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“Beam the computer up, Scotty!”

Abstract

This paper shows how to quickly move the state of a run-
ning computer across a network, including the state in its
disks, memory, CPU registers, and I/O devices. We call
this state acapsule. Capsule state is hardware state, so it
includes the entire operating system as well as applica-
tions and running processes.

We have chosen to movex86 computer states because
x86 computers are common, cheap, run the software we
use, and have tools for migration. Unfortunately,x86
capsules can be large, containing hundreds of megabytes
of memory and gigabytes of disk data. We have devel-
oped techniques to reduce the amount of data sent over
the network: copy-on-write disks track just the updates
to capsule disks, “ballooning” zeros unused memory, de-
mand paging fetches only needed blocks, and hashing
avoids sending blocks that already exist at the remote
end. We demonstrate these optimizations in a prototype
system that uses VMware GSX Server virtual machine
monitor to create and runx86 capsules. The system tar-
gets networks as slow as 384 kbps.

Our experimental results suggest that efficient capsule
migration can improve user mobility and system man-
agement. Software updates or installations on a set of
machines can be accomplished simply by distributing a
capsule with the new changes. Assuming the presence of
a prior capsule, the amount of traffic incurred is commen-
surate with the size of the update or installation package
itself. Capsule migration makes it possible for machines
to start running an application within 20 minutes on a
384 kbps link, without having to first install the applica-
tion or even the underlying operating system. Further-
more, users’ capsules can be migrated during a commute
between home and work in even less time.

1 Introduction

Today’s computing environments are hard to maintain
and hard to move between machines. These environ-
ments encompass much state, including an operating sys-
tem, installed software applications, a user’s individual
data and profile, and, if the user is logged in, a set of pro-
cesses. Most of this state is deeply coupled to the com-
puter hardware. Though a user’s data and profile may be
mounted from a network file server, the operating sys-
tem and applications are often installed on storage local
to the computer and therefore tied to that computer. Pro-
cesses are tied even more tightly to the computer; very
few systems support process migration. As a result, users
cannot move between computers and resume work unin-
terrupted. System administration is also more difficult.
Operating systems and applications are hard to maintain.
Machines whose configurations are meant to be the same
drift apart as different sets of patches, updates, and in-
stalls are applied in different orders.

We chose to investigate whether issues including user
mobility and system administration can be addressed by
encapsulating the state of computing environments as
first-class objects that can be named, moved, and oth-
erwise manipulated. We define acapsule for a machine
architectureas the data type encapsulating the complete
state of a (running) machine, including its operating sys-
tem, applications, data, and possibly processes. Capsules
can be bound to any instance of the architecture and be
allowed to resume; similarly, they can be suspended from
execution and serialized.

A computer architecture need not be implemented in
hardware directly; it can be implemented in software us-
ing virtual machine technology[12]. The latter option is
particularly attractive because it is easier to extract the
state of a virtual computer. Virtual computer states are



themselves sometimes referred to as “virtual machines.”
We introduce the term “capsule” to distinguish the con-
tents of a machine state as a data type from the machinery
that can execute machine code. After all, we could bind
these machine states to real hardware and not use virtual
machines at all.

To run existing software, we chose the standardx86
architecture[11, 32] as the platform for our investigation.
This architecture runs the majority of operating systems
and software programs in use today. In addition, com-
mercialx86 virtual machine monitors are available, such
as VMware GSX Server (VMM)[28] and Connectix Vir-
tual PC[7], that can run multiple virtualx86 machines on
the same hardware. They already provide the basic func-
tions of writing out the state of a virtualx86 machine,
binding the serialized state onto a virtual machine, and
resuming execution.

The overall goal of our research project is to explore the
design of a capsule-based system architecture, namedthe
Collective, and examine its potential to provide user mo-
bility, recovery, and simpler system management. Com-
puters and storage in the Collective system act as caches
of capsules. As users travel, the Collective can move
their capsules to computers close to them, giving users a
consistent environment. Capsules could be moved with
users as they commute between home and work. Cap-
sules can be duplicated, distributed to many different ma-
chines, and updated like any other data; this can form the
basis for administering a group of computers. Finally,
capsules can be moved among machines to balance loads
or for fail-over.

1.1 Storing and Migrating Capsules

Many challenges must be addressed to realize our goals
of the Collective project, but this paper focuses on one
simple but crucial one: can we afford the time and space
to store, manipulate and migratex86 capsules?x86 cap-
sules can be very large. An inactive capsule can con-
tain gigabytes of disk storage, whereas an active capsule
can include hundreds of megabytes of memory data, as
well as internal machine registers and I/O device states.
Copying a gigabyte capsule over a standard 384 kbps
DSL link would take 6 hours! Clearly, a straightfor-
ward implementation that copies the entire capsule be-
fore starting its computation would take too long.

We have developed a number of optimizations that re-
duce capsules’ storage requirements, transfer time and
start-up time over a network. These techniques are invis-
ible to the users, and do not require any modifications to
the operating system or the applications running inside
it. Our techniques target DSL speeds to support capsule
migration to and from the home, taking advantage of the

availability of similar capsules on local machines.

To speed up the transfer of capsules and reduce the start-
up times on slow networks, our system works as follows:

1. Every time we start a capsule, we save all the up-
dates made to disk on a separate disk, using copy-
on-write. Thus, a snapshot of an execution can be
represented with an incremental cost commensurate
with the magnitude of the updates performed.

2. Before a capsule is serialized, we reduce the mem-
ory state of the machine by flushing non-essential
data to disk. This is done by running a user “bal-
loon” process that acquires memory from the op-
erating system and zeros the data. The remaining
subset of memory is transferred to the destination
machine and the capsule is started.

3. Instead of sending the entire disk, disk pages are
fetched on demand as the capsule runs, taking full
advantage of the operating system’s ability to toler-
ate disk fetch latencies.

4. Collision-resistant hashes are used to avoid sending
pages of memory or disk data that already exist at
the destination. All network traffic is compressed
with gzip[8].

We have implemented all the optimizations described in
this paper in a basic prototype of our Collective sys-
tem. Our prototype’s platform uses VMware GSX Server
2.0.1 running on Red Hat Linux 7.3 (kernel 2.4.18-10) to
executex86 capsules. Users can retrieve their capsules
by name, move capsules onto a file system, start cap-
sules on a computer, and save capsules to a file system.
We have run both Linux and Windows in our capsules.

Our results show that we can move capsules in 20 min-
utes or less across 384 kbps DSL, fast enough to move
users’ capsules between home and work as they com-
mute. Speed improves when an older version of the cap-
sule is available at the destination. For software dis-
tribution, we show that our system sends roughly the
same amount of data as the software installer package for
newly installed software, and often less for upgrades to
already installed software. The results suggest that cap-
sule migration offers a new way to use software where
machines can start running a new application within a
few minutes, with no need to first install the application
or even its underlying operating system.

1.2 Paper Organization

Section 2 describes how we use a virtual machine moni-
tor to create and resume capsules. Section 3 motivates
the need for optimizations by discussing the intended
uses of capsules. Section 4 discusses the optimizations
we use to reduce the cost of capsules. In Section 5 we



describe some experiments we performed on a prototype
of our system. The paper discusses related work in Sec-
tion 6 and concludes in Section 7.

2 Virtual Machine Monitors

A virtual machine monitor is a layer of software that
sits directly on the raw hardware and exports a virtual
machine abstraction that imitates the real machine well
enough that software developed for the real machine also
runs in the virtual machine. We use anx86 virtual ma-
chine monitor, VMware GSX Server, to generate, serial-
ize, and execute ourx86 capsules.

Virtual machine monitors have several properties that
make them ideal platforms for supporting capsules. The
monitor layer encapsulates all of the machine state nec-
essary to run software and mediates all interactions be-
tween software and the real hardware. This encapsula-
tion allows the monitor to suspend and disconnect the
software and virtual device state from the real hardware
and write that machine state to a stream. Similarly, the
monitor can also bind a machine state to the real hard-
ware and resume its execution. The monitor requires no
cooperation from the software running on the monitor.

Migration is made more difficult by the myriad of hard-
ware device interfaces out there. GSX Server simplifies
migration by providing the same device interfaces to the
virtual machine regardless of the underlying hardware;
virtualization again makes this possible. For example,
GSX Server exports a Bus Logic SCSI adapter and AMD
Lance Ethernet controller to the virtual machine, inde-
pendent of the actual interface of disk controller or net-
work adapter. GSX in turn runs on ahost operating sys-
tem, currently Linux or Windows, and implements the
virtual devices using the host OS’s devices and files.

Virtual hard disks are especially powerful. The disks can
be backed not just by raw disk devices but by files in the
host OS’s file system. The file system’s abilities to easily
name, create, grow, and shrink storage greatly simplify
the management of virtual hard disks.

Still, some I/O devices need more than simple conver-
sion routines to work. For example, moving a capsule
that is using a virtual network card to communicate over
the Internet is not handled by simply remapping the de-
vice to use the new computer’s network card. The new
network card may be on a network that is not able to
receive packets for the capsule’s IP address. However,
since the virtualization layer can interpose on all I/O, it
can, transparent to the capsule, tunnel network packets to
and from the capsule’s old network over a virtual private
network (VPN).

3 Usages and Requirements

The Collective system uses serialization and mobility of
capsules to provide user mobility, backup, software man-
agement and hardware management. We describe each
of these applications of capsules and explain their re-
quirements on capsule storage and migration.

3.1 User Mobility

Since capsules are not tied to a particular machine, they
can follow users wherever they go. Suppose a user wants
to work from home on evenings and weekends. The user
has a single active work capsule that migrates between
a computer at home and one at work. In this way, the
user can resume work exactly where he or she left off,
similar to the convenience provided by carrying a lap-
top. Here, we assume standard home and office work-
loads, like software engineering, document creation, web
browsing, e-mail, and calendar access. The system may
not work well with data-intensive applications, such as
video editing or database accesses.

To support working from home, our system must work
well at DSL or cable speeds. We would like our users
to feel that they have instantaneous access to their ac-
tive environments everywhere. It is possible to start up
a capsule without having to entirely transfer it; after all,
a user does not need all the data in the capsule immedi-
ately. However, we also need to ensure that the capsule is
responsive when it comes up. It would frustrate a user to
get a screen quickly but to find each keystroke and mouse
click processed at glacial speed.

Fortunately, in this scenario, most of the state of a user’s
active capsule is already present at both home and work,
so only the differences in state need to be transferred dur-
ing migration. Furthermore, since a user can easily ini-
tiate the capsule migration before the commute, the user
will not notice the migration delay as long as the capsule
is immediately available after the commute.

3.2 Backups

Because capsules can be serialized, users and system ad-
ministrators can save snapshots of their capsules as back-
ups. A user may choose to checkpoint at regular intervals
or just before performing dangerous operations. It is pro-
hibitively expensive to write out gigabytes to disk each
time a version is saved. Again, we can optimize the stor-
age by only recording the differences between successive
versions of a capsule.

3.3 System Management

Capsules can ease the burden of managing software and
hardware. System administrators can install and main-



tain the same set of software on multiple machines by
simply creating one (inactive) capsule and distributing it
to all the machines. This approach allows the cost of sys-
tem administration to be amortized over machines run-
ning the same configuration.

This approach shares some similarities with the concept
of disk imaging, where local disks of new machines are
given some standard pre-installed configuration. Disk
imaging allows each machine to have only one config-
uration. On the other hand, our system allows multiple
capsules to co-exist on the same machine. This has a
few advantages: It allows multiple users with different
requirements to use the same machine, e.g. machines in
a classroom may contain different capsules for different
classes. Also, users can use the same machine to run dif-
ferent capsules for different tasks. They can have a single
customized capsule each for personal use, and multiple
work capsules which are centrally updated by system ad-
ministrators. The capsule technique also causes less dis-
ruption since old capsules need not be shut down as new
capsules get deployed.

Moving the first capsule to a machine over the network
can be costly, but may still be faster and less laborious
than downloading and installing software from scratch.
Moving subsequent capsules to machines that hold other
capsules would be faster, if there happen to be similari-
ties between capsules. In particular, updates of capsules
naturally share much in common with the original ver-
sion.

We can also take advantage of the mobility of capsules
to simplify hardware resource management. Rather than
having the software tied to the hardware, we can select
computing hardware based on availability, load, location,
and other factors. In tightly connected clusters, this mo-
bility allows for load balancing. Also, migration allows
a machine to be taken down without stopping services.
On an Internet scale, migration can be used to move ap-
plications to servers that are closer to the clients[3].

3.4 Summary

The use of capsules to support user mobility, backup,
and system management depends on our ability to both
migrate capsules between machines and store them effi-
ciently. It is desirable that our system works well at DSL
speed to allow capsules be migrated to and from homes.
Furthermore, start-up delays after migration should be
minimized while ensuring that the migrated capsules re-
main responsive.

4 Optimizations

Our optimizations are designed to exploit the property
that similar capsules, such as those representing snap-

shots from the same execution or a series of software up-
grades, are expected to be found on machines in a Col-
lective system. Ideally, the cost of storing or transferring
a capsule, given a similar version of the capsule, should
be proportional to the size of the difference between the
two. Also, we observe that the two largest components
in a capsule, the memory and the disk, are members of
the memory hierarchy in a computer, and as such, many
pre-existing management techniques can be leveraged.

Specifically, we have developed the following four opti-
mizations:

1. Reduce the memory state before serialization.

2. Reduce the incremental cost of saving a capsule
disk by capturing only the differences.

3. Reduce the start-up time by paging disk data on de-
mand.

4. Decrease the transfer time by not sending data
blocks that already exist on both sides.

4.1 Ballooning

Today’s computers may contain hundreds of megabytes
of memory, which can take a while to transfer on a DSL
link. One possibility to reduce the start-up time is to fetch
the memory pages as they are needed. However, operat-
ing systems are not designed for slow memory accesses;
such an approach would render the capsule unresponsive
at the beginning. The other possibility is to flush non-
essential data out of memory, transfer a smaller working
set, and page in the rest of the data as needed.

We observe that clever algorithms that eliminate or page
out the less useful data in a system have already been im-
plemented in the OS’s virtual memory manager. Instead
of modifying the OS, which would require an enormous
amount of effort per operating system, we have chosen
to use agray-boxapproach[2] on this problem. We trick
the OS into reclaiming physical memory from existing
processes by running aballoonprogram that asks the OS
for a large number of physical pages. The program then
zeros the pages, making them easily compressible. We
call this process “ballooning,” following the term intro-
duced by Waldspurger[29] in his work on VMware ESX
server. While the ESX server uses ballooning to return
memory to the monitor, our work uses ballooning to zero
out memory for compression.

Ballooning reduces the size of the compressed memory
state and thus reduces the start-up time of capsules. This
technique works especially well if the memory has many
freed pages whose contents are not compressible. There
is no reason to transfer such data, and these pages are the
first to be cleared by the ballooning process. Discard-
ing pages holding cached data, dirty buffers and active



data, however, may have a negative effect. If these pages
are immediately used, they will need to be fetched on
demand over the network. Thus, even though a capsule
may start earlier, the system may be sluggish initially.

We have implemented ballooning in both the Linux and
Windows 2000 operating systems. The actual imple-
mentation of the ballooning process depends on the OS.
Windows 2000 uses a local page replacement algorithm,
which imposes a minimum and maximum working set
size for each process. To be most effective, the Windows
2000 balloon program must ensure its current working
set size is set to this maximum.

Since Linux uses a global page replacement algorithm,
with no hard limits on the memory usage of processes,
a simple program that allocates and zeros pages is suf-
ficient. However, the Linux balloon program must de-
cide when to stop allocating more memory, since Linux
does not define memory usage limits as Windows does.
For our tests, the Linux balloon program adopts a simple
heuristic that stops memory allocation when free swap
space decreases by more than 1MB.

Both ballooning programs explicitly write some zeros to
each allocated page so as to stop both OSes from map-
ping the allocate pages to a single zero copy-on-write
page. In addition, both programs hook into the OS’s
power management support, invoking ballooning when-
ever the OS receives a suspend request from the VMM.

4.2 Capsule Hierarchies

Capsules in the Collective system are seldom created
from scratch, but are mostly derived from other capsules
as explained in Section 3. The differences between re-
lated capsules are small relative to the total size of the
capsules. We can store the disks in these capsules ef-
ficiently by creating a hierarchy, where each child cap-
sule could be viewed as inheriting from the parent cap-
sule with the differences in disk state between parent and
child captured in a separate copy-on-write (COW) virtual
disk.

At the root of the hierarchy is aroot disk, which is a
complete capsule disk. All other nodes represent a COW
disk. Each path of COW disks originating from the root
in the capsule hierarchy represents a capsule disk; the
COW disk at the end of the path for a capsule disk is
its latest disk. We cannot directly run a capsule whose
latest disk is not a leaf of the hierarchy. We must first
derive a new child capsule by adding a new child disk
to the latest disk and all updates are made to the new
disk. Thus, once capsules have children, they become
immutable; this property simplifies the caching of cap-
sules.

Figure 1 shows an example of a capsule hierarchy illus-

Student3 capsuleStudent2 capsule
Latest Disk

Department1
Latest Disk

Department2
Latest Disk

Latest Disk

Student1 capsule
snapshot

Latest Disk

Student4 capsule
Latest Disk

Department2
updated capsule

Latest Disk

University
Capsule Disk

Student1 capsule
Latest Disk

Figure 1: An example capsule hierarchy.

trating how it may be used in a university. The root cap-
sule contains all the software available to all students.
The various departments in the university may choose to
extend the basic capsules with department-specific soft-
ware. The department administrator can update the de-
partment capsule by deriving new child capsules. Stu-
dents’ files are assumed to be stored on networked stor-
age servers; students may use different capsules for dif-
ferent courses; power users are likely to maintain their
own private capsule for personal use. Each time a user
logs in, he looks up the latest department capsule and de-
rives his own individual capsule. The capsule migrates
with the student as he commutes, and is destroyed when
he logs out. Note that if a capsule disk is updated, all
the derived capsules containing custom installed soft-
ware have to be ported to the updated capsule. For exam-
ple, if the University capsule disk is updated, then each
department needs to re-create its departmental capsule.

Capsule hierarchies have several advantages: During the
migration of a capsule disk, only COW disks that are not
already present at the destination need to be transferred.
Capsule hierarchies allow efficient usage of disk space
by sharing common data among different capsule disks.
This also translates to efficient usage of the buffer cache
of the host OS, when multiple capsules sharing COW
disks simultaneously execute on the same host. And fi-
nally, creating a new capsule using COW disks is much
faster than copying entire disks.

Each COW disk is implemented as a bitmap file and a
sequence ofextentfiles. An extent file is a sequence of
blocks of the COW disk, and is at most 2 GB in size
(since some file systems such as NFS cannot support
larger files). The bitmap file contains one bit for each
16 KB block on the disk, indicating whether the block
is present in the COW disk. We use sparse file support
of Linux file systems to efficiently store large yet only
partially filled disks.

Writes to a capsule disk are performed by writing the
data to the latest COW disk and updating its bitmap file.
Reads involve searching the latest COW disk and its an-
cestor disks in turn until the required block is found.
Since the root COW disk contains a copy of all the



blocks, the search is guaranteed to terminate. Figure 2
shows an example capsule disk and the chain of COW
disks that comprise it. Note that the COW disk hierarchy
is not visible to the VMM, or to the OS and applications
inside the capsule; all of them see a normal flat disk as
illustrated in the figure.

The COW disk implementation interfaces with GSX
Server through a shim library that sits between GSX
Server and the C library. The shim library inter-
cepts GSX Server’s I/O requests to disk image files in
VMware’s “plain disk” format, and redirects them to
a local disk server. The plain disk format consists of
the raw disk data laid out in a sequence of extent files.
The local disk server translates these requests to COW
disk requests, and executes the I/O operations against the
COW disks.

Each suspend and resume of an active capsule creates
a new active capsule, and adds another COW layer to its
disks. This could create long COW disk chains. To avoid
accumulation of costs in storing the intermediate COW
disks, and the cost of looking up bitmaps, we have imple-
mented apromoteprimitive for shortening these chains.
We promote a COW disk up one level of the hierarchy by
adding to the disk all of its parent’s blocks not present in
its own. We can delete a capsule by first promoting all its
children and then removing its latest disk. We can also
apply the promotion operations in succession to convert
a COW disk at the bottom of the hierarchy into a root
disk.

On a final note, VMware GSX Server also implements a
copy-on-write format in addition to its plain disk format.
However, we found it necessary to implement our own
COW format since VMware’s COW format was complex
and not conducive to the implementation of the hashing
optimization described later in the paper.

11111111
COW Disk

COW Disk

10010101

11000001

01011000

Bitmap DiskBlocks

Flat Disk
(as seen by the capsule)

Root

Latest

COW Disk 2

COW Disk 1

Block present in COW disk

Figure 2: An example capsule disk.

4.3 Demand Paging of Capsule Disks

To reduce the start-up time of a capsule, the COW disks
corresponding to a capsule disk are read page-by-page
on demand, rather than being pre-fetched. Demand pag-
ing is useful because COW disks, especially root disks,
could be up to several gigabytes in size and prefetching
these large disks could cause an unacceptable start-up
delay. Also, during a typical user session, the working
set of disk blocks needed is a small fraction of the total
blocks on the disk, which makes pre-fetching the whole
disk unnecessary. Most OSes have been designed to hide
disk latency and hence can tolerate the latency incurred
during demand paging the capsule disk.

The implementation of the capsule disk system, includ-
ing demand paging, is shown in Figure 3. The shim li-
brary intercepts all of VMware’s accesses to plain disks
and forwards them to a disk server on the local machine.
The disk server performs a translation from a plain disk
access to the corresponding access on the COW disks of
the capsule. Each COW disk can either be local or re-
mote. Each remote COW disk has a corresponding local
shadow COWdisk which contains all the locally cached
blocks of the remote COW disk.

Local
COW Disks

Shadow 
COW Disks

(one per compute server)
Local Disk Server Process

Remote
COW Disks

HCP Server

Shim 
C−library

Virtual
Machine

Network RPC

Local RPC

VMware
Process

(one per
capsule)

Figure 3: Implementation of capsule disks and demand paging.

Since the latest COW disk is always local, all writes are
local. Reads, on the other hand, could either be local
or remote. In the case of a remote read, the disk server
requests the block from the shadow COW disk. If the
block is not cached locally, it is fetched remotely and
added to the shadow COW.

Starting a capsule on a machine is done as follows: first,



the memory image and all the bitmaps of the COW disks
are transferred if they are not available locally. Then
the capsule is extended with a new, local latest COW
disk. For each remote COW disk, the corresponding
shadow COW disk is created if it does not already ex-
ist. GSX Server can now be invoked on the capsule.
Note that since remote COW disks are immutable, the
cached blocks in the shadow COW disks can be re-used
for multiple capsules and across suspends and resumes of
a single capsule. This is useful since no network traffic
is incurred for the cached blocks.

The Collective system uses an LDAP directory to keep
track of the hosts on which a COW disk is present.
In general, COW disks of a capsule disk could be dis-
tributed across many hosts since they were created on
different hosts. However, the disks are also uploaded
(in the background) to a central storage server for bet-
ter availability.

4.4 Hash-Based Compression

We use a fourth technique to speed up data transfer over
low-bandwidth links. Inspired by the low-bandwidth file
system (LBFS[19]) and rsync[27], we decrease transfer
time by sending a hash of data blocks instead of the data
itself. If the receiver can find data on local storage that
hashes to the same value, it copies the data from local
storage. Otherwise, the receiver requests the data from
the server. We call this technique HCP, for Hashed Copy.
The Collective prototype uses HCP for demand paging
disks and copying memory and disk images.

We expect to find identical blocks of data between disk
images and memories, even across different users’ cap-
sules. First, the memory in most systems caches disk
blocks. Second, we expect most users in the Collec-
tive to migrate between a couple of locations, e.g. home
and work. After migrating a couple of times, these loca-
tions will contain older memory and disk images, which
should contain blocks identical to those in later images,
since most users will tend to use the same applications
day to day. Finally, most users run code that is distributed
in binary form, with most of this binary code copied un-
modified into memory when the application runs, and the
same binary code (e.g. Microsoft Office or the Netscape
web browser) is distributed to millions of people. As a
result, we expect to find common blocks even between
different users’ capsules.

Like LBFS, HCP uses a strong cryptographic hash, SHA-
1[1]. The probability that two blocks map to the same
160-bit SHA-1 hash is negligible, less than the error rate
of a TCP connection or memory[5]. Also, malicious par-
ties cannot practically come up with data that generates
the same hash.

Our HCP algorithm is intended for migrating capsules
over low bandwidth links such as DSL. Because HCP in-
volves many disk seeks, its effective throughput is well
under 10 Mbps. Hence, it is not intended for high-
bandwidth LAN environments where the network is not
the bottleneck.

4.4.1 Hash Cache Design

HCP uses a hash cacheto map hashes to data. Unlike
rsync, the cache is persistent; HCP does not need to gen-
erate the table by scanning a file or file system on each
transfer, saving time.

The cache is implemented using a hash table whose size
is fixed at creation. We use the first several bits of the
hash key to index into the table. File data is not stored in
the table; instead, each entry has a pointer to a file and
offset. By not duplicating file data, the cache uses less
disk space. Also, the cache can read ahead in the file,
priming an in-memory cache with data blocks. Read-
ahead improves performance by avoiding additional disk
accesses when two files contain runs of similar blocks.

Like LBFS, when the cache reads file data referenced by
the table, it always checks that it matches the 20-byte
SHA-1 hash provided. This maintains integrity and al-
lows for a couple of performance improvements. First,
the cache does not need to be notified of changes to file
data; instead, it invalidates table entries when the in-
tegrity check fails. Second, it does not need to lock on
concurrent cache writes, since corrupted entries do not
affect correctness. Finally, the cache stores only the first
8 bytes of the hash in each table entry, allowing us to
store more entries.

The hash key indexes into a bucket of entries, currently a
memory page in size. On a lookup, the cache does a lin-
ear search of the entries in a bucket to check whether one
of them matches the hash. On a miss, the cache adds the
entry to the bucket, possibly evicting an existing entry.
Each entry contains a use count that the cache increments
on every hit. When adding an entry to the cache, the hash
cache chooses a fraction of the entries at random from the
bucket and replaces the entry with the lowest use count;
this evicts the least used and hopefully least useful entry
of the group. The entries are chosen at random to de-
crease the chance that the same entry will be overwritten
by two parallel threads.

4.4.2 Finding Similar Blocks

For HCP to compress transfers, the sender and receiver
must divide both memory and disk images into blocks
that are likely to recur. In addition, when demand pag-
ing, the operating system running inside the capsule es-
sentially divides the disk image by issuing requests for



blocks on the disk. In many systems, the memory page
is the unit of disk I/O and memory management, so we
chose memory pages as our blocks.

The memory page will often be the largest common unit
between different memory images or between memory
and disk. Blocks larger than a page would contain two
adjacent pages in physical memory; since virtual mem-
ory can and does use adjacent physical pages for com-
pletely different objects, there is little reason to believe
that two adjacent pages in one memory image will be
adjacent in another memory image or even on disk.

When copying a memory image, we divide the file into
page-sized blocks from the beginning of the image file.
For disk images, it is not effective to naively chop up the
disk into page-size chunks from the start of the disk; file
data on disk is not consistently page aligned. Partitions
on x86 architecture disks rarely start on a page bound-
ary. Second, at least one common file system, FAT, does
not start its file pages at a page offset from the start of
the partition. To solve this problem, we parse the par-
tition tables and file system superblocks to discover the
alignment of file pages. This information is kept with the
disk to ensure we request properly aligned file data pages
when copying a disk image.

On a related note, the ext2, FAT, and NT file systems
all default to block sizes less than 4 KB when creating
smaller partitions; as a result, files may not start on page
boundaries. Luckily, the operator can specify a 4 KB or
larger block size when creating the file system.

Since HCP hashes at page granularities, it does not deal
with insertions and deletions well as they may change
every page of a file on disk or memory; despite this, HCP
still finds many similar pages.

4.4.3 HCP Protocol

The HCP protocol is very similar to NFS and LBFS. Re-
quests to remote storage are done via remote procedure
call (RPC). The server maintains no per-client state at the
HCP layer, simplifying error recovery.

Figure 4 illustrates the protocol structure. Time increases
down the vertical axis. To begin retrieving a file, an
HCP client connects to the appropriate HCP server and
retrieves a file handle using the LOOKUP command, as
shown in part (a). The client uses READ-HASH to ob-
tain hashes for each block of the file in sequence and
looks up all of these hashes in the hash cache. Blocks
found via the hash cache are copied into the output file,
and no additional request is needed, as shown in part (b).
Blocks not cached are read from the server using READ,
as in part (c). The client keeps a large number of READ-
HASH and READ requests outstanding in an attempt to
fill the bandwidth between client and server as effectively

as possible.
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Figure 4: Typical HCP session: (a) session initiation, (b) hash
cache hit, (c) hash cache miss.

5 Experimental Results

Our prototype system is based on VMware GSX Server
2.0.1 running on Red Hat Linux 7.3 (kernel 2.4.18-12).
Except for the shim library, we wrote the code in Java
using Sun’s JDK 1.4.0. The experiments ran on 2.4 GHz
Pentium 4 machines with 1GB memory.

A separate computer running FreeBSD and the
dummynet[23] shaper simulated a 384 kbps symmetric
DSL link with 20 ms round-trip delay. We confirmed
the setup worked by measuring ping times of 20ms and
a TCP data throughput of 360kbps[20]. We checked the
correctness of our HCP implementation by ensuring that
the hash keys generated are evenly distributed.

We configured the virtual machines to have 256 MB
memory and 4 GB local disk. Along with the operating
system and applications, the local disk stored user files.
In future versions of the system, we expect that user files
will reside on a network file system tolerant of low band-
widths.

To evaluate our system, we performed the following four
experiments:

1. Evaluated the use of migration to propagate soft-
ware updates.

2. Evaluated the effectiveness and interaction between
ballooning, demand paging, and hash compression.

3. Evaluated the trade-offs between directly using an
active capsule versus booting an inactive capsule.

4. Simulated the scenario where users migrate their
capsules as they travel between home and work.

5.1 Software Management

Software upgrades are a common system administration
task. Consider an environment where a collection of ma-
chines maintained to run exactly the same software con-
figuration and users’ fi les are stored on network storage.
In a capsule-based system, the administrator can simply
distribute an updated capsule to all the machines. In our



system, assuming that the machines already have the pre-
vious version of the capsule, we only need to send the
latest COW disk containing all the changes. Our results
show that using HCP to transfer the COW disks reduces
the transfer amounts to levels competitive or better than
current software install and update techniques. We con-
sider three system administration tasks in the following:
upgrading an operating system, installing software pack-
ages, and updating software packages.

5.1.1 Operating System Upgrade

Our first experiment is to measure the amount of traffic
incurred when updating Red Hat version 7.2 to version
7.3. In this case, the system administrator is likely to
start from scratch and create a new root disk, instead of
updating version 7.2 and capturing the changes in a COW
disk. The installation created a 1.6 GB capsule. Hashing
this capsule against a hash cache containing version 7.2
found 30% of the data to be redundant. With gzip, we
only need to transfer 25% of the 1.6 GB capsule.

A full operating system upgrade will be a lengthy opera-
tion regardless of the method of delivery, due to the large
amount of data that must be transferred across the net-
work. Use of capsules may be an advantage for such up-
grades because data transfer can take place in the back-
ground while the user is using an older version of the
capsule being upgraded (or a completely different cap-
sule).

5.1.2 Software Installations and Updates

For this experiment, we installed several packages into a
capsule containing Debian GNU/Linux 3.0 and upgraded
several packages in a capsule containing Red Hat Linux
7.2. Red Hat was chosen for the latter experiment be-
cause out-of-date packages were more readily available.

In each case, we booted up the capsule, logged in as root,
ran the Debian apt-get or Red Hat apt-rpm to download
and install a new package, configured the software, and
saved the capsule as a child of the original one. We mi-
grated the child capsule to another machine that already
had the parent cached. To reduce the COW disk size,
software packages were downloaded to a temporary disk
which we manually removed from the capsule after shut-
down.

Figure 5 shows the difference in size between the trans-
fer of the new COW disk using HCP versus the size of
the software packages. Figure 5(a) shows installations
of some well-known packages; the data point labeled
“mega” corresponds to an installation of 492 packages,
including the X Window System and TEX. Shown in Fig-
ure 5(b) are updates to a number of previously installed
applications; the data point labeled “ large” corresponds
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Figure 5: Difference in size between the HCP transfer of the
COW disk holding the changes and (a) the installed packages,
(b) the update packages.

to an update of 115 packages installed previously and 7
new packages pulled in by the updates. The software up-
dates used were not binary patches; as with an install,
they included new versions of all the files in a software
package, a customary upgrade method for Debian and
Red Hat systems.

For reference, we also include the “null” data point
which corresponds to the size of the COW disk created
by simply logging in as root and shutting down the cap-
sule without updating any software. This amounts to
about 200 KB after HCP and gzip, consisting of i-nodes
written due to updated access times, temporary files writ-
ten at boot, and so on.

As shown in the figure, transfers of small installations
and updates are dominated by the installer rewriting
two 6 MB text databases of available software. Hash-
ing sometimes saves us from having to send the entire
database, but not always, due to insertions that change
all the pages. The different results for make-dic and wv-
dial illustrate this effect. On larger installs, the cost of
transferring the disk via HCP is near that of the orig-
inal package; the overhead of the installer database is
bounded by a constant and gzip does a good job of com-
pressing the data. For larger updates, HCP sent less data
than the packages because many of these updates con-



tained only minor changes from previous versions (such
as security patches and bug fixes), so that hashing found
similarities to older, already installed packages. In our
experiment, for updates over 10 MB, the savings amount
to about 40% in each case.

The results show that distributing COW disks via HCP
is a reasonable alternative to current software install and
update techniques. Package installations and upgrades
incur a relatively low fixed cost, so further benefits can
be gained by batching smaller installs. In the case of up-
dates, HCP can exploit similarities between the new and
old packages to decrease the amount of data transferred.
The convenience of a less tedious and error-prone update
method is another advantage.

5.2 Migration of Active Capsules

To show how capsules support user mobility, we per-
formed two sets of experiments, the first on a Windows
2000 capsule, the second on a Linux capsule.

First, we simulated the workload of a knowledge worker
with a set of GUI-intensive applications on the Windows
2000 operating system. We used Rational Visual Test
software to record user activities and generate scripts that
can be played back repeatedly under different test con-
ditions. We started a number of common applications,
including Microsoft Word, Excel, and PowerPoint, plus
Forte, a Java programming environment, loaded up some
large documents and Java sources, saved the active cap-
sule, migrated it to another machine, and proceeded to
use each of the four applications.

On Linux, we tested migration with less-interactive and
more CPU- and I/O-bound jobs. We chose three applica-
tions: processor simulation with smttls, Linux kernel
compilations with GCC, and web serving with Apache.
We imagine that it would be useful to migrate large pro-
cessor simulations to machines that might have become
idle, or migrate fully configured webservers dynamically
to adjust to current demand. For each experiment, we
performed a task, migrated the capsule, then repeated the
same task.

To evaluate the contributions of each of our optimiza-
tions, we ran each experiment twelve times. The exper-
imental results are shown in Figure 6. We experimented
with two network speeds, 384 kbps DSL and switched
100 Mbps Ethernet. For each speed, we compared the
performance obtained with and without the use of bal-
looning. We also varied the hashing scheme: the ex-
periments were run with no hashing, with hashing start-
ing from an empty hash cache, and with hashing starting
from a hash cache primed with the contents of the cap-
sule disk. Each run has two measurements: “migration,”
the data or time to start the capsule, and “execution,” the
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Figure 6: Migration experiments. Data transferred for remote
activations and executions are shown after gzip in (a). Time to
activate and run the experiments are shown for 384 kbps DSL
in (b) and 100 Mbps switched Ethernet in (c). Labels “nh” ,
“h” , and “hp” denote no hashing, hashing with an empty hash
cache, and hashing with a primed cache, respectively.

data or time it took to execute the task once started.

Figure 6(a) shows the amounts of data transferred over
the network during each migration and execution after
gzip. These amounts are independent of the network
speed assumed in the experiment. The memory image
is transferred during the migration step, and disk data are
transferred on demand during the execution step. Gzip
by itself compresses the 256 MB of memory data to 75–
115 MB. Except for the Windows interactive benchmark,
none of the applications incurs uncached disk accesses
during unballooned execution.

Hashing against an empty cache has little effect because
it can only find similarities within the data being trans-
ferred. Our results show that either hashing against a
primed disk or ballooning alone can greatly reduce the
amount of memory data transferred to 10–45 MB. By
finding similarities between the old and new capsules,
primed hashing reduces the amount of data transferred
both during migration and execution. While balloon-



ing reduces the amount of memory data that needs to
be transferred, it does so with the possible expense of
increasing the data transferred during the execution. Its
effectiveness in reducing the total amount of data trans-
ferred is application-dependent; all but Apache, which
has a large working set, benefit tremendously from bal-
looning. Combining ballooning with primed hashing
generally results in the least amount of data transferred.

The timing results obtained on a 384 kbps DSL link,
shown in Figure 6(b), follow the same pattern found in
Figure 6(a). The execution takes longer proportionally
because it involves computation and not just data trans-
fer. With no optimization, it takes 29–44 minutes just to
transfer the memory image over before the capsule can
start executing. Hashing with priming reduces the start-
up to less than 20 minutes in the Windows interactive
experiment, and less than 6 minutes in all the other appli-
cations. Ballooning also reduces the start-up time further
to 3–16 minutes. Again, combining both ballooning and
priming yields the best result in most cases. As the one
exception here, Apache demonstrates that ballooning ap-
plications with a large working set can slow them down
significantly.

Hashing is designed as an optimization for slow network
connections; on a fast network, hashing can only slow
the transfer as a result of its computational overhead.
Figure 6(c) shows this effect. Hashing against a primed
cache is even worse because of the additional verifica-
tion performed to ensure that the blocks on the destina-
tion machine match the hash. This figure shows that it
takes only about 3 minutes to transfer an unballooned
image, and less than 2 minutes ballooned. Again, except
for Apache which experiences a slight slowdown, bal-
looning decreases both the start-up time as well as the
overall time.

The Windows experiment has two parts, an interactive
part using Word, Excel, and PowerPoint on a number
of large documents, followed by compiling a source file
and building a Java archive (JAR) file in Forte. The for-
mer takes a user about 5 minutes to complete and the
latter takes about 45 seconds when running locally us-
ing VMware. In our test, Visual Test plays back the
keystrokes and mouse clicks as quickly as possible. Over
a LAN with primed hashing, the interactive part takes
only 1.3 minutes to complete and Forte takes 1.8 min-
utes. Over DSL with primed hashing, the interactive part
takes 4.4 minutes and Forte takes 7 minutes. On both
the DSL and LAN, the user sees an adequate interactive
response. Forte is slower on DSL because it performs
many small reads and writes. The reads are synchronous
and sensitive to the slow DSL link. Also, the first write to
a 16 KB COW block will incur a read of the block unless
the write fills the block, which is rarely the case.

The processor simulation, kernel compile, and Apache
tasks take about 3, 4, and 1 minutes, respectively, to exe-
cute when running under VMware locally. Without bal-
looning, these applications run mainly from memory, so
remote execution on either LAN or DSL is no slower
than local execution. Ballooning, however, can increase
run time, especially in the case of Apache.

Our results show that active capsules can be migrated ef-
ficiently to support user mobility. For users with high-
speed connectivity, such as students living in a university
dormitory, memory images can be transferred without
ballooning or hashing in just a few minutes. For users
with DSL links, there are two separate scenarios. In the
case of a commute between work and home, it is likely
that an earlier capsule can be found at the destination,
so that hashing can be used to migrate an unballooned
memory image. However, to use a foreign capsule, bal-
looning is helpful to reduce the start-up time of many
applications.

5.3 Active Versus Inactive Capsules

The use of capsules makes it possible for a machine in a
Collective system to run an application without first hav-
ing to install the application or even the operating sys-
tem on which the application runs. It is also possible for
a user to continue the execution of an active capsule on
a different machine without having first to boot up the
machine, log on, and run the application.

We ran experiments to compare these two modes of op-
eration. These experiments involved browsing a web-
page local to the capsule using Mozilla running on Linux.
From the experiment results, we see that both active and
inactive capsules are useful in different scenarios and that
using capsules is easier and takes less time than installing
the required software on the machine.

The different scenarios we considered are:

1. We mounted the inactive capsule file using NFS
over the DSL link. We booted the inactive capsule,
ran Mozilla, and browsed a local webpage. The re-
sults for this test are shown in Figure 7 with the label
NFS.

2. We used demand paging to boot the inactive capsule
and ran Mozilla to browse the local webpage. We
considered three alternatives: the machine had not
executed a similar capsule before and therefore had
an empty hash cache, the machine had not executed
the capsule before but the hash cache was primed
with the disk state of the capsule, and the machine
had executed the same capsule before and hence the
capsule’s shadow disk had the required blocks lo-
cally cached. The results are shown in Figure 7 un-



der the labels boot, boot-p, and boot2 respectively.

3. We activated an active remote capsule that was al-
ready running a browser. We ran it with and without
ballooning, and with and without priming the hash
cache with the inactive capsule disk. The results are
shown in the figure under the labels active, active-b,
active-p, and active-bp.
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Figure 7: Times for activating a browser capsule (in minutes).
The capsules are NFS, booted with an NFS-mounted disk; boot,
a remote capsule booted with demand paging and unprimed
database; boot2, the same remote capsule booted a second time;
and active, migration of a capsule with a running browser. Suf-
fix “b” indicates that ballooning was done and suffix “p” indi-
cates that a primed database was used.

The bars in Figure 7 show the time taken while perform-
ing the test. The times are split into execution and mi-
gration times. As expected, the four inactive capsules in
the first two scenarios have negligible migration times,
while execution times are negligible for the four active
capsules in the last scenario. When comparing the dif-
ferent scenarios we consider the total times as a sum of
migration time and execution time.

In this experiment, demand paging, even with an empty
hash cache, performed much better than NFS. Demand
paging brought down the total time from about 42 min-
utes for NFS to about 21 minutes. When the cache was
warmed up with a similar capsule, the total time for the
inactive capsule dropped to about 10 minutes. When the
inactive capsule was activated again with the required
blocks locally cached in the capsule’s shadow disk, it
took only 1.8 minutes, comparable to boot of a local cap-
sule with VMware. Using an active capsule with no bal-
looning or priming required about 12 minutes. Balloon-
ing the active capsule brought the time down to about 10
minutes, and priming the hash cache brought it down fur-
ther to about 4 minutes, comparable to the time taken to
boot a local machine and bring up Mozilla. These times
are much less than the time taken to install the required
software on the machine.

These results suggest that: (a) if a user has previously
used the inactive capsule, then the user should boot that
capsule up and use it, (b) otherwise, if the user has pre-
viously used a similar capsule, the user should use an ac-
tive capsule, and (c) otherwise, if executing the capsule
for the first time, the user should use an active ballooned
capsule.

5.4 Capsule Snapshots

We simulate the migration of a user between work and
home machines using a series of snapshots based on the
Business Winstone 2001 benchmark. These simulation
experiments show that migration can be achieved within
a typical user’s commute time.

The Winstone benchmark exercises ten popular applica-
tions: Access, Excel, FrontPage, PowerPoint, Word, Mi-
crosoft Project, Lotus Notes, WinZip, Norton AntiVirus,
and Netscape Communicator. The benchmark replays
user interaction as fast as possible, so the resulting user
session represents a time-compressed sequence of user
input events, producing large amounts of stress on the
computer in a short time.

To produce our Winstone snapshots, we ran one itera-
tion of the Winstone test suite, taking complete images
of the machine state every minute during its execution.
We took twelve snapshots, starting three minutes into the
execution of the benchmark. Winstone spends roughly
the first three minutes of its execution copying the ap-
plication programs and data it plans to use and begins
the actual workload only after this copying finishes. The
snapshots were taken after invoking the balloon process
to reduce the user’s memory state.

To simulate the effect of a user using a machine alter-
nately at work and home, we measured the transfer of
snapshot to a machine that already held all the previ-
ous snapshots. Figure 8 shows the amount of data trans-
ferred for both the disk and memory images of snapshot
2 through 12. It includes the amount of data transferred
with and without hashing, and with and without gzip.

The amount of data in the COW disk of each snapshot
varied depending on the amount of disk traffic that Win-
stone generated during that snapshot execution. The
large size of the snapshot 2 COW disk is due to Win-
stone copying a good deal of data at the beginning of
the benchmark. The size of the COW disks of all the
other snapshots range from 2 to 22 MB after gzip, and
can be transferred over completely under about 8 min-
utes. Whereas hashing along with gzip compresses the
COW disks to about 10–30% of their raw size, it com-
presses the memory images to about 2–6% of their raw
size. The latter reduction is due to the effect of the bal-
looning process writing zero pages in memory. The sizes
of ballooned and compressed memory images are fairly
constant across all the snapshots. The memory images
require a transfer of only 6–17 MB of data, which takes
no more than about 6 minutes on a DSL link. The results
suggest that the time needed to transfer a new memory
image, and even the capsule disk in most cases, is well
within a typical user’s commute time.
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Figure 8: Snapshots from the Winstone benchmark showing (a)
disks and (b) memory images transferred. Raw sizes not shown
in (b) are constant at about 256 MB.

6 Related Work

Much work was done in the 1970s on virtual machines
at the hardware level[9] and interest has recently revived
with the Disco[4] and Denali[30] projects and VMware
GSX Server[28]. Earlier work demonstrated the isola-
tion, performance, and economic properties of virtual
machines. Chen and Noble suggested using hardware-
level virtual machines for user mobility[6]. Kozuch and
Satyanarayanan independently came up with the idea of
using VMware’s x86 VMMs to achieve mobility[15].

Others have also looked at distributing disk images for
managing large groups of machines. Work by Rauch et
al. on partition repositories explored maintaining clusters
of machines by distributing raw disk images from a cen-
tral repository[22]. Rauch’s focus is on reducing the size
of the repository; ours is on reducing time spent send-
ing disk images over a WAN. Their system, like ours,
reduces the size of successive images by storing only the
differences between revisions. They also use hashes to
detect duplicate blocks and store only one copy of each
block. Emulab[31], Cluster-on-Demand[18], and others,
are also distributing disk images to help maintain groups
of computers.

The term capsulewas introduced earlier by one of the
authors and Schmidt[24]. In that work, capsules were
implemented in the Solaris operating system and only
groups of Solaris processes could be migrated.

Other work has looked at migration and checkpoint-
ing at process and object granularities. Systems
working at process level include V[26], Condor[16],
libckpt[21], and CoCheck[25]. Object-level systems in-
clude Legion[10], Emerald[14], and Rover[13].

LBFS[19] provided inspiration for HCP and the hash
cache. Whereas LBFS splits blocks based on a finger-
print function, HCP hashes page-aligned pages to im-
prove performance on memory and disk images. Man-
ber’s SIF[17] uses content-based fingerprinting of files
to summarize and identify similar files.

7 Conclusions

In this paper, we have shown a system that moves a com-
puter’s state over a slow DSL link in minutes rather than
hours. On a 384kbps DSL link, capsules in our experi-
ments move in at most 20 minutes and often much less.

We examined four optimization techniques. By using
copy-on-write (COW) disks to capture the updates to
disks, the amount of state transferred to update a cap-
sule is proportional to the modifications made in the cap-
sule. Although COW disks created by installing soft-
ware can be large, they are not much larger than the in-
staller and more convenient for managing large numbers
of machines. Demand paging fetches only the portion
of the capsule disk requested by the user’s tasks. “Bal-
looning” removes non-essential data from the memory,
thus decreasing the time to transfer the memory image.
Together with demand paging, ballooning leads to fast
loading of new capsules. Hashing exploits similarities
between related capsules to speed up the data transfer
on slow networks. Hashing is especially useful for com-
pressing memory images on user commutes and disk im-
ages on software updates.

Hopefully, future systems can take advantage of our tech-
niques for fast capsule migration to make computers eas-
ier to use and maintain.
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