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Abstract

We present a novel approach to refine a system model specifte@aevfectly synchronous com-
munication onto a Network-on-Chip (NoC) best-effort conmcation service. We propose a top-
down procedure with three steps, namelyannel refinemenprocess refinemenandcommunica-
tion mapping In channel refinement, synchronous channels are replaitedstochastic channels
abstracting the best-effort service. In process refineppeotesses are refined in terms of interfaces
and synchronization properties. Particularly, we sigechronizergo achievesynchronization con-
sistency Within communication mapping, the refined processes aadritls are mapped to a NoC
architecture. Adopting thBlostrumNoC platform as target architecture, we use a digital egesli
as a tutorial example to illustrate the feasibility of ouncepts.

1 Introduction

For system design, a synchronous design style is attractive since it alevi® separate timing from
function. The designer can focus on the design of the system functionatlitgut being distracted by
unnecessary low-level communication details. This also facilitates the vedfidask, which is a key
activity at the system level. Later, the implementation details and design cotstambe gradually
filled in by refinement.

Network-on-Chip (NoC) is emerging as a hew SoC paradigm to cope withctialslity problem
of buses in order to connect tens or perhaps even hundreds of naicesgor-sized heterogeneous re-
sources, such as processor cores, DSPs, FPGAs/ASICs, andieseranabled on a single chip due to
the steady technology scaling. Nostrum [MNTJ04, NMOJ03, TMJO03] isNmC architecture that pro-
vides a packet-switched communication platform. To satisfy different padnce/cost requirements,
Nostrum provides two classes of unicast communication services, nanastyFBort (BE) and Guar-
anteed Bandwidth (GB) services. The BE service is connection-lesevplaekets are routed without
resource reservation. The GB service is connection-oriented whekeis are delivered after enough
bandwidth is reserved.

There is a huge gap between an abstract system model and a complex impliem@tagform like
NoC. In order to bridge the gap, we propose a NoC design flow showigiikvhere we concentrate on
the communication problem. A system specified as a synchronous proceskthaddhas to be mapped
on a NoC. There are three communication-related taskstering & resource allocatiorcommunica-
tion refinementandsynthesis The clustering flattens the hierarchy in the model and groups processes
into new processes with perhaps coarser granularity. With resourcaiidio, the new processes are
allocated to HW or SW execution resources. Communication refinement bridgeyap between the



communication model in the specification and the NoC communication implementation yitesda
With synthesis, these processes and adapters are synthesized intadfVSAN.
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Figure 1: A NoC Design Flow

In this paper, we address the communication refinement that starts fromelarsgous communica-
tion model and ends with the Nostrum NoC best-effort communication ser@ae.contributions are
(1) a novel approach to realize this communication refinement; (2) a clasisificof process synchro-
nization properties astrict, nonstrict strong andweaksynchronization in order to formally analyze
processes’ local synchronization requirement(s) (Section 5.2)s{8y synchronizergsynchronization
adapters) to maintain synchronization consistency during refinemeniais8c3). In a synchronous sys-
tem model, communication is perfectly synchronous with a global logical clodkceanly separated
from computation. With the NoC communication service, communication introdacegle delays and
crosses multiple clock domains connected by a packet-switched netwoeklyGlee communication in
the implementation domain is not synchronous, thus not consistent with thatdpehiication domain.
We will focus on this synchronization issue while keeping the process datiqru untouched. Note
that, this synchronization issue is a process communication property atstieenssnodeling level (sig-
nal level), not at the lower implementation level such as shared memoryrsytidtion using locks or
semaphores, as well as message passing synchronization using blackionplocking semantics. We
assume a clustering is done in a way that the resulting processes remainitoaaiynchronous domain.
Besides, we consider that a resource maintains a local synchromgius.reonsequently a process (after
clustering) is to be mapped to one resource and one resource hogtg erRaqrocess.

In the sequel, we outline related work in Section 2. Section 3 gives anieweof our refinement
technique and introduces the digital equalizer. Section 4 and 5 presehtiinee| refinement and process
refinement in detail, respectively. In Section 6, we describe the commumicaapping. Finally we
draw conclusions and point out future directions in Section 7.

2 Related Work

Based on the isolation of communication from computation, a large body of am@dommunication
refinement exists in the literature. Through the Virtual Component Intesf@¢Cl) of the VSI Alliance
[LSdJ"00], the COSY-VCC design flow [BKK0O] supports communication refinement from specifica-
tion, to performance estimation and to implementation. IPSIM [CCGMO03] deveélop¢op of SystemC
3.0 supports an object-oriented methodology and establishes two inter-numataleunication layers.
The message box layer concerns generic and system-specific commumigdtite the driver layer
implements higher level application-dependent communications. The SpecGdolethy defines four
levels of abstraction, namely at the specification, architecture, communieatidmplementation level,
and the refinement transformations between them [DGGO02]. Jerraliaaehéeved communication re-
finement via a generic wrapper concept [YNL1]. In the course of communication refinement, methods
to allow architecture exploration and communication protocol selection caauvel fin [LSvdWDO01]



and [KM99], respectively. These works do not assume a syncheosyecification, thus are not applica-
ble to our context.

With synchronous communication, latency insensitive theory [CMSVO01gtargynchronized HW
design where synchronization can still be achieved even if intercongesyimchronous IP blocks ex-
periences indefinite wire latencies; Desynchronization for SW desigrad@®ssed in [BCGO00]. Fur-
thermore, some mathematical frameworks were developed to supportrefitbased design methods.
Benveniste et al. present a theoretical framework for modeling heteeogs systems, and derive suf-
ficient conditions to maintain semantic-preserving transformations whenyiegla synchronous spec-
ification onto GALS and the loosely time-triggered architectures [BCCSV®3jother framework is
proposed in [GTLO3] concerning the refinement of a polysynchrempecification, which allows mul-
tiple clocks instead of a single clock. All these works are complementary tavailk but none of them
provides a detailed refinement approach targeting a NoC platform.

3 Refinement Overview

In this section, we first introduce the functional specification with persgaichrony and the digital
equalizer. Then we describe the Nostrum communication services. Finalbuivee the refinement
procedure.

3.1 Functional Specification with Perfect Synchrony

The synchronous modeling paradigm is based on an elegant and simplenaithémodel, which has
been shown successful and is the ground of synchronous larggeage as Esterel, Signal, Argos and
Lustre. The basis is the perfect synchrony hypothesis, i.e., both cotimpusad communication take
no observable time. A system is modeled as a set of concurrent communigaitesses via signals.
Processes use ideal data types and assume infinite buffers. Signalslemed sequences of events.
Each event has a time slot as a slot to convey data. If the data containt infmimation, the event
is presentand called aoken otherwise, the event isbsentand modeled as & representing a clock
tick. Each signal can be related to the time slots of another signal in an unasabigay. The output
events of a process occur in the same time slot as the corresponding\veptg.eMoreover, they are
instantaneously distributed in the entire system and are available to all otloespes in the same slot.
Receiving processes in turn consume the events and emit output evaimsretihe same time slot. A
signal can thus be viewed as an ideal communication channel which hataydal any event data types
(unlimited bandwidth}. A process specified in the synchronous paradigm is a synchronocesss. For
feedback loops, the perfect synchrony creates cyclic dependestayeen output and input, and thus
leads to deadlock, which is resolved with an initial event in the specificatiosyn&hronous model is
deterministic, i.e., given the same input streams, it generates the same oemunsstr

Ausi)ioln Bass Filter (BF) 51(Basg Level Control(LC) %ns asE]
P S(Treble) P4 M [
P, s3(A.Basg S5 5 Treble

Treble Filter (TF) w(ATrebia Sum Au::;Out

Figure 2: The Digital Equalizer

As a tutorial example, Fig. 2 shows the functional model of an equalizexdjltsts the bass and
treble volume of the audio stream according to button control levels. In addifioevents the bass level

IFor convenience, we use the tesignalto express either a sequence of events or the ideal communication medium



from exceeding a predefined threshold to avoid damaging the spedtefanction can be described
by the following set of equations, where the initial value '1’ is used to restie feedback loops. This
model is specified in functional language Haskell and executable.

AudioOut = EqualizefButtonsAudioln)
where
AudioOut = SunfAudioBassAudioTreble
(BassTreble = LevelContro{ButtonsAudioOu)
AudioBass = BassFilte(Audiolninit : Basg
AudioTreble = TrebleFilterAudiolninit : Treble)
init =1

3.2 Nostrum Communication Services

In Nostrum, each resourd® (i = 1,2,---,n) is equipped with a Resource-Network-Interface (RNI) in
order to access the network, as shown in the lower part of Fig. 3. ThaiRNhe network belong to the
Nostrum protocol stack. Nostrum provides a message passing platfitiirtvwie unicast communication
services, i.e., best-effort and guaranteed bandwidth. The BE s@M®©J03] is implemented by rout-
ing packets. It has no guarantee on timely delivery, but has an uppadm delivery time. To this
end, we assume a network admission protocol that prevents the neteoristuration and guarantees
bounds on delay. It is connectionless and does not reserve netesolirces such as storage and link
bandwidth, thus has a lower cost. The GB service is implemented by usingllcop&iners and tem-
porally disjoint networks [MNTJO04]. It guarantees bandwidth, whicheigatiated during the connection
establishment phase. It is connection-oriented and reserves the keésources before transmission
and thus has a higher cost. The RNIs hide the service implementation detailsadedthe services
transparentlyaccessible to applications. The access methods as a standard intexfasmarunication
primitives.

Within Nostrum, we define a set of communication primitives for message passiiogjows:

e intopen(int src, int dst, int service, struct bandwidthopens a simplex channel between a source
src process and a destinatidstprocess. Theervicedenotes the channel service class, 0 for the
BE service, 1 for the GB service. Thmndwidthis a user-defined record with three fielist
min_bw, avg_bw, int max_bw}hich specifies the minimum, average and maximum bandwidth
(Bytegsecondl requirement of the channel. The method returns a unique channel idantityen
(cid) upon successfully opening the channel; otherwise, it returns vam@asens of failure, such
as a destination invalid, or performance not satisfied.

e bool write(int cid, void msg)it writes msgto the specified channeld. The size of messages is
bounded. It returns the status of the write.

e bool read(int cid, void *msg)it reads channetid and writes the received data to the address
starting aimsg It returns the status of the read.

We have implemented these primitives with the BE service using SystemC in ouedayeC sim-
ulator Semla[TMJO03]. Currently the write() and read() are implemented with nonblockigrgantics.
Semla is programmable as to network topology, process-to-resourcetialipaauting algorithm, re-
source/network clock frequency, and traffic pattern. The currenkeim@ntation opens channels stati-
cally during compile time and the opened channels are never closed.

3.3 The Refinement Procedure

Given a synchronous system specification, our objective is to refinsytimehronous communication
model onto the Nostrum best-effort (BE) service. To this end, we m®pdhree-step procedurttannel



refinementprocess refinemenandcommunication mappingWe illustrate the procedure via a pair of

producer-consumer processes in Fig. 3. The three steps are mgr&eittie with a step number inside
it.

@) P ——+n0 @
P’ >® Q

s | write = = read | &
P "~ ladaptet J—‘@7<*<'idapt¢ar9 Q
BE channel
Ri Ry |------ Ro
RNI RNI RNI ”@”
@ @ @ Nostrum
Network JA/

Figure 3: Communication Refinement Overview

Step 1. Withchannel refinement we first abstract the behavior of Nostrum best-effort service as
that of stochastic service channels which are then used to replace theddeaunication channels, i.e.,
the signals. In Fig. 3, the signabetween the produc& and the consume is refined to a BE service
channelch. As a consequence, sigrabecomes signa, which is a derived version & after being
delivered via the service channel. Furthermasrands' are no longer synchronous.

Step 2: Withprocess refinement we deal with how a process can be connected to the service
interfaces as well as how its synchronization property can be satisfiedidpters Particularly, to
guarantee the correctness of the refinement, the process syncticongraperty from the specification
model to the refined model must be consistent. Maintaining this synchronizatiperty is the focus
of this paper. Moreover, we consider feedback loops where the@gsmynchronization may be relaxed
since a synchronous specification may over specify the system. In Fig.aB8¢dQ are adapted with
a write and read adapter, respectively. Note that the adapters contapoents to interface with the
service channels and components for synchronization whenevessaege

Step 3: Finally, together with a process-to-resource allocation schenugytimreunication mapping
is to implement both the adapters and service channels on a NoC, in this eadmstnum simulator
Semla. In Fig. 3, the refined proces&andQ’ are mapped to the resourd@sandR,, respectively. Ac-
cordingly, the service channelis implemented via the interfaces provided by the RNIs of the resources
R: andR;.

4 Channel Refinement

We first abstract the behavior of the Nostrum best-effort serviagtieg to a stochastic approach, then
analyze the impact of stochastic channels on the system model, particulkaudysithption of the perfect
synchrony assumption.

4.1 The Behavior Model of Nostrum Best-Effort Service

The performance of the Nostrum BE servicen@ndeterministian nature since the message delivery
experiences dynamic contention scenarios in the RNIs and networkrtNeless, the message delivery



time is not completely indeterminate. Given the characteristics of a packet-editetwork such as
topology, routing algorithm and flow control scheme, the behavior of ngesdalivery is a function of
the network traffic (both total traffic amount and traffic patterns). FoiGBeservice, the bandwidth is
guaranteed but the delay may be jittery.

To capture the performance characteristics of the best-effort sew&eesort to a stochastic ap-
proach. Formally, we develop a unicast BE service channel as a pegnaiiribstochasticchannel: given
an input signal of messagésy,my, - - - ,m,} to a service channel, the output signa{ds, my, do, mp, - - -,
dn, My}, whered; denotes the delay of message(i = 1,2, ---,n) which may be expressed in terms of
the number of absent.() values;d; is subject to a distribution with a minimudjmin and maximunt; max
value determined by the service implementation, network traffic and the distative two ends of the
service channel. Ifi = n (nis a natural number), it means that there mebsent values between mes-
sagem;_1 and messagey. We identify two important properties of the behavior of the service cHanne
(1) d; is varying; (2)d; is bounded. This behavior is purely viewed from the perspective dfcapion
processes and its implementation details are hidden. In addition, the stochastietmodel is generic.

4.2 Impact of the Stochastic Channels

Replacing the ideal channel (zero delay and unlimited bandwidth) with aagtictchannel (varying
delay and limited bandwidth) leads to the violation of the synchrony assumptidghe Ispecification, a
channel is ideal so that we can ussimglesignalsto connect a producer to a consumer process. After
replacing it with a service channel, the signal can be seen as $glibonto a pair of signals, the original
signals and its derived signal, as shown in Fig. 3. For a process with two synchronous input signals,
for example, th&sumprocess of the equalizer (Fig. 2), if both signe@snds, are delivered via a service
channel, they are split, resulting in two derived sigrsglands), which are now the input signals to the
Sumprocess. Apparently, the two pairs of signasands;, s4 ands), and the two derived signag
ands, are not synchronous. A synchronous system becomes globallyrasyots, leading to possibly
nondeterministic behavior which deviates from the specification. It is ter@mportant to maintain
synchronization consistencyring the refinement for correctness.

5 Process Refinement

We first briefly consider how to interface with the service channels inrgérend then discuss the syn-
chronization property of processes and methods to achieve syndiionizonsistency. The granularity
of a process in this context is a synchronous domain resulting from thteighgs At the system level (a

composition of processes), we discuss feedback loops.

5.1 Interfacing with the Service Channels

Once an ideal channel is replaced by a service channel, the preaessaot be directly connected to
the interface of the service channel. They musitdaptedin terms of data and control because (1)
the input/output data type of a service channel is a bounded message wigitehin the specification
assumes an ideal data type, whose length is finite but arbitrary, e.g., al8tiidieger, a 64-bit floating
point or a user-defined 256-bit record type etc.; (2) the servicenshdras bounded buffers and limited
bandwidth while a signal uses unlimited resources. The sending anglingcef messages use shared
resources and thus control functionality has to be added to maintain thegaassaery properties
such as reliability and causality etc. The control function typically enablebacese shared resources,
schedule multiple threads and achieve thread-level synchronizatiose Haaptations are achieved by
a writer and reader process. Specifically, to interface with the servaenels, a producer needs to be
wrapped with avriter, a consumer with seader.



5.2 Process Synchronization Property

In the system model, all signals of each process are synchronougpitdros this, whether or not the
input signals of a process must be synchronous, i.e., the synchronipatiperty of a process, is subject
to the evaluation condition of processes, specifically, the local condijitmévaluatethe input events.
Because of the tight synchronization in the model, some processes magibspecified, limiting the
implementation alternatives. During the refinement, the designer(s) mudydltsgect and determine
the synchronization property of the processes.

Inspired by [LP95], we usdiring rules to discuss the synchronization property ssfnchronous
processes For a synchronous process withinput signals,Pl is a set ofN input patternsPl =
{I1,12,---,In}. The input patterns of a synchronous process describe its firing mbgsh give the
conditions of evaluating input events at each event cycle< [1, N]) constitutes a set of event patterns,
one for each ofi input signals}; = {li 1,li2,---,lin}. A patternl; j contains only one element that can
be either a token wildcard or an absent valug:, wherex does not includelL. Based on the definition
of firing rules, we propose four levels of process synchronizatiopgaties as follows:

e Strict synchronization All the input events of a process must be present before the process
evaluates and consumes them. The only rule that the process canHire=i§l1} wherel; =

AN

¢ Nonstrict synchronizatiarNot all the input events of a process are absent before the priresss
The process canotfire with the pattern = {[.L],[L],--,[L]}.

e Strong synchronizatiorAll the input events of a process must be either present or absertén or
to fire the process. The process has only two firing rBles {I1,12}, wherely = {[], [*], -, [*]}
andIZ = {[J-]’ [J-L ) [J—]}

e Weak synchronizatiorThe process can fire with any possible input patterns. For a 2-inpcegs,
its firing rules arePl = {l1,l2,13,14} wherely = {[],[«]}, 12 = {[L],[L]}, 13 = {[#],[L]} and
g = {[L], [+]}-

We can identify processes withsérict, strong andweaksynchronization property in the equalizer
(Fig. 2). TheBassFilter(sp ands;) and TrebleFilter (sp ands,) have a strict synchronization. Both
filters are composed of a FIR filter and an amplifier. The FIR filter is spediean FSM, whose state
transition is sensitive to time, thus_a value in an audio stream can change the values of its output
sequence. Meanwhile, the amplifier must have an amplification level, thusbue makes the amplifier
undefined. Th&umprocess$; andss) has a strong synchronization. It is a combinational process and
thus tolerable to events with & value. However, the two events sf ands; must be synchronized
before being processed since they represent the low and high imgparts of the same audio sample.
TheLevelControl(s, andss) process has a weak synchronization. It can fire even when eithetloof
the events 0§, andss are absent since pressing buttons happens irregularly and the Essilpassing
the threshold occurs only aperiodically.

5.3 Achieving Synchronization Consistency

Apparently, for processes with a strict or strong synchronization, #ygichronization properties can
not be satisfied if any of the input signals passes through a servicealhsince the delays via the
channel are stochastic. Although globally asynchronous, the pexeas be locally synchronized by
using adapters to satisfy their synchronization properties. To achiemgsiynchronization, we use a
synchronizer processyng to achieve strict synchronization, we use three procesyes, deSynand
addSyncWe use a two-input process to illustrate these processes in Fig. 4. Areyiiger processync
aligns the tokens of its input events, as shown in Fig. 4a. It does nogetthe time structure of the
input signals. A desynchronizeleSynaemoves the absent values, as shown in Fig. 4b. All its input



signals must have the same token pattern, resembling the output signalsphtipeocess. Removing
absent values implies that the processtalled The desynchronizer changes the timing structure of
the input signals, which must be recovered in order to prevent fronrringuunexpected behavior of
other processes that use the timing information. An add-synchroadd$yncadds the absent values
to recover the timing structure, as shown in Fig. 4c. It must be used in retatimdeSyn@rocess. If
the input events of thdeSynds a token, theddSynaeads one event from its internal buffers for each
output signal; otherwise, it outputslaevent. As can be seen, the two procesiESyn@andaddSynare
used as a pair to assist processes to fulfill strictness.
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Figure 4: Processes for Synchronization
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Figure 6: Read/Write Adapters for A Process with Strict Synchronization

We can now use these synchronizers in connection withethaerandwriter processes to wrap the
original processes to interface with the service channels and maintainrtblersgization consistency
from the specification model to the refined model. For instance, as showgures, we use aync
process together with a pair cfaderwriter processes to wrap treimprocess in the equalizer model
to maintain its strong synchronization. We use the three procesgsesdeSynandaddSynctogether
with a pair ofreadevwriter processes to wrap ttgas¢Treble Filter process (Fig. 2) to maintain their
strict synchronization.



The refinement of processes with a nonstrict synchronization shouiddbadually investigated
according to their firing rules.

5.4 Feedback Loops

In the specification, feedback loops are resolved by using initial evehthe feedback signals pass
through a service channel, the delays are nondeterministic. If followingniti@l event approach in
the refinement procedure, we encounter a problem since we arerteshdeow many initial events are
required to resolve the deadlock. ConsiderBlas¢Treble Filter, if the tokens of,/s, are not available,

it can not fire. This implies it may not be able to process enough audio sampiese, leading to
violate the system’s performance constraint. However, if the amplificatiohdeyeals,s; (Bas3 ands,
(Treblg, are delayed and thus not available, the amplifiers should continue foimgtiby, for example,
using the previous amplification level or simply using a constant level like thisncase, the effect of
pressing buttons may be delayed several cycles. This is tolerable sirfugntia@ sensing of the changes
in the audio volume takes some time.

By this observation, we can in faoctlax the strict synchronization of the proces&assTreble
Filter, using a relax-synchronization procestax illustrated in Fig. 4d. If the input event is a token,
it outputs the token; otherwise, a tokgsnis emitted. The exact value a&§ is application dependent.
Relaxing synchronization is a design decision leading to behavior diswgpatween the specification
and the refined model. It must be used carefully to ensure that it doesunse to violate the system
requirements.

6 Communication mapping

The inputs to this task are the refined model as well as a process-toaeslocation scheme; the
output is a communication implementation on Semla.

6.1 Channel Mapping

With a resource allocation scheme, all processes are allocated to esouacone-to-one manner. Note
that this is not a limitation but due to the assumption on the clustering and resdreter to Section
1). With such a clustering, inter-process signals, which representrggeurce communications, are
mapped to service channels. Since the processes may be hierarchiogledvio flatten the hierarchy
to the level that each signal mapped to a service channel can be unigestifiedl with a pair of a
producer and a consumer process Witter granularity. For simplicity, we do not consider mapping
multiple service channels to one implementation channel. Mapping channels istthightforward.
Each pair of processes communicating via a service channel in the refodel results in its dedicated
unicast implementation channel, which is mapped to the open channel prioyitrg€) For example,
with the producer-consumer case, a BE channel setup is fulfilled by ke ding of code:int ch[1] =
oper(P,Q,BE_SERVICENULL).

6.2 Communication Process Mapping

After the process refinement, the refined processes consist of theabggmputational process, the
writer and reader, and perhaps the synchronizer(s) to satisfy theihgynization properties. Our re-
finement keeps the original processes intact. Therefore, the taskenofienication process mapping
are to implement the adapters for writingr{ter), reading feader), and the synchronizers suchagg
deSyncaddSynandrelax, and to coordinate the writing and reading operations if needed.

In SystemC, processes are implemented as modules. The readers/writebe maylemented as
separate modules or in the same modules as processes. We implement s andcis adapter(s) in



a single module. For implementation, execution control in the module must be emeidSuppose
the module has a single thread of control, we need to find a Periodic Admissigle®ial Sequence
(PASS) for process executions [LSJ02]. For the process in FigPASS could be PASS+eader, syng
desynccomputeaddsyncwriter}. Besides, a control signalrite_rdy must be asserted by theiter to
thereaderto enable the reading from the channel(s) for the next-round executtbe BASS, as shown

in Fig. 6. This leads to a local feedback loop, and we adopt the initial epproach to deal with. In
this casewrite_rdy is initially asserted. Using the communication primitives defined in Section 3.2, the
SystemC module for Fig. 6 is sketched as follows, with each component exgli@icommentary:

process_class :: Process (){
/linitially write_rdy=1;
/lread_chO_rdy=0; read_chl1_rdy=0
/l'sync_rdy=0; compute_done=0;
if (write_rdy==1){
/1 (1) reader: nonblocking read chl and ch2
if (read_chO_rdy==0)
if ((read(ch[0],&r_msgl))=%rue)
read_chO_rdy=1;
if (read_chl_rdy==0)
if ((read(ch[1],&r_msg2))=%rue)
read_chl_rdy=1;
/1 (2) sync: synchronize the two events
if (read_chO_rdy==1 & read_chl_rdy==1)
sync_rdy=1;
else sync_rdy=0;
/1 (3) deSync: desynchronization by guard
if (sync_rdy==1 & compute_done==0){
// process computation
//return w_msg and set compute_done to 1
w_msg=compute (r_msgl,r_msg2);
write_rdy=0; compute_done=1;}
}
/1 (4) addSync: fill synchronization
if (sync_rdy==1 & compute_done==1) {
/1 (5) writer: nonblocking write ch3
if (write_rdy==0)
if (write(ch[3],w_msg)=#rue ){
write_rdy=1;
sync_rdy=0; compute_done=0;
read_chO_rdy=0; read_chl_rdy=0;}

In the implementation domain, whether to emit and pass a message via a service channel or not
can be a design decision that must be handled carefully. To preserserttantics,. must be emitted
and passed. However, it incurs too much overhead on computation amdwuacation, and may not
be useful since its value is useless. Therefore it is usually neglectdg.irOrases where the timing
information carried byl is used by other processes, it must be emitted and passed as a speeidirvalu
the equalizer case, is neglected since its timing information is not used by any of the four progesse
therefore it does not affect the system behavior.

We have implemented the equalizer in Semla. The purpose is to validate the tsoofoapr refine-
ment approach. Fig. 7a illustrates the mapped equalizer in a 4x4 mesh Nad@e Alle inter-resource
signalssy, s, - - -, S5 (Fig. 2) use the BE service. To simplify the discussion on performancessogirces
and the network use the same clock frequency. The network switchest®pea synchronous manner
with the switching per hop taking one cycle. The message streams amds, are injected into the
network conservatively so that a new audio sample will not be procésstn filters until the previous
sample has been handled by ®emprocess. This implies that the audio samples are not processed in
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Figure 7: The Equalizer Mapped on A NoC

a pipeline fashion in the network. In addition, we inject background traffib uniformly distributed
random destinations in the network. The motivation is to load the network witonaédle amount of
traffic since the equalizer example can only make use of a small fraction oktierk capacity. Fig.
7b shows the equalizer performance, where the network load is thegaveeacentage of active links
per cycle. The process computations are function calls and complete insitlybserve the average
delay that is the time (in cycles) to process one sample. Since the audiogingasot pipelined, the
throughput (samples/cycle) is simply the inverse of the average delayig.In7B, the first row shows
the case where there is no background traffic. As expected, wheretWerk is increasingly loaded,
the average delay is increased and the throughput decreased.erhgeadelay can be seen as the time
to respond to a button press or to activate bass control. We noted thatdioeoaitput sequences are
different from those observed from the specification due to relaxingythehronization for the feedback
loops. We conducted other experiments in which we removed the feedlmsk k;md could validate that
the output sequences agree with each other in all traffic setting cases.

7 Conclusions and Future Work

Communication refinement is a crucial step in a NoC design flow. We haveregsa refinement ap-
proach that enables us to map a perfectly synchronous communication ombo¢he NoC best-effort

service accessible through communication primitives. Particularly we clabsifjynchronization prop-

erties of processes and describe methods to achieve synchronizatgisteocy during the refinement
upon the violation of the perfect synchrony hypothesis. For feedlmags, we relax the synchroniza-
tion with the tolerance of system requirements. In this paper we use Nossraar garget, but with few

adjustments, the approach should be applicable for other NoC platformelas w

In future work, we plan to realize automatically analyzing the synchronizadroperties of pro-
cesses, and then during refinement, we take either automatic analysis lifflatgieect synchronization
and system behavior, or manual analysis with manual design decisions symithronization refinement
combined with a systematic verification of the resulting implementation. For the mefimteof feedback
loops, we intend to use Nostrum GB service to achieve a systematic solutisaoo, we will consider
optimization of the communication refinement for performance enhancement.
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