l2
LmR c

i 2

+

2v

i 1

’

v
1

+

(a)

l1R Lwdg,1 R wdg,2 L l2
LmR c

i 2

+

2v

i 1

v
1

+
’

(b)

Fig. 3.11 Equivalent circuits of a transformer in pu

some added information:

3.5.2 Example
A transformer is rated30kV A, 4000V/120V , with Rwdg,1 = 1.6Ω, Rwdg,2 = 1.44mΩ, Ll1 =
21mH, Ll2 = 19µH, Rc = 160kΩ, Lm = 450H. The voltage at the low voltage side is60Hz,
V2 = 120V , and the power there isP2 = 20kW , at pf = 0.85 lagging. Calculate the voltage at the
high voltage side and the efficiency of the transformer.

1. First calculate the impedances of the equivalent circuit:

V1b = 4000V

S1b = 30kV A

I1b =
30 · 103

4 · 103
= 7.5A

Z1b =
V 2

1b

S1b
= 533Ω

V2b = 120V

S2b = S1b = 30kV A

I2b =
S2b

V2b
= 250A

Z2b =
V2b

I2b
= 0.48Ω
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2. Convert everything to per unit: First the parameters:

Rwdg,1,pu = Rwdg,1/Z1b = 0.003 pu

Rwdg,2,pu = Rwdg,2/Z2b = 0.003 pu

Xl1,pu =
2π60Ll1

Z1b
= 0.015 pu

Xl2,pu =
2π60Ll2

Z2b
= 0.0149 pu

Rc,pu =
Rc

Z1b
= 300 pu

Xm,pu =
2π60Llm

Z1b
= 318pu

Then the load:

V2,pu =
V2

V2b
= 1pu

P2,pu =
P2

S2b
= 0.6667pu

3. Solve in the pu system. We’ll drop the pu symbol from the parameters and variables:

I2 =
(

P2

V2 · pf

) 6 arccos(pf)

= 0.666− j0.413pu

V1 = V2 + I [Rwdg,1 + Rwdg,2 + j(Xl1 + Xl2)] = 1.0172 + j0.0188pu

Im =
V1

Rc
+

V1

jXm
= 0.0034− j0.0031pu

I1 = Im + I2 = 0.06701− j0.416 pu

Pwdg = I2
2 (Rwdg,1 + Rewg,2) = 0.0037 pu

Pcore =
V 2

1

Rc
= 0.0034pu

η =
P2

Pwdg + Pcore + P2
= 0.9894

4. Convert back to SI. The efficiency,η, is dimensionless, hence it stays the same. The voltage,
V1 is

V1 = V1,puV1b = 4069 6 10
V

3.6 TRANSFORMER TESTS

We are usually given a transformer, with its frequency, power and voltage ratings, but without the
values of its impedances. It is often important to know these impedances, in order to calculate voltage
regulation, efficiency etc., in order to evaluate the transformer (e.g. if we have to choose from many)
or to design a system. Here we’ll work on finding the equivalent circuit of a transformer, through
two tests. We’ll use the results of these test in the per-unit system.

First we notice that if the relative values are as described in section 3.4, we cannot separate the
values of the primary and secondary resistances and reactances. We will lumpR1,wdg andR2,wdg
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together, as well asXl1 andXl2. This will leave four quantities to be determined,Rwdg, Xl, Rc and
Xm.

3.6.1 Open Circuit Test

We leave one side of the transformer open circuited, while to the other we apply rated voltage (i.e.
Voc = 1pu) and measure current and power. On the open circuited side of the transformer rated
voltage appears, but we just have to be careful not to close the circuit ourselves. The current that
flows is primarily determined by the impedancesXm andRc, and it is much lower than rated. It is
reasonable to apply this voltage to the low voltage side, since (with the ratings of the transformer in
our example) is it easier to apply120V , rather than4000V . We will use these two measurements to
calculate the values ofRc andXm.

Dropping the subscriptpu, using the equivalent circuit of figure 3.11b and neglecting the voltage
drop on the horizontal part of the circuit, we calculate:

Poc =
Voc

2

Rc
=

1
Rc

(3.27)

Ioc =
Voc

Rc
+

Voc

jXm

Ioc = 1

√
1

Rc
2 +

1
Xm

2 (3.28)

Equations 3.27 and 3.28, allow us to use the results of the short circuit test to calculate the vertical
(core) branch of the transformer equivalent circuit.

3.6.2 Short Circuit Test

To calculate the remaining part of the equivalent circuit, i.e the values ofRwdg andXl, we short
circuit one side of the transformer and apply rated current to the other. We measure the voltage of
that side and the power drawn. On the other side, (the short-circuited one) the voltage is of course
zero, but the current is rated. We often apply voltage to the high voltage side, since a) the applied
voltage need not be high and b) the rated current on this side is low.

Using the equivalent circuit of figure 3.11a, we notice that:

Psc = I2
scRwdg = 1 ·Rwdg (3.29)

Vsc = Isc (Rwdg + jXl)

Vsc = 1 ·
√

R2
wdg + X2

l (3.30)

Equations 3.29 and 3.30 can give us the values of the parameters in the horizontal part of the
equivalent circuit of a transformer.

3.6.1 Example
A 60Hz transformer is rated30kV A, 4000V/120V . The open circuit test, performed with the high
voltage side open, givesPoc = 100W , Ioc = 1.1455A. The short circuit test, performed with the
low voltage side shorted, givesPsc = 180W , Vsc = 129.79V . Calculate the equivalent circuit of
the transformer in per unit.
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First define bases:

V1b = 4000V

S1b = 30kV A

I1b =
30 · 103

4 · 103
= 7.5A

Z1b =
V 2

1b

S1b
= 533Ω

V2b = 120V

S2b = S1b = 30kV A

I2b =
S1b

V2b
= 250A

Z2b =
V1b

I1b
= 0.48Ω

Convert now everything to per unit:

Psc,pu =
180

30 · 103
= 0.006ppu

Vsc,pu =
129.79
4000

= 0.0324pu

Poc,pu =
100

30 · 103
= 0.003333pu

Ioc,pu =
1.1455
250

= 0.0046pu

Let’s calculate now, dropping the pu subscript:

Psc = I2
scRwdg ⇒ Rwdg = Psc/I2

sc = 1 · Psc = 0.006pu

|Vsc| = |Isc| · |Rwdg + jXl| = 1 ·
√

R2
wdg + X2

l ⇒ Xl =
√

V 2
sc −R2

wdg = 0.0318pu

Poc =
V 2

oc

Rc
⇒ Rc =

12

Poc
= 300pu

|Ioc| =
∣∣∣∣
Voc

Rc
+

Voc

jXm

∣∣∣∣ =

√
1

R2
c

+
1

X2
m

⇒ Xm =
1√

I2
oc − 1

R2
c

= 318pu

A more typical problem is of the type:

3.6.2 Example
A60Hz transformer is rated30kV A, 4000V/120V . Its short circuit impedance is0.0324pu and the
open circuit current is0.0046pu. The rated iron losses are100W and the rated winding losses are
180W . Calculate the efficiency and the necessary primary voltage when the load at the secondary
is at rated voltage,20kW at 0.8pf lagging.
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Working in pu:

Zsc = 0.0324pu

Psc = Rwdg =
180

30 · 103
= 6 · 10−3pu

⇒ Xl =
√

Z2
sc −R2

wdg = 0.017pu

Poc =
1

Rc
⇒ Rc =

1
Poc

=
1

100/30 · 103
= 300pu

Ioc =

√
1

R2
c

+
1

X2
m

⇒ Xm = 1

/√
I2
oc −

1
R2

c

= 318pu

Having finished with the transformer data, let us work with the load and circuit. The load power
is 20kW , hence:

P2 =
20 · 103

30 · 103
= 0.6667pu

but the power at the load is:

P2 = V2I2pf ⇒ 0.6667 = 1 · I2 · 0.8 ⇒ I2 = 0.8333pu

Then to solve the circuit, we work with phasors. We use the voltageV2 as reference:

V2 = V2 = 1pu

I2 = 0.8333 6 cos−10.8 = 0.6667− j0.5pu

V1 = V2 + I2 (Rwdg + jXl) = 1.0199 + j0.00183pu ⇒ V1 = 1.02pu

Pwdg = I2
2 ·Rwdg = 0.0062pu

Pc = V 2
1 /Rc = 0.034pu

η =
P2

P2 + Pwdg + Pc
= 0.986

Finally, we convert the voltage to SI

V1 = V1,pu · Vb1 = 1.021 · 4000 = 4080V

3.7 THREE-PHASE TRANSFORMERS

We’ll study now three-phase transformers, considering as consisting of three identical one-phase
transformers. This method is accurate as far as equivalent circuits and two-port models are our
interest, but it does not give us insight into the magnetic circuit of the three-phase transformer. The
primaries and the secondaries of the one-phase transformers can be connected either in∆ or in Y .
In either case, the rated power of the three-phase transformer is three times that of the one-phase
transformers. For∆ connection,

Vll = V1φ (3.31)

Il =
√

3I1φ (3.32)

ForY connection

Vll =
√

3V1φ (3.33)

Il = I1φ (3.34)
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Fig. 3.12 Y − Y andY −∆ Connections of three-phase Transformers
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Fig. 3.13 ∆− Y and∆−∆ Connections of three-phase Transformers

3.8 AUTOTRANSFORMERS

An autotransformer is a transformer where the two windings (of turnsN1 andN2) are not isolated
from each other, but rather connected as shown in figure 3.14. It is clear form this figure that the
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voltage ratio in an autotransformer is

V1

V2
=

N1 + N2

N2
(3.35)

while the current ratio is
I2

I1
=

N1 + N2

N2
(3.36)

The interesting part is that the coil of turns ofN1 carries currentI1, while the coil of turnsN2 carries
the (vectorial) sum of the two currents,I1−I2. So if the voltage ratio where 1, no current would flow
through that coil. This characteristic leads to a significant reduction in size of an autotransformer
compared to a similarly rated transformer, especially if the primary and secondary voltages are of
the same order of magnitude. These savings come at a serious disadvantage, the loss of isolation
between the two sides.

N �

N �

V �

V �

I �

I �

I �  -I �

+

+

Fig. 3.14 An Autotransformer

Notes

• To understand the operation of transformers we have to use both the Biot-Savart Law and
Faraday’s law.

• Most transformers operate under or near rated voltage. As the voltage drop in the leakage
inductance and winding resistances are small, the iron losses under such operation transformer
are close to rated.

• The open- and short-circuit test are just that, tests. They provide the parameters that define the
operation of the transformer.

• Three-phase transformers can be considered to be made of three single-phase transformers for
the purposes of these notes. The main issue then is to calculate the ratings and the voltages
and currents of each.
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• Autotransformers are used mostly to vary the voltage a little. It is seldom that an autotrans-
former will have a voltage ratio greater than two.



4
Concepts of Electrical
Machines; DC motors

DC machines have faded from use due to their relatively high cost and increased maintenance
requirements. Nevertheless, they remain good examples for electromechanical systems used for
control. We’ll study DC machines here, at a conceptual level, for two reasons:

1. DC machines although complex in construction, can be useful in establishing the concepts of
emf and torque development, and are described by simple equations.

2. The magnetic fields in them, along with the voltage and torque equations can be used easily to
develop the ideas of field orientation.

In doing so we will develop basic steady-state equations, again starting from fundamentals of the
electromagnetic field. We are going to see the same equations in ‘Brushless DC’ motors, when we
discuss synchronous AC machines.

4.1 GEOMETRY, FIELDS, VOLTAGES, AND CURRENTS

Let us start with the geometry shown in figure 4.1
This geometry describes an outer iron window (stator), through which (i.e. its center part) a

uniform magnetic flux is established, sayΦ̂. How this is done (a current in a coil, or a permanent
magnet) is not important here.

In the center part of the window there is an iron cylinder (called rotor), free to rotate around its
axis. A coil of one turn is wound diametrically around the cylinder, parallel to its axis. As the
cylinder and its coil rotate, the flux through the coil changes. Figure 4.2 shows consecutive locations
of the rotor and we can see that the flux through the coil changes both in value and direction. The
top graph of figure 4.3 shows how the flux linkages of the coil through the coil would change, if the
rotor were to rotate at a constant angular velocity,ω.

λ = Φ̂ cos [ωt] (4.1)

47
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Fig. 4.1 Geometry of an elementary DC motor
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Fig. 4.2 Flux through a coil of a rotating DC machine

Since the flux linking the coil changes with time, then a voltage will be induced in this coil,vcoil,

vcoil =
dλ

dt
= −Φ̂ω sin (ωt) (4.2)

shown in the second graph of figure 4.3. The points marked there correspond to the position of the
rotor in figure4.2.

This alternating voltage has to somehow be rectified, since this is aDC machine. Although this
can be done electronically, a very old mechanical method exists. The coil is connected not to the DC
source or load, but to two ring segments, solidly attached to it and the rotor, and hence rotating with
it. Two ‘brushes’, i.e. conducting pieces of material (often carbon/copper) are stationary and sliding
on these ring segments as shown in figure 4.4

The structure of the ring segments is called a commutator. As it rotates, the brushes make contact
with the opposite segments just as the induced voltage goes through zero and switches sign.

Figure 4.5 shows the induced voltage and the terminal voltage seen at the voltmeter of figure 4.4.
If a number of coils are placed on the rotor, as shown in figure 4.6, each connected to a commutator
segment, the total induced voltage to the coils,E will be:

E = kΦ̂ω (4.3)

wherek is proportional to the number of coils.



GEOMETRY, FIELDS, VOLTAGES, AND CURRENTS 49

0 100 200 300 400 500 600 700

−1.5

−1

−0.5

0

0.5

1

1.5

λ co
il

1
2

3

4

5

0 100 200 300 400 500 600 700

−1.5

−1

−0.5

0

0.5

1

1.5

v co
il

1

2

3

4

5

Fig. 4.3 Flux and voltage in a coil of the DC machine in 4.2. Points 1 – 5 represent the coil positions.

Going back to equation 2.25,

E · i = Tω (4.4)

kΦ̂ωi = Tω (4.5)

T = kΦ̂i (4.6)

If the electrical machine is connected to a load or a source as in figure4.7, the induced voltage and
terminal voltage will be related by:

Vterm = E − igRwdg for a generator (4.7)

Vterm = E + imRwdg for a motor (4.8)

4.1.1 Example
A DC motor, when connected to a100V source and to no load runs at 1200rpm. Its stator resistance
is 2Ω. What should be the torque and current if it is fed from a220V supply and its speed is
1500rpm? Assume that the field is constant.

The first piece of information gives us the constantk. Since at no load the torque is zero and
T = kΦi = Ki, then the current is zero as well. This means that for this operation:

V = E = kΦω = Kω
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Fig. 4.4 A coil of a DC motor and a commutator with brushes
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Fig. 4.5 Induced voltage in a coil and terminal voltage in an elementary DC machine

butω is 1200 rpm, or in SI units:

ω = 1200
2π

60
= 125.66rad/s
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Fig. 4.7 Circuit with a DC machine

And
100V = K · 125.66 ⇒ K = 0.796V s

At the operating point of interest:

ωo = 1500rpm = 1500
2π

60
= 157.08rad/s ⇒ E = Kω = 125V

For a motor:

V = E + IR

⇒ 220 = 125 + I · 2Ω
⇒ I = 47.5A

⇒ T = KI = 37.81Nm
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Notes

• The field of the DC motor can be created either by a DC current or a permanent magnet.

• These two fields, the one coming from the stator and the one coming from the moving rotor,
are both stationary (despite rotation) and perpendicular to each other.

• if the direction of current in the stator and in the rotor reverse together, torque will remain in
the same direction. Hence if the same current flows in both windings, it could be AC and the
motor will not reverse (e.g. hairdryers, power drills).



5
Three-phase Windings

Understanding the geometry and operation of windings in AC machines is essential in understanding
how these machines operate. We introduce here the concept of Space Vectors, (or Space Phasors) in
its general form, and we see how they are applied to three-phase windings.

5.1 CURRENT SPACE VECTORS

Let us assume that in a uniformly permeable space we have placed three identical windings as shown
in figure 5.1. Each carries a time dependent current,i1(t), i2(t) andi3(t). We require that:

i1(t) + i2(t) + i3(t) ≡ 0 (5.1)

Each current produces a flux in the direction of the coil axis, and if we assume the magnetic
medium to be linear, we can find the total flux by adding the individual fluxes. This means that we
could produce the same flux by having only one coil, identical to the three, but placed in the direction
of the total flux, carrying an appropriate current. Figure 5.2 shows such a set of coils carrying for
i1 = 5A, i2 = −8A andi3− = 3A and the resultant coil.

To calculate the direction of the resultant one coil and the current it should carry, all we have to
do is create three vectors, each in the direction of one coil, and of amplitude equal to the current of
each coil. The sum of these vectors will give the direction of the total flux and hence of the one coil
that will replace the three. The amplitude of the vectors will be that of the current of each coil.

Let us assume that the coils are placed at angles00, 1200 and2400. Then their vectorial sum will
be:

i = i
6 φ = i1 + i2e

j1200
+ i3e

j2400
(5.2)

We calli, defined thus, a space vector, and we notice that if the currentsi1, i2 andi3 are functions
of time, so will be the amplitude and the angle ofi. By projecting the three constituting currents on
the horizontal and vertical axis, we can find the real (id = <[i]) and imaginary (iq = =[i]) parts of
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Fig. 5.2 Currents in three windings (a), Resultant space vector (b), and corresponding winding position (c)

it. Also, from the definition of the current space vector we can reconstruct the constituent currents:

i1(t) =
2
3
<[i(t)]

i2(t) =
2
3
<[i(t)e−jγ ] (5.3)

i3(t) =
2
3
<[i(t)e−j2γ ]

γ = 1200 =
2π

3
rad (5.4)
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5.2 STATOR WINDINGS AND RESULTING FLUX DENSITY

Fig. 5.3 A Stator Lamination

Stator

Stator Winding

Airgap

Rotor

Fig. 5.4 A sinusoidal winding on the stator

Assume now that these windings are placed in a fixed structure, the stator, which is surrounds a
rotor. Figure 5.3 shows a typical stator cross-section, but for the present we’ll consider the stator
as a steel tube. Figure 5.5 shows the windings in such a case. Instead of being concentrated, they
are sinusoidally distributed as shown in figure 5.4. Sinusoidal distribution means that the number of



56 THREE-PHASE WINDINGS

turnsdNs covering an angledθ at a positionθ and divided bydθ is a sinusoidal function of the angle
θ. This turns density,ns1(θ), is then:

dns

dθ
= ns1(θ) = n̂s sin θ

and for a total number of turnsNs in the winding:

Ns =
∫ π

0

ns1(θ)dθ ⇒ ns1(θ) =
Ns

2
sin θ

We now assign to the winding we are discussing a currenti1. To find the flux density in the airgap

negative direction

Current in

θ

Rotor

Airgap

positive direction

Current in 

Stator

Stator winding

Fig. 5.5 Integration path to calculate flux density in the airgap

between rotor and stator we choose an integration path as shown in figure 5.5. This path is defined by
the angleθ and we can notice that because of symmetry the flux density at the two airgap segments
in the path is the same. If we assume the permeability of iron to be infinite, thenHiron = 0 and:

2Hg1(θ)g =
∫ θ+π

θ

i1ns1(φ)dφ

2Bg1(θ)
µ0

g = i1Ns cos θ

Bg1(θ) = i1
Nsµ0

2g
cos θ (5.5)

This means that for a given currenti1 in the coil, the flux density in the air gap varies sinusoidally with
angle, but as shown in figure 5.6 it reaches a maximum at angleθ = 0. For the same machine and
conditions as in 5.6, 5.7 shows the plots of turns density,ns(θ) and flux density,Bg(θ) in cartesian
coordinates withθ in the horizontal axis.

If the currenti1 were to vary sinusoidally in time, the flux density would also change in time,
maintaining its space profile but changing only in amplitude. This would be considered a wave, as it
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Fig. 5.6 Sketch of the flux in the airgap
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Fig. 5.7 Turns density on the stator and air gap flux density vs.θ

changes in time and space. The nodes of the wave, where the flux density is zero, will remain at900

and2700, while the extrema of the flux will remain at00 and1800.
Consider now an additional winding, identical to the first, but rotated with respect to it by1200.

For a current in this winding we’ll get a similar airgap flux density as before, but with nodes at
900 +1200 and at2700 +1200. If a currenti2 is flowing in this winding, then the airgap flux density
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due to it will follow a form similar to equation 5.5 but rotated1200 = 2π
3 .

Bg2(θ) = i2
Nsµ0

2g
cos(θ − 2π

3
) (5.6)

Similarly, a third winding, rotated yet another1200 and carrying currenti3, will produce airgap
flux density:

Bg3(θ) = i3
Nsµ0

2g
cos(θ − 4π

3
) (5.7)

Superimposing these three flux densities, we get yet another sinusoidally distributed airgap flux
density, that could equivalently come from a winding placed at an angleφ and carrying currenti:

Bg(θ) = Bg1(θ) + Bg2(θ) + Bg3(θ) = i
Nsµ0

2g
cos(θ + φ) (5.8)

This means that as the currents change, the flux could be due instead to only one sinusoidally
distributed winding with the same number of turns. The location,φ(t), and current,i(t), of this
winding can be determined from the current space vector:

i(t) = i(t) 6 φ(t) = i1(t) + i2(t)ej1200
+ i3(t)ej2400

5.2.1 Balanced, Symmetric Three-phase Currents

If the currentsi1, i2, i3 form a balanced three-phase system of frequencyfs = ωs/2π, then we can
write:

i1 =
√

2I cos(ωst + φ1) =
√

2
2

[
Ise

jωst + Ise
−jωst

]

i2 =
√

2I cos(ωst− φ1 +
2π

3
) =

√
2

2

[
Ise

j(ωst−2π/3) + Ise
−j(ωst−2π/3)

]
(5.9)

i3 =
√

2I cos(ωst− φ1 +
4π

3
) =

√
2

2

[
Ise

j(ωst−4π/3) + Ise
−j(ωst−4π/3)

]

whereI is the phasor corresponding to the current in phase 1. The resultant space vector is

is(t) =
3
2

√
2

2
Iejωst =

3
2

√
2

2
Iej(ωst+φ1) I = Iej(φ1+

π
2 ) (5.10)

The resulting flux density wave is then:

B(θ, t) =
3
2

√
2I

Nsµ0

2g
cos(ωst + φ1 − θ) (5.11)

which shows a travelling wave, with a maximum valueB̂ = 3
2

√
2I Ns

µ0
. This wave travels around the

stator at a constant speedωs, as shown in figure 5.8

5.3 PHASORS AND SPACE VECTORS

It is easy at this point to confuse space vectors and phasors. A current phasor,I = Iejφ0 , describes
one sinusoidally varying current, of frequencyω, amplitude

√
2I and initial phaseφ0. We can
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Fig. 5.8 Airgap flux density profile,t3 > t2 > t1

reconstruct the sinusoid from the phasor:

i(t) =
√

2
2

[
Iejωt + I∗e−jωt

]
=
√

2I cos(ωt + φ0) = < (
Iejωt

)
(5.12)

Although rotation is implicit in the definition of the phasor, no rotation is described by it.
On the other hand, the definition of a current space vector requiresthreecurrents that sum to

zero. These currents are implicitly in windings symmetrically placed, but the currents themselves
are not necessarily sinusoidal. Generally the amplitude and angle of the space vector changes with
time, but no specific pattern isa priori defined. We can reconstruct the three currents that constitute
the space vector from equation 5.3.

When these constituent currents form a balanced, symmetric system, of frequencyωs, then the
resultant space vector is of constant amplitude, rotating at constant speed. In that case, the relationship
between the phasor of one current and the space vector is shown in equation 5.10.

5.3.1 Example
Let us take three balanced sinusoidal currents with amplitude1, i.e. rms value of1/

√
2A. Choose

an initial phase angle such that:

i1(t) = 1 cos(ωt)A
i2(t) = 1 cos(ωt− 2π/3)A
i2(t) = 1 cos(ωt− 4π/3)A

Whenωt = 0, as shown in figure 5.9a,

i1 = 1A

i2 = −0.5A

i3 = −0.5A
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i = i1 + i2e
j1200

+ i3e
j2400

= 1.56 0A

and later, whenωt = 200 = π/9 rad, as shown in figure 5.9b,

i1 = 0.939A

i2 = −0.766A

i3 = −0.174A

i = i1 + i2e
j1200

+ i3e
j2400

= 1.56 200
A

i

i
3 

= -0.5A

i
2 

= -0.5A

i
1

= 1A
_

(a)

=-0.1737A
3

i

i
_

i
2

= -0.766A

1
i = 0.9397A

(b)

Fig. 5.9 Space vector movement for sinusoidal, symmetric three-phase currents

5.4 MAGNETIZING CURRENT, FLUX AND VOLTAGE

Let us now see what results this rotating flux has on the windings, using Faraday’s law. From this
point on we’ll use sinusoidal symmetric three-phase quantities.

We look again at our three real stationary windings linked by a rotating flux. For example, when
the current is maximum in phase 1, the flux is as shown in figure 5.10a, linking all of the turns in
phase 1. Later, the flux has rotated as shown in figure 5.10b, resulting in lower flux linkages with
the phase 1 windings. When the flux has rotated900, as in 5.10c the flux linkages with the phase 1
winding are zero.

To calculate the flux linkagesλ we have to take a turn of the winding, placed at angleθ, as shown
in figure 5.11. The flux through this coil is:

Φ(t, θ) =
∫ θ

θ−π

Bg(t, φ)dA = lr

∫ θ+

θ−π

Bg(t, φ)dφ (5.13)

But the number of turns linked by this flux isdns(θ) = ns(θ)dθ, so the flux linkages for these turns
are:

dλ = ns(θ)dθ · Φ(θ)
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(a) (b) (c)

Fig. 5.10 Rotating flux and flux linkages with phase 1

Fig. 5.11 Flux linkages of one turn

To find the flux linkagesλ1 for all of the coil, we have to integrate the flux linkages over all turns of
coil 1:

λ1 =
∫ π

0

λ(θ)dθ

giving us at the end:

λ1(t) =
N2

s lr

8g
3πµ0

√
2I cos(ωt + φ1) = LM

√
2I cos(ωt + φ1) (5.14)

which means that the flux linkages in coil 1 are in phase with the current in this coil and proportional
to it. The flux linkages of the other two coils, 2 and 3, are identical to that of coil 1, and lagging in
time by1200 and2400. With these three quantities we can create a flux-linkage space vector,λλλ.

λλλ ≡ λ1 + λ2e
j1200

+ λ3e
j2400

= LM i (5.15)

Since the flux linkages of each coil vary, and in our case sinusoidally, a voltage is induced in each
of these coils. The induced voltage in each coil is900 ahead of the current in it, bringing to mind
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the relationship of current and voltage of an inductor. Notice though, that it is not just the current in
the winding that causes the flux linkages and the induced voltages, but rather the current in all three
windings. Still, we call the constantLM magnetizing inductance.

e1(t) =
dλ1

dt
= ω

√
2I cos(ωt + φ1 +

π

2
)

e2(t) =
dλ2

dt
= ω

√
2I cos(ωt + φ1 +

π

2
− 2π

3
) (5.16)

e3(t) =
dλ3

dt
= ω

√
2I cos(ωt + φ1 +

π

2
− 4π

2
)

and of course we can define voltage space vectorse:

e = e1 + e2e
j1200

+ e3e
j2400

= jωLM i (5.17)

Note that the flux linkage space vectorλλλ is aligned with the current space vector, while the voltage
space vectore is ahead of both by900. This agrees with the fact that the individual phase voltages
lead the currents by900, as shown in figure 5.12.

i

ωt

e
λ

Fig. 5.12 Magnetizing current, flux-linkage and induced voltage space vectors



6
Induction Machines

Induction machines are often described as the ‘workhorse of industry’. This clicè reflects the reality
of the qualities of these machines. They are cheap to manufacture, rugged and reliable and find their
way in most possible applications. Variable speed drives require inexpensive power electronics and
computer hardware, and allowed induction machines to become more versatile. In particular, vector
or field-oriented control allows induction motors to replace DC motors in many applications

6.1 DESCRIPTION

The stator of an induction machine is a typical three-phase one, as described in the previous chapter.
The rotor can be one of two major types. Either a) it is wound in a fashion similar to that of the stator
with the terminals led to slip rings on the shaft, as shown in figure 6.1, or b) it is made with shorted

Shaft

Rings

Rotor

Slip

Fig. 6.1 Wound rotor slip rings and connections

bars. Figure 6.2 shows the rotor of such a machine, while figures 6.3 show the shorted bars and the
laminations.

The picture of the rotor bars is not easy to obtain, since the bars are formed by casting aluminum
in the openings of the rotor laminations. In this case the iron laminations were chemically removed.
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Fig. 6.2 Rotor for squirrel cage induction motor

(a) Rotor bars and rings (b) Rotor

Fig. 6.3 Rotor Components of a Squirrel Cage Induction Motor

6.2 CONCEPT OF OPERATION

As these rotor windings or bars rotate within the magnetic field created by the stator magnetizing
currents, voltages are induced in them. If the rotor were to stand still, then the induced voltages
would be very similar to those induced in the stator windings. In the case of squirrel cage rotor, the
voltage induced in the bars will be slightly out of phase with the voltage in the next one, since the
flux linkages will change in it after a short delay.

If the rotor is moving at synchronous speed, together with the field, no voltage will be induced in
the bars or the windings.
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Fig. 6.4

Generally when the synchronous speed isωs = 2πfs, and the rotor speedω0, the frequency of
the induced voltages will befr, where2πfr = ωs − ω0. Maxwell’s equation becomes here:

−→E = −→v ×−→Bg (6.1)

where−→v is the relative velocity of the rotor with respect to the field:

v = (ωs − ω0)r (6.2)

Since a voltage is induced in the bars, and these are short-circuited, currents will flow in them. The
current density

−→
J (θ) will be:

−→
J (θ) =

1
ρ

−→E (6.3)

These currents are out of phase in different bars, just like the induced voltages. To simplify the
analysis we can consider the rotor as one winding carrying currents sinusoidally distributed in space.
This will be clearly the case for a wound rotor. It will also be the case for uniformly distributed rotor
bars, but now each bar, located at an angleθ will carry different current, as shown in figure 6.5 a:

J =
1
ρ
(ωs − ω0) ·Bg(θ) (6.4)

J(θ) =
1
ρ
(ωs − ω0)B̂g sin(θ) (6.5)

We can replace the bars with a conductive cylinder as shown in figure 6.5 b.
We define as slips the ratio:

s =
ωs − ω0

ωs
(6.6)
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Fig. 6.5 Current Distribution in equivalent conducting sheet

At starting the speed is zero, hences = 1, and at synchronous speed,ωs = ω0, hences = 0. Above
synchronous speeds < 0, and when the rotor rotates in a direction opposite of the magnetic field
s > 1.

6.2.1 Example
The rotor of a two-pole 3-phase induction machine rotates at 3300rpm, while the stator is fed by a
three-phase system of voltages, at60Hz. What are the possible frequencies of the rotor voltages?

At 3300 rpm

ωo = 3300
2π

60
= 345.6rad/s while ωs = 377rad/s

These two speeds can be in the opposite or the same direction, hence:

ωr = ωs − ωo = 377± 345.6 = 722.58rad/s or 31.43rad/s

fr = 115Hz or = 5Hz

6.3 TORQUE DEVELOPMENT

We can now calculate forces and torque on the rotor. We’ll use the formulae:

F = Bli, T = F · r (6.7)

since the flux density is perpendicular to the current. Asl we’ll use the length of the conductor, i.e.
the depth of the motor. We consider an equivalent thickness of the conducting sheetde. A is the
cross section of all the bars.

A = nrotor bars
π

4
d2 = 2πrde (6.8)

de =
nrotor barsd

2

8r
(6.9)
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Fig. 6.6 Calculation of Torque

For a small angledθ at an angleθ, we calculate the contribution to the total force and torque:

dF = (JdA) ·Bg · l, Bg = B̂g sin(θ)
dF = (Jder dθ)Bg

dT = r dF

T =
∫ θ=2π

θ=0

dT =
(

2πr2lde

ρ

)
B̂2

g(ωs − ω0) (6.10)

Flux density in the airgap is not an easy quantity to work with, so we can use the relationship
between flux density (or flux linkages) and rotor voltage and finally get:

T =
(

8
π

rde

N2
s ρl

)
Λ2

s(ωs − ω0) where Λs =
(

Es

ωs

)
(6.11)

Although the constants in equations 6.10 and 6.11 are important we should focus more on the
variables. We notice that in equation 6.10 the torque is proportional to the frequency of the rotor
currents,(ωs − ω0) and the square of the flux density. This is so since the torque comes from the
interaction of the flux densityBg and the rotor currents. But the rotor currents are induced (induction
motor) due to the fluxBg and the relative speedωs − ω0.

On the other hand, equation 6.11 gives us torque as a function of more accessible quantities, stator
induced voltageEs and frequencyωs. This is so, since there is a very simple and direct relationship
between stator induced voltage, flux (or flux linkages) and frequency.

6.4 OPERATION OF THE INDUCTION MACHINE NEAR SYNCHRONOUS SPEED

We already determined that the voltages induced in the rotor bars are of slip frequency,fr =
(ωs − ω0)/(2π). At rotor speeds near synchronous, this frequency,fr is quite small. The rotor bars
in a squirrel cage machine possess resistance and leakage inductance, but at very low frequencies,



68 INDUCTION MACHINES

i.e near synchronous speed, we can neglect this inductance. The rotor currents therefore are limited
near synchronous speed by the rotor resistance only.

The induced rotor-bar voltages and currents form space vectors. These are perpendicular to the
stator magnetizing current and in phase with the space vectors of the voltages induced in the stator
as shown in figure 6.7 and figure
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Fig. 6.7 Stator Magnetizing Current, airgap flux and rotor currents

These rotor currents,ir produce additional airgap flux, which is900 out of phase of the magnetizing
flux. But the stator voltage,es, is applied externally and it is proportional to and900 out of phase of
the airgap flux. Additional currents,isr will flow in the stator windings in order to cancel the flux
due to the rotor currents. These currents are shown in figures 6.8. In 6.9 the corresponding space
vectors are shown.
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Fig. 6.8 Rotor and Stator Currents in an Induction Motor
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Fig. 6.9 Space-Vectors of the Stator and Rotor Current and Induced Voltages

There are a few things we should observe here:

• isr is 900 ahead ofism, the stator magnetizing current. This means that it corresponds to
currents in windingsi1r, i2r, i3r, leading by900 the magnetizing currentsi1m, i2m, i3m.

• The amplitude of the magnetizing component of the stator current is proportional to the stator
frequency,fs and induced voltage. On the other hand, the amplitude of this component of the
stator currents,isr, is proportional to the current in the rotor,ir, which in turn is proportional
to the flux and the slip speed,ωr = ωs − ω0, or proportional to the developed torque.

• We can, therefore split the stator current of one phase,is1, into two components: One in phase
with the voltage,isr1 and one900 behind it,ism1. The first reflects the rotor current, while
the second depends on the voltage and frequency. In an equivalent circuit, this means thatisr1

will flow through a resistor, andism1 will flow through an inductor.

• Sinceisr1 is equal to the rotor current (through a factor), it will be inversely proportional to
ωs − ωr, or, better, proportional toωs/(ωs − ωr). Figure 6.10 reflects these considerations.

I

i

I sr

sm X m Rr

s1

0ω −ωs

ω s

+

e s

-

Fig. 6.10 Equivalent circuit of one stator phase

If we supply our induction motor with a three-phase, balanced sinusoidal voltage, we expect that
the rotor will develop a torque according to equation 6.11. The relationship between speed,ω0 and
torque around synchronous speed is shown in figure 6.11. This curve is accurate as long as the speed
does not vary more than±5% around the rated synchronous speedωs.
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T

ω0

ω s

Fig. 6.11 Torque-speed characteristic near synchronous speed

We notice in 6.11 that when the speed exceeds synchronous, the torque produced by the machine
is of opposite direction than the speed, i.e. the machine operates as a generator, developing a torque
opposite to the rotation (counter torque) and transferring power from the shaft to the electrical system.

We already know the relationship of the magnetizing current,Ism to the induced voltageEsm

through our analysis of the three-phase windings. Let us now relate the currentsir andisr with the
same induced voltage.

The current density on the rotor conducting sheet
−→
J is related to the value of the airgap flux

density
−→
B g through:

−→
J =

1
ρ
(ωs − ω0)

−→
B g (6.12)

This current density corresponds to a space vectorir that is opposite to theisr in the stator. This
current space vector will correspond to the same current density:

J = isrNs
1

r d
(6.13)

while the stator voltagees is also related to the flux densityBg. Its amplitude is:

es = ωs
π

2
NslrBg (6.14)

Finally, substituting into 6.12, and relating phasors instead of space vectors, we obtain:

Es = RR
ωs

ωs − ωo
Isr (6.15)

Using this formulation we arrive at the formula for the torque:

T = 3
E2

s

ωs

1
RR

ωs − ω0

ωs
= 3

Λ2
s

RR
ωr =

3Pg

ωs
(6.16)

whereΛ = (Es/ωs)) HerePg is the power transferred to the resistanceRR
ωs

ωs−ω0
, through the

airgap. Of this power a portion is converted to mechanical power represented by losses on resistance
RR

ω0
ωs−ω0

, and the remaining is losses in the rotor resistance, represented by the losses on resistance
RR. Figure 6.12 shows this split in the equivalent circuit. Note that the resistanceRR

ω0
ωs−ω0

can be
negative, indicating that mechanical power is absorbed in the induction machine.

6.4.1 Example
A 2-pole three-phase induction motor is connected inY and is fed from a60Hz, 208V (l− l) system.
Its equivalent one-phase rotor resistance isRR = 0.1125Ω. At what speed and slip is the developed
torque28Nm?
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T = 3
(

Vs

ωs

)2 1
RR

ωr with Vs = 120V

28 = 3
(

120
377

)2 1
0.1125

ωr ⇒ ωr = 10.364 rad/s

s =
ωr

ωs
=

10.364
377

= 0.0275

ωo = ωs − ωr = 366.6rad/s

6.5 LEAKAGE INDUCTANCES AND THEIR EFFECTS

In the previous discussion we assumed that all the flux crosses the airgap and links both the stator
and rotor windings. In addition to this flux there are flux components which link only the stator or
the rotor windings and are proportional to the currents there, producing voltages in these windings
900 ahead of the stator and rotor currents and proportional to the amplitude of these currents and
their frequency.

This is simple to model for the stator windings, since the equivalent circuit we are using is of the
stator, and we can model the effects of this flux with only an inductance. The rotor leakage flux can
be modelled in the rotor circuit with an inductanceLls, as well, but corresponding to frequency of
fr = ωs−ω0

2π , the frequency of the rotor currents. It turns out that when we try to see its effects on
the stator we can model it with an inductanceLlr at frequencyfs, as shown in the complete 1-phase
equivalent circuit in figure 6.13.
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HereEs is the phasor of the voltage induced into the rotor windings from the airgap flux, while
Vs is the phasor of the applied 1-phase stator voltage. The torque equations discussed earlier, 6.16,
still hold, but give us slightly different results: We can develop torque-speed curves, by selecting
speeds, solving the equivalent circuit, calculating powerPg, and using equation 6.16 for the torque.
Figure 6.14 shows these characteristics for a wide range of speeds.

I s
T

ω

pf

ω
s

ω
maxT

ω
N0

Fig. 6.14 Torque, current and power factor of an induction motor vs. speed

6.6 OPERATING CHARACTERISTICS

Figure 6.14 shows the developed torque, current, and power factor of an induction motor over a
speed range from below zero (slip> 1) to above synchronous (slip< 0). It is clear that there are
three areas of interest:

1. For speed0 ≤ ωo ≤ ωs the torque is of the same sign as the speed, and the machine operates
as a motor. There are a few interesting point on this curve, and on the corresponding current
and p.f. curves.

2. For speedω0 ≤ 0, torque and speed have opposite signs, and the machine is in breaking mode.
Notice that the current is very high, resulting in high winding losses.

3. for speedωo ≥ ωs the speed and torque are of opposite signs, the machine is in generating
mode, and the current amplitude is reasonable.

Let us concentrate now on the region0 ≤ ωo ≤ ωs. The machine is often designed to operate as
a motor, and the operating point is near or exactly where the power factor is maximized. It is for this
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Fig. 6.15 Equivalent circuit of the stator with Thevenin equivalent of the stator components

point that the motor characteristics are given on the nameplate, rated speed, current, power factor
and torque. When designing an application it is this point that we have to consider primarily: Will
the torque suffice, will the efficiency and power factor be acceptable?

A second point of interest is starting, ( slips = 1) where the torque is not necessarily high,
but the current often is. When selecting a motor for an application, we have to make sure that this
starting torque is adequate to overcome the load torque, which may also include a static component. In
addition, the starting current is often 3-5 times the rated current of the machine. If the developed torque
at starting is not adequately higher than the load starting torque, their difference, the accelerating
torque will be small and it may take too long to reach the operating point. This means that the current
will remain high for a long time, and fuses or circuit breakers may operate.

A third point of interest is the maximum torque,Tmax, corresponding to speedωTmax. We can
find it by analytically calculating torque as a function of slip, and equating the derivative to 0. This
point is interesting, since points to the right of it correspond in general to stable operating conditions,
while point to its left correspond to unstable operating conditions.

We can study this point if we take the Thevenin equivalent circuit of the left part of the stator
equivalent circuit, including,Vs, Rs, Xls andXm. This will give us the circuit in figure 6.15.

Using the formula 6.16 we arrive at:

T = 3
1
ωs

V 2
Th

(
RR

s

)
(
RTh + RR

s

)2
+ (XTh + Xlr)

2
(6.17)

The maximum torque will develop when the airgap power,Pg, i.e. the power delivered toRR/s,
is maximum, since the torque is proportional to it. Taking derivative of 6.17, we find that maximum
torque will occur when:

RR

smaxT
=

√
(RTh)2 + (XTh + Xlr)

2 or (6.18)

smaxT =
RR√

R2
Th + (XTh + Xlr)

2
(6.19)

giving maximum torque:

Tmax = 3
1

2ωs

V 2
Th

RTh +
√

R2
Th + (XTh + Xlr)

2
(6.20)
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Fig. 6.16 Effect of changing rotor resistance on the torque-speed and current speed characteristic

If we neglect the stator resistance we can easily show that the general formula for the torque
becomes:

T = Tmax
2

s
sT max

+ sT max

s

(6.21)

If we neglect both the stator resistance and the magnetizing inductance, we can develop simple
formulae forTmax andωTmax. To do so we have to assume operation near synchronous speed,
where that value ofRR

ωs

ωs−ωo
is much larger thanωsLlr.

ωTmax = ωs − RR

Llr + Lls
(6.22)

Tmax ' 3
2

(
Vs

ωs

)2 1
RR

(ωs − ωTmax) =
3
2

(
Vs

ωs

)2 1
Lls + Llr

(6.23)

We notice here that the slip frequency at this torque,ωr = ωs − ωTmax, for a constant flux
Λs = Es

ωs
is independent of frequency and proportional to the resistanceRR. We already know

that this resistance is proportional to the rotor resistance, so if the rotor resistance is increased, the
torque-speed characteristic is shifted to the left, as shown in figure 6.16.

If we have convenient ways to increase the rotor resistance, we can increase the starting torque,
while decreasing the starting current. Increasing the rotor resistance can be easily accomplished in a
wound-rotor machine, and more complex in squirrel cage motor, by using double or deep rotor bars.

In the formulae developed we notice that the maximum torque is a function of the flux. This
means that we can change the frequency of the stator voltage, but as long as the voltage amplitude
changes so that the flux stays the same, the maximum torque will also stay the same. Figure 6.17
shows this. This is calledConstant Volts per Hertz Operationand it is a first approach to controlling
the speed of the motor through its supply.
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Near synchronous speed the effect of the rotor leakage inductance can be neglected, as discussed
earlier. This assumption gives us the approximate torque-speed equation 6.16 discussed earlier.

T = 3
E2

s

ωs

1
RR

ωs − ω0

ωs
= 3

Λ2
sωr

RR
=

3Pg

ωs

Figure 6.18 shows both exact and approximate torque-speed characteristics. It is important to notice
that the torque calculated from the approximate equation is grossly incorrect away from synchronous
speed.

6.7 STARTING OF INDUCTION MOTORS

To avoid the problems associated with starting (too high current, too low torque), a variety of
techniques are available.

An easy way to decrease the starting current is to decrease the stator terminal voltage. One can
notice that while the stator current is proportional to the in voltage, torque will be proportional to
its square. If a transformer is used to accomplish this, both developed torque andline current will
decrease by the square of the turns ratio of the transformer.

A commonly used method is to use a motor designed to operate with the stator windings connected
in ∆, and have it connected inY at starting. As the voltage ratio is.

Vs,Y =
1√
3
Vs,∆ (6.24)

then

Is,Y =
1√
3
Is,∆ (6.25)

Ts,Y =
1
3
Ts,∆ (6.26)
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But in a∆ connection,Iline =
√

3Iph, leading to:

Iline,Y =
1
3
Iline,∆ (6.27)

Once the machine has approached the desired operating point, we can reconfigure the connection
to ∆, and provide better efficiency.

This decrease in current is often adequate to allow a motor to start at low load starting torque.
Using a variable frequency and voltage supply we can comfortablyincreasethe starting torque, as
shown in figure 6.17, while decreasing the starting current.

6.8 MULTIPLE POLE PAIRS

If we consider that an induction machine will operate close to synchronous speed (3000rpm for50Hz
and 3600rpm for60Hz) we may find that the speed of the machine is too high for an application.
If we recall the pictures of the flux in AC machines we have seen, we can notice that the flux has a
relatively long path to travel in the stator making the stator heavy and lossy.
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Fig. 6.20 Equivalent windings for a 6 pole induction motor

A machine with more than one pole pair is quite similar to that with only one. The difference is
that for example in a 4 pole machine each side of a sinusoidally distributed winding of one phase
covers only900 instead of1800. A result is that there is room for four rather than two coil sides of
each phase. Figure 6.20 shows at one instant the equivalent windings resulting from the the three
phase windings.

The effects of a large number of poles on the operation of the machine are easy to predict. If the
machine hasp poles, orp/2 pairs of poles, in one period of the voltage the flux will travel2

pws rad/s.
Hence the rotor speed corresponding to synchronous will beωsm:

ωsm =
2
p
ωs (6.28)

We introduce now the actual, mechanical speed of the rotor,ωm, while we keep the termωo as
the rotor speed of a two pole motor. We generally measureωm in rad/s, while we measureω0 in
electricalrad/s. We retain the same definition for slip based on the electrical speedω0 .

ωm =
2
p
ωo (6.29)

s =
ωs − ω0

ωs
=

ωs − p
2ωm

ωs
(6.30)

This means that for a 4 pole machine, supplied from a source of at60Hz, and operating close to
rated conditions, the speed will be near1800rpm, while for a 6 pole machine, the speed will be near
1200rpm.

While increasing the number of poles results in a decrease of the synchronous and operating
speeds of the machine, it also results in an increase of the developed torque of the machine by the
same ratio. Hence, the corrected torque formula will be

T = 3
p

2
Pg

ωs
= 3

p

2
Pm

ω0
(6.31)

Similarly, the torque near the synchronous speed is:

T = 3
p

2
E2

s

ωs

1
RR

ωs − ω0

ωs
= 3

p

2
Λ2

sωr

RR
= 3

p

2
Pg

ωs
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while the previously developed formulas for maximum torque will become:

Tmax = 3
p

2
1

2ωs

V 2
Th

RTh +
√

R2
Th + (XTh + Xlr)

2
(6.32)

and

Tmax ' 3
2

p

2

(
Vs

ωs

)2 1
RR

(ωs − ωTmax) =
3
2

p

2

(
Vs

ωs

)2 1
Lls + Llr

(6.33)

6.8.1 Example
A 3-phase 2-pole induction motor is rated190V , 60Hz, it is connected inY , and hasRr = 6.6Ω,
Rs = 3.1Ω, XM = 190Ω, Xlr = 10Ω, andXls = 3Ω. Calculate the motor starting torque, starting
current and starting power factor under rated voltage. What will be the current and power factor if
no load is connected to the shaft?

1. At startings = 1:

Is =
190√

3
/ {[3.1 + j3] + j190||(6.6 + j10)} = 7.066 −54.50

A

IR = Is
j190

6.6 + j10 + j190
= 6.76 −52.60

A

T = 3
Pgap

ωs

p

2
= 3

6.72 · 6.6
377

2
2

= 2.36Nm

2. Under no load the speed is synchronous ands = 0:

Is = 110/ [3.1 + j3 + j190] = 0.576 −89.10
A

Is = 0.57A

pf = 0.016lagging

6.8.2 Example
A 3-phase 2-pole induction motor is rated190V , 60Hz it is connected inY , and hasRr = 6.6Ω,
Rs = 3.1Ω, XM = 190Ω, Xlr = 10Ω, andXls = 3Ω. It is operating from a variable speed -
variable frequency source at a speed of 1910rpm, under a constantV/f policy and the developed
torque is0.8Nm. What is the voltage and frequency of the source? (Hint: Calculate first the slip).

The ratioVs/ωs stays110/377.

T =
p

2
3

(
Vs

ωs

)2 1
RR

ωr

0.8 = 1 · 3
(

110
377

)2 1
6.6

ωr ⇒ ωr = 20.65 rad/s

ωs = ωm
p

2
+ ωR = 220.66

rad

s

⇒ fs = 35Hz ⇒ Vs = 220.66
110
377

= 64.4V or 110Vl−l

6.8.3 Example
A 3-phase 4-pole induction machine is rated230V , 60Hz. It is connected inY and it hasRr =
0.191Ω, Rs = 0.2Ω, LM = 35mH, Llr = 1.5mH, andLls = 1.2mH. It is operated as a generator
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connected to a variable frequency/variable voltage source. Its speed is 2036rpm, with counter-torque
of 59Nm. What is the efficiency of this generator? (Hint: here power in is mechanical, power out
is electrical; calculate first the slip)

Although we do not know the voltage or the frequency, we know their ratio since it is always
132.8/377.

T = 3
p

2

(
Vs

ωs

)2 1
RR

ωr

⇒ −59 = 3 · 2
(

132.8
377

)2 1
0.191

ωr

⇒ ωr = −15.14 rad/s

Now we can find the synchronous speed, by adding slip and rotor speeds:

ωs = ωm
p

2
+ ωr =

2π · 2036
60

2− 15.14 = 411.3 rad/s

⇒ fs = 65.5Hz ⇒ Vs = 65.5 · 132
60

= 144V

We have to recalculate the impedances of the equivalent circuit for the frequency of65.5Hz:

Xm = 35 · 10−3 · 411.3 = 14.4Ω, Xls = 0.49Ω, Xlr = 0.617Ω

RR

ωr + ωm
p
2

ωr
= −5.38Ω

Is = 144/ [0.2 + j0.49 + j14.4||(0.191− 5.38 + j0.617)] = 30 6 −1480
A

IR = 27.26 −166.9A

Notice that with generation operationRR < 0. We can calculate now losses etc.

Pm = 3 · 27.225.38 = 11.941kW

Protor,loss = 3 · 27.220.191 = 423W

Pstator,loss = 3 · 3020.2 = 540W

⇒ Pout = Pm − Protor,loss − Pstator,loss = 10.980kW

⇒ η =
Pout

Pm
= 0.919





7
Synchronous Machines and

Drives

We noticed in discussing induction machines that as the rotor approaches synchronous speed, the
frequency of the currents in the rotor decreases, as does the amplitude of these currents. The reason
an induction motor produces no torque at synchronous speed is not that the currents are DC, but
rather that their amplitude is zero.

It is possible to operate a three-phase machine at synchronous speed if DC is externally applied
to the rotor and the rotor is rotated at synchronous speed. In this case torque will be developed only
at this speed, i.e. if the rotor is rotated at speeds other than synchronous, the average torque will be
zero.

Machines operating on this principle are called synchronous machines, and cover a great variety.
As generators they can be quite large, rated a few hundredMV A, and almost all power generation
is through these machines. Large synchronous motors are not very common, but can be an attractive
alternative to induction machines. Small synchronous motors with permanent magnets in the rotor,
rather than coils with DC, are rapidly replacing induction motors in automotive, industrial and
residential applications. since they are more efficient and lighter.

7.1 DESIGN AND PRINCIPLE OF OPERATION

The stator of a synchronous machine is of the type that we have already discussed, with three
windings carrying a three-phase system of currents. The rotor can be one of two distinct types:

7.1.1 Wound Rotor Carrying DC

In this case the rotor steel structure can be either cylindrical, like that in figure 7.1a, or salient like the
one in 7.1b. In either of these cases the rotor winding carries DC, provided to it through slip rings, or
through a rectified voltage of an inside-out synchronous generator mounted on the same shaft. Here
we’ll limit ourselves to discussing only cylindrical rotors.

81
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Fig. 7.1

7.1.2 Permanent Magnet Rotor

In this case instead of supplying DC to the rotor we create a magnetic field attached to it by adding
magnets on the rotor. There are many ways to do this, as shown in figure 7.2, and all have the
following effects:

• The rotor flux can no longer be controlled externally. It is defined uniquely by the magnets
and the geometry,

• The machine becomes simpler to construct, at least for small sizes.

7.2 EQUIVALENT CIRCUIT

The flux in the air gap can be considered to be due to two sources: the stator currents, and the rotor
currents or permanent magnet. We have discussed already how the currents in the stator produce flux.
Remember that this flux could also be produced by one equivalent winding, rotating at synchronous
speed and carrying current equal to the magnitude of the stator-current space vector.

The rotor is itself such a winding, a real one, sinusoidally distributed, carrying DC and rotating at
synchronous speed. It produces an airgap flux, which could also be produced by an additional set of
three phase stator currents, giving a space vectoriR. The amplitude of this space vector would be:

|iF | = Ns

NR
if (7.1)

whereNs is the number of the stator turns of the one equivalent winding andNR is the number of
the turns in the rotor winding. Its angleφR would be the same as the angle of the rotor position:

φR = ωst + φR0 (7.2)

The stator current space vector has amplitude:

|is| = 3
2

√
2Is (7.3)
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Fig. 7.2 Possible magnet placements in PMAC motors

whereIs is the rms current of one phase. The stator current space vector will have an instantaneous
angle,

φis = ωst + φis0 (7.4)

The airgap flux then is produced by both these current space vectors (rotor and stator). This flux
induces in the stator windings a voltage,es. In quasi steady-state everything is sinusoidal and the
voltage space vector corresponds to three phase voltagesE1, E2, E3. In this case we can create an
equivalent circuit for the stator, 7.3. HereIF is the stator AC current, that if it were to flow in the
stator windings would have the same effects as the rotor current,if . In our analysis we can use as
reference either the stator voltage,Vs, or the stator current,Is. Figure 7.4. There are some angles
to notice in this figure. We callθ the power factor angle, i.e. the angle betweenIs andVs. We call
β, the angle betweenVs andIF, and power angle,δ, that betweenIF andIS.

A few relationships to notice here:

• The space vector of the voltages induced in the stator,es, is 900 ahead of the magnetizing
current space vector,iM. This is so sinceiM is what causes all the airgap flux that links the
stator and induceses. For a given frequency, the amplitude of this voltage,es, is proportional
to the currentiM.
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• A permanent magnet machine can be considered equivalent to that with a winding, carrying a
Direct Current,if , that is constant and cannot be controlled.

There are two modes of operation of a synchronous machine, that we’ll study:

7.3 OPERATION OF THE MACHINE CONNECTED TO A BUS OF CONSTANT
VOLTAGE AND FREQUENCY

This is usually the case for large synchronous generators or motors. We can consider any bus as one
of constant voltage, by making a few modifications to the equivalent circuit as shown in figure 7.5.
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Fig. 7.5 Accounting for system impedance in the model of a Synchronous Machine

Synchronous machines are very efficient, and most of the time we can neglect the stator resistance.
All power then is converted to mechanical power and:

P = 3VsIs cos θ = Tωs
2
p

(7.5)

P = −3VsIF cosβ (7.6)

IM = Is + IF (7.7)

Vs = jXmIM (7.8)

In this operationVs andωs (and therefore speed) remain constant. The only input variables are the
torque,T , which affects output power,Pout = Tωs

2
p , and the field current,if , which is proportional

to IF ; the magnetizing currentIM is constant, since it is tied to the voltageVs.
Let us assume that the machine is operated so that the power to it varies while the frequency and

field current remain constant. Since this is a synchronous machine, the speed will not vary with the
load. From equation 7.6 we can see that the power, and therefore the torque, varies sinusoidally
with the angleβ. Remember thatβ is the angle between the axis of the rotor winding, and the
stator voltage space vector. Since this voltage space vector is900 ahead of the space vector of the
magnetizing current,β − 900 is the angle between the rotor axis and the magnetizing current space
vector (same as the airgap flux). When there is no torque this angle is0, i.e. the rotor rotates aligned
with the flux, but when external torque is applied to the rotor in the direction of rotation the rotor
will accelerate. As it accelerates (with the flux rotating at constant speed) the flux falls behind the
rotor, and negative torque is developed, making the rotor slow down and rotate again at synchronous
speed, but now ahead of the flux.

Similarly, when load torque is applied to the rotor, the rotor decelerates; as it does so, the angleβ
decreases beyond−900, i.e. the rotor falls behind the flux. Positive torque is developed that brings
the rotor back to synchronous speed, but now rotating behind the stator flux.

In both cases when the load torque on a motor or the torque of the prime mover in a generator
increases beyond a maximum, corresponding tocos β = ±1, the machine cannot develop adequate
torque and it loses synchronization.

Let us discuss now the effect of varying the field current while keeping the power constant. From
equation 7.6, when power and voltage are kept constant, the productIF cos β remains constant as
well. But this product is the projection ofIF on the horizontal axis. This means that as the field
current changes while power stays the same, the tip ofIF travels on a vertical line, as shown in figure
7.7a. Similarly, equation 7.5 means that at the same time the tip ofIs travels on another vertical line,
also shown in figure 7.7a.
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Fig. 7.7

It is clear from figure 7.7a that once the field current has exceeded a value specific to the power
level, the power factor becomes leading and the machine produces reactive power. This is different
from the operation of an induction machine, which always absorbs reactive power.
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When the machine operates as a generator, the input power is negative. Figure 7.7b shows this
operation for both leading and lagging load power factor. Here the angle between stator voltage
and stator current defined in the direction shown in the equivalent circuit, is outside the range
−900 < θ < 900.

7.3.1 Example
A 3-phaseY -connected synchronous machine is fed from a2300V , 60Hz. The ratio of the AC stator
equivalent current to the rotor DC isIF /if = 1.8 The magnetizing inductance of the machine is
200mH.

• The machine is operated as a motor and is absorbing110kW at 0.89 p.f. leading. Calculate
the required field current and the load angle. Draw the corresponding phasor diagrams.

Using figure 7.8:

I

I
M

I

s
V

S

F

-131 0

27.10

Fig. 7.8

XM = 2π60 · 0.2 = 75.4Ω

Vs =
2300√

3
= 1328V

Is =
110 · 103/3
1328 · 0.89

6 27.10 = 31 6 27.10
A

from the stator voltage we can calculateIM and from itIF .

IM =
1328
75.4

= 17.626 −900
A

IF = IM − IS = 42 6 −1310
A

⇒ if =
IF

1.8
= 23.4A

• Repeat for operation as generator at110kW , 0.82 pf leading.

Using figure 7.9:
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Fig. 7.9

Ig = 33.76 35A ⇒ IS = 33.76 −1450
A

IF = IM − IS = 27.666 3.560
A

⇒ if = 15.37A

• What is the maximum power the machine above can produce (or absorb) when operating as a
generator and at the field current just calculated?

We know that absorbed and produced power is:

P = −3VsIF cosβ

for if = 15.37A we haveIF = 27.66A, andP becomes maximum forβ = 0, hence:

P = 3 · 1328 · 27.66 = 110.2kW

• If the terminal voltage remains at2300V , 60Hz, what is the minimal field current required to
maintain operation as a motor with load70kW?

Again here:

P = 3 · VsIf cos β = 3 · 1328 · IF = 70 · 103W

⇒ IF = 17.57A

7.4 OPERATION FROM A SOURCE OF VARIABLE FREQUENCY AND VOLTAGE

This operation requires that our synchronous machine is supplied by an inverter. The operation now
is entirely different than before. We no longer have an infinite bus, but rather whatever stator voltage
or current and frequency we desire. Moreover, with a space-vector controlled inverter, the phase
of this voltage or current can be arbitrarily set at any instant i.e. we can define the stator current
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or voltage space vector, and obtain it at will. The considerations for the motor operation are also
different:

• There is no concern for absorbing or supplying reactive power. Instead, there is a limit on the
total stator current, determined by thermal considerations.

• There is a limit to the maximum voltage the source can supply, which leads to modifications
of the machine mode of operation at high speeds.

Operation from source of variable frequency and voltage is most common for Permanent Magnet
Machines, where the value of|IF| is constant.

In simple terms, when the machine is starting as a motor the frequency applied should be zero, but
the voltage space vector should be of such angle with respect to the rotor that torque is developed. as
discussed in the previous section. As torque develops, the machine accelerates, and the applied stator
currents have to create a rotating space vector leading the rotor flux. Voltage and frequency have to
be increased, so that this torque is maintained. It is important therefore to monitor the position of the
rotor in order to determine the location of the stator current or voltage space vector.

Two possible control techniques are implemented: either voltage control, where the stator voltage
space vector is determined and applied, or current control, where he stator current space vector is
applied.

For a fixed stator voltage and power (and torque) level, the stator losses are minimal when the
stator voltage and current are in phase. Figure 7.10 shows this condition.

V
s

I
M

θ

β

IF

I S

Fig. 7.10 Operation of a synchronous PM drive at constant voltage and Frequency

Notice that as the power changes with the voltage constant two things happen:

1. The voltage space vector varies in amplitude and the magnetizing current changes with it.

2. The amplitude ofIF stays constant, but its angle with respect to the voltage changes.

From the developed torque and speed we can calculate the frequency, the values ofIM andIS ,
and the angle between the stator voltage space vector and the rotor, since

T =
3p

2ωs
VsIs =

3p

2
LMIMIs (7.9)

I2
F = I2

M + I2
s (7.10)

andIF is a constant in PM machines.
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More common though is the case when the stator voltage is not constant. Here we monitor the
position of the rotor and since the rotor flux and rotor space current are attached to it, we are actually
monitoring the position ofIF. To make matters simple we use this current rather than the stator
voltage as reference, as shown in figure 7.11.

I

V s

F

I M
sI

jI F X M
jI s X M

γ

θ

Fig. 7.11 Operation of a synchronous PM drive below base speed

Although previous formulae for power and torque are still true they are not as useful. We create
new formulae that have the stator currentIs and magnetizing currentIM as variables. We also use
the angleγ, betweenIF andIs, since we can control it. Starting from what we already know:

Pg = <[VsI∗F] = <[jXM(IF + Is)I∗F] (7.11)

= <[jXMIFI∗F] + <[jXMIsI∗F] (7.12)

= XM=[IsI∗F] = XMIsIF sin γ (7.13)

For a given torque minimum losses require minimum value of the stator current. To minimize the
value ofIs with constant power andIF we chooseγ = 90o and arrive at:

Pg = XM= [IsI∗F] = XMIsIF (7.14)

T = 3
p

2
Pg

ωs
= 3

p

2
LM= [IsI∗F] = 3

p

2
LMIsIF (7.15)

which means that for constant power the projection of the stator current on an axis perpendicular to
IM is constant.

As the rotor speed increases, even ifIM stays constant, the stator voltageVs = ωsLmIs increases.
At some speedωsB , the required voltage exceeds the maximum the power source can provide. We
call this speed base speed; To increase the speed beyond it we no longer keepγ = 90o. On the other
hand at that speed we know that the voltage has reached its upper limitVs = Vs,max, therefore the
value ofIM = Vs,max/XM is known. In this case, equations 7.9 and 7.10 become:

T =
3p

2ωs
VsIs cos θ =

3p

2
LMIMIs cos θ (7.16)

I2
F = I2

M + I2
s + 2IMIs sin θ (7.17)
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Fig. 7.12 Field weakening of a PM AC motor. The two diagrams at are at the same frequency, but the second
one hasγ > 90o and lowerVs

.

Figure 7.12 shows such an operation with the variables having the subscript 1. Note that we
calculate torque from power:

P = 3XMISIF sin γ (7.18)

T =
P

ωs

p

2
= 3

p

2
LM= [ISI∗F] = 3

p

2
LMIsIF sin γ (7.19)

7.4.1 Example
A 3-phase, four pole,Y connected permanent magnet synchronous machine is rated400V , 50Hz,
50kV A. Its magnetizing inductance is2.5mH and its equivalent field source current is310A. We
can neglect stator resistance.

• The machine is operated as a generator at rated frequency. Determine the maximum and
minimum values of the stator phase voltage as the load current is varied from zero to rated
value at unity power factor.

The rated phase voltage isVs = 400/
√

3 = 231V and the rated stator current isIs =
50 · 103/3 · 231 = 72.2A. With no load and at rated frequency the phase voltage is:

Vs = ωsLMIF = 2π50 · 2.5 · 10−3 · 310 = 243.5V

If the motor is operated at unity power factor, the stator current is collinear with the stator
voltage, as in figure 7.13.

From the current triangle:

I2
M = I2

F − I2
s ⇒ IM =

√
3102 − 72.72 = 301.5A

and the stator voltage is:
Vs = ωsLMIM = 236.8V

• The machine is now operated as a variable speed drive motor from a variable voltage, variable
frequency source. What should be the voltage and frequency in order to provide torque of
300Nm at 600rpm, if again we have unity power factor?
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Fig. 7.13

The machine has four poles, so

ωs =
p

2
600

2π

60
= 20Hz

Torque can be expressed as a function of input power:

T = 3
p

2
1
ωs

VsIspf = 3
p

2ωs
(ωsLMIM )Is =

3p

2
LMIMIs = 300Nm

In addition to this equation we have from the current triangle for unity pf:

I2
F = I2

M + I2
s = 3102

These two equations, solved together will give

IM = 303A Is = 66A or

IM = 66 Is = 303A

which leads to phase voltage and torque:

Vs = ωsLMIM = 95.1V

Pm =
2
p
ωsT = 18.84kW

7.4.2 Example
A 2-pole, Y -connected, 3-phase Permanent Magnet synchronous generator is rated230V (l-l)
10kV A, 400Hz. Its magnetizing inductance is0.6mH. First a test is performed: The rotor is
externally driven at rated speed with the stator open circuited and the line-line voltage is measured
at 240V .

Based on the result of this test determine the stator voltage and power angle when the stator
current, voltage and frequency are rated and the power factor of the load is0.9 lagging.
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From the test:

XM = ωsLM = 2π400 · 0.6 · 10−3 = 1.508Ω

Vs = |IMXM| = 240√
3
⇒ IM = 91.9A

but at no load
IF = IM = 91.9A and it is constant

Now that we foundIF , to the problem: At the operating point

Is =
S√
3Vll

=
10 · 103

√
3 · 230

= 25.102A

pf = 0.9 ⇒ θ = −25.84o

from the geometry of the current triangle:

I2
M + I2

s − 2IMIS cos
(π

2
+ θ

)
= I2

F

⇒⇒ I2
M + 25.12 + 2 · 25.1 · IM · 0.436 = 91.92

⇒ IM = 100A
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�

Fig. 7.14 Phasor diagram for this example

7.4.3 Example
A permanent magnet,Y connected, three-phase, 2-pole motor hasIF = 40 and XM = 0.9Ω at
100Hz.

1. If it is absorbingP = 1.5kW at100Hz with minimum stator currentIs, calculate this current,
the angle betweenIs andIF, the speed, the stator voltage (line-neutral) and the power factor.

The minimum currentIs will exist whenγ = 6 (Is, IF) = 90o. Then:

P = 3XMIsIF ⇒ Is =
1500

3 · 0.9 · 40
= 13.89A

⇒ IM = IF + Is = 40 + 13.896 90o

= 42.346 19.15o

A

⇒ Vs = jωsLMIM = 38.126 109.15o

V
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the power factor is:

pf = cos(109.14o − 90o) = 0.946lagging

2. It is desired to increase the motor speed to6900rpm while keeping power the same,P =
1.5kW , but the supplied voltage has reached its upper limit ofVs = 38.12V . Now the motor
absorbs the same power at at the voltage calculated in the previous question, but at frequency
115Hz; This can be accomplished by having stator current no longer at a minimum value and
γ 6= 90o. Calculate again the angle betweenIs andIF, the speed, and the power factor.

P = −3VsIF cos β ⇒ cos β = − 1500
3 · 38.12 · 40

= −0.32

⇒ β = −109.14o ⇒ Vs = 38.126 109.14o

A

IM =
Vs

jXM
=

38.126 109.15o

j 115
1000.9

= 36.836 19.15o

A

Is = IM − IF = 13.166 113.18o

A

the power factor is now

pf = cos(109.14o − 113.18o) = 0.997leading
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Fig. 7.15 Phasor diagram for this example

7.5 CONTROLLERS FOR PMAC MACHINES

Figure 7.16 shows a typical controller for an AC Machine. It requires a DC power supply, usually a
rectifier fed from an AC source, an inverter and a controller.

Figure 7.17 shows in a slightly higher detail the controller
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Fig. 7.16 Generic Controller for a PMAC Machine
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Fig. 7.17 Field Oriented controller for a PMAC Machine. The calculations forIs are based on equation 7.19,
and the calculation ofi∗sa, i∗sb, i∗sc are calculated from the space vectorIs from equations 5.3

7.6 BRUSHLESS DC MACHINES

While it would be difficult to find the difference between a PM AC machine described above and
a brushless DC machine by just looking at them, the concept of operation is quite different as is
the analysis. The windings in the stator in a brushless DC machine are not sinusoidally distributed
but instead they are concentrated, each occupying one third of the pole pitch. The flux density on
the magnet surface and in the airgap is also not sinusoidally distributed over the magnet but almost
uniform in the air gap.

As the stator currents interact with the flux coming from the magnet torque is developed. It should
be clear that for the same direction of flux, currents in opposite directions result in opposite forces,
and therefore in reduction of total torque. This in turn makes it necessary that all the current in the
stator above the rotor is in the same direction. To accomplish this the following are needed:

• Sensors on the stator that sense the direction of the flux coming from the rotor,
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• A fast supply that will provide currents to the appropriate stator windings as determined by
the flux direction.

• A way to control these currents, e.g. through Pulse Width Modulation

• A controller with inputs the desired speed, the flux direction in the stator and the stator currents,
and outputs the desired currents in the stator

Figures 7.18 and 7.19 show the rotor positions, the stator currents and the switches of the supply
inverter for two rotor positions.

�

�

�

(a) Switch positions (b) Machine cross section

Fig. 7.18 Energizing the windings in a brushless DC motor

�

�

�

(a) Switch positions (b) Machine cross section

Fig. 7.19 Energizing the windings in a brushless DC motor, a little later

The formulae that describe the operation of the system are quite simple. The developed torque is
proportional to the stator currents:

T = k · Is (7.20)

At the same time, the rotating flux induces a voltage in the energized windings:

E = k · ω (7.21)
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Finally the terminal voltage differs from the induced voltage by a resistive voltage drop:

Vterm = E + IsR (7.22)

These equations are similar to those of a DC motor 4.4 - 4.6. This is the reason that although this
machine is entirely different from a DC motor, it is called brushless DC motor.





8
Line Controlled Rectifiers

The idea here is to draw power from a 1-phase or 3-phase system to provide with DC a load. The
characteristics of the systems here are among others, that the devices used will turn themselves off
(commutate) and that the systems draw reactive power from the loads.

8.1 1- AND 3-PHASE CIRCUITS WITH DIODES

If the source is 1-phase, a diode is used and the load purely resistive, as shown in figure 8.1 things
are simple. When the source voltage is positive, the current flows through the diode and the voltage
of the source equals the voltage of the load. If the load includes an inductance and a source (e.g. a
battery we want to charge), as in figure 8.2, the diode will continue to conduct even when the load
voltage becomes negative as long as the current is maintained.

Fig. 8.1 Simple circuit with Diode and resistive Load

99
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Fig. 8.2 Smple Circuit with Diode and inductive load with voltage source

8.2 ONE -PHASE FULL WAVE RECTIFIER

More common is a single phase diode bridge rectifier 8.3. The load can be modelled with one of
two extremes: either as a constant current source, representing the case of a large inductance that
keeps the current through it almost constant, or as a resistor, representing the case of minimum line
inductance. We’ll study the first case with AC and DC side current and voltage waveforms shown in
figure 8.4.

If we analyze these waveforms, the output voltage will have a DC componentVdo:

Vdo =
2
π

√
2Vs ' 0.9Vs (8.1)

whereVs is the RMS value of the input AC voltage. On the other hand the RMS value of the output
voltage will be

Vs = Vd (8.2)

containing components of higher frequency.
Similarly, on the AC side the current is not sinusoidal, but rather it changes abruptly betweenId

and−Id.

Is1 =
2
π

√
2Id = 0.9Id (8.3)
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Fig. 8.3 One-phase full wave rectifier

Fig. 8.4 Waveforms for a one-phase full wave rectifier with inductive load

and again the RMS values are the same

Id = Is (8.4)

Giving a total harmonic distortion

THD =

√
I2
s − I2

s1

Is1

∼= 48.43% (8.5)

It is important to notice that if the source has some inductance (and it usually does) commutation
will be delayed after the voltage has reached zero, until the current has dropped to zero as shown
in figure 8.5. This will lead to a decrease of the output DC voltage below what is expected from
formula 8.1.
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Fig. 8.5 One-phase full wave rectifier with inductive load and source inductance

8.3 THREE-PHASE DIODE RECTIFIERS

The circuit of figure 8.3 can be modified to handle three phases, without using 12 but rather 6 diodes,
as shown in figure 8.6. Figure 8.7 shows the AC side currents and DC side voltage for the case of
high load inductance. Similar analysis as before shows that on the DC side the voltage is:

Vdo =
3
π

√
2VLL = 1.35VLL (8.6)

From figure 8.6 it is obvious that on the AC side the rms current,Is is

Is =

√
2
3
Id = 0.816Id (8.7)

while the fundamental current, i.e. the current at power frequency is:

Is1 =
1
π

√
6Id = 0.78Id (8.8)

Again, inductance on the AC side will delay commutation, causing a voltage loss, i.e. the DC
voltage will be less than that predicted by equation 8.6.
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Fig. 8.6 Three-phase full-wave rectifier with diodes

Fig. 8.7 Waveforms of a three-phase full-wave rectifier with diodes and inductive load

8.4 CONTROLLED RECTIFIERS WITH THYRISTORS

Thyristors give us the ability to vary the DC voltage. Remember that to make a thyristor start
conducting, the thyristor has to be forward biased and a gate pulse provided to its gate. Also, to turn
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off a thyristor the current through it has to reverse direction for a short period of time,trr, and return
to zero.

8.5 ONE PHASE CONTROLLED RECTIFIERS

Figure 8.8 shows the same 1-phase bridge we have already studied, now with thyristors instead of
diodes, and figure 8.9 shows the output voltage and input current waveforms. In this figureα is the
delay angle, corresponding to the time we delay triggering the thyristors after they became forward
biased. Thyristors 1 and 2 are triggered together and of course so are 3 and 4. Each pair of thyristors
is turned off immediately (or shortly) after the other pair is turned on by gating. Analysis similar to

Fig. 8.8 One-phase full wave converter with Thyristors

that for diode circuits will give:

Vdo =
2
π

√
2Vs cosα = 0.9Vs cosα (8.9)

and the relation for the currents is the same

Is1 =
2
π

√
2Id = 0.9Id (8.10)

We should notice in figure 8.9 that the current waveform on the AC side is offset i time with respect
to the corresponding voltage by the same angleα, hence so is the fundamental of the current, leading
to a lagging power factor.

On the DC side, only the DC component of the voltage carries power, since there is no harmonic
content in the current. On the AC side the power is carried only by the fundamental, since there are
no harmonics in the voltage.

P = VsIs1 cosα = VdId (8.11)

8.5.1 Inverter Mode

If somehow the current on the DC side is sustained even if the voltage reverses polarity, then power
will be transferred from the DC to the AC side. The voltage on the D side can reverse polarity when
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Fig. 8.9 Waveforms of One-phase full wave converter with Thyristors

the delay angle exceeds900, as long as the current is maintained. This can only happen when the
load voltage is as shown in figure 8.10, e.g. a battery.

Fig. 8.10 Operation of a one-phase controlled Converter as an inverter
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8.6 THREE-PHASE CONTROLLED CONVERTERS

Fig. 8.11 Schematic of a three-phase Full-Wave Converter

Fig. 8.12 Waveforms of a Three-phase Full-Wave Converter

As with diodes, only six thyristors are needed to accommodate three phases. Figure 8.11 shows
the schematic of the system, and figure 8.12 shows the output voltage waveform. The delay angleα
is again measured from the point that a thyristor becomes forward biased, but in this case the point
is at the intersection of the voltage waveforms of two different phases. The voltage on the DC side
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is then:

Vdo =
3
π

√
2VLL cosα = 1.35VLL cos α (8.12)

while the power for both the AC and the DC side is

P = VdIdo = 1.35VllId cos α =
√

3VllIs1 cosα (8.13)

which leads to:
Is1 = 0.78Id (8.14)

Again if the delay angleα is extended beyond900, the converter transfers power from the DC
side to the AC side, becoming an inverter. We should keep in mind, though, that even in this case
the converter is drawing reactive power from the AC side.

8.7 *NOTES

1. For both 1-phase and 3-phase controlled rectifier delay inα creates a phase displacement of
the phase current with respect to the phase voltage, equal toα. The cosine of this angle is the
power factor of the first harmonic.

2. For both motor and generator modes the controlled rectifier absorbs reactive power from the
three-phase AC system, although it can either absorb or produce real power. It also needs the
power line to commutate the thyristors. This means that inverter operation is possible only
when the rectifier is connected to a power line.

3. When a DC motor or a battery is connected to the terminals of a controlled rectifier andα
becomes greater then900, the terminal DC voltage changes polarity, but the direction of the
current stays the same. This means that in order for the rectifier to draw power from battery
or a motor that operates as a generator turning in the same direction, the terminals haver to be
switched.





9
Inverters

Although the AC-to-DC converters we have already studied can transfer power from the DC side to
the AC system, they require the presence of such an AC system in order to commutate the thyristors
and provide the required reactive power. In this chapter we’ll study a similar system using devices
that we can turn both on and off, like GTOs, BJTs IGBTs and MOSFETs, which allows the transfer
of power from the DC source to any AC load. Figure 9.1 shows a typical application of a complete
system, where the supply power of constant voltage and frequency is rectified, filtered and then
inverted to provide an output of desired voltage and frequency.

We’ll study first the operation of a single phase inverter and then we’ll expand to three-phases.

9.1 1-PHASE INVERTER

Figure 9.2 shows the operation of on leg of the inverter regardless of the number of phases. To
illustrate the point better, the input DC voltage is divided into two equal parts. When the upper
switchTA+ is closed, the output voltageVAo will be 1

2Vd, and when the lower switchTA− is closed,
it will be − 1

2Vd. Deciding which switch to close in order to obtain a certain waveform will be
determined by the PWM comparison shown in figure 9.3. We define as the frequency modulation
index the ratio of the frequencies of the carrier (triangular wave) to the control signal:

mf =
fs

f1
(9.1)

and as amplitude modulation index:

ma =
Vcontrol

Vtri
(9.2)

Two comments here:

1. The output voltage in figure 9.3 at first look does not resemble the expected waveform (i.e. the
control signal). Its fundamental, though, does, and one can filter out the higher harmonics.

109
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Fig. 9.1 Typical variable voltage and frequency system supplied from a power system

Fig. 9.2 One leg of an inverter

Fig. 9.3 PWM scheme to determine which switch should be closed
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Fig. 9.4 One-phase full wave inverter

2. The switches in the inverter can conduct only in one direction. Inductive loads, though, require
the current to continue to flow after a switch has been turned off. Allowing this current to flow
is the job of the antiparallel diodes.

A full bridge inverter is shown in figure 9.4. It has four controlled switches, each with an
antiparallel diode, and diagonally placed switches operate together. The output voltage will oscillate
between+Vd and−Vd and theamplitude of the fundamental of the output voltage will be a linear
function of the amplitude index̂Vo = mVd as long asma ≤ 1. Then the rms value of the output
voltage will be:

Vo1 =
ma√

2
Vd

2
= 0.353maVd (9.3)

Whenma increases beyond 1, the output voltage increases also but not linearly with it, and can reach
peak value of4π Vd when the reference signal becomes infinite and the output a square wave. Its RMS
value, then will be:

Vo1 =
2
√

2
π

Vd

2
= 0.45V d (9.4)

Equating the power of the DC side with that of the AC side

P = VdId0 = Vo1Io1pf (9.5)

Hence for normal PWM

Id0 = 0.353maIo1pf (9.6)

and for square wave

Id0 = 0.45Io1pf (9.7)

9.2 THREE-PHASE INVERTERS

For three-phase loads, it makes more sense to use a three-phase inverter, rather than three one-phase
inverters. Figure 9.5 shows a schematic of this system:

The basic PWM scheme for a three-phase inverter has one common carrier and three separate
control waveforms. If the waveforms we want to achieve are sinusoidal and the frequency modulation
indexmf is low, we use a synchronized carrier signal withmf an integer and multiple of 3.
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Fig. 9.5 Three-phase, full-wave inverter

Fig. 9.6 Three-phase Pulse Width Modulation
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Fig. 9.7 6-step operation of a PWM inverter

As long asma is less than 1, the rms value of the fundamental of the output voltage is a linear
function of it:

VLL1 =
√

3
2
√

2
maVd ' 0.612maVd (9.8)

On the other hand, when the control voltage becomes infinite, the rms value of the fundamental
of the output voltage becomes:

VLL1 =
√

3√
2

4
π

Vd

2
' 0.78Vd (9.9)

In this case the output voltage becomes rectangular and the operation is called 6-step operation, as
shown in figure 9.7b.

Equating the power on the DC and AC sides we obtain: Equating the power of the DC side with
that of the AC side

P = VdId0 =
√

3Vll1Io1pf (9.10)

Hence for normal PWM
Id0 = 1.06maIo1pf (9.11)

and for square wave
Id0 = 1.35Io1pf (9.12)

Finally, there other ways to control the operation of an inverter. If it is not the output voltage
waveform we want to control, but rather the current, we can either impose a fast controller on the
voltage waveform, driven by the error in between the current signal and reference, or we can apply
a hysteresis band controller, shown for one leg of the inverter in figure 9.8
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Fig. 9.8 Current control with hysteresis band
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Notes

• With a sine-triangle PWM the harmonics of the output voltage s are of frequency aroundnfs,
wheren is an integer andfs is the frequency of the carrier (triangle) waveform. The higher
this frequency is the easier to filter out these harmonics. On the other hand, increasing the
switching frequency increases proportionally the switching losses. For 6-step operation of a
3-phase inverter the harmonics are even except the triplen ones, i.e. they are of order 5, 7, 11,
13, 17 etc.

• When the load of an inverter is inductive the current in each phase remains positive after the
voltage in that phase became negative, i.e. after the top switch has been turned off. The
current then flows through the antiparallel diode of the bottom switch, returning power to the
DC link. The same happens of course when the bottom switch is turned off and the current
flows through the antiparallel diode of the top switch.

9.2.1 Example
A 3-phase controlled rectifier is supplying a DC motor withk = 1V s andR = 1Ω. The rectifier is
fed from a208V l − l source.

���������
	
�
�����

Fig. 9.9 figure for 9.2.1

1aCalculate the maximum no-load speed of the DC motor.
Without load the current is zero. Hence:

V = kω + IR = kω

The maximum speed is then determined by the maximum DC voltage:

Vmax = kωmax

This maximum DC voltage is provided by the controlled rectifier forα = 0:

Vmax = 1.35Vll = 281.8V

hence
ωmax = 280.8rad/s

1b The motor now is producing torque of20Nm. What is the maximum seed the motor can
achieve?

Now that there is load torque there is current:

T = kI ⇒ I = 20Nm

Again

ω =
V − IR

k
=

280.8− 20 · 1
1

= 260.8rad/s
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1c For the case in 1b calculate the total rms current the first harmonic and the power factor at
the AC side.

The fundamental of the AC current is

Is1 = 0.78Id = 15.6A

Power factor is then 1.
1d The motor is now connected asa generator, with a counter torque of20Nm at 1500rpm.

What should be the delay angle and AC current?
For a DC generator

V = kω − IR = kω − T

k
R1 · 1500

2π

60
− 2

1
1 = 137.08V

Since this is a generator this voltage is negative for the inverter (see notes)

−137, 08 = 1.35 · 208 cos α ⇒ cosα = −0.488 ⇒ α = 119.220

9.2.2 Example
In the system below the AC source is constant. The load voltage is150V (l − l), 20Am 52Hz,
0.85pf lagging. Calculate:

���������
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Fig. 9.10 figure for 9.2.2

a The voltage on the DC side and the DC component of the current.
For 6-step inverter

Vll,1 = 0.78Vd ⇒ Vd = 192V

P =
√

3VllIlpf = VdId0 ⇒ Id0 =
1.35 · 150 · 20 · 0.85

192
= 23A

b Calculate the source side (208V AC) rms and fundamental current and power factor.
For a 3-phase rectifier

Vd = 1.35Vll cosα ⇒ 192 = 1.35 · 208 · cos α ⇒ cos α = 0.685

Is1 = 0.78Id = 17.94A

pf = cos α = 0.685 lagging



10
DC-DC Conversion

We will study DC to DC converters operating under certain conditions. The use of such converters are
extensive in automotive applications, but also in cases where a DC voltage produced by rectification
is used to supply secondary loads. The conversion is often associated with stabilizing, i.e. the input
voltage is variable but the desired output voltage stays the same. The converse is also required, to
produce a variable DC from a fixed or variable source. The issues of selecting component parameters
and calculating the performance of the system will be addressed here. Since these converters are
switched mode systems, they are often referred to as choppers.

10.1 STEP-DOWN OR BUCK CONVERTERS

The basic circuit of this converter is shown in figure 10.1 connected first to a purely resistive load.
If we remove the low pass filter shown and the diode the output voltagevo(t) is equal to the input
voltageVd when the switch is closed and to zero when the switch is open, giving an average output
voltageVo:

Vo =
1
TS

[∫ ton

0

Vddt +
∫ Ts

ton

0dt

]
=

ton

Ts
Vd (10.1)

with ton/Ts = D, the duty ratio.
The low pass filter attenuates the high frequencies (multiples of the switching frequency) and

leaves almost only the DC component. The energy stored in the filter inductor (or the load inductor)
has to be absorbed somewhere other than the switch, hence the diode, which conducts when the
switch is open.

We’ll study this converter in the continuous mode of operation i.e. the current through the inductor
never becomes zero. As the switch opens and closes the circuit assumes one of the topologies of
figure 10.2.

117
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Fig. 10.1 Topology of the buck chopper

Fig. 10.2 Operation of the buck chopper

We’ll use the fact that the average voltage across the inductor is zero. Assuming perfect filter, the
voltage across the inductor isVd durington and−Vo the remaining of the cycle. Hence:

∫ ton

0

(Vd − Vo)dt +
∫ Ts

ton

(−Vo)dt = 0 (10.2)

⇒ (Vd − Vo)ton − Vo(Ts − ton) = 0 (10.3)

⇒ Vo

Vd
=

ton

Ts
= D (10.4)
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A second consideration is that the input and output powers are the same, hence:

VdId = VoIo (10.5)

⇒ Io

Id
=

Vd

Vo
=

1
D

(10.6)

Note that in discontinuous mode the output DC voltage is less that that given here, and the chopper
less easy to control.

At the boundary between continuous and discontinuous mode, the inductor current reaches zero
for one instant every cycle, as shown in figure 10.3a. Using this figure we can see that at this operating
point, the average inductor current isIL = 1

2 îL. Further studying the geometry we obtain:

IL =
1
2
ton(Vd − Vo) =

DTS

2L
(Vd − Vo) (10.7)

Since the average inductor current is the average output current (the average capacitor current is
obviously zero), equation 10.3 defines the minimum load current current that will sustain continuous
conduction.

Fig. 10.3 Operation of the buck Converter at the boundary of Continuous Conduction

Finally a consideration is the output voltage ripple. We assume that the ripple current is absorbed
by the capacitor, i.e. the voltage ripple is small. The ripple voltage is then due to the deviation from
the average of the inductor current as shown in figure 10.4. Under these conditions:

∆V0 =
∆Q

C
=

1
L

1
2

∆IL

2
Ts

2
(10.8)

where ∆IL =
Vo

L
(1−D)Ts (10.9)

⇒ ∆Vo

Vo
=

1
8

T 2
s

LC
(1−D) (10.10)

Another way to look at this is to define the switching frequencyfs = 1/Ts and use the corner
frequency of the filter,fc = 1/(2π

√
LC):

∆Vo

Vo
=

π2

2
(1−D)

(
fc

fs

)2

(10.11)

10.2 STEP-UP OR BOOST CONVERTER

Here the output voltage is always higher than the input. The topology is shown in figure 10.5.
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Fig. 10.4 Analysis of the output voltage ripple of the buck Converter

Fig. 10.5 Schematic Diagram of a Boost Converter

There are two different topologies, based on the condition of the switch, as shown in figure 10.6
Again, the way to calculate the relationship between input and output voltage we have to take the

average current of the inductor to be zero, and the output power equal to the input power hence:

Vdton + (Vd − Vo)(Ts − ton) = 0 (10.12)

⇒ Vo

Vd
=

1
1−D

(10.13)

⇒ Io

Id
= 1−D (10.14)
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Fig. 10.6 Two Circuit Topologies of the boost Converter

To determine the values of inductance and capacitance we will study the boundary of continuous
conduction like before and the output voltage ripple.

Fig. 10.7 The boundary between Continuous and Discontinuous Conduction of a Boost Converter

At the boundary of the continuous conduction, as shown in figure 10.7, the geometry of the current
waveform will give:

Io =
TsVo

2L
D(1−D)2 (10.15)

The output current has to exceed this value for continuous conduction. Looking at the geometry
of figure 10.8 and following an analysis similar to that of a buck converter we find that:

∆Vo

Vo
=

DTs

RC
(10.16)

It is important to note that the operation of a boost converter depends on parasitic components,
especially for duty cycle approaching unity. These components will limit the output voltage to levels
well below those given by the formula 10.13.
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Fig. 10.8 Calculating the output voltage ripple for a boost inverter

10.3 BUCK-BOOST CONVERTER

This converter, the topology of which is shown in figure 10.9, can provide output voltage that can be
lower or higher than that of the input.

Fig. 10.9 Basic buck-boost converter

Again the operation of the converter can be analyzed using the two topologies resulting from
operation of the switch, shown in figure 10.10.

By equating the integral of the inductor voltage to zero we can get:

VdDTs + (−Vo)(1−D)Ts = 0 (10.17)

⇒ Vo

Vd
=

D

1−D
(10.18)

At the boundary between continuous and discontinuous conduction we can use figure 10.11 to
find that

Io =
TsVo

2L
(1−D)2 (10.19)
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Fig. 10.10 Operation of a buck boost chopper

Fig. 10.11 Operation of a buck boost chopper

The output voltage ripple, as calculated based on figure 10.12 is

∆Vo

Vo
= D

Ts

RC
(10.20)

10.3.1 Example
The input of a step down converter varies from30V to 40V and the output voltage is to be constant
20V , with output power varying between100W and 200W . The switch is operating at20kHz.
What is the inductor needed to keep the inductor current continuous? What is then the filter capacitor
needed to keep the output ripple below2%.

The duty cycle will vary betweenD1 = 20/30 = 0.667 andD2 = 20/40 = 0.5. The load current
will range betweenIo1 = 100/20 = 5A andIo2 = 200/20 = 10A.
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Fig. 10.12 Calculating the output voltage ripple for a boost inverter

The minimum current needed to keep the inductor current continuous is

Io min =
DTs

2L
(Vd − Vo)

since the constant is the output voltageVo and theminimum load current has to be greater than
Io min, we’ll express it as a function ofVo and make it less or equal to5A!

5A ≥ Io min =
DTs

2L
(Vd − Vo) =

VoTs

2L
(1−D)

Ts = 1/20kHz, Vo = 20V and the max value is achieved forD = 0.5, leading toLmin = 50µH.
As about the ripple, the highest will occur at1−D = 0.5. Hence:

0.02 =
π2

2
0.5

(
fc

10 · 103

)2

⇒ fc = 900Hz

⇒ 1
2π
√

50 · 10−6C
= 900

⇒ C = 625µF


