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Abstract

Bayesian Treed Gaussian Process Models

by

Robert B. Gramacy

Computer experiments often require dense sweeps over input parameters to obtain a qualitative

understanding of their response. Such sweeps can be prohibitively expensive, and are unneces-

sary in regions where the response is easily predicted; well-chosen designs could allow a mapping

of the response with far fewer simulation runs. Thus, there is a need for computationally in-

expensive surrogate models and an accompanying method for selecting small designs. This

dissertation explores a nonparametric and semiparametric nonstationary modeling methodolo-

gies for addressing this need that couples stationary Gaussian processes and (limiting) linear

models with treed partitioning. A Bayesian perspective yields an explicit measure of (nonsta-

tionary) predictive uncertainty that can be used to guide sampling. As typical experiments are

high-dimensional and require large designs, a careful but thrifty implementation is essential.

The methodological developments and statistical computing details which make this approach

efficient are outlined in detail. In addition to several illustrations using synthetic data, clas-

sic nonstationary data analyzed in recent literature are used to validate the model, and the

benefit of adaptive sampling is illustrated through a motivating example which involves the

computational fluid dynamics simulation of a NASA reentry vehicle.
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Chapter 1

Introduction

Many complex phenomena are difficult to investigate directly through controlled ex-

periments. Instead, computer simulation is becoming a commonplace alternative to provide

insight into such phenomena. However, the drive towards higher fidelity simulation continues

to tax the fastest computers, even in highly distributed computing environments. Computa-

tional fluid dynamics (CFD) simulations in which fluid flow phenomena are modeled are an

excellent example—fluid flows over complex surfaces may be modeled accurately but only at

the cost of supercomputer resources. In this thesis I explore the problem of fitting a response

surface for a computer model when the experiment can be designed adaptively, i.e., online—a

task to which the Bayesian approach is particularly well-suited.

Consider a simulation model which defines a mapping, perhaps non-deterministic,

from parameters describing the inputs to one or more output responses. Without an analytic

representation of the mapping between inputs and outputs, simulations must be run for many

different input configurations in order to build up an understanding of its possible outcomes.

This is called a computer experiment.
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High fidelity computer experiments are usually run on clusters of independent comput-

ing agents, or processors (e.g. a Beowulf cluster). Agents can process one input configuration

at a time. Multiple agents allow several input configurations to be run in parallel, starting and

finishing at different, even random, times. The cluster is usually managed by master controller

(emcee) program that gathers responses from finished simulations, and keeps free agents busy

with new inputs. Even in extremely parallel computing environments, computational expense

of the simulation and/or high dimensional inputs often prohibit the näıve approach of running

the experiment over a dense grid of input configurations. However, computationally inexpensive

surrogate models can often be found which provide accurate approximations to the simulation,

especially in regions of the input space where the response is easily predicted.

For example, NASA is developing a new re-usable rocket booster called the Langley

Glide-Back Booster (LGBB). Much of its development is done with computer models. In

particular, NASA is interested in learning about the response in flight characteristics (lift,

drag, pitch, side-force, yaw, roll) of the LGBB as a function of three inputs (side slip angle,

Mach number, angle of attack). For each input configuration triplet, CFD simulations yield six

response outputs. There is interest in being able to automatically and adaptively design the

experiment to learn about where response is most interesting, e.g., where uncertainty is largest,

and spend relatively more effort sampling in these areas. For example, consider Figure 1.1

which shows the lift response plotted as a function of speed (Mach) and angle of attack (alpha)

with the side-slip angle (beta) fixed at zero. The figure illustrates how the characteristics of

subsonic flows can be quite different from supersonic flows. Moreover, the transition between

subsonic and supersonic is distinctly non-linear and may possibly even be non-differentiable or

non-continuous. The CFD simulations in this experiment involve the integration of the inviscid

Euler equations over a mesh of 1.4 million cells. Each run of the Euler solver for a given set of
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Figure 1.1: Lift plotted as a function of Mach (speed) and alpha (angle of attack) with beta
(side-slip angle) fixed to zero. The top is a perspective plot, and the bottom is an image plot.

3



parameters takes on the order of 5-20 hours on a high end workstation. Clever sampling could

drastically reduce of size the final experimental design, and possibly save thousands of hours of

computing time.

The traditional surrogate model used to approximate outputs to computer experiments

is the Gaussian process (GP). The GP is conceptually straightforward, easily accommodates

prior knowledge in the form of covariance functions, and returns estimates of predictive confi-

dence. In spite of its simplicity, there are three important disadvantages to the standard GP

in this setting. Firstly, inference on the GP scales poorly with the number of data points,

typically requiring computing time that grows with the cube of the sample size. Secondly, GP

models are usually stationary in that the same covariance structure is used throughout the

entire input space. In the application of high-velocity computational fluid dynamics, where

subsonic flow is quite different than supersonic flow, this limitation is unacceptable. Thirdly,

the error (standard deviation) associated with a predicted response under a GP model does not

locally depend on any of the previously observed output responses.

All of these shortcomings may be addressed by partitioning the input space into re-

gions, and fitting separate GP models within each region. Partitioning allows for the modeling

of nonstationary behavior, and can ameliorate some of the computational demands by fitting

models to less data. Finally, a fully Bayesian approach yields uncertainty measures for predic-

tive inference which can help direct future sampling. However, the MCMC required to estimate

the parameters of a Bayesian model can be computationally intensive. Careful but thrifty im-

plementation is required to ensure the development of a cost-effective aid in the sequential

design of computer experiments.
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1.1 What is in this thesis?

This thesis is in three parts and combines work from four research areas in Statistics

and Machine Learning. In their own right, each part represents a significant contribution. The

common theme and ultimate goal is to describe an efficient model for the sequential design of

computer experiments.

The foundation of this work is set in Bayesian hierarchical modeling, model averaging,

and Markov chain Monte Carlo (MCMC). Chapter 2 combines stationary Gaussian processes

(GPs) and treed partitioning to create treed GPs, implementing a tractable nonstationary

model for nonparametric regression. The methodology is illustrated and validated on synthetic

data, as well as on a number of classic nonstationary data sets. Chapter 3 exploits a particular

Gaussian process parameterization which implements a semiparametric model that treats some

or all of the input dimensions as linear, decoupling them from GP correlation function. This

approach is dubbed the GP with jumps to the limiting linear model (LLM), or GP LLM for

short. The utility of the GP LLM will be made apparent in its own right, however the greatest

“bang for your buck” is obtained when combining it with treed partitioning. The result is a

uniquely efficient nonstationary semiparametric regression tool.

Finally, Chapter 4 shows how the treed GP LLM can be used as a surrogate model

for computer experiments like the NASA LGBB. Techniques from the active learning branch

of the Machine Learning community, and the design of experiments branch of the Statistics

community, which have been previously applied to stationary GPs, are applied here to treed

GPs (and GP LLMs). The key contribution of the treed GP model in this setting is region-

specific estimates of model uncertainty which can be used to guide sampling. Together with

an asynchronous interface to simulation codes, e.g., CFD solvers which evaluate cases on a

supercomputer, the result is a unique methodology and framework for the sequential design of

5



computer experiments, which I call adaptive sampling.

Though the chapters naturally build on one another, each has been authored in such

a way as to be relatively self-contained, with its own introduction, development, results, and

conclusions. Chapter 5 offers a full re-cap, and collects some thoughts about avenues for further

research.

1.2 Related work: four key ingredients

The base of this recipe for nonparametric, nonstationary modeling and design of exper-

iments is Bayesian hierarchical modeling and model averaging—a theme that resonates with

almost every idea in the following chapters. The three additional ingredients are stationary

GPs, treed partitioning, and adaptive sampling or (sequential) design of experiments. All four

concepts are briefly outlined below. In some cases, further references and in-depth analysis is

left to later chapters. Readers familiar with the above concepts are encouraged to skip ahead

to Chapter 2.

1.2.1 Bayesian Model Averaging

The statistical modeling approach in this thesis is distinctly Bayesian. That is, param-

eters θ to models M are given prior distributions p(θ), and inference, given data Y, proceeds

by combining the prior with the likelihood p(Y|θ) in Bayes theorem, yielding a posterior dis-

tribution p(θ|Y):

p(θ|Y) =
p(Y|θ)p(θ)

p(Y)
. (1.1)

Prior distributions encode the scientific prior knowledge (or ignorance) of the modeling sci-

entist(s). They can be based on past experimentation, and/or even defined hierarchically to

6



depend on parameters that have their own, separate, hyper-prior distribution. The full spec-

ification is typically referred to as a Bayesian hierarchical model. Details of the Bayesian

approach to statistics, including discussions of merits and criticisms, are available from many

sources (Robert, 2001; Cogdon, 2001; Carlin & Louis, 2000; Gelman et al., 1995; Bernardo &

Smith, 1994; Press, 1989; Hartigan, 1964; Jeffreys, 1961).

Families of priors which, when combined a likelihood, produce posterior distributions

in the same family are called conjugate. Conjugate priors are particularly convenient because

they necessarily lead to analytically tractable posteriors. If no known conjugate prior exists

for the set of parameters θ, then it may be possible to find a conditionally conjugate prior

distribution for some of the parameters θ̃ ⊂ θ, conditional on the others θ− = θ \ θ̃, so that

p(θ̃|Y,θ−) is the same family as p(θ̃|θ−).

A key benefit of Bayesian statistical modeling is a full accounting of uncertainty. The

posterior distribution implicitly contains a full summary of the estimated model, rather than

just point estimates of its parameters. Another nice feature of the Bayesian paradigm is that

that which applies to parameters θ also applies to the joint distribution of models and their

parameters {M,θM}. For example, priors on models p(M), implying a probability on its

parameters θM, give way to posteriors, again via Bayes theorem:

p(M|Y) =
p(Y|M)p(M)

p(Y)
. (1.2)

Model selection can be carried out by finding the maximum a’ posteriori (MAP) modelM—i.e.,

by finding the mode of the posterior distribution—or through the use of Bayes factors (Kass &

Raftery, 1995). Model averaging can be carried out by integrating over the space of models M

(Hoeting et al., 1999). Bayes factors are not used in this thesis, but model averaging is used

extensively.

7



Markov chain Monte Carlo

When fully conjugate priors cannot be found to adequately encode prior beliefs about

models and parameters, posterior inference usually proceeds by simulation. Markov chain

Monte Carlo (MCMC) is the standard choice (Gamerman, 1997; Robert & Castella, 2000; Gilks

et al., 1996; Gelman et al., 1995) for posterior inference by simulation, and is the ubiquitous

tool of inference in this thesis. Andreiu et al. (2003) provide nice descriptions of MCMC, and

other simulation based methods of inference, using a vernacular more familiar to a Machine

Learning audience.

The main idea of MCMC is to establish a Markov chain whose stationary distribution

is the posterior distribution of interest, and then collect samples from that chain. The transition

probabilities from state θn to θn+1 of the Markov chain, representing samples from the posterior

of θ, can be set up in two ways: using the Metropolis-Hastings (MH) (Metropolis et al., 1953;

Hastings, 1970), or Gibbs (Geman & Geman, 1984) algorithms.

The MH algorithm proceeds by proposing a new θ∗ from a proposal distribution

q(θ∗|θn). The next (n + 1st) sample from the posterior for θ is chosen based on a ratio of

posterior and proposal distributions.

α = min
{

1,
p(Y|θ∗)p(θ∗)q(θn|θ∗)
p(Y|θn)p(θn)q(θ∗|θn)

}
(1.3)

Equation (1.3) is referred to as the MH acceptance ratio, or simply α. Since a ratio of posteriors

is what is of interest here, calculating p(Y) of (1.1) is not required. This is the main benefit

of MH sampling, as calculating p(Y) usually requires computing an intractable integral. The
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randomly proposed θ∗ is accepted or rejected based on α:

θn+1 =




θ∗ with prob. α

θn with prob. 1− α.

(1.4)

Gibbs sampling is a special case of MH where q(θ∗|θn) = p(θ∗|Y), resulting in an

acceptance ratio of α = 1, so all proposals are accepted. Parameters with conditionally conju-

gate priors can usually be sampled with Gibbs steps. Those without conditionally conjugate

priors generally require MH steps. Mixing of MH and Gibbs samples is allowed in order to

obtain samples from the full joint posterior. Enough samples from the posterior distribution of

θ are taken in order to summarize the statistics of inferential interest, e.g., means & variances,

medians, predictive means & variances, etc.

When using MCMC for model selection or model averaging, an augmentation of the

MH acceptance ratio (1.3) is needed in order to account for possible changes in the dimension of

the parameter space in a proposed {M∗,θM∗} compared to the previous model and parameters

{Mn,θMn}. This is handled by so called reversible jump Markov chain Monte Carlo (RJ-

MCMC) (Richardson & Green, 1997). RJ-MCMC augments Eq. (1.3) to include a Jacobian

term which accounts for a stretching or shrinking of the volume of the parameter space in

moving from θMn to θ∗M. However, if the proposals are taken from the prior:

q(θ∗M|θMn) = p(θ∗M),

then the Jacobian term can be shown to reduce to one, and the MH ratio for RJ-MCMC is the
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analog of (1.3) for model averaging:

α = min
{

1,
p(Y|M∗)p(M∗)q(M∗|Mn)
p(Y|Mn)p(Mn)q(Mn|M∗)

}
. (1.5)

Similarly, the analog of Eq. (1.4) is used for sampling, replacing M for θ. Such is the extent

to which RJ-MCMC is used in this thesis.

1.2.2 Stationary Gaussian Processes

In a computer experiment, the (possibly multi-dimensional) simulation output z(x),

is typically modeled as (Sacks et al., 1989)

z(x) = β>x + w(x) (1.6)

for a particular (multivariate) input value x, where β are linear trend coefficients, w(x) is

a zero mean random process with covariance C(x,x′) = σ2K(x,x′), and K is a correlation

matrix. Low-order polynomials are sometimes used instead of the simple linear mean β>x, or

the mean process is specified generically, often asm(x,β) orm(x) (Stein, 1999). The stationary

Gaussian process is a popular example of a model that fits this description, and consequently

is the canonical surrogate model used in designing computer experiments (Sacks et al., 1989;

Santner et al., 2003).

Gaussian processes (GPs) are a popular method for nonparametric regression and

classification. Though the method can be traced back to Kriging (Matheron, 1963), it is only

recently that GPs have been broadly applied in Machine Learning. Consider a training setD =

{xi, zi}Ni=1 of mX -dimensional input parameters and mZ-dimensional simulation outputs. The

collection of inputs is indicated as the N ×mX matrix X whose ith row is x>i . Formally (Stein,

10



1999), a Gaussian process is a collection of random variables Z(x) indexed by x having a jointly

Gaussian distribution for any subset of indices. It is specified by a mean µ(x) = E
(
Z(x)

)
and

correlation functionK(x,x′) = 1
σ2E

(
[Z(x)−µ(x)][Z(x′)−µ(x′)]>

)
. Given a set of observations

D, the resulting density over outputs at a new point x has a Normal distribution with

mean ẑ(x) = k>(x)K−1Z, and

variance σ̂2
ẑ(x) = σ2[K(x,x)− k>(x)K−1

N k(x)] (1.7)

where k>(x) is the N -vector whose ith component is K(x,xi), K is the N ×N matrix with i, j

element K(xi,xj), and Z is the N -vector of observations with ith component zi. For simplicity,

it is assumed that the output is scalar (i.e., multiple output response are modeled independently,

and so effectively mZ = 1) so that the image of the covariance function is a scalar. There are

many ways of dealing with multiple responses jointly, such as cokriging (Wackernagel, 2003;

Ver Hoef & Barry, 1998) or co-regionalization (Schmidt & Gelfand, 2003). Also, the linear

trend term in (1.6) is zero. Later, both will be treated with more generality, though neither

cokriging or co-regionalization will be directly addressed in this thesis. It is important to note

that the uncertainty, σ2
ẑ(x), associated with the prediction has no direct dependence on the

nearby observed simulation outputs Z.

The correlation matrix K, which is the heart of the GP, is determined by one of a

family of parametric correlation functions K(·, ·). Examples include the isotropic or separable

power or Matérn families, each outlined below. In all cases, the correlation functions used in

this thesis have the form

K(xj ,xk|g) = K∗(xj ,xk) + gδj,k. (1.8)

where δ·,· is the Kronecker delta function, and K∗ is a true correlation function. The only
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properties required of correlation functions K∗(·, ·), and the correlation matrices K∗ the func-

tions produce, is symmetry (K∗ = (K∗)>) and positive semi-definiteness (a>K∗a ≥ 0, for any

column-vector a). Valid correlation functions are usually generated as a member of a paramet-

ric family. The following subsections highlight elements of (1.8) which are of particular interest

in this thesis. A nice general reference for families of correlation functions K∗ is provided by

Abrahamsen (1997).

The nugget

The g term in the correlation function K(·, ·) in Eq. (1.8) is referred to as the nugget in

the geostatistics literature (Matheron, 1963; Cressie, 1991) and sometimes as jitter in Machine

Learning literature (Neal, 1997). It must always be positive (g > 0), and serves two purposes.

Primarily, it provides a mechanism for introducing measurement error into the stochastic pro-

cess. It arises when considering a model of the form:

Z(X) = m(X,β) + ε(X) + η(X), (1.9)

where m(·, ·) is underlying (usually linear) mean process, ε(·) is a process covariance whose

underlying correlation is governed by K∗, and η(·) is simply Gaussian noise. Secondarily,

though perhaps of equal practical importance, the nugget (or jitter) prevents K from becoming

numerically singular.

Notational convenience and conceptual congruence motivates referral to K as a cor-

relation matrix, even though the nugget term (g) forces K(xi,xi) > 1. Appendix B outlines

an isomorphic model specification wherein K depicts honest correlations. Under both specifi-

cations K∗ does indeed define a valid correlation matrix K∗. For further details please refer to

Appendix B.
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Power family

A common family of correlation functions is the isotropic power family. Correlation

functions in this family are stationary which means that correlations are measured identically

throughout the input domain, and isotropic in that correlations K∗(xj ,xk) depend only on a

function of the Euclidean distance between xj and xk: ||xj−xk||. A common parameterization

is

K∗
ν (xj ,xk|dν) = exp

{
−||xj − xk||p0

d

}
, (1.10)

where d > 0 is referred to as the width or range parameter. The power 0 < p0 ≤ 2 determines

the smoothness of the underlying process, which can either be fixed in advance or estimated.

Every process with 0 < p0 ≤ 2 is continuous at the origin, i.e., when ||xj − xk|| = 0, and none,

except the Gaussian p0 = 2, is differentiable at the origin. A white noise process, with constant

global correlation, is obtained when p0 = 0. When modeling computer experiments, a typical

default choice is the Gaussian p0 = 2.

For more on the smoothness properties of the power family of correlation functions,

and others, see Alder (1997), Abrahamsen (1997), or Stein (1999)—some relevant highlights of

which are motivated and quoted below. Chapter 3 contains a detailed exploration of how the

range (d) and nugget (g) parameters interact in order to describe varying degrees of smoothness

in the posterior predictive surface.

A straightforward enhancement to the isotropic power family is to employ a unique

range parameter di in each dimension (i = 1, . . . ,mX). The resulting correlation function is

still stationary, but no longer isotropic. A common parameterization is:

K∗(xj ,xk|d) = exp

{
−
mX∑
i=1

|xij − xik|p0
di

}
(1.11)

13



in which the (non-separable) isotropic exponential family is a special case (when di = d, for

i = 1, . . . ,mX). With the separable power family, one can model correlations in some input

variables as stronger than others. However, with added flexibility comes added costs in the form

of more parameters to estimate. When the true underlying correlation structure is isotropic, the

extra parameters of the separable model represent a sort of overkill, and in terms of efficiency

of implementation, a hindrance.

Matérn Family

In a recently published monograph on Spatial statistics (Stein, 1999), Michael Stein

strongly suggests using the Matérn family of correlation functions. Correlations in this family

are isotropic, and have the form:

Kν(xj ,xk|ρ, φ, α) =
π1/2φ

2ρ−1Γ(ρ+ 1/2)α2ρ
(α||xj − xk||)ρKρ(α||xj − xk||) (1.12)

where Kρ is a modified Bessel function of the second kind (Abramowitz & Stegun, 1964).

This family of correlation functions are obtained from spectral densities of the form f(ω) =

φ(α2 + ω2)−ρ−1/2. Since the resulting process can shown to be dρe − 1 times differentiable, ρ

can be thought thought of as a smoothness parameter. The ability to specify smoothness is

a significant feature of the Matérn family, especially in comparison to the power exponential

family which is either nowhere differentiable (0 < p0 < 2) or infinitely differentiable (p0 = 2).

Other properties of the Matérn family compared to those of other families are discussed by

Paciorek (2003) and Stien (1999). Proper specification or estimation of ρ may shrink the

role of a special nugget parameter, or white noise process, in estimating a trade-of between a

smoothing or interpolating process. It may also make decomposing K more numerically stable.

Separable versions of the Matérn family also exist.
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Estimation

Parameter settings to the correlation function(s) are determined either by maximizing

the likelihood, integrating over them, or by taking a Bayesian approach. The usual priors

(Gelman et al., 1995) can be placed on the linear (β) part of the model, including a conjugate

inverse-gamma prior for σ2. Gibbs samples can be obtained for these parameters. Priors also

need to be placed on the hyperparameters to the correlation structure K. If little is known in

advance about the process, then Objective Bayes priors—vague, reference or Jeffreys—can be

used (Berger et al., 2001). They can be sampled using the Metropolis-Hastings algorithm.

It is known that in certain cases the parameters to the Matérn family cannot be

estimated consistently. Nonetheless there is a quantity, arguably of greater interest to spa-

tial interpolation than the parameters themselves, that can be estimated consistently (Zhang,

2004). Though conjectured, to my knowledge a similar result has not been shown for the power

exponential family. In general I find that when inputs X are translated and scaled, e.g., to

the unit cube—a common practice—the marginal Markov chains for the range and nugget pa-

rameters, while correlated, tend to mix well. Further details on (Bayesian) inference for the

separable and isotropic power family are are left to Chapter 3.

Alternative GP specifications

An alternative process-convolution specification of GPs (Higdon, 2002) has become

popular for modeling lower dimensional (e.g. 2-d) space-time models. A duality can be shown

(Thiébaux & Pedder, 1987; Thiébaux, 1997; Ver Hoef & Barry, 1998) between a stationary GP

with spatial inputs s and responses Z(s), for s ∈ <m, and the convolution of a Gaussian white

noise process X(s) as

Z(s) =
∫
<m

K(s− u)X(u) du.
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One of the main advantages of this approach is that inverting an N ×N covariance matrix (as

in Eq. (1.7)) is not required. However, the implementation requires that a lattice of kernels

K(·) be placed, somewhat densely, throughout the input space. Any savings that comes from

not having to invert a covariance matrix is quickly diminished when the dimension (m) of the

input space gets large, because the number of kernels needed to adequately fill out the space

grows exponentially in m. This prohibits its use in higher dimensions. Initial implementations

of the GP model in this thesis actually used this formulation. But, since computer experiments

can vary greatly in input dimension, the standard (Kriging) approach, in the end, seemed more

appropriate.

1.2.3 Treed Partitioning for Nonstationary Modeling

As motivated above, designing computer experiments can require more flexibility in

a surrogate model than is offered by a stationary GP. A nonstationary model seems more

appropriate. One way to achieve non-stationarity is to use a partition model—a model which

somehow divides up the input space and fits different models to data independently in the

regions depicted by the partitions. Treed partitioning is one possible approach. Discussion of

other approaches to nonstationary modeling is deferred to the end of this subsection.

Binary treed partition models divide up the input space by making binary splits on

the value of a single variable (e.g., speed > 0.8) so that partition boundaries are parallel to

coordinate axes. Partitioning is recursive, so each new partition is a sub-partition of a previous

one. For example, a first partition may divide the space in half by whether the first variable

is above or below its midpoint. The second partition will then divide only the space below

(or above) the midpoint of the first variable, so that there are now three partitions (not four).

Since variables may be revisited, there is no loss of generality by using binary splits, as multiple
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splits on the same variable will be equivalent to a non-binary split.

These sorts of models are often referred to as Classification and Regression Trees

(CART) (Breiman et al., 1984). CART has become popular because of its ease of use, clear

interpretation, and ability to provide a good fit in many cases.

For example, a tree T partitions the input space into R non-overlapping regions

{rν}Rν=1. Each region rν contains data Dν = {Xν ,Zν}, consisting of nν observations. Each

split in the tree is based on a (randomly) selected dimension uj ∈ {1, . . . ,mX} and an associ-

ated split criterion sj , so that one of the resulting sub-partitions consists of those observations

in {Xν ,Zν} with the uth
j parameter less than sj , and the other contains those observations

greater than or equal to sj . Thus, the structure of the tree is determined by a hierarchy of

splitting criteria {uj, sj}, j = 1, . . . , dR/2e.

Figure 1.2 shows an example tree. In this example, D1 contains x’s whose u1 coor-

dinate is less than s1 and whose u2 coordinate is less than s2. Like D1, D2 has x’s whose

coordinate u1 is less than s1, but differs from D1 in that the u2 coordinate must be bigger

than or equal to s2. Finally, D3 contains the rest of the x’s differing from those in D1 and D2

because the u1 coordinate of its x’s is greater than or equal to s1. The corresponding response

values z accompany the x’s of each region.

The Bayesian approach is straightforward to apply to tree models (Chipman et al.,

1998; Denison et al., 1998), provided that one can specify a meaningful prior for the size of

the tree. I follow Chipman et al. (1998, 2002) who specify the prior through a tree-generating

process. Starting with a null tree (all data in a single partition), a leaf in the tree (T ) is

split recursively with each node η representing a region of the input space, being split with

probability psplit(η, T ) = a(1 + qη)−b, where qη is the depth of η in T and a and b are

parameters chosen to give an appropriate size and spread to the distribution of trees. As part

17



T : diagram

{v1, s1}

{v2, s2}

D1 = {X1,Z1} D2 = {X2,Z2}

D3 = {X3,Z3}

X[:, u1] < s1

X[:, u2] ≥ s2X[:, u2] < s2

X[:, u1] ≥ s1

D2

u2

s2

T : graphically

s1 u1

D3

D1

Figure 1.2: An example tree T with two splits, resulting in R = 3 partitions, shown in a
diagram (top) and pictorially (bottom).
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of the process prior, one might further require that each new region have at least a minimal

number of data points, since the parameters of the model within the partitions may not be

effectively estimated if there are too few points.

Chipman et al. call the prior process for generating splitting locations prule. The

default choice for prule is to have the splitting dimension u and location s chosen randomly

from a subset of the locations X in the uth dimension:

u ∈ {1, . . . ,m} chooses the splitting dimension,

sj ∈ X[:, u] column u of X from the parent region.

Integrating out dependence on the tree structure T can be accomplished via MCMC

using the Metropolis Hastings algorithm, with the help of tree-modification proposals called

grow, prune, change, and swap developed by Chipman et al. (1998, 2002). Parameters to the

constant (1998) or linear (2002) models used at the leaves of the tree can be integrated out,

avoiding the need to use Reversible-Jump MCMC (RJ-MCMC) (Richardson & Green, 1997)

usually required in such settings.

Extending the work of Chipman et. al (2002), Chapter 2 describes a model wherein

stationary GPs with linear trend are fit independently within each of R regions, {rν}Rν=1,

depicted by the tree T . Since the parameters to the GP correlation function K(·, ·) cannot

usually be analytically integrated out, a RJ-MCMC approach will be needed as grow and prune

tree proposals cause the dimension of the parameter space to change. This approach bears

some similarity to the models of Kim et al. (2002), who fit separate GPs in each element of a

Voronoi tessellation. The treed GP approach is better geared toward problems with a smaller

number of distinct partitions, leading to a simpler overall model. Using a Voronoi tessellation

allows an intricate partitioning of the space, but has the trade-off of added complexity and can
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produce a final model that is difficult to interpret. A nice review of Bayesian partition modeling

is provided by Denison et al. (2002).

Other approaches to nonstationary modeling

Other approaches to nonstationary modeling include those which use spatial deforma-

tions and process convolutions. The idea behind the spatial deformation approach is to map

nonstationary inputs in the original, geographical space, into another dispersion space wherein

the process is stationary. The approach taken by Sampson & Guttorp (1992) uses thin-plate

spline models and multidimensional scaling (MDS) to construct the mapping. Damian et

al. (2001) explore a similar methodology from a Bayesian perspective. Schmidt & O’Hagan

(2003) also take the Bayesian approach, but put a Gaussian process prior on the mapping.

Rather than mapping inputs into another space, the process convolution approach

(Higdon et al., 1999; Fuentes & Smith, 2001; Paciorek, 2003) proceeds by allowing the convo-

lution kernels Ks(·) to vary in parameterization as a function of their location s ∈ <d. Ks is

treated as an unknown, smooth function of s. It is given a prior specification, and estimated

along with other parameters of the model, in a fully Bayesian fashion.

A common theme among such nonstationary models is the introduction of meta-

structure which ratchets up the flexibility of the model, ratcheting up the computational de-

mands as well. In particular, the nonstationary versions tend to require significantly more

computation compared to the base, stationary, version of the same model. This is in stark

contrast to the treed approach which introduces a structural mechanism, the tree T , that can

actually reduce the computational burden relative to the base model.
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1.2.4 Adaptive Sampling

In the world of Machine learning, adaptive sampling would fall under the blanket

of a research focus called active learning. In the literature (Fine, 1999; Angluin, 1987; Fine

et al., 2000; Atlas et al., 1990), active learning, or equivalently query learning or selective

sampling, refers to the situation where a learning algorithm has some, perhaps limited, control

over the inputs it trains on. Active learning techniques have been proposed in areas such as

computational drug design/discovery to aid in the search for compounds that are active against

a biological target (Warmuth et al., 2001; Warmuth et al., 2003). However, I am not aware

of any other active learning algorithms that use nonstationary modeling to help select small

designs.

In the statistics community, the traditional approach to sequential data solicitation

is called (Sequential) Design of Experiments (Sacks et al., 1989; Santner et al., 2003; Currin

et al., 1988; Welch et al., 1992). Depending on whether the goal of the experiment is inference

or prediction, as described by a choice of utility, different algorithms for obtaining optimal

designs can be derived. For example, one can choose the Kullback-Leibler distance between the

posterior and prior distributions (with parameters θ) as a utility. For Gaussian process models

with correlation matrix K, this is equivalent to maximizing det(K). Subsequently chosen input

configurations are called D−optimal designs. Choosing quadratic loss leads to what are called

A−optimal designs. An excellent review of Bayesian approaches to the design of experiments

is provided by Chaloner & Verdinelli (1995).

Finding optimal designs can be computationally intensive, especially when the al-

gorithm involves calculating repeated decompositions, inverses, or determinants of large co-

variance matrices. Often D-optimal designs are chosen from a subset of candidate locations.

Maxima in determinant-space are sought via stochastic search, simulated annealing (Andrieu
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et al., 2003), tabu-search (Glover & Laguna, 1997), genetic algorithms (Hamada et al., 2001),

etc. (Welch et al., 1992; Currin et al., 1988; Mitchell, 1974). Determinant-space can have many

local maxima. Each algorithm is a variation on a theme: one of proposing to remove a candi-

date from the design in favor of another, computing the resulting change in determinant, and

accepting or rejecting the swap based on the magnitude and direction of the change, preferring

those that yield an increase in the value of the determinant. Candidate designs/configurations

are usually subsampled from a dense grid. Alternatively, the search for a D-optimal design

could be restricted to a subset of a Latin Hypercube (LH) design (Santner et al., 2003) [see

below].

An alternative approach to optimal design is to formulate the design problem as

a (Bayesian) decision problem (Müeller, 1999). Cast in a decision-theoretic framework, the

choice of a design X is associated with some utility U(D), perhaps encoding A or D-optimality.

For a model with parameters θ and responses (outcomes or future data) zX, which depend on

the design (X), the rational decision-maker seeks to maximize U(X) =
∫
u(d,θ, z) dpX(θ, z).

Finding optimal designs can be non-trivial on at least two fronts. First, the integral above

may be analytically intractable. Simulation-based approaches to integration are often the only

recourse, especially when the parameter space (θ) is high-dimensional. When it is possible to

generate a Monte Carlo sample (θj , zj) ∼ p(θj)pd(zj |θj) for j = 1, . . . ,M , a common technique

is to approximate U(X) with Û(X) = 1
M

∑M
j=1 u(X,θj ,yj).

Second, maximization over the design space can also be quite difficult. Simulation-

based approaches to maximization exists as well. One approach is simulated annealing (Glover

& Laguna, 1997). Simulated annealing is basically inhomogeneous Markov chain simulation

where the sequence of stationary distributions are increasingly focused around the maximum.

However, in the case of a joint parameter and design space, maxima obtained via simulated
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annealing will be for the joint “density” f(θ,X), rather than the marginal U(X). A cleaner

approach blends MCMC integration with simulated annealing to simultaneously addresses max-

imization and integration (Müller et al., 2004). The result is an algorithm for finding maxima

in the marginal “density” of designs U(X) for the most probable of parameterizations pX(θ,Z).

Another approach would be to obtain samples from the joint parameter and design space, and

use a surrogate (curve-fitting) model to approximate the expected utility space U(X) and then

use calculus to find an optimal design deterministically (Müeller & Parmigiani, 1995).

Since D-optimal designs involve covariance matrices, a model of covariance is needed.

Usually a parametric family is assumed in advance, or a preliminary analysis is used to find

maximum likelihood (ML) estimates. In a sequential design, parameters estimated from previ-

ous designs can be used. The Bayesian design theoretic approach “chooses” a parameterization

and optimal design jointly.

Some other approaches used by the statistics community do not require a model of

covariance. These include space-filling designs: e.g. max-min distance and LH designs (Box

et al., 1978; Santner et al., 2003). Computing max-min distance designs can also be computa-

tionally intensive, whereas LH sampling are easy to compute and results in well-spaced designs

relative to random sampling. The FIELDS package (Fields Development Team, 2004) available

from the Comprehensive R Archive Network (R Development Core Team, 2004) implements

code for space-filling designs in addition to Kriging and Thin Plate Spline models for spatial

interpolation.

To create a LH (McKay et al., 1979) design with n samples in amX -dimensional space,

one starts with an nmX gridding of the search space. For each row in the first dimension of the

grid, a row in every other dimension is chosen randomly without replacement, so that exactly

one sample point appears in each row for each dimension. Within the chosen grid cells, the
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actual sample point is typically sampled randomly. In one dimension a LH design is equivalent

to a grid, but as the number of dimensions grows, the number of points in the LH design stays

constant.

Though LH designs usually give nice spacing to the design, there are some degenerate

cases (Santner et al., 2003), like diagonal LH designs. LH designs can also be less advantageous

in a sequential sampling environment. While LH sampled locations are usually well-dispersed

with respect to one another, they might not be well-spaced relative to previously sampled

(fixed) locations. Whereas most optimal design methods like D-optimal, A-optimal, and max-

min, are more computationally intense, they are easily converted into sequential design methods

by simply fixing the locations of samples whose response has already been obtained, and then

optimizing only over over new sample locations.

An active learning approach sequential experimental design

There are essentially two active learning approaches to the design of experiments using

Gaussian Processes as a surrogate model. The first approach tries to maximize the information

gained about model parameters by selecting from a pool of candidates X̃, the location x̃ ∈ X̃

which has the greatest standard deviation in predicted output. This approach, called ALM

for Active Learning–Mackay, has been shown to approximate maximum expected information

designs (MacKay, 1992).

An alternative algorithm, called ALC for Active Learning–Cohn, is to select x̃ min-

imizing the expected squared error averaged over the input space (Cohn, 1996). The global

reduction in variance, given that the location x̃ is added into the data, is obtained by averaging
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over the reduction in predictive variance at other locations y:

∆σ̂2(x̃) =
∫
y

∆σ̂2
y(x̃)

=
∫
y

σ̂2
y − σ̂2

y(x̃)

=
∫
y

σ2
[
k>(y)K−1

N k(x̃)−K(x̃,y)
]2

K(x̃, x̃)− k(x̃)>K−1
N k(x̃)

.

In practice the integral in the above equation is really a sum over a grid of locations Ỹ, as

are the candidates x̃ ∈ X̃, usually with Ỹ = X̃, and the parameterization to the model, i.e.

K(·, ·) and σ2, is known in advance. A comparison between ALC and ALM using standard

GPs appears in (Seo et al., 2000).

Computer Experiments

There are some peculiarities in the tradition of using Gaussian processes and stan-

dard design of experiment techniques in the literature of (sequential) design and analysis of

computer experiments (SDACE). For example, the separable power family (1.11) of correlation

functions are the weapon of choice (Santner et al., 2003). This is a generally sensible approach,

especially since the isotropic family is a special case of the separable. Chapter 5 shows how the

NASA LGBB data is clearly separable in the sense that correlation in the speed (Mach) input

is clearly different than correlation in angle of attack (alpha), while correlation for varying

side-slip angle (beta) is nearly perfect. Using a separable correlation function for this data is

reasonable. The mostly application-oriented SDACE community often finds that the nice the-

oretical implications of the Matérn family of correlation functions (1.12) do not outweigh their

additional computational requirements. Smoothness and noise considerations are apparently

of less concern when the data are output from computer code, rather than, say, observations
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from nature or from a physical experiment.

So in addition, most literature on the DACE (Santner et al., 2003; Sacks et al., 1989;

Chaloner & Verdinelli, 1995) deliberately omit the nugget parameter on grounds that computer

experiments are deterministic (never noisy). Thus they consider only models of the form:

Z(X) = m(X,β) + ε(X)

omitting the explicit noise component η(x) from (1.9). However, there are many reasons why

one may wish to study a computer experiment, though technically deterministic, with a model

that includes an explicit independent noise component. In particular, the experiment may,

in fact, be non-deterministic. Researchers at NASA remark that their CFD solvers are often

started with random initial conditions, involve forced random restarts when diagnostics indicate

that convergence is poor, and that input configurations arbitrarily close to one another often fail

to achieve the same estimated convergence, even after satisfying the same stopping criterion.

Thus a conventional GP model without a small-distance noise process, e.g. a nugget, can be a

mismatch to such inherently non-smooth data.

Numerical stability in decomposing covariance matrices has been cited (Neal, 1997)

as sufficient justification for including a nugget (or jitter) parameter. Illustrations and further

comments are deferred to Chapter 3.

Other approaches to designing computer experiments

Some traditional Bayesian & non-Bayesian approaches to surrogate modeling and

design for computer experiments can be found in (Sebastiani & Wynn, 2000; Welch et al.,

1992; Currin et al., 1988; Currin et al., 1991; Mitchell & Morris, 1992; Sacks et al., 1989; Bates

et al., 1996). References for the Bayesian approach usually include the landmark papers by
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Kennedy & O’Hagan et al. (1999, 2000, 2001). More recently, an approach using stationary GPs,

which bears some similarity to the approach taken in this thesis, has proposed using a so called

spatial aggregate language to aid in an active data mining of the input space of the experiment

(Ramakrishnan et al., 2005). However, as will become evident in the following chapters, the

methods developed in this thesis are in contrast more than they are similar to those in the

standard, even recent, approaches in the literature, especially in terms of design. Motivations

for fresh approach to SDACE range from the inadequate nature of standard surrogate models

(both in terms of speed and modeling capacity) to the challenges inherent in adapting standard

optimal design techniques to modern computer experiments which tend to run on highly parallel

and distributed, and certainly no less expensive, supercomputers.
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Chapter 2

Treed Gaussian Process Models

In this chapter the treed Gaussian Process model (treed GP for short) is described in

detail. The chapter concludes with experiments to validate the model as a sensible and efficient

approach to nonstationary and nonparametric regression. Extending the work of Chipman et

al. (1998, 2002), stationary GP models with linear trend are fit independently within each of

R regions, {rν}Rν=1, depicted at the leaves of the tree T , instead of constant (1998) or linear

(2002) models. The tree is averaged out by integrating over possible trees, using reversible-

jump Markov chain Monte Carlo (RJ-MCMC) (Richardson & Green, 1997). As in Chipman

et al. (1998, 2002) the prior for T is specified through a tree-generating process. Starting with

a null tree (all data in a single partition), the tree T is probabilistically split recursively, with

each partition η being split with probability psplit(η, T ) = a(1 + qη)−b where qη is the depth

of η in T and a and b are parameters chosen to give an appropriate size and spread to the

distribution of trees. The split location prule is chosen uniformly from the data locations X

as possible dividing points between the two new regions. Prediction is conditioned on the tree

structure, and is averaged over in the posterior to get a full accounting of uncertainty.
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2.1 Hierarchical Model

A tree T recursively partitions the input space into into R non-overlapping regions:

{rν}Rν=1. Each region rν contains data Dν = {Xν ,Zν}, consisting of nν observations. A

hierarchical generative model for R stationary GPs with linear trend is specified on data Dν in

each region {rν}Rν=1. For a particular region ν, the hierarchical generative model is

Zν |βν , σ2
ν ,Kν ∼ Nnν (Fνβν , σ

2
νKν),

βν |σ2
ν , τ

2
ν ,W,β0 ∼ NmX (β0, σ

2
ντ

2
νW)

β0 ∼ NmX (µ,B), (2.1)

σ2
ν ∼ IG(ασ/2, qσ/2),

τ2
ν ∼ IG(ατ/2, qτ/2),

W−1 ∼W ((ρV)−1, ρ),

with Fν = (1,Xν), and W is a (mX + 1) × (mX + 1) matrix. N , IG, and W are the

(Multivariate) Normal, Inverse-Gamma, and Wishart distributions, respectively. Constants

µ,B,V, ρ, ασ, qσ, ατ , qτ . are treated as known.

The hierarchical model (2.1) specifies a multivariate normal likelihood with linear

trend coefficients βν , variance σ2
ν and N × N correlation matrix Kν . The coefficients βν are

believed to have come from a common unknown mean β0 and region-specific variance σ2
ντ

2
ν .

The GP correlation structure Kν for each partition rν is chosen either from the

isotropic power family (1.10), or separable power family (1.11), with a fixed power p0, but

unknown (random) range and nugget parameters. Most of the discussion in this chapter is

presented without reference to the mechanism used to construct Kν . However, the tacit as-

sumption is that the correlation function takes the form Kν(xj ,xk) = K∗
ν (xj ,xk) + gνδj,k,
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where δ·,· is the Kronecker delta function, and K∗
ν is a true correlation representative from a

parametric family. Priors which encode a belief that the global covariance structure is nonsta-

tionary are chosen for parameters to K∗
ν and gν . Further discussion of these priors, particularly

pertaining to the power family, is deferred until the next chapter.

There is no explicit mechanism in the model (2.1) to ensure that the process near the

boundary of two adjacent regions is continuous across the partitions depicted by T . In fact,

conditional on a single tree (T ), the transition between the posterior predictive distributions

across partition boundaries is strictly discontinuous [further discussion deferred to Section 2.3].

I chose to include the nugget (g) in the correlation model for completeness, but also in

light of the discussion at the end of Section 1.2.4 about the dubiousness of treating computer

experiments as deterministic. More practically, the nugget, or jitter (Neal, 1997) component is

helpful for insuring against the numerical instability of inverting and decomposing K.

2.2 Estimation

The data Dν = {X,Z}ν are used to estimate the GP parameters θν ≡ {β, σ2,K}ν ,

for ν = 1, . . . , R. Parameters to the hierarchical priors (θ0 = {W, β0,γ}) depend only on

{θν}Rν=1. Conditional on the tree T , the full set of parameters is denoted as θ = θ0 ∪
⋃R
ν=1 θν .

Samples from the posterior distribution of θ are gathered using Markov chain Monte

Carlo (MCMC) (Gelman et al., 1995) by first conditioning on the hierarchical priors θ0 and

drawing θν |θ0 for ν1, . . . , νr, and then θ0 is drawn as θ0|
⋃R
ν=1 θν . Section 2.2.1 gives the details.

In short, all parameters can be sampled with Gibbs steps, except those which parameterize the

covariance function K(·, ·). Parameters which describe K require Metropolis-Hastings (MH)

draws.

Section 2.2.2 shows how RJ-MCMC (Richardson & Green, 1997) is used to gather
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samples from the joint posterior of (θ, T ) by alternately drawing θ|T and then T |θ using a

superset of the tree operations from Chipman et al.

2.2.1 GPs given tree (T )

Finding full conditionals is a good first step towards efficient sampling. Full condi-

tionals for the parameters associated with the linear trend are listed first. Since they have

conditionally conjugate priors, these can be sampled using Gibbs steps. Some parameters

({K, σ2}ν) are sampled more efficiently if their full conditionals can be marginalized by ana-

lytically integrating out dependence on other parameters. The full derivations are included in

Appendix A.1.

The linear regression parameters βν have a conditionally conjugate multivariate nor-

mal posterior distribution:

βν |rest ∼ N(β̃ν , σ
2
νVβ̃ν

) (2.2)

where

Vβ̃ν
= (F>

ν K−1
ν Fν + W−1/τ2

ν )−1, (2.3)

β̃ν = Vβ̃ν
(F>

ν K−1
ν Zν + W−1β0/τ

2
ν ). (2.4)

Similarly for the hierarchical mean regression parameters β0:

β0|rest ∼ N(β̃0,V β̃0
) (2.5)
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where

Vβ̃0
=

(
B−1 + W−1

r∑
i=0

(σντν)−2

)−1

(2.6)

β̃0 = Vβ̃0

(
B−1µ+ W−1

r∑
i=1

βν(σντν)
−2

)
. (2.7)

The linear variance parameter τ2 has a conditionally conjugate inverse-gamma posterior:

τ2
ν |rest ∼ IG((ατ +m)/2, (qτ + bν)/2) (2.8)

where

bν = (βν − β0)
>W−1(βν − β0)/σ

2
ν . (2.9)

The linear model covariance matrix W has a conditionally conjugate inverse-Wishart posterior:

W−1|rest ∼W
(
ρV+VT̂ , ρ+ r

)
(2.10)

where

VT̂ =
r∑
i=1

1
(σντν)2

(βν − β0)(βν − β0)
>. (2.11)

Analytically integrating out β and σ2 gives a marginal posterior for Kν which is the

result of K(·, ·) applied to all pairs of input locations from Xν , and improves mixing of the

Markov chain (Berger et al., 2001). As before, I shall simply quote the results here, and leave
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the details to Appendix A.2.

p(Kν |tν ,β0,W, τ2) =
(

|Vβ̃ν
|

(2π)nν |Kν ||W|τ2m

) 1
2 (qσ/2)ασ/2

[(qσ + ψν)/2](ασ+nν)/2

Γ [(ασ + nν)/2]
Γ [ασ/2]

p(Kν), (2.12)

where

ψν = Z>
ν K−1

ν Zν + β>
0 W−1β0/τ

2 − β̃
>
ν V−1

β̃ν
β̃ν . (2.13)

Eq. (2.12) can be used to iteratively obtain draws for the parameters of K(·, ·) in region ν via

Metropolis-Hastings (MH), or as part of the acceptance ratio for proposed modifications to T

[see Section 2.2.2]. Many terms in (2.12) cancel when examining the MH acceptance ratio for

Kν in isolation. Dropping constants that would be common in the numerator and denominator

of the MH acceptance ratio for a proposed Kν results in the simplified posterior

p(Kν |Zν ,β0, τ
2
ν ,W) ∝ p(dν , gν)×

(
|Vβ̃ν

|
|Kν |

) 1
2

×
(
qσ + ψν

2

)−ασ+nν
2

. (2.14)

Any hyperparameters to K(·, ·) would also require MH draws. Dropping the prior p(dν , gν)

gives an integrated likelihood (Berger et al., 2001).

The conditional distribution of σ2
ν with βν integrated out is

σ2
ν |dν , g,β0,W ∼ IG((ασ + nν)/2, (qσ + ψν)/2) (2.15)

which allows Gibbs sampling. The full derivation of (2.15) is also included in Appendix A.2.
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2.2.2 Tree (T )

Integrating out dependence on the tree structure (T ) is accomplished by reversible-

jump MCMC (RJ-MCMC) (Richardson & Green, 1997). The tree operations used—grow,

prune, change, and swap—are similar to those in Chipman et al. (1998). Tree proposals

can change the size of the parameter space (θ). To keep things simple, proposals for new

parameters—via an increase in the number of partitions R—are drawn from their priors, thus

eliminating the Jacobian term usually present in RJ-MCMC. New splits are chosen uniformly

from the set of marginalized input locations (X).

Swap and change tree operations are straightforward because the number of partitions,

and thus parameters, stays the same. A change operation proposes moving an existing split-

point {u, s} to either the next greater or lesser value of s (s+ or s−) along the uth column of X.

This is accomplished by sampling s′ uniformly from the set {uν, sν}dR/2eν=1 ×{+,−}. Parameters

θr in regions below the split-point {u, s′} are held fixed. Uniform proposals and priors on

split-points cause the MH acceptance ratio for change to reduce to a simple likelihood ratio.

A swap operation proposes changing the order in which two adjacent parent–child

(internal) nodes split up the inputs. Basically, an internal parent–child node pair is picked

at random from the tree and their splitting rules are swapped. When both child splitting

rules are the same, Chipman et al. (1998) propose jointly swapping the parent with both of its

children. I have found that this situation is rare in practice, especially for continuously defined

inputs (in <d) with GP regression models at the leaves. So instead, I have modified swap

for the following, more common, situation. That is, swaps which are proposed on parent-child

internal nodes which split on the same variable are always rejected because a child region below

both parents becomes empty after the operation. Figure 2.1 gives an illustration. However,

if instead a rotate operation from Binary Search Trees (BSTs) is performed, the proposal will
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swap

T swapped:

T1

{1, 3}

X[:, 1] < 5

X[:, 1] < 3 X[:, 1] ≥ 3

T2{1, 5}

∅

X[:, 1] ≥ 5

X[:, 1] < 5 X[:, 1] ≥ 5

X[:, 1] < 3 X[:, 1] ≥ 3

T :

T1 T2

T3{1, 3}

{1, 5}

swap

Figure 2.1: Swapping on the same variable is always rejected because one of the leaves corre-
sponds to an empty region. T1, T2, T3 are arbitrary sub-trees (could be leaves).
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almost always accept. Rotations are a way of adjusting the configuration and height of a BST

without violating the BST property. Red-Black Trees make extensive use of rotate operations

(Cormen et al., 1990).

In the context of a Bayesian MCMC tree proposal, rotations encourage better mixing

of the Markov chain by providing a more dynamic set of candidate nodes for pruning, thereby

helping it escape local minima in the marginal posterior of T . Figure 2.2 shows an example of

a successful right-rotation where the swap of Figure 2.1 fails. Since the partitions at the leaves

remain unchanged, the likelihood ratio of a proposed rotate is always 1. The only “active”

part of the MH acceptance ratio is the prior on T , preferring trees of minimal depth. Still,

calculating the acceptance ratio for a rotate is non-trivial because the depth of two of its sub-

tress change. Sub-trees T1 and T3 of Figure 2.2 change depth, either increasing or decreasing

respectively, depending on the direction of the rotation. In a right-rotate, nodes in T1 decrease

in depth, while those in T3 increase. The opposite is true for left-rotation. If I = {Ii, I`} is the

set of nodes (internals and leaves) of T1 and T3, before rotation, which increase in depth after

rotation, and D = {Di, D`} are those which decrease in depth, then the MH acceptance ratio

for a rotate is

p(T ∗)
p(T )

=
p(T ∗

1 )p(T ∗
3 )

p(T1)p(T3)

=

∏
η∈Ii

a(2 + qη)−b
∏
η∈I`

[1− a(2 + qη)−b]∏
η∈Ii

a(1 + qη)−b
∏
η∈I`

[1− a(1 + qη)−b]
× (2.16)

×
∏
η∈Di

aq−bη
∏
η∈D`

[1− aq−bη ]∏
η∈Di

a(1 + qη)−b
∏
η∈D`

[1− a(1 + qη)−b]
.

The MH acceptance ratio for a left-rotate is analogous.

Grow and prune operations are more complex because they add or remove partitions,

causing a change in the dimension of the parameter space. The first step for either operation
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rotate

{1, 3}

X[:, 1] < 3 X[:,1] ≥ 3

T1
{1, 5}

X[:, 1] < 5

T2

T rotated:

X[:,1] ≥ 5

T3

X[:, 1] < 5 X[:, 1] ≥ 5

X[:, 1] < 3 X[:, 1] ≥ 3

T :

T1 T2

T3{1, 3}

{1, 5}

rotate

(right)

Figure 2.2: Rotating on the same variable is almost always accepted. T1, T2, T3 are arbitrary
sub-trees (could be leaves).
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is to select a leaf node (for grow), or the parent of a pair of leaf nodes (for prune). Leaves

are chosen uniformly from the set of valid candidates. When a new region r is added, new

parameters {K(·, ·), τ2}r must be proposed, and when a region is taken away the parameters

must be absorbed by the parent region, or discarded. When evaluating the MH acceptance

ratio for either operation, the linear model parameters {β, σ2}r are integrated out as in (2.12).

One of the newly grown children is uniformly chosen to receive the correlation function K(·, ·)

of its parent, essentially inheriting a block from its parent’s correlation matrix. To ensure that

the resulting Markov chain is ergodic and reversible, the other new sibling draws its correlation

function from the prior. Symmetrically, prune operations randomly select parameters from

K(·, ·) for the consolidated node from one of the children being absorbed. If the grow or prune

operation is accepted, σ2
r can next be drawn from its marginal posterior, with βr integrated

out, after which draws for βr and the other parameters for the rth region can then proceed as

usual.

Let {X,Z} be the data at the new parent node η at depth qη, and {X1,Z1} and

{X2,Z2} be the new child data at depth qη + 1 created by the new split {u, s}. Also, let P

be the set of pruneable nodes of T , and G the number of growable nodes respectively. The

Metropolis-Hastings acceptance ratio for grow is:

|P|+ 1
|G| × a(1 + qη)−b(1− a(2 + qη)−b)2

1− a(1 + qη)−b
× p(K1, |Z1,β0, τ

2
1 ,W)p(K2|Z2,β0, τ

2
2 ,W)

p(K|Z,β0, τ
2,W)

.

The prune operation is analogous:

|G|+ 1
|P| × p(K|Z,β0, τ

2,W)
p(K1|Z1,β0, τ

2
1 ,W)p(K2|Z2,β0, τ

2
2 ,W)

× 1− a(1 + dη)−b

(1 − a(2 + dη)−b)2a(1 + dη)−b
.

Note that in the above two acceptance ratios for grow and prune operations, the posteriors
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p(K|Z,β0, τ
2,W), p(K1|Z1,β0, τ

2
1 ,W) and p(K2|Z2,β0, τ

2
2 ,W) must be evaluated using the

formula in (2.12), not the simplified one in (2.14). This is because the terms canceled from

(2.12) do not occur the same number of times in the numerator and denominator. Using (2.14)

would cause the ratio to be off by a constant factor.

2.3 Treed GP Prediction (Kriging)

Prediction under the above GP model, called Kriging (Matheron, 1963) in the geo-

statistics community, is straightforward (Hjort & Omre, 1994). The predicted value of z(x ∈ rν)

is normally distributed with

mean ẑ(x) = E(Z(x)| data,x ∈ Dν)

= f>(x)β̃ν + kν(x)>K−1
ν (Zν − Fνβ̃ν), (2.17)

and variance σ̂(x)2 = Var(z(x)| data,x ∈ Dν)

= σ2
ν [κ(x,x) − q>ν (x)C−1

ν qν(x)], (2.18)

where C−1
ν = (Kν + τ2

νFνWF>
ν )−1

qν(x) = kν(x) + τ2
νFνWνf(x) (2.19)

κ(x,y) = Kν(x,y) + τ2
ν f

>(x)Wf(y)

with f>(x) = (1,x>), and kν(x) is a nν−vector with kν,j(x) = Kν(x,xj), for all xj ∈ Xν .

Notice that the predictive mean equations use β̃ν , the posterior mean estimate of
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β̃ν , not βν itself. To use βν instead one must employ the predictive variance relation in

(1.7). Also, one must be careful when using the above Kriging equations with the definition of

the correlation matrix K as given in (1.8). In particular, the nugget term only applies when

computing the correlation between a data location and itself. It does not apply for duplicate

locations with the same coordinates. For more details see Appendix B.1.

As alluded to briefly in Section 2.1, the posterior predictive surface described in

Eqs. (2.17–2.18), conditional on a particular tree (T ), is discontinuous across the partition

boundaries of T . However, in the aggregate of samples collected from the joint posterior distri-

bution of {T ,θ}, samples gathered from the posterior predictive distribution tend to smooth

out near likely partition boundaries as the tree operations grow, prune, change, and swap in-

tegrate over trees and GPs with larger posterior probability. Even though each realization

of the Kriging equations for θν |T necessarily produces a discontinuous predictive surface, the

aggregated mean tends to approximate continuous transitions between regions quite well, and

uncertainty in the posterior for T translates into higher posterior predictive uncertainty near

region boundaries. The results in Section 2.5 provide illustration.

For cases where the data possibly indicates a non-smooth process, as in the transition

between subsonic and supersonic speeds in the NASA LGBB data [Chapter 1, and Section

4.4.3], the treed GP retains the flexibility necessary to model discontinuities, in the posterior

predictive surface.

2.4 Implementation

The treed GP model is coded in a mixture of C and C++: C++ for the tree data

structure (T ) and C for the GP at each leaf of T . The C code can interface with either standard

platform-specific Fortran BLAS/Lapack libraries for the linear algebra necessary to estimate
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the parameters of the GP, or link to those automatically configured for fast execution on a

variety of platforms via the ATLAS library (Whaley & Petitet, 2004). In most cases, the ATLAS

implementation is significantly faster than standard BLAS/Lapack. The code has been tested

on Unix (Solaris, Linux, FreeBSD, OSX) and Windows (2000, XP) platforms.

It is useful to first translate and re-scale the input data (X) so that it lies in an

<mX dimensional unit cube. Doing this makes it easier to construct prior distributions for

the width parameters to the correlation function K(·, ·) in particular. Many implementation

details regarding the tree T have already been outlined in Section 2.2.2. Conditioning on T ,

proposals for all parameters which require MH sampling are taken from a uniform “sliding

window” centered around the location of the last accepted setting. For example, a proposed a

new nugget parameter gν to the correlation function K(·, ·) in region rν would go as

g∗ν ∼ Unif
(

3
4
gν ,

4
3
gν

)
.

Calculating the forward and backwards proposal probabilities for the MH acceptance ratio is

straightforward.

After conditioning on the tree and parameters ({T ,θ}), prediction can be parallelized

by using a producer/consumer model. This allowed the use of PThreads in order to take

advantage of multiple processors, and get speed-ups of at least a factor of two. This is par-

ticularly relevant since dual processor workstations and multi-processor servers are becoming

commonplace in modern research labs. Parallel sampling of the posterior of θ|T for each of the

{θν}Rν=1 is also possible. However, the speed-up in this second case is less impressive. To ice

the cake, the whole thing is wrapped up in an intuitive R interface (R Development Core Team,

2004). Compared to existing methods, this approach lead to an extremely fast implementation

of nonstationary GPs.
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2.5 Illustration & Experimentation

In this section the treed GP model is illustrated on two synthetic data sets, and one

set of real world data. Further experimentation is deferred until the next chapter, in Section

3.3, after a more mature semiparametric nonstationary regression model is developed. To keep

things simple, for now, the isotropic power family (1.10) correlation function (p0 = 2) is chosen

for K∗(·, ·|d) in the following experiments, with range parameter d, combined with nugget g to

form K(·, ·|d, g). (More about correlation functions in the next chapter.)

2.5.1 1-d Synthetic Sinusoidal data

Consider 1-dimensional simulated data on the input space [0, 20]. The true response

comes partly from Higdon et al. (2002), augmented to include a linear region. Eq. (2.20) gives

a formula describing the data, and a picture is shown in Figure 2.3. As is obvious from the

figure, this dataset typifies the type of nonstationary response surface that the treed GP model

was designed to exploit. Zero mean Gaussian noise with sd = 0.1 is added to the response to

keep things interesting.

z(x) =




sin
(
πx
5

)
+ 1

5 cos
(

4πx
5

)
x < 10

x/10− 1 otherwise
(2.20)

Figure 2.4 shows the posterior predictive surfaces of three regression models for com-

parison based on samples obtained at N = 200 evenly-spaced input locations—mean in solid

black, and 95% intervals in dashed-red. The top panel is from a Bayesian Linear CART model

(Chipman et al., 2002), which does well in the linear region, but comes up short in the sinu-

soidal region. The middle panel is from a stationary GP model which is heavily influenced by

the sinusoidal region, and consequently fits it well, but is unable to model the more smooth
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Figure 2.3: Sinusoidal data

linear process. This is because nonstationarity in the data cannot be captured by a stationary

(or homogeneous) correlation structure. The bottom panel shows the best of both worlds: a

treed GP, which fits a sinusoidal, lower correlation, GP in the sinusoidal region, and smooth,

higher correlation, GP in the linear region.

2.5.2 2-d Synthetic Exponential data

Next, results are shown for a two-dimensional input space in [−2, 6] × [−2, 6]. The

true response is given by

z(x) = x1 exp(−x2
1 − x2

2). (2.21)

A small amount of Gaussian noise (with sd = 0.001) is added. Besides its dimensionality, a key

difference between this data set and the last one is that it is not defined using step functions;

this smooth function does not have any artificial breaks between regions.
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Figure 2.4: Comparison between Bayesian linear CART (top), stationary GP (middle) and the
treed GP model (bottom), for the 1-d Sine data.
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Figure 2.5: Comparison between Bayesian linear CART (top), and the treed GP model bottom,
for the 2-d Exponential data.
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Contour plot of 2d Exp Data −− Treed GP
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Figure 2.6: Contour plot showing the mean surface and representative partitions found using
the treed GP model.

Figure 2.5 shows plots comparing fits of Bayesian Linear CART (top) and the treed

GP (bottom). It is clear from the figure that the treed GP is better. The fit for a stationary

GP is not shown because it looks very similar to that of the treed GP. The data are indeed

stationary. Still, the tree GP finds an average of three partitions, as shown in Figure 2.6. Much

of the advantage of the treed GP in this situation, over a single stationary GP, is in speed of

computation. Inverting three matrices, one of half and two of one quarter of the original size

(N), is considerably faster than inverting a single N ×N matrix.

2.5.3 Motorcycle data

The Motorcycle Accident Dataset (Silverman, 1985) is a classic nonstationary data

set used in recent literature (Rasmussen & Ghahramani, 2002) to demonstrate the success of

nonstationary models. The data set consists of measurements of acceleration of the head of
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a motorcycle rider as a function of time in the first moments after an impact. In addition to

being nonstationary, the data has input-dependent noise, which makes it useful for illustrating

how the treed GP model handles this nuance. There are at least two, and perhaps three regions

where the response exhibits different behavior both in terms of the correlation structure and

noise level.

Figure 2.7 shows the data, and the fit given by the treed GP model. The top panel

shows the estimate of the surface with 90%-quantile error bars; the bottom panel shows the

difference in quantiles. Vertical lines on both panels illustrate a typical treed partition T . The

error bars, and estimated error spread, can give insight into the uncertainty in the posterior

distribution for T . Notice the sharp rise in estimated variance from the leftmost region to

the center region. Contrast this with the more gradual, stepwise, descent in variance from the

center region to the rightmost region. There was far more certainty in the posterior for the left

split than the right one. The average number of partitions in the posterior for T over 20, 000

rounds (5, 000 burn in) was 3.111. The occasional extra partition usually “popped up” to help

smooth the boundary between the center and rightmost region. Rather than a single partition

near x ≈ 40, the two partitions arise near x ≈ 36 and x ≈ 42. Less often the tree would prune

back splits in the right-hand part of the domain, leaving only two partitions: a leftmost one,

and a single right-hand region.

These results are quite different from those reported by Rasmussen & Ghahramani

(2002). In particular, the error-bars they report for the leftmost region seem too large relative

to the center and rightmost regions. They use a what they call an “infinite” mixture of GP

“experts” which is really a Dirichet process mixture of GPs. They report that the posterior

distribution uses between 3 and 10 experts to fit this data, which they admit has “roughly”

three regions. In fact, in their histogram of the number of GP experts used throughout the
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Figure 2.7: 1-d Motorcycle Dataset, fit by our nonstationary model.
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MCMC rounds, they show that between 3 and 10 experts are equally likely, and even 10-15

experts still have considerable posterior mass. Contrast this with the treed GP model which

almost always partitions into three regions, occasionally four, rarely two.

On speed grounds, the treed GP is also a winner. Rasmussen & Ghahramani (2002)

report that they ran mixture of GP experts model using a total of 11,000 MCMC rounds,

discarding the first 1,000 and keeping every 100th after that. This took roughly one hour on

a 1 GHz Pentium. Allowing treed GP to use 25,000 MCMC rounds, discarding the first 5,000

and keeping every sample thereafter takes less than ∼ 3 minutes on on a 1.8 GHz Athalon.

2.6 Conclusion

In this chapter the treed Gaussian Process model was introduced as a nonparametric

extension of Bayesian Linear CART model, and validated as a nonstationary regression tool

on synthetic and real data. A fully Bayesian treatment of the treed GP model was laid out,

treating the hierarchical parameterization of a correlation function K(·, ·) as a black box. The

next chapter is dedicated to the study of the prior specification for parameters to the correlation

function K(·, ·) for the separable and isotropic power families, motivating and developing the

GP LLM model. Chapter 4 takes advantage of the nonstationary nature of the measures of

predictive error provided by the treed GP (or GP LLM) model in order to design experiments.
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Chapter 3

Gaussian Processes and Limiting

Linear Models

Gaussian processes (GPs) retain the linear model (LM) either as a special case, or in

the limit. This chapter shows how the limiting parameterization can be exploited when the

data are at least partially linear. However, from the prospective of the Bayesian posterior, the

GPs which encode the LM either have probability of nearly zero or are otherwise unattainable

without the explicit construction of a prior with the limiting linear model (LLM) in mind.

In this chapter, a sensitivity analysis on the prior specification for the parameters

to the correlation function K(·, ·) is carried out. An appropriate prior is developed, yielding

practical benefits which extend well beyond the computational and conceptual simplicity of the

LM. For example, linearity can be extracted on a per-dimension basis, or can be combined with

treed partition models to yield a highly efficient nonstationary model. The resulting (treed) GP

LLM model is demonstrated and validated on synthetic and real datasets of varying linearity

and dimensionality. Comparisons are made to other approaches in the literature.
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Correlation function and notation disclaimer

The correlation function and its parameters are the focus of this Chapter, so a pa-

rameterization needs to be chosen. To remain consistent with the Design and Analysis of

Computer Experiments (DACE) literature I choose to work with the power family, with power

p0 = 2 (see Section 1.2.2), and nugget g (1.8): K(xj ,xk|g) = K∗(xj ,xk) + gδj,k. Recall that

the isotropic correlation function (1.10) is parameterized with a single range parameter, d:

K∗(xj ,xk|d) = exp{−||xj − xk||2/d} and that the separable function (1.11) has mX range

parameters d = {d1, . . . , dmX}: K∗(xj ,xk|d) = exp{−
∑mX

i=1 |xij − xik|2/di}. The following

discussion is generic enough to easily extend to other families of correlation functions.

When the discussion applies to both separable and isotropic versions, I shall use d

and d interchangeably, noting that the isotropic version is a special case of the separable one.

Notice the absence of region-specific subscripts (ν) in the above equations, as the discussion

applies generally to any GP. However, when coupled with treed partitioning, it may be possible

to treat formerly non-linear data as piecewise linear and gain a great advantage. In fact this

was the motivation for the limiting linear model of the GP, and will be exploited later.

A possible first approach to extending the work in this Chapter would be to treat the

power p0, which governs the smoothness of the underlying process, as random.

3.1 Limiting Linear Models

A special limiting case of the Gaussian process model is the standard linear model.

Replacing the top (likelihood) line in the hierarchical model given in Eq. (2.1)

Z|β, σ2,K ∼ NN(Fβ, σ2K) with Z|β, σ2 ∼ NN (Fβ, σ2I),
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where I is the N × N identity matrix, gives a parameterization of a linear model. From a

phenomenological perspective, GP regression is more flexible than standard linear regression in

that it can capture nonlinearities in the interaction between covariates (x) and responses (z).

From a modeling perspective, the GP can be more than just overkill for linear data. Parsimony

and over-fitting considerations are the tip of the iceberg. It is also unnecessarily computationally

expensive, as well as numerically unstable. Specifically, it requires the inversion of a large

covariance matrix—an operation whose computing cost grows with the cube of the sample size.

Moreover, large finite d parameters can be problematic from a numerical perspective. Unless g

is also large, the resulting covariance matrix can be numerically singular when the off-diagonal

elements of K are nearly one.

It is common practice to scale the inputs (X) either to lie in the unit cube, or to

have a mean of zero and a range of one. As will be shown in Section 3.1.1, scaled data and

mostly linear predictive surfaces can result in almost singular covariance matrices even when

the range parameter is relatively small (2 < d � ∞). So for some parameterizations, the

GP is operationally equivalent to the limiting linear model (LLM), but comes with none of its

benefits, e.g., speed and stability. This chapter will show how exploiting and/or manipulating

such equivalence can be of great practical benefit. As Bayesians, this means constructing a

prior distribution on K that makes it clear in which situations each model is preferred; i.e.,

when should K → cI? The key idea is to specify a prior on a “jumping” criterion between the

GP and its LLM, thus setting up a Bayesian model selection/averaging framework.

Theoretically, there are only two parameterizations to a GP correlation structure

K(·, ·) which encode the LLM. Though they are well-known, without intervention they are

quite unhelpful from the perspective of practical estimation and inference. The first one is

when the range parameter d is set to zero. In this case K = (1 + g)I, and the result is clearly
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a linear model. The other parameterization may be less obvious.

Cressie (1991) [in Section 3.2.1] analyzes the “effect of variogram parameters on krig-

ing” paying special attention to the nugget (g) and its interaction with the range parameter

(d). He remarks that the larger the nugget the more the kriging interpolator smoothes and in

the limit predicts with the linear mean. However, perhaps more relevant to the forthcoming

discussion is his later remarks on the interplay between the range and nugget parameter in

determining the kriging neighborhood. Specifically, a large nugget coupled with a large range

drives the interpolator towards the linear mean. This is refreshing since constructing a prior

for the LLM by exploiting the former GP parameterization (range d → 0) is difficult, and for

the latter (nugget g → ∞) near impossible. Cressie hints that an (essentially) linear model

may be attainable with nonzero d and finite g.

3.1.1 Exploratory analysis

Before constructing a prior, it makes sense to study the kriging neighborhood and look

for a platform from which to “jump” to the LLM. The following exploratory analysis focuses

on studying likelihoods and posteriors for GPs fit to data generated from the linear model

zi = 1 + 2xi + ε, where εi
iid∼ N(0, 1) (3.1)

using n = 10 evenly spaced x-values in the range [0, 1].

GP likelihoods on linear data

Figure 3.1 shows two interesting samples from (3.1). Also plotted is the generating

line (dot-dashed), the maximum likelihood (ML) linear model (β̂) line (dashed), the mean

predictive mean surface of the ML GP, maximized over d and g and [σ2|d, g] (solid), and its
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95% errorbars (dotted). The ML values of d and g are also indicated in each plot. The GP

likelihoods were evaluated for ML estimates of the regression coefficients β̂. Conditioning on g

and d, the ML variance was computed by solving

0 ≡ d

dσ2
logN(Z|Fβ̂, σ2K) = − n

σ2
+

(Z− Fβ̂)>K−1(Z− Fβ̂)
(σ2)2

.

This gave an MLE with the form σ̂2 = (Y − Fβ̂)>K−1(Z − Fβ̂)/n. For the linear model the

likelihood was evaluated as P (Y) = N10(Fβ̂, σ̂2I), and for the GP as

P (Z|d, g) = N10

[
Fβ̂, σ̂2K{d,g}

]
,

where F = (1,X) and K{d,g} is the covariance matrix generated using K(·, ·) = K∗(·, ·|d) + g

for K∗(·, ·|d) from the isotropic power family with range parameter d.

Both samples and fits plotted in Figure 3.1 have linear looking predictive surfaces, but

only for the one in the top row does the linear model have the maximum likelihood. Though

the predictive surface in the bottom-left panel could be mistaken as “linear”, it was indeed

generated from a GP with large range parameter (d = 2) and modest nugget setting (g) as

this parameterization had higher likelihood than the linear model. The right column of Figure

3.1 shows likelihood surfaces corresponding to the samples in the left column. Also shown is

likelihood value of the MLE β̂ of the linear model (solid horizontal line). The likelihood surfaces

for each sample look drastically different. In the top sample the LLM (d = 0) uniformly

dominates all other GP parameterizations. Contrast this with the likelihood of the second

sample. There, the resulting predictive surface looks linear, but the likelihood of the LLM is

comparatively low.

Illustrating the other limiting linear model parameterization (g → ∞), Figure 3.2
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Figure 3.1: Two simulations (rows) from yi = 1 + 2xi + εi, εi ∼ N(0, 1). Left column shows
GP fit (solid) with 95% errorbars (dotted), maximum likelihood β̂ (dashed), and generating
linear model (β = (1, 2)) (dot-dashed). Right column shows GP(d, g) likelihood surfaces. The
(maximum) likelihood (β̂) of the linear model is indicated by the solid horizontal line.

shows how as the nugget g increases, likelihood of the GP approaches that of the linear model.

The range parameter was set at d = 1. The x-axis of nugget values is plotted on a log scale.

The nugget must be quite large relative to the actual variability in the data be before the

likelihoods of the GP and LLM become comparable. A sample of size n = 100 from (3.1) was

used.

Most simulations from (3.1) gave predictive surfaces like the upper left-hand side of

Figure 3.1 and corresponding likelihoods like the upper-right. But this is not always the case.

Occasionally a simulation would give high likelihood to GP parameterizations if the sample was
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Figure 3.2: Likelihoods as the nugget gets large for an n = 100 sample from Eq. (3.1). The
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comparison.

0.0 0.2 0.4 0.6 0.8 1.0

1.
0

1.
5

2.
0

2.
5

3.
0

10 samples from y=1+2x+e,  e~N(0,1)

x

y

d = 0.032064
g = 0.16667

0.0 0.5 1.0 1.5 2.0

0
5

10
15

20
25

30

likelihood: Linear & GP

d

lik
el

ih
oo

d:
 L

in
ea

r 
&

 G
P

(d
,n

ug
)

0.0 0.2 0.4 0.6 0.8 1.0

1.
0

1.
5

2.
0

2.
5

3.
0

10 samples from y=1+2x+e,  e~N(0,1)

x

y

d = 0.024048
g = 0

0.0 0.5 1.0 1.5 2.0

0
10

20
30

40

likelihood: Linear & GP

d

lik
el

ih
oo

d:
 L

in
ea

r 
&

 G
P

(d
,n

ug
)

Figure 3.3: GP(d, g) fits (left) and likelihood surfaces (right) for two of samples for the linear
model (3.1).
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Figure 3.4: Histograms of the ratio of the maximum likelihood GP parameterization over the
likelihood of the limiting linear model. Only the smaller 90% of the ratios are included in the
histogram. Full summary statistics for the ratio are also shown.

smoothly waving. This is not uncommon for small sample sizes such as n = 10—for example,

consider those shown in Figure 3.3. Waviness becomes less likely as the sample size n grows.

Figure 3.4 summarizes the ratio of the ML GP parameterization over the ML linear

model based on 1000 simulations of ten evenly spaced random draws from (3.1). A likelihood

ratio of one means that the LLM was best for a particular sample. The 90%-quantile histogram

and summary statistics in Figure 3.4 show that the GP is seldom much better than the linear

model. For some samples the ratio can be really large (> 9000) in favor of the GP, but more

than two-thirds of the ratios are close to one—approximately 1/3 (362) were exactly one but

2/3 (616) had ratios less than 1.5. What this means is that posterior inference for borderline

linear data is likely to depend heavily the prior specification of K(·, ·).

For some of the smaller nugget values, in particular g = 0, and larger range settings

d, some of the likelihoods for the GP could not be computed because the imputed covariance
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matrices were numerically singular, and could not be inverted. This illustrates a phenomenon

noted by Neal (1997) who advocates that a non-zero nugget (or jitter) should be included in

the model, if for no other reason, than to increase numerical stability. Numerical instabilities

may also be avoided by allowing p0 < 2, or by using the Matérn family of correlation functions

[see Section 1.2.2]. This phenomenon reappears when examining the posterior of the GP and

LLM.

GP posteriors on linear data

Suppose that rather than examining the multivariate-normal likelihoods of the lin-

ear and GP model, using the ML mean β̂ and variance σ̂2 values, the marginalized posterior

p(K|Z,β0, τ
2,W) of Eq. (2.14) was used, which integrates out β and σ2. Using (2.14) re-

quires specification of the prior p(K), which for the power family means specifying p(d, g).

Alternatively, one could consider dropping the p(d, g) term from (2.14) and look solely at the

marginalized likelihood. However, in light of the arguments above, there is reason to believe

that the prior specification might carry significant weight.

If it is suspected that the data might be linear this bias should be encoded in the prior

somehow. This is a non-trivial task given the nature of the GP parameterizations which encode

the LLM. Pushing d towards zero is problematic because small non-zero d causes the predictive

surface to be quite wiggly—certainly far from linear. Deciding how small the range parameter

(d) should be before treating it as zero—as in Stochastic Search Variable Selection (SSVS)

(George & McCulloch, 1994), or Chapter 12 in (Gilks et al., 1996)—while still allowing a GP to

fit truly non-linear data is no simple task. The large nugget approach is also out of the question

because putting increasing prior density on a parameter as it gets large is impossible. Rescaling

the responses might work, but constructing the prior would be nontrivial, and moreover, such
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an approach would preclude its use in many applications, particularly for adaptive sampling or

sequential design of experiments when one hopes to learn about the range of responses, and/or

search for extrema.

However, for a continuum of large d values (say d > 0.5 on the unit interval) the

predictive surface is practically linear. Consider a mixture of gammas prior for d:

p(d, g) = p(d)× p(g)

= p(g)× 1
2
[G(d|α = 1, β = 20) +G(d|α = 10, β = 10)]. (3.2)

It gives roughly equal mass to small d representing a population of GP parameterizations for

wavy surfaces, and a separate population for those which are quite smooth or approximately

linear. Figure 3.5 depicts p(d) via histogram, ignoring p(g) which is usually taken to be a simple

exponential distribution. Alternatively, one could encode the prior as p(d, g) = p(d|g)p(g)

and then use a reference prior (Berger et al., 2001) for p(d|g). I chose the more deliberate,

independent, specification in order to encode my prior belief that there are essentially two

kinds of processes: wavy and smooth.

Evaluation of the marginalized posterior (2.14) requires settings for the prior mean

coefficients β0, covariance τ2W, and hierarchical specifications (ασ, γσ) for σ2. For now, these

parameter settings are fixed to those which were known to generate the data.

Figure 3.6 shows three samples from the linear model (3.1) along with likelihood and

posterior surfaces. Some of the likelihood and posterior lines suddenly stop due to a numerically

unstable parameterization (Neal, 1997). The GP fits shown in the first column of the figure are

based on the maximum a posteriori (MAP) estimates of d and g. The posteriors in the third

column clearly show the influence of the prior. Nevertheless, the posterior density for large d-
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Figure 3.5: Histogram of the mixture of gammas prior p(d) as given in Eq. (3.2).

values is dis-proportionately high relative to the prior. For all but the sample in the first column,

large d-values represent at least 90% of the cumulative posterior distribution. Samples from

these posteriors would yield mostly linear predictive surfaces. The last sample is particularly

interesting as well as being the most representative across all samples. Here, the LLM (d = 0)

is the MAP GP parameterization, and uniformly dominates all other parameterizations in

posterior density. Still, the cumulative posterior density favors large d-values thus favoring

linear “looking” predictive surfaces over the actual (limiting) linear parameterization.

Figure 3.7 (top) shows a representative MAP GP fit for a sample of size n = 100

from (3.1). Since larger samples have a lower probability of coming out wavy, the likelihood

of the LLM is much higher than other GP parameterizations. However, the likelihood around

d = 0, shown in the middle panel, is severely peaked. Small, nonzero, d-values have extremely

low likelihood. The posterior in the bottom panel has high posterior density on large d values.
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Figure 3.6: Top row (when rotated) shows the GP(d, g) fits; Middle row shows likelihoods and
bottom row shows the integrated posterior distribution for range (d, x-axis) and nugget (g, lines)
settings for three samples, one per each column.
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All other GP parameterizations have low posterior probability relative to that of the LLM

(horizontal solid line). The MAP predictive surface (top panel) has a very small, but noticeable,

amount of curvature.

Ideally, linear looking predictive surfaces should not have to bear the computational

burden implied by full-fledged GPs. But since the LLM (d = 0) is a point-mass (which is the

only parameterization that actually gives an identity covariance matrix), it has zero probability

under the posterior. It would never be sampled in an MCMC, even when it is the MAP estimate.

Section 3.2 develops a prior on the range parameter (d) so that there is high posterior probability

of “jumping” to the LLM whenever d is large. The goal is to do this without actually proposing

d = 0.

GP posteriors and likelihoods on non-linear data

For completeness, Figures 3.8 and 3.9 show fits, likelihoods, and posteriors on non-

linear data. The first column of Figure 3.8 (when rotated) corresponds to a linear sample, and

each successive column corresponds to a sample which is increasingly less linear, ranging from

low degree polynomials to mixtures of exponentials and mixtures of trigonometric functions in

the last column of Figure 3.9. Each sample is of size n = 50. The shape of the prior looses its

influence as the data becomes more non-linear. As the samples become less linear the d-axis

(x-axis) shrinks in order to focus in on the mode. Though in all six cases the MLEs do not

correspond to the MAP estimates, the corresponding ML and MAP predictive surfaces look

remarkably similar (not shown). This is probably due to the fact that the posterior integrates

out β and σ2, whereas the likelihoods were computed with point estimates of these parameters.

62



0.0 0.2 0.4 0.6 0.8 1.0

1.
0

1.
5

2.
0

2.
5

3.
0

10 samples from y=1+2x+e,  e~N(0,1)

x

y

d = 1.005
g = 0.16667
s2 = 0.42225

0.0 0.5 1.0 1.5 2.0

0.
00

00
0

0.
00

00
5

0.
00

01
0

0.
00

01
5

likelihood: Linear & GP

d

lik
el

ih
oo

d:
 L

in
ea

r 
&

 G
P

(d
,n

ug
)

0.0 0.5 1.0 1.5 2.0

0e
+

00
1e

−
35

2e
−

35
3e

−
35

4e
−

35
5e

−
35

6e
−

35

posterior: Linear & GP

d

po
st

er
io

r:
 L

in
ea

r 
&

 G
P

(d
,n

ug
)

Figure 3.7: Top shows the GP(d, g) fit with a sample of size n = 100; middle shows the likelihood
and bottom shows the integrated posterior distribution for range (d, x-axis) and nugget (g, lines)
settings.
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Figure 3.8: Top row (when rotated) shows the GP(d, g) fits; Middle row shows likelihoods and
bottom row shows the integrated posterior distribution for range (d, x-axis) and nugget (g, lines)
settings for four samples, one per each column.
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Figure 3.9: Continued from Figure 3.8.
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p(d) = G(1,20)+G(10,10) and p(b|d)

d

de
ns

ity

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

p(b) = 1
p(b|d)

Figure 3.10: Prior distribution for the boolean (b) superimposed on p(d).

3.2 Model Selection Priors

Motivated by the discussion above, this section sets out to construct a prior for the

“mixture” of the GP with its LLM. The key idea is an augmentation of the parameter space

by mX indicators b = {b}mX

i=1 ∈ {0, 1}mX . The boolean bi is intended to select either the GP

(bi = 1) or its LLM for the ith dimension. The actual range parameter used by the correlation

function is multiplied by b: e.g., K∗(·, ·|bd).1 To encode the preference that GPs with larger

range parameters be more likely to “jump” to the LLM, the prior on bi is specified as a function

of the range parameter di: p(bi, di) = p(bi|di)p(di).

Probability mass functions which increase as a function of di, e.g.,

pγ,θ1,θ2(bi = 0|di) = θ1 +
θ2 − θ1

1 + exp{−γ(di − 0.5)} (3.3)

1i.e. component-wise multiplication—like the “b.∗d” operation in Matlab
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with 0 < γ and 0 ≤ θ1 ≤ θ2 < 1, can encode such a preference by calling for the exclusion of

dimensions i with with large di when constructing K. Thus bi determines whether the GP or the

LLM is in charge of the marginal process in the ith dimension. Accordingly, θ1 and θ2 represent

minimum and maximum probabilities of jumping to the LLM, while γ governs the rate at which

p(bi = 0|di) grows to θ2 as di increases. Figure 3.10 plots p(b|d) with (γ, θ1, θ2) = (10, 0.2, 0.95)

superimposed on the mixture of Gamma prior p(di) from (3.2). The θ2 parameter is taken to

be strictly less than one so as not to preclude a GP which models a genuinely nonlinear surface

using an uncommonly large range setting.

The implied prior probability of the full mX -dimensional LLM is

p(linear model) =
mX∏
i=1

p(bi = 0|di) =
mX∏
i=1

[
θ1 +

θ2 − θ1
1 + exp{−γ(di − 0.5)}

]
. (3.4)

The resulting process is still a GP if any of the booleans bi are one. The primary computational

advantage associated with the LLM is foregone unless all of the bi’s are zero. However, the

intermediate result offers an improvement in numerical stability in addition to describing a

unique transitionary model lying somewhere between the GP and the LLM. Specifically, it

allows for the implementation of semiparametric stochastic processes like Z(x) = βf(x)+ ε(x̃)

representing a piecemeal spatial extension of a simple linear model. The first part (βf(x)) of

the process is linear in some known function of the the full set of covariates x = {xi}mX

i=1 , and

ε(·) is a spatial random process, e.g., a GP, which acts on a subset of the covariates x̃. Such

models are commonplace in the statistics community (Dey et al., 1998). Traditionally, x̃ is

determined and fixed a priori. The separable boolean prior in (3.3) implements an adaptively

semiparametric process where the subset x̃ = {xi : bi = 1, i = 1, . . . ,mX} is given a prior

distribution, instead of being fixed.

Note that since the isotropic family has only one range parameter, only one boolean
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b is needed, and the product can be dropped from (3.4).

3.2.1 Prediction

Prediction under the limiting GP model is a simplification of Eqs. (2.17) and (2.18)

since it is known that K = (1 + g)I. A characteristic of the standard linear model is that all

input configurations (x) are treated as independent conditional on knowing β. This additionally

implies that in (2.17) and (2.18) the terms k(x) and K(x,x) are zero for all x. Thus, the

predicted value of z at x is normally distributed with mean ẑ(x) = f>(x)β̃, and variance

σ̂(x)2 = σ2[1 + τ2f>(x)Wf(x) (3.5)

− τ2f>(x)WF>((1 + g)I + τ2FWF>)−1FWf(x)τ2].

It is helpful to re-write the above expression for the variance as

σ̂(x)2 = σ2[1 + τ2f>(x)Wf(x)] (3.6)

− σ2

[
τ2

1 + g
f>(x)WF>

(
I +

τ2

1 + g
FWF>

)−1

FWf(x)τ2

]
.

A matrix inversion lemma called the Woodbury formula (Golub & Van Loan, 1996) [pp. 51]

or the Sherman-Morrison-Woodbury formula (Bernstein, 2005) [pp. 67; best to see Mathworld

for easy access to both formulas]: states that for (I + V>AV) non-singular

(A−1 + VV>)−1 = A− (AV)(I + V>AV)−1V>A.
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Taking V ≡ F>(1 + g)−
1
2 and A ≡ τ2W in (3.6) gives

σ̂(x)2 = σ2

[
1 + f>(x)

(
W−1

τ2
+

F>F
1 + g

)−1

f(x)

]
. (3.7)

Not only is (3.7) a simplification of the predictive variance given in (3.5), but it should be

familiar. Recall the expression for the posterior variance of the regression coefficients Vβ̃ given

in (2.4). Writing Vβ̃ with K−1 = I/(1 + g) gives

Vβ̃ =
(

W−1

τ2
+

F>F
1 + g

)−1

.

What this means is that the predictive variance for the LLM is actually

σ̂(x)2 = σ2
[
1 + f>(x)Vβ̃f(x)

]
. (3.8)

But this is just the usual result for the predictive variance at x under the standard linear model.

What serendipity! Therefore, the posterior predictive distribution under the LLM is simply

y(x) = N [f>(x)β̃, σ2(1 + f>(x)Vβ̃f(x))]. (3.9)

This means that there is a choice when it comes to obtaining samples from the posterior

predictive distribution under the LLM. Eq. (3.8) is preferred over (3.5) because the latter

involves inverting the N ×N matrix, I + τ2FWF>/(1 + g), whereas the former only requires

the inversion of an mX ×mX matrix.
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3.3 Implementation, results, and comparisons

Here, the GP with jumps to the LLM (hereafter GP LLM) is illustrated on synthetic

and real data. Most of the experiments are in the context of applying the GP LLM at the leaves

of the tree, upgrading the treed GP model of Chapter 2 to a treed GP LLM model. However,

Section 3.3.4 shows an example without treed partitioning. Partition models are an ideal setting

for evaluating the utility of the GP LLM as linearity can be extracted in large areas of the input

space. The result is a uniquely tractable nonstationary semiparametric spatial model.

A separable correlation function is used throughout this section for brevity and con-

sistency, even though in some cases the process which generated the data is clearly isotropic.

Recall that experiments in Section 2.5 of the last chapter all used the isotropic power family.

Proposals for the booleans b are drawn from the prior, conditional on d, and accepted or re-

jected on the basis of the constructed covariance matrix K. The same prior parameterizations

are used for all experiments unless otherwise noted, the idea being to develop a method that

works “right out of the box” as much as possible.

3.3.1 1-d Synthetic Sinusoidal data

Recall the synthetic sinusoidal data from Section 2.5.1. The top panel of Figure 3.11

shows a plot of z(x) evaluated as in (2.20) (with noise) for n = 100 evenly spaced x−values.

A posterior predictive surface is also shown, represented by the mean and 90% quantile lines

which were estimated using the treed GP LLM model. In this example, the linear model was

preferred for 42% of the input domain area on average over 5,000 MCMC samples from the

posterior. It is known from (2.20) that the process is linear for exactly half of the domain. The

bottom panel of Figure 3.11 shows a histogram of the areas under the LLM for each MCMC

sample of 20 repeated draws of size n = 100 from (2.20). The mode can be seen to be near 0.5.
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Figure 3.11: Top: sinusoidal data (2.20) fit with the treed GP LLM for n = 100 evenly spaced
x-values. An average of ∼ 42% of the (domain) of the process was under the LLM. bottom:
histogram of the areas of the domain under the LLM spread over 20 repeated n = 100 samples
from (2.20).
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A similar experiment of 20-fold repeated draws of size n = 100 and predicting at n′ = 200 new

locations, revealed that the treed GP LLM was 27% faster than treed GP alone.

3.3.2 2-d Synthetic Exponential data

Recall from Section 2.5.2 the 2-d input space [−2, 6]×[−2, 6] in which the true response

is given by z(x) = x1 exp(−x2
1−x2

2)+ε, where ε ∼ N(0, σ = 0.001). Figure 3.12 summarizes the

consequences of estimation and prediction with the treed GP LLM for a n = 200 sub-sample of

this data from a regular grid of size 441. The partitioning structure of the treed GP LLM first

splits the region into two halves, one of which can be fit linearly. It then recursively partitions

the half with the “action” into a piece which requires a GP and another piece which is also

linear. The top panel shows a mean predictive surface wherein the LLM was used in over 66%

of the domain on average. This surface was obtained in less than ten seconds on a 1.8 GHz

Athalon. The bottom panel shows a histogram of the areas of the domain under the LLM over

20-fold repeated experiments. The four modes of the histogram clump around 0%, 25%, 50%,

and 75% showing that most often the obvious three-quarters of the space are under the LLM,

although sometimes one of the two partitions will use a very smooth GP. The treed GP LLM

was 40% faster than the treed GP alone when combining estimation and sampling from the

posterior predictive distributions at the remaining n′ = 241 points from the grid.

3.3.3 Motorcycle data

Recall the Motorcycle Accident Dataset from Section 2.5.3. Figure 3.13 shows the

data, and a fit using the treed GP LLM. The top panel shows the mean predictive surface, with

90% quantile error-bars. From the bottom panel, which shows the difference in 95% and 5%

quantiles, it is clear that the tree structure typically partitions the space into three parts. On
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average, 29% of the domain was under the LLM, split between the left low-noise region (before

impact) and the noisier right region. Visually, there is little difference between the fit in Figure

3.13 and the one in Figure 2.7, which did not use jumps to the LLM.

Rasmussen & Ghahramani (2002) analyzed this data by using a Dirichlet process

mixture of Gaussian process (DPGP) experts which reportedly took one hour on a 1 GHz

Pentium. Such times are typical of nonstationary modeling because of the computational effort

required to construct and invert large covariance matrices. In contrast, the treed GP LLM fits

this dataset with comparable accuracy but in less than one minute on a 1.8 GHz Athalon.

Three things make the treed GP LLM so fast relative to most nonstationary spatial

models. (1) Partitioning fits models to less data, yielding smaller matrices to invert. (2) Jumps

to the LLM mean fewer inversions all together. (3) MCMC mixes better because under the

LLM the parameters d and g are out of the picture and all sampling can be performed via

Gibbs steps.

3.3.4 Friedman data

This Friedman data set is the first one of a suite that was used to illustrate MARS

(Multivariate Adaptive Regression Splines) (Friedman, 1991). There are 10 covariates in the

data (x = {x1, x2, . . . , x10}), but the function that describes the responses (Z), observed with

standard Normal noise,

E(Z|x) = µ = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5, (3.10)

depends only on {x1, . . . , x5}, thus combining nonlinear, linear, and irrelevant effects. Com-

parisons are made on this data to results provided for several other models in recent literature.

Chipman et al. (2002) used this data to compare their linear CART algorithm to four other
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methods of varying parameterization: linear regression, greedy tree, MARS, and neural net-

works. The statistic they use for comparison is root mean-square error (RMSE)

MSE =
∑n
i=1(µi − ẑi)2/n RMSE =

√
MSE

where ẑi is the model-predicted response for input xi. The x’s are randomly distributed on the

unit interval. RMSE’s are gathered for fifty repeated simulations of size n = 100 from (3.10).

Chipman et al. provide a nice collection of boxplots showing the results. However, they do not

provide any numerical results, so I have extracted some key numbers from their plots and refer

the reader to that paper for the full results.

I duplicated this experiment using the GP LLM. For this dataset, a single model

was used, not a treed model, as the function is essentially stationary in the spatial statistical

sense (so if I were to try to fit a treed GP, it would keep all of the data in a single partition).

Linearizing boolean prior parameters (γ, θ1, θ2) = (10, 0.2, 0.9) were used, which gave the LLM

a relatively low prior probability of 0.35, for large range parameters di. The RMSEs obtained

for the GP LLM are summarized in the table below.

Min 1st Qu. Median Mean 3rd Qu. Max
GP LLM 0.4341 0.5743 0.6233 0.6258 0.6707 0.7891
LM 1.710 2.165 2.291 2.325 2.500 2.794

Results on the linear model are reported for calibration purposes, and can be seen to be essen-

tially the same as those reported by Chipman et al.. RMSEs for the GP LLM are on average

significantly better than all of those reported for the above methods, with lower variance. For

example, the best mean RMSE shown in the boxplot is ≈ 0.9. That is 1.4 times higher than

the worst one obtained for GP LLM. Further comparison to the boxplots provided by Chipman

et al. shows that the GP LLM is the clear winner.
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In fitting the model, the Markov Chain quickly keyed in on the fact that only the first

three covariates contribute nonlinearly. After burn-in, the booleans b almost never deviated

from (1, 1, 1, 0, 0, 0, 0, 0, 0, 0). From the following table summarizing the posterior for the linear

regression coefficients β it can be seen that the coefficients for x4 and x5 (between double-bars)

were estimated accurately, and that the model correctly determined that {x6, . . . x10} were

irrelevant, i.e., not included in the GP, and had β’s close to zero.

x4 x5 x6 x7 x8 x9 x10

5% Qu. 8.40 2.60 -1.23 -0.89 -1.82 -0.60 - 0.91
β Mean 9.75 4.59 -0.190 0.049 -0.612 0.326 0.066

95% Qu. 10.99 9.98 0.92 1.00 0.68 1.21 1.02

For a final comparison, consider an SVM method (Drucker et al., 1996) illustrated

on this data and compared to Bagging (Breiman, 1996) regression trees. Note that the SVM

method required cross-validation (CV) to set some of its parameters. In the comparison, 100

randomized training sets of size n = 200 were used, and MSEs were collected for a (single) test

set of size n′ = 1000. An average MSE of 0.67 is reported, showing the SVM to be uniformly

better than the Bagging method with an MSE of 2.26. I repeated the experiment for the GP

LLM (which requires no CV!), and obtained an average MSE of 0.293, which is 2.28 times

better than the SVM, and 7.71 times better than Bagging.

3.3.5 Boston housing data

A commonly used data set for validating multivariate models is the Boston Hous-

ing Data (Harrison & Rubinfeld, 1978) available from the UCI Machine Learning repository

(Newman et al., 1998), which contains 506 responses over 13 covariates. Chipman et al.

(2002) showed that their (Bayesian) linear CART model gave lower RMSEs, on average, com-

pared to a number of popular techniques (the same ones listed above). The treed GP LLM is
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a generalization of the linear CART model, retaining the original linear CART as an accessible

special case. Though computationally more intensive than linear CART, the treed GP LLM

gives impressive results. To mitigate some of the computational demands, the LLM can be

used to initialize the Markov Chain by breaking the larger data set into smaller partitions.

Before treed GP burn-in begins, the model is fit using only the faster (limiting) linear CART

model. Once the treed partitioning has stabilized, this fit is taken as the starting value for

a full MCMC exploration of the posterior for the treed GP LLM. This initialization process

allows fitting of GPs to smaller segments of the data, reducing the size of matrices that need to

be inverted and greatly reducing computation time. For the Boston Housing data, the settings

(γ, θ1, θ2) = (10, 0.2, 0.95) were used, which gives the LLM a prior probability of 0.9513 ≈ 0.51,

when the di’s are large.

Experiments in the Bayesian linear CART paper (Chipman et al., 2002) consist of cal-

culating RMSEs via 10-fold CV. The data are randomly partitioned into 10 groups, iteratively

trained on 9/10 of the data, and tested on the remaining 1/10. This is repeated for 20 random

partitions, and boxplots are shown. The logarithm of the response is used, and CV is only used

to assess predictive error, not to tune parameters. Samples are gathered from the posterior

predictive distribution of the linear CART model for six parameterizations using 20 restarts

of 4000 iterations. This seemed excessive, but I followed suit for the treed GP LLM in order

to obtain a fair comparison. My “boxplot” for training and testing RMSEs are summarized

numerically in the table below. As before, linear regression (on the log responses) is used for

calibration.

Min 1st Qu. Median Mean 3rd Qu. Max
train GP LLM 0.0701 0.0716 0.0724 0.0728 0.0730 0.0818

LM 0.1868 0.1869 0.1869 0.1869 0.1869 0.1870
test GP LLM 0.1321 0.1327 0.1346 0.1346 0.1356 0.1389

LM 0.1926 0.1945 0.1950 0.1950 0.1953 0.1982
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The RMSEs for the linear model have extremely low variability. This is similar to the results

provided by Chipman et al. and was a key factor in determining that the experiment was well-

calibrated. Upon comparison of the above numbers with the boxplots in Chipman et al., it can

readily be seen that the treed GP LLM is leaps and bounds better than linear CART, and all of

the other methods in the study. The treed GP LLM’s worst training RMSE is almost two times

lower than the best ones from the boxplot. All testing RMSEs are lower than the lowest ones

from the boxplot, and the median RMSE (0.1346) is 1.26 times lower than the lowest median

RMSE (≈ 0.17) from the boxplot.

More recently, Chu et al. (Chu et al., 2004) [see Table V] performed a similar experi-

ment, but instead of 10-fold CV, they randomly partitioned the data 100 times into training/test

sets of size 481/25 and reported average MSEs on the un-transformed responses. They compare

their Bayesian SVM regression algorithm (BSVR) to other high-powered techniques like Ridge

Regression, Relevance Vector Machine, GPs, etc., with and without ARD (automatic relevance

determination). Repeating their experiment for the treed GP LLM gave an average MSE of

6.96 compared to that of 6.99 for the BSVR with ARD, making the two algorithms by far

the best in the comparison. However, without ARD the MSE of BSVR was 12.34, 1.77 times

higher than the treed GP LLM, and the worst in the comparison. The reported results for a

GP with (8.32) and without (9.13) ARD showed the same effect, but to a lesser degree. Thus

the GP LLM might similarly benefit from an ARD-like approach. Perhaps not surprisingly, the

average MSEs do not tell the whole story. The 1st, median, and 3rd quantile MSEs obtained

for the treed GP LLM were 3.72, 5.32 and 8.48 respectively, showing that its distribution had a

heavy right-hand tail. This may be an indication that several responses in the data are either

misleading, noisy, or otherwise very hard to predict.
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3.4 Conclusion

Gaussian processes are a flexible modeling tool which can be overkill for many ap-

plications. This chapter has shown how the limiting linear model parameterization of the GP

can be both useful and accessible in terms of Bayesian posterior estimation and prediction.

The benefits include speed, parsimony, and a relatively straightforward implementation of a

semiparametric model. Combined with treed partitioning, the GP LLM extends linear CART,

resulting in a uniquely nonstationary, semiparametric, tractable, and highly accurate regression

tool.

The next chapter will demonstrate the impact of the treed GP LLM employed as a

surrogate model for the sequential design of computer experiments. Empirical evidence suggests

that many computer experiments are nearly linear. That is, either the response is linear in

most of its input dimensions, or the process is entirely linear in a subset of the input domain.

The Bayesian treed GP LLM provides a full posterior predictive distribution (particularly a

nonstationary and thus region-specific estimate of predictive variance) that can be used towards

active learning in the input domain. Exploitation of these characteristics can yield an efficient

framework for the adaptive exploration of computer experiment parameter spaces.
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Chapter 4

Adaptive Sampling

Much of the current work in large-scale computer models starts by evaluating the

model over a hand-crafted grid of input configurations. After the full grid has been run, a

human may identify interesting regions and perform additional runs if desired.

This chapter is concerned with developing improvements to this approach. The first

task is to introduce the asynchronous distributed computer model commonly used to run com-

plex computer codes. Protocols can then be developed and used to simulate state-of-the-art

supercomputers. Methodologies can then explored for choosing new input configurations based

on region-specific estimates of uncertainty, provided by the nonstationary treed GP, and/or

GP LLM surrogate model. Illustrations are carried out on synthetic nonstationary data sets.

Finally, a fully developed, asynchronous, Bayesian adaptive sampling (BAS) framework is inter-

faced with NASA supercomputers in order to sequentially design an experiment for a re-usable

launch vehicle called the Langley Glide-Back booster (LGBB).
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Figure 4.1: Emcee program feeds the adaptive sampler with finished responses, and selects new
configurations from a queue constructed by the sampler.

4.1 Asynchronous distributed computing

High fidelity computer experiments are usually run on clusters of independent comput-

ing agents, or processors. A Beowulf cluster is a good example. At any given time, each agent

is working on a single input configuration. Multiple agents allow several input configurations to

be run in parallel. Simulations for new configurations begin when an agent finishes execution

and becomes available. Therefore, simulations may start and finish at different, perhaps even

random, times. The cluster is usually managed asynchronously by a master controller (emcee)

program that gathers responses from finished simulations, and supplies free agents with new

input configurations.

The goal is to have the emcee program interact with an adaptive sampling program

that supplies it with well-chosen candidates. In turn, the emcee feeds the sampling program with

finished responses when they become available, so that the surrogate model can be updated.

A diagram of this process is shown in Figure 4.1. A treed GP or GP LLM is an ideal surro-

gate model because it is fast, nonstationary, semiparametric, and can provide region-specific

estimates of uncertainty. The next section describes how the adaptive sampler can use the
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surrogate model to help populate the emcee’s candidate queue, implementing an asynchronous

sequential design of experiments.

4.2 Asynchronous sequential DOE via Active Learning

Active learning, or sequential design of experiments (DOE), in the context of estimat-

ing response surfaces, is called adaptive sampling. Adaptive sampling starts with a relatively

small space-filling “peppering” of input data, and then proceeds by fitting a model, estimat-

ing predictive uncertainty, and then choosing future samples with the aim of minimizing some

measure of uncertainty, or to try to maximize information. The process repeats until some

threshold in predictive uncertainty or information is met, or a maximum number of samples

have been taken. In this iterative fashion the model adapts to the data, and the new data

either reinforces, or suggests a modification to, the old model.

Nonstationary models like the treed GP model from Chapter 2, and the treed GP

LLM model of Chapter 3, fit independent stationary models in different regions of the input

space. Uncertainty in partition models and uncertainty in the posterior predictive response

distribution can vary over the input space. Region-specific uncertainty estimates can guide

sampling. As responses become available, the adaptive sampler can update the model, and

make more informed decisions in the future.

In the statistics community, there are a number of established methodologies for (se-

quentially) designing experiments [see Section 1.2.4]. However, some classic criticisms for tradi-

tional DOE approaches precluded such a canned approach. For example, the number of support

points in an optimal design is often equal to the number of model parameters; these points are

usually closer to the boundary of the region, where measurement error can be severe, and re-

sponses can be difficult to elicit, and model checking is often not feasible. Possible remedies
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may arise when one considers designs that account for model uncertainty (DuMouchel & Jones,

1994; DuMouchel & Jones, 1985; O’Hagan, 1985). According to Chaloner & Verdinelli (1995)

“a tradeoff is recognized between choosing design points on the boundary ... to maximize in-

formation and choosing them toward the center ... where the model is believed to hold better

approximation.” Other reasons for not taking the standard statistical approach include speed,

the difficulty inherent in using Monte Carlo to estimate the surrogate model, lack of support for

partition models, and the desire to design for an asynchronous emcee interface where responses

and computing nodes become available at random times.

My solution takes a hybrid approach that combines standard DOE with methods from

the Active Learning literature [see Section 1.2.4]. The basic idea is to use optimal sequential

designs from the DOE literature, like D−optimal, minimax, or LH, as candidates for future

sampling. Then, the treed GP or GP LLM algorithm can provide Monte Carlo estimates

of model uncertainty, via the ALM or ALC algorithm, which can be used to populate, and

sequence, the candidate queue used by the emcee [see Figure 4.1]. That way, candidates are well-

spaced out relative to themselves, and to the already sampled locations. Additionally, the most

informative of these candidates can be first in line for simulation when agents become available.

Fleshing these ideas out is the focus of the following two subsections. Details pertaining to

implementation are left to Section 4.3.

For the remainder of this chapter I shall refer to the surrogate model as “treed GP”,

rather than “treed GP with or without jumps to the LLM”. Most of the experimental results

presented here use the treed GP LLM. Results without jumps to the LLM are strikingly similar,

but with a slower implementation in some cases.
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4.2.1 ALM and ALC algorithms

A hybrid approach to designing experiments employs active learning techniques. The

idea is to choose a set of candidate input configurations X̃ (say, a D−optimal or LH design) and

an active learning rule for determining the order in which they should be added into the design.

Two criteria for choosing new sampling locations have been proposed [see Section 1.2.4]. Both

are based on the posterior predictive distribution P (z|x). For example, consider an approach

which maximizes the information gained about model parameters by selecting the location

x̃ ∈ X̃ which has the greatest standard deviation in predicted output. This approach has

been called ALM for Active Learning–Mackay, and has been shown to approximate maximum

expected information designs (MacKay, 1992). MCMC posterior predictive samples provide a

convenient estimate of location-specific variance, namely the width of predictive quantiles.

An alternative algorithm is to select x̃ minimizing the expected reduction in squared

error averaged over the input space (Cohn, 1996), called ALC for Active Learning–Cohn. Rather

than focusing on design points which have large predictive variance, ALC selects configurations

that would lead to a global reduction in predictive variance. Conditioning on T , the reduction

in variance at a point y ∈ Yν , given that the location x̃ ∈ X̃ν is added into the data, is defined

as (region subscripts suppressed):

∆σ̂2
y(x) = σ̂2

y − σ̂2
y(x),

where σ̂2
y = σ2[κ(y,y) − q>N (y)C−1

N q>N (y)],

and σ̂2
y(x) = σ2[κ(y,y) − qN+1(y)>C−1

N+1qN+1(y)].

The above equations use notation for the GP predictive variance for region rν given in (2.18).

The partition inverse equations (Barnett, 1979), for a covariance matrix CN+1 in terms of CN ,
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gives a means to arrive at a nice expression for ∆σ2
y(x):

∆σ̂2
y(x) =

σ2
[
q>N (y)C−1

N qN (x)− κ(x,y)
]2

κ(x,x)− q>N (x)C−1
N qN (x)

. (4.1)

The details of this derivation are included in Appendix C.1. For y and x̃ not in the same region

rν , let ∆σ2
y(x̃) = 0. The reduction in predictive variance that would be obtained by adding x

into the data set is calculated by averaging over y ∈ Y:

∆σ2(x) =
1
|Y|

∑
yi∈Y

∆σ̂2
yi

(x) (4.2)

The benefits of ALC include that ∆σ2(x) is easily approximated using MCMC meth-

ods. Also, compared to ALM, adaptive samples under ALC are less heavily concentrated near

the boundaries of partitions. The computational demands of both algorithms are a function of

the number of candidate locations. However, ALC requires an order of magnitude more com-

puting time than ALM. ALC is also more sensitive to the location and region-specific count of

candidates, especially Y. If the configurations in Y are not distributed uniformly thought the

input space, then ∆σ2(x̃) will be (artificially) magnified closer to high-density Y regions.

For a nice comparison between variance reduction techniques like ALM and ALC,

including LH, on computer code data, see work by McKay et al. (1979). Seo et al. (2000)

provide comparisons between ALC and ALM using standard GPs. In both papers, the model

is assumed known in advance. Seo et al. take Y = X̃ to be the full set of un-sampled locations

in a pre-specified uniform grid. Assuming that the model is known a priori is at loggerheads

with adaptive sampling. If the goal of adaptive sampling is to learn the responses online, and

adjust the model accordingly, then claiming to know the model ahead of time makes little

sense. Also, obtaining samples from ∆σ2
y(x̃) via MCMC on a dense high-dimensional grid is
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computationally expensive.

In the treed GP application of ALC, the model is not assumed known a priori. Instead,

Bayesian MCMC posterior inference on {T ,θ} is performed, and then samples from ∆σ2
y(x̃) are

taken conditional on samples from {T ,θ}. Candidates Y = X̃ can come from the sequential

treed D-optimal design, described in the following subsection, so that they are well-spaced

relative both to themselves and to the already sampled configurations, in order to encourage

exploration.

Applying the ALC algorithm under the limiting linear model is computationally less

intense compared to ALC under a full GP. Starting with the predictive variance given in (3.8),

the expected reduction in variance under the linear model is:

∆σ̂2
y(x) =

σ2[f>(y)Vβ̃N
f(x)]2

1 + g + f>(x)Vβ̃N
f(x)

. (4.3)

Appendix C.2 contains details of the derivation. Since only an mX ×mX inverse is required,

Eq. (4.3) is preferred over simply replacing K with I(1 + g) in (4.1), which requires an N ×N

inverse. Averaging over y proceeds as in (4.2), above.

Given these two hybrid approaches to sequential design, constructing a list of input

configurations for the emcee to send to available computing agents is simply a matter of sorting

candidate locations ranked via either ALM or ALC. That way, the most informative locations

are first in line for simulation when agents become available.

4.2.2 Choosing candidates

Configurations located close to one another in the input space have high likelihood of

being clumped together when sorted by ALM or ALC. This means that the chances of sampling

two geographically disparate input configurations is low unless their predicted uncertainties are
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more similar than other candidates in the neighborhood. The result can be a “clumping” of

adaptive samples, rather than ones that better explore the input space. This phenomenon is

largely an artifact of the delayed (and uncertain) response time for agent-based supercomputer

simulation. That is, if responses were available immediately, and the model instantaneously

updated, a local reduction in model uncertainty would lower the utility of neighboring config-

urations, giving way to exploration of other high-uncertainty regions of the input space.

Sub-sampling the remaining candidates from a grid, or choosing candidate locations

randomly, are possible ways of generating candidate designs. However, they do not guard

against a clumping of adaptive samples. A better approach would be to choose candidates from

a sequential optimal design. That way, candidates will be spaced out relative to themselves, and

relative to the configurations which have already been sampled. A sequential D-optimal design

is a good first choice because it encourages exploration. But traditional D-optimal designs

are based on a known parameterization of a single GP model, and are thus not well-suited to

MCMC based treed-partition models. A D-optimal design may not choose candidates in the

“interesting” part of the input space, because sampling is high there already. Classic optimal

design criteria have not been designed for partition models, wherein “closeness” is not measured

homogeneously across the input space.

Another disadvantage to D-optimal design is computational, for the same reason that

GPs become intractable as the number of inputs gets large—namely decomposing and finding

the determinant of a large covariance matrix. Since determinant space can have many local

minima [see Section 1.2.4], a clever search strategy is required.

One possible solution to both computational and nonstationary modeling issues is to

use treed sequential D-optimal design, outlined below.
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Treed sequential optimal design

Instead of using a global sequential D-optimal design, consider computing a separate

sequential D-optimal design in each of the partitions depicted by the maximum a posteriori

(MAP) tree T̂ . The number of candidates selected from each region, {r̂ν}R̂ν=1 of T̂ , can be

proportional to the volume of the region. If working on a grid, the number can be proportional

to the number of grid locations in the region. MAP parameters θ̂ν |T̂ can be used in creating the

candidate design, or “neutral” or “exploration encouraging” parameters can be used instead.

Separating design from inference by using custom parameterizations in design steps, rather than

inferred ones, is a common practice in the SDACE (sequential design and analysis of computer

experiments) community (Santner et al., 2003). Small range parameters, for learning about

the wiggliness of the response, and a modest nugget parameter, for numerical stability, tend to

work well together.

Since optimal design is only used to select candidates, and is not the final step in

adaptively choosing samples, employing a high-powered search algorithm, e.g., a genetic algo-

rithm (Hamada et al., 2001), seems excessive. Finding a local maxima is generally sufficient to

get well-spaced candidates. I chose a simple stochastic ascent algorithm which can find local

maxima without calculating too many determinants. The R̂ search algorithms can be run in

parallel, and typically invert matrices much smaller than N ×N .

Figure 4.2 shows an example sequential treedD-optimal design for the 2-d Exponential

data [Section 2.5.2 & Section 3.3.2], found by simple stochastic search. Input configurations

are sub-sampled from the remaining locations in a 21× 21 grid. Circles in the figure represent

the chosen locations of the new candidate design X̃ relative to the existing sampled locations

X (dotted). There are roughly the same number of candidates in each quadrant, despite the

fact that the density of samples in the first quadrant is already two-times that of the others. A
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Figure 4.2: Example of a treedD-optimal design for the 2-d Exponential data sub-sampled from
the remaining locations in a 21 × 21 grid. Solid dots represent previously sampled locations.
Circles are the candidate design based on T̂ , also shown.

classical (non-treed) D-optimal design would have chosen fewer points in the first quadrant in

in order to equalize the density relative to the other three quadrants.

An alternative approach to using T̂ would be to average over the posterior distri-

bution of the full surrogate model {T ,θ}, obtained via MCMC sampling. Such an approach

is ambitious, but not impossible. Müller et al. (2004) show how optimal designs, posed as a

decision problem, can be found via inhomogeneous Markov chain simulation. The idea is to set

up a positive and bounded utility on design space which can be treated as a probability. Then,

samples from the joint “posterior distribution” of design and surrogate model parameter space

can be taken in a simulated annealing-like fashion, so that the Markov chain eventually concen-

trates on high utility designs [also see Section 1.2.4]. I made a serious effort in implementing

this approach for obtaining optimal treed candidate designs, but had marginal success at best.
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Compared to the relative simplicity and high quality of candidate designs obtained using the

MAP T̂ method described above (and in Figure 4.2), the inhomogeneous Markov chain method

is overkill.

4.3 Implementation methodology

Bayesian adaptive sampling (BAS) proceeds in trials. Suppose N samples and their

responses have been gathered in previous trials, or from a small initial design before the first

trial. In the current trial, a treed GP model is estimated for data {xi, zi}Ni=1. Samples are

gathered, in accordance with the ALM or ALC algorithm conditional on {θ, T }, at candidate

locations X̃ chosen from a sequential treed D-optimal design. The candidate queue is populated

with a sorted list of candidates. BAS gathers finished and running input configurations from

the emcee and adds them into the design. Predictive mean estimates are used as surrogate

responses for unfinished (running) configurations until the true response is available. New

trials start with fresh candidates.

I developed two implementations of an artificial clustered simulation environment,

with a fixed number of agents, in order to simulate the parallel and asynchronous evaluation

of input configurations, whose responses finish at random times. One implementation is in

C++ and uses the message passing features of PVM (Parallel Virtual Machine) to communicate

with the adaptive sampler. The second implementation is in Perl and was designed to mimic,

and interface with, the Perl modules at NASA which drive their experimental design software.

Experiments on synthetic data, in the next section, will use this interface.

BAS, as used for the LGBB experiment in Section 4.4.3, interfaces with the Perl

module developed at NASA to submit jobs to the supercomputer Columbia. Multi-dimensional

responses, as in the LGBB experiment, are treated as independent, i.e. each response has its
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own treed GP surrogate model, mZ surrogates total. Uncertainty estimates (via ALM or ALC)

are pooled across the models for each response. The MAP tree T̂ , used for creating sequential

treed D-optimal candidates, is taken from the surrogates of each of the mZ responses in turn.

Treating highly correlated physical measurements as independent is a crude approach.

However, it still affords remarkable results, and allows the use of PThreads to get a highly par-

allel implementation. Coupled with the producer/consumer model for parallelizing prediction

and estimation [from Section 2.4], a factor of 2mZ speedup for 2mZ processors can be obtained,

where mZ dimension of the response space. Cokriging, and other approaches to modeling mul-

tivariate (correlated) responses, are beyond the scope of this work.

Chipman et al. (1998) recommend running several parallel chains, and sub-sampling

from all chains in order better explore the posterior distribution of the tree (T ). Rather than

run multiple chains explicitly, the trial nature of adaptive sampling can be exploited: at the

beginning of each trial the tree is restarted, or randomly pruned back. Although the tree chain

associated with an individual trial may find itself stuck in a local mode of the posterior, in the

aggregate of all trials the chain(s) explore the posterior of tree-space nicely. Random pruning

represents a compromise between restarting and initializing the tree at a well-chosen starting

place. This tree inertia usually affords shorter burn-in of the MCMC at the beginning of each

trial. The tree can also be initialized with a run of the Bayesian Linear CART model, as in

Section 3.3, for a faster burn-in of the treed GP chain.

Each trial executes at least B burn-in and T total MCMC sampling rounds. Samples

are saved every E rounds in order to reduce the correlation between draws by thinning. Good

default values are B = 2000, T = 7000, and E = 2 for a total of (T − B)/E = 2500 rounds

in which samples are saved. Samples of ALM and ALC statistics only need be gathered every

E rounds, so thinning cuts down on the computational burden as well. If the emcee has no
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responses waiting to be incorporated by BAS at the end of T MCMC rounds, then BAS can

run more MCMC rounds, either continuing where it left off, or after re-starting the tree. New

trials, with new candidates, start only when the emcee is ready with a new finished response.

Such is the design so that the computing time of each BAS trial does not affect the rate of

sampling. Rather, a slow BAS runs fewer MCMC rounds per finished response, and re-sorts

candidates less often compared to a faster BAS. A slower adaptive sampler yields less optimal

sequential samples, but always offers an improvement over naive gridding.

4.4 Results and discussion

In this section, sequential experimental designs are built for synthetic and real data

with Bayesian Adaptive Sampling (BAS) and the treed GP as a surrogate model. The synthetic

sinusoidal and exponential data from previous chapters facilitate illustration and comparison

between ALC, ALM, and other approaches from the literature. Finally, Section 4.4.3 returns

to the motivating NASA rocket boost experiment, the LGBB.

4.4.1 1-d Synthetic Sinusoidal data

Recall again the synthetic sinusoidal data from Sections 2.5.1 and 3.3.1. Figures 4.3,

4.4 & 4.5 show three snap-shots, illustrating the evolution BAS on this data using the the ALC

algorithm with treed D-optimal candidates. The top panel of each figure plots the estimated

surface in terms of posterior predictive means (solid-black) and 90% intervals (dashed-red).

The MAP tree T̂ is shown as well. The bottom panel summarizes the ALM and ALC statistics

(scaled to show alongside ALM) for comparison. Ten D-optimally spaced samples were used

as an initial “peppering” design.

The snapshot in Figure 4.3 was taken after BAS had gathered a total of thirty samples.
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Figure 4.3: Sine data after 30 adaptively chosen samples. Top: posterior predictive mean
and 90% quantiles, and MAP partition T̂ . Bottom: ALM (black-solid) and ALC (red-dashed)
statistics.
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BAS recently learned that there is probably one partition near x = 10, with roughly the same

number of samples on each side. The bottom of the figure shows that predictive uncertainty

(under both ALM and ALC) is higher on the left side than on the right. ALM and ALC are in

relative agreement, however the transition of ALC over the partition boundary is more smooth.

The ALM statistics are “noisier” than ALC because the former is based on quantiles, and the

latter on averages (4.2). Although both ALM and ALC are shown, only ALC was used to select

adaptive samples.

Figure 4.4 shows a snapshot taken after 45 samples were gathered. BAS has sampled

more heavily in the sinusoidal region, and learned a great deal. There are almost twice as

many samples to the left of the partition, as compared to the right. ALM and ALC are in less

agreement here than in Figure 4.3. In particular, they have different modes. Also, ALC is far

less concerned with uncertainty near the partition boundary, than it is, say, near x = 7.

Finally, the snapshot in Figure 4.5 was taken after 97 samples had been gathered.

By now, BAS has learned about the secondary cosine structure in the left-hand region. It has

focused almost three-times more of its sampling effort to the left of the single partition in T̂ ,

compared to the right. ALM and ALC both have high uncertainty near the partition boundary,

but are otherwise in stark disagreement about where to sample next. ALM is larger everywhere

on the left, than it is on the right. ALC has peaks on the left which are higher than on the

right, but its valleys are lower.

In summary, the top panels of Figures 4.3, 4.4 & 4.5 track the the treed GP surrogate

model’s improvements in its ability to predict the mean, via the increase in resolution from one

figure to the next. From the scale of y-axes on the bottom panels of the three figures, one can

also see that as more samples are gathered, the variance in the posterior predictive distribution

of the treed GP decreases as well.
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Figure 4.4: Sine data after 45 adaptively chosen samples. Top: posterior predictive mean
and 90% quantiles, and MAP partition T̂ . Bottom: ALM (black-solid) and ALC (red-dashed)
statistics.
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Figure 4.6: Mean-squared error (MSE) on the sinusoidal data compared to size 100 and 200
Latin Hypercube (LH) samples.

Despite the disagreements between ALM and ALC during the evolution of BAS, it

is interesting to note that difference between using ALC and ALM on this data is negligible.

This general theme will be noticed in other experiments as well. This is likely due to the high

quality of candidates chosen using a treed D-optimal design. Treed D-optimal designs prevent

the clumping behavior that tends to hurt ALM, but to which ALC is somewhat less prone.

Comparison

Perhaps the best illustration of how BAS learns and adapts over time is to compare

it to something that is, ostensibly, less adaptive. Consider the plot in Figure 4.6. It shows

mean-squared error (MSE) as a function of the size of the design (i.e. the number of adaptive

samples). The plot shows that the MSE of BAS decreases steadily as samples are added, despite
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as BAS) compared to ALM and ALC with stationary GP’s as in Seo et al. (2000).

the fact that fewer points are added in the linear region. Moreover it shows that BAS yields

significantly lower MSE compared to using the same treed GP surrogate model with LH, rather

than adaptive, sampling. In fact, the figure shows that adaptive sampling is at least two-times

more efficient than LH sampling on this data.

Another constructive comparison is to show how BAS measures up against ALM and

ALC, as implemented by Seo et al. (2000)—with a stationary GP surrogate model [see Section

1.2.4]. Seo et al. make the very powerful assumption that correct covariance structure is known

at the start of sampling. Thus, the model need not be updated in light of new responses. Also,

candidate locations Y = X̃ are taken to be the remaining unsampled locations from a pre-

defined grid. Figure 4.7 shows an MSE plot comparing BAS to adaptive sampling with ALC

and ALM based on an MAP parameterized—in hindsight—stationary GP model. The plot
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shows that as soon as BAS has enough samples to learn the partitioned covariance structure,

it outperforms ALM and ALC based on a stationary model. Clearly, the treed GP is the right

surrogate model for this dataset.

4.4.2 2-d Synthetic Exponential data

The nonstationary treed GP surrogate model has an even greater impact on adaptive

sampling in a higher dimensional input space. For an illustration, consider again the synthetic

exponential data from Sections 2.5.2 & 3.3.2. Figure 4.8 shows a snapshot after 30 adaptive

samples have been gathered with BAS under the ALC algorithm. The bottom panel shows the

single partition of T̂ , with samples evenly split between the two regions. Room for improvement

is evident in the mean predictive surface (top panel). Figure 4.9 shows surfaces for ALM (top)

and ALC (bottom), which can be used as a guide to adaptive sampling.

After 72 adaptive samples have been selected, the situation is greatly improved. Figure

4.10 shows a posterior predictive surface with all the right ingredients: two partitions in T̂ , and

heavier sampling in the first quadrant compared to the rest of the input space. ALM and ALC,

in Figure 4.11, agree that the first quadrant most interesting, although ALC is less confident.

They disagree less about where, specifically, to sample next.

Finally, Figures 4.12 & 4.13 show a snapshot taken after the 123 adaptive samples.

The predictive surface looks flawless. Almost 3/4 of the samples are located in the first quadrant

which occupies only 1/4 of the total input space. The scale of the norm of predictive quantiles

(ALM), in the top panel of Figure 4.13, is about half the height of those of the previous

snapshot in Figure 4.11, everywhere except near the minima/maxima. ALM would choose to

sample there next. ALC (bottom) shows that global uncertainty in the quadrant can be reduced

so long as samples are taken in the interior of the region.
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Figure 4.8: Exponential data after 30 adaptively chosen samples. Top: posterior predictive
mean surface; Bottom: Sampled locations and MAP partition T̂ .
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adaptively chosen samples from the exponential data.
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104



-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-2
-1

 0
 1

 2
 3

 4
 5

 6

-2-1 0 1 2 3 4
 5 6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

z

Mean posterior predictive

x

y

z

−2 0 2 4 6

−
2

0
2

4
6

drawn points & MLE partition

x

y

Figure 4.12: Exponential data after 123 adaptively chosen samples. Top: posterior predictive
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Figure 4.14: Mean-squared error (MSE) on the exponential data compared to size 100 and 200
Latin Hypercube (LH) samples.

As before, with the sinusoidal data of the previous section, despite the different recom-

mendations made by ALM and ALC, the results are quite similar when ALM is used instead.

Comparison

As with the sinusoidal data of the last subsection, Figure 4.14 shows mean-squared

error (MSE) as a function of the size of the design. Basically, the same conclusions can be

drawn here: MSE of BAS decreases steadily as samples are added, despite that most of the

sampling occurs in the first quadrant; adaptive sampling is at least two-times more efficient

than LH sampling on this data.

Compared to the stationary GP implementation of ALC and ALM by Seo et al. (2000),

BAS is again the winner. See Figure 4.15. Unlike the sinusoidal data, the exponential data is
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Figure 4.15: Mean-squared error (MSE) on the exponential data using the ALM algorithm
(labeled as BAS) compared to ALM and ALC with stationary GP’s as in Seo et al. (2000).

not defined by step functions. Transitions between partitions are more smooth. Thus it takes

BAS longer to learn about T , and the corresponding three GP models in each region of T̂ .

Once it does however—after about 50 samples—BAS outperforms the stationary model.

4.4.3 LGBB CFD Experiment

The final experiment is the motivating example for this work. It is the output from

computational fluid dynamics simulations of a proposed reusable NASA launch vehicle, called

the Langley Glide-Back Booster (LGBB). Simulations involved the integration of the inviscid

Euler equations over a mesh of 1.4 million cells (0.8 million cells were used for the supersonic

cases). A slice through some cells and the geometry of the LGBB is shown in Figure 4.16.

In the LGBB experiment, three input parameters are varied over (side slip angle,

speed, and angle of attack), and for each setting of the input parameters, six outputs (lift,
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Figure 4.16: A slice through some cells and the geometry of the Langley Glide-Back Booster.

drag, pitch, side-force, yaw, and roll) are monitored. Each run of the Euler solver on an

input triplet takes on the order of 5-20 hours on a high end workstation. All six responses

are computed simultaneously. In a previous experiment, a supercomputer interface was used

to launch runs at over 3,250 input configurations in several hand-crafted batches. The panels

of Figure 1.1 [in Chapter 1] show plots of the resulting lift response as a function of Mach

(speed) and alpha (angle of attack), with beta (side-slip angle) fixed to zero. A more detailed

description of this system and its results are provided by Rogers et al. (2003). Some results

therein will be summarized below, along with the comparisons to follow.
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BAS for the LGBB is illustrated pictorially by the remaining figures in this section.

The experiment was implemented on the NASA supercomputer Columbia—a fast and highly

parallelized architecture, but with an extremely variable workload. The emcee algorithm of

Section 4.1 was designed to interface with AeroDB, a database queuing system used by NASA

to submit jobs to Columbia, and a set of CFD simulation codes called cart3d. To minimize

impact on the queue, the emcee was restricted to ten submitted simulation jobs at a time.

Candidate locations were sub-sampled from a 3-d grid consisting of 37,909 configurations.

Figure 4.17 shows the 780 configurations sampled by BAS for the LGBB experiment, in

two projections. The top panel shows locations as a function of Mach (speed) and alpha (angle

of attack), projecting over beta (side slip angle); the bottom panel shows Mach versus beta,

projecting over alpha. NASA recommended restricting the number of possible beta settings to

a handful, presumably to facilitate easy examination of the posterior surfaces in 2-d slices. The

top panel in the figure shows that most of the configurations chosen by BAS were located near

Mach one, with highest density for large alpha. Samples are scarce for Mach greater than two.

The bottom panel shows uniform sampling across beta settings. A small amount of random

noise has been added to the samples for visibility purposes.

After samples were gathered, the treed GP model was used in order to gather samples

from the posterior predictive distribution at every location in the full 37,909 grid. Figure 4.18

shows a slice of the lift response, for beta = 0, plotted as a function of Mach and alpha. The top

panel is a perspective and image plot, whereas the bottom panel shows results from the initial

experiment for comparison. The plot in the top pane is more smooth, even though it is based

on far fewer sampled locations. Figure 4.19 shows the sampled configurations and MAP tree T̂ .

The MAP partition separates out the near-Mach-one region. Samples are densely concentrated

in this region—most heavily for large alpha.
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tree T̂ .

Figures 4.20–4.24 show posterior predictive surfaces (top) and initial surfaces (bottom)

for the remaining five responses. Drag and Pitch are shown for the beta = 0 slice. Other slices

look strikingly similar. Side, yaw, and roll are shown for the beta = 2 slice, as beta = 0

slices for these responses are essentially zero. MAP partitions T̂ for these responses are similar

to the ones shown in Figure 4.18, for the lift response. A common theme in these figures is

that the posterior predictive surfaces are far smoother than comparative initial runs. There

are three reasons for this. (1) The treed GP model has an explicit noise component, i.e., the

nugget, included specifically to help in smoothing; (2) the posterior predictive distribution was

produced by the nonlinear nonstationary treed GP model at the full grid of 37,909 candidates,

whereas the initial run could only be interpolated linearly; and finally (3) the CFD codes used

to evaluate the initial run were somewhat enhanced before building the adaptive design.
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4.5 Conclusion

This chapter showed how the treed GP (and GP LLM) can be used as a surrogate

model in the sequential design of computer experiments. A hybrid approach, combining Ma-

chine Learning and classical design methodologies, was taken in order to develop a flexible

system for use in the highly variable environment of asynchronous agent-based supercomput-

ing. In other words, a flexible and opportunistic approach was taken, rather than strictly

“optimal” one.

Two sampling algorithms were proposed as adaptations to similar techniques devel-

oped for a simpler class of models. One chooses to sample configurations with high posterior

predictive variance (ALM); the other uses a criteria based on an average global reduction in

uncertainty (ALC). These model uncertainty statistics were used to determine which of a set

optimally spaced candidate locations should go for simulation next. Optimal candidate de-

signs were determined by adapting a classic optimal design methodology to Bayesian partition

models. The result is a highly efficient Bayesian adaptive sampling strategy, representing an

improvement on the state-of-the-art of computer experiment methodology at NASA.

Bayesian adaptive sampling (BAS) was illustrated on two nonstationary synthetic data

sets. Finally, BAS was implemented on a supercomputer at NASA in order to sequentially

design the computer experiment for a proposed reusable launch vehicle, called the Langley

Glide-Back Booster (LGBB). With fewer than one-quarter of the samples, BAS was able to

produce superior response surfaces by sampling more heavily in the interesting, or challenging,

parts of the input space, relying on treed GP model to fill in the gaps in less-sampled regions.

119



Chapter 5

Conclusion

The novelty in the work presented here is in combining, enhancing, and exploiting es-

tablished techniques from a number of different communities. The motivating NASA computer

experiment provided an interesting problem that had not been addressed anywhere in the lit-

erature. The need for an efficient nonstationary model, and a flexible interface for sequentially

designing an experiment to be run on a modern supercomputer, naturally led to a sampling

and enhancing of existing techniques. The resulting models and methods, I believe, are truly

unique and should be of general interest to the communities out of which the initial ideas were

born.

The main contributions of this thesis were divided up into three chapters (2,3, & 4).

Chapter 2 introduced the treed Gaussian process (GP) model as a nonparametric extension

of the Bayesian Linear CART model. The need for such a model was motivated through

illustration on synthetic and real data. Chapter 3 exploited the limiting linear model (LLM)

parameterization of the GP, and showed how it can be both useful and accessible in terms

of Bayesian posterior estimation and prediction. The benefits include speed, parsimony, and
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a relatively straightforward implementation of a semiparametric model. Together with treed

partitioning, the result was a uniquely nonstationary, semiparametric, tractable, and highly

accurate regression tool.

Chapter 4 showed show the treed GP (and GP LLM) could be used as a surrogate

model in the sequential design of experiments. Creating a surrogate model for computer experi-

ments is a problem that will continue to be of interest as additional computing resources are put

toward more accurate simulations rather than faster results. The Bayesian approach allows a

natural mechanism for building a sequential design based on the current estimated uncertainty.

A hybrid approach to sequential experimental design was taken in order to develop a flexible

system for use in the highly variable environment of asynchronous agent-based supercomput-

ing. So called Bayesian adaptive sampling (BAS) was illustrated on synthetic data and on the

motivating NASA experiment which involved computationally expensive computational fluid

dynamics codes.

5.1 Future work

Not unlike many theses—though complete in most respects—there is always more work

that can be done. In general, I look forward to future collaborations with research labs like

NASA who have interesting experiments to run. It seems that many such collaborations should

be on the horizon as computer experiments become more and more commonplace as surrogates

for costly physical experimentation, as computing becomes more and more distributed and

asynchronous, and as simulation codes become more and more complex.

Several small enhancements would increase the visibility and usability of the work

presented here. As mentioned in Chapter 2, an interface in R to the treed GP (and GP

LLM) code has been developed. I look forward to releasing an R package in the near future.
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Some multi-platform issues need addressing—particularly in terms of linear algebra libraries—

and documentation needs to be written. To my observation there is currently a void in the

industry—that will hopefully soon be filled—for tools which implement nonstationary, fully-

Bayesian, model fitting, inference, forecasting, and design, that are easy to use, efficient, and

free. A well-packaged treed GP implementation with sampling libraries should go a long way

towards filling that void.

Simple statistical analysis of the experimental apparatus, i.e., the supercomputer, may

improve adaptive sampling. Accurate forecasts of how many agents will complete their runs

before the next adaptive sampling trial could be used to tune the size of candidate designs.

Configurations which are likely start running before the next round can be incorporated into the

design ahead of time, with mean-predictive responses as surrogates, so that future candidates

can be focused on other parts of the input space. Initial experiments on the NASA supercom-

puter suggest that accurate forecasts may be possible with something like an autoregressive

Poisson process model.

For the longer term there are some enhancements which can be made towards applying

the methods of this thesis to a broader array of problems. Three such related problems are

of sampling to find extrema (Schonlau, 1997; Jones et al., 1998; Huang et al., 2005b), to find

contours (Ranjan, 2005) generally, or to find boundaries, i.e., contours with large gradients

(Banerjee & Gelfand, 2005), a.k.a. Wombling. Another problem is that of learning about, or

finding extrema in, computer experiments with multi-fidelity codes of varying execution costs

(Huang et al., 2005a), or those which are paired with a physical experiment (Reese et al., 2005).

Finally, an interesting undertaking would be to explore how the hierarchical structure

of treed models can be exploited for fitting multi-resolution data (Ferreira et al., 2005), or

as a modeling tool for sharing information about parameters at the leaves of the tree, across
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partitions. One idea might be to allow configurations which lie on the the boundary between

two regions to contribute to inference on models in both regions, for example, in order to

encourage continuity in the predictive surface between regions.
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Appendix A

Estimating Parameters: Details

The following sections show full derivations of conditional and marginalized posteriors

of the parameters to the Gaussian processes at the leaves of the tree.

A.1 Full Conditionals

β:

p(βν |rest)

∝ p(Zν |βν , σ2
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]}

∝ exp
{
− 1

2σ2
ν

[
−2Z′

νK
−1
ν Fνβν + β′

νF
′
νK

−1
ν Fνβν + β′

ν

W−1

τ2
ν

βν − 2β′
ν

W−1

τ2
ν

β0

]}

= exp
{
− 1

2σ2
ν

[
β′
ν(F

′
νK

−1
ν Fν + W−1/τ2)βν − 2β′

ν(F
′
νK

−1
ν Zν + W−1β0/τ

2)
]}
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giving

βν |rest ∼ N(β̃ν , σ2
νVβ̃ν

) (A.1)

where

Vβ̃ν
= (F′

νK
−1
ν Fν + W−1/τ2)−1 β̃ν = Vβ̃ν

(F′
νK

−1
ν Zν + W−1β0/τ

2),

which can be sampled using the Gibbs algorithm.

β0:

p(β0|rest)

= p(β|β0, σ
2, τ2,W)p(β0)

= p(β0)
r∏
i=1

p(βν |β0, σ
2
ν , τ

2
ν ,W)

= N(β0|µ,B)
r∏
i=1

N(βν |β0, σ
2
ντ

2
νW)

∝ exp
{
−1

2
(β0 − µ)′B−1(β0 − µ)

} r∏
i=1

exp
{
− 1

2σ2
ντ

2
ν

(βν − β0)
′W−1(βν − β0)

}

= exp

{
−1

2

[
(β0 − µ)′B−1(β0 − µ) +

r∑
i=1

1
σ2
ντ

2
ν

(βν − β0)
′W−1(βν − β0)

]}

∝ exp

{
−1

2

[
β′

0B
−1β0 − 2β′

0B
−1µ+ β′

0W
−1

r∑
i=1

β0

σ2
ντ

2
ν

− 2β′
0W

−1
r∑
i=1

βν
σ2
ντ

2
ν

]}

∝ exp

{
−1

2

[
β′

0

(
B−1 +

r∑
i=0

W−1

σ2
ντ

2
ν

)
β0 − 2β′

0

(
B−1µ+ W−1

r∑
i=1

βν
σ2
ντ

2
ν

)]}

giving

β0|rest ∼ N(β̃0,V β̃0
) (A.2)
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where

Vβ̃0
=

(
B−1 + W−1

r∑
i=0

(σντν)−2

)−1

β̃0 = Vβ̃0

(
B−1µ+ W−1

r∑
i=1

βν(σντν)
−2

)
.

which can be sampled using Gibbs.

τ2:

p(τ2
ν |rest) = p(βν |β0, σ

2
ν , τ

2
ν ,W)p(τ2

ν )

= N(βν |β0, σ
2τ2
νW)IG(τ2

ν |ατ/2, qτ/2)

∝ (2π)−m/2(τ2
ν )−

m
2 |W|−1 exp

{
− (βν − β0)>W−1(βν − β0)

2σ2
ντ

2
ν

}
×

(qτ/2)ατ/2

Γ(ατ/2)
(τ2
ν )−(ατ/2+1) exp

{
− qτ

2τ2

}

∝ (τ2
ν )−( ατ +m

2 +1) exp
{
−qτ + (βν − β0)>W−1(βν − β0)/σ2

ν

2τ2
ν

}

which means

τ2
ν ∼ IG

(
ατ +m

2
,
qτ + (βν − β0)

>W−1(βν − β0)/σ
2
ν

2

)
(A.3)
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W−1:

p(W−1|rest)

= p(W)p(β|β0, σ
2, τ2,W)

= W (W−1|(ρV)−1, ρ) ·
r∏
i=1

N(βν |β0, σ
2
ντ

2
νW)

∝ |W−1|(ρ−m−1)/2 exp
{
−1

2
tr((ρV)W−1)

}
×

|W−1|r/2 exp

{
−1

2

r∑
i=1

1
σ2
ν

(βν − β0)′W−1(βν − β0)}
}

= |W−1|(ρ+r−m−1)/2×

exp

{
−1

2

[
tr((ρV)W−1) + tr

(
r∑
i=1

1
σ2
ντ

2
ν

(βν − β0)′W−1(βν − β0)

)]}

obtained because a scalar is equal to its trace. Applying more properties of the trace operation

gives

p(W−1|rest)

∝ |W−1|
ρ+r−k−1

2 exp

{
−1

2

[
tr

((
ρV+

r∑
i=1

(βν − β0)(βν − β0)′

σ2
ντ

2
ν

)
W−1

)]}

which means

W−1|rest ∼W

(
ρV+

r∑
i=1

1
σ2
ντ

2
ν

(βν − β0)(βν − β0)′, ρ+ r

)
(A.4)

and that Gibbs sampling is appropriate.
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A.2 Marginalized Conditional Posteriors

Complete conditional posteriors for the parameters to the correlation function K(·, ·)

can be obtained by analytically integrating out β and σ2 to get a marginal posterior.

p(K|Z,β0,W, τ2)

=
∏
ν

p(Kν |Zν ,β0, τ
2,W)

∝
∏
ν

∫ ∫
p(Zν |dν , gν ,βν , σ2

ν)p(Kν ,βν , σ
2
ν |β0, τ

2
ν ,W) dβν dσ

2
ν

=
∏
ν

p(Kν)
∫
p(σ2

ν)
∫
p(Zν |dν , gν,βν , σ2

ν)p(βν |σ2
ν ,β0, τ

2
ν ,W) dβν dσ

2
ν

=
∏
ν

p(Kν)
∫
p(σ2

ν)
∫
N(βν |β̃ν , σ2

νVβ̃ν
) dβν

× (2π)−
nν
2 σ−nν

ν |Kν |−
1
2 τ−mν |W|− 1

2 |Vβ̃ν
| 12

× exp
{
− 1

2σ2
ν

[
Z′
νK

−1Zν + β′
0W

−1β0/τ
2 − β̃

′
νV

−1

β̃ν
β̃ν)
]}

dσ2.

=
∏
ν

p(Kν)×
(

|Vβ̃ν
|

(2π)nν τ2m
ν |Kν ||W|

) 1
2 ∫

σ−nν
ν p(σ2

ν) exp
{
− ψν

2σ2
ν

}
dσ2

ν ,

where

ψν = Z′
νK

−1Zν + β′
0W

−1β0/τ
2
ν − β̃

′
νV

−1

β̃ν
β̃ν . (A.5)
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Expanding the prior for σ2
ν gives:

p(Kν |Z,β0, τ
2,W)

∝
∏
ν

p(K)×
(

|Vβ̃ν
|

(2π)nν τ2m
ν |Kν ||W|

) 1
2

×
∫

(σ2
ν)
−nν

2

(
qσ

2

)ασ
2

Γ(ασ

2 )
(σ2
ν)
−( ασ

2 +1) exp
{
− qσ

2σ2
ν

}
exp

{
− ψν

2σ2
ν

}
dσ2

ν

=
∏
ν

p(Kν)×
(

|Vβ̃ν
|

(2π)nν τ2m
ν |Kν ||W|

) 1
2

×
(
qσ

2

)ασ
2

Γ(ασ

2 )
×

Γ(ασ+nν

2 )

( qσ+ψν

2 )
ασ+nν

2

×
∫

( qσ+ψν

2 )
ασ+nν

2

Γ(ασ+nν

2 )
(σ2
ν)
−( ασ+nν

2 +1) × exp
{
−qσ + ψν

2σ2
ν

}
dσ2

ν ,

since the integrand above is really IG((ασ + nν)/2, (qσ + ψν)/2), the integral evaluates to 1,

giving:

p(K|Z,β0, τ
2,W) (A.6)

∝
∏
ν

p(Kν)×
(

|Vβ̃ν
|

(2π)nν τ2m
ν |Kν ||W|

) 1
2

×
(
qσ

2

)ασ
2(

qσ+ψν

2

)ασ+nν
2

×
Γ
(
ασ+nν

2

)
Γ
(
ασ

2

) .

Eq. (A.6) can be used in place of the likelihood of the data conditional on all parameters.

It can be thought of as a likelihood of the data, conditional on only the parameterization

of K(·, ·). When computing a Metropolis-Hastings acceptance ratio for proposed Kν in a

particular region rν , it suffices to use only the terms in (A.6) which contain some function of

the imputed correlation matrix Kν :

p(Kν |Zν ,β0, τ
2
ν ,W) ∝ p(Kν)×

(
|Vβ̃ν

|
|Kν |

) 1
2

×
(
qσ + ψν

2

)−ασ+nν
2

. (A.7)

Using the same ideas one can obtain the complete conditional of σ2
ν with βν integrated
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out, which strangely enough involves the same ψν quantity:

p(σ2
ν |Zν , dν , gν ,β0, τ

2,W) =
∫
p(βν , σ

2
ν |Zν , dν , gν ,β0, τ

2,W) dβν

= p(σ2
ν)
∫
p(Zν |dν , gν,βν , σ2

ν)p(βν |σ2
ν ,β0,W) dβν

=

(
|Vβ̃ν

|
(2π)nν τ2m

ν |Kν ||W|

) 1
2

σ−nν
ν p(σ2

ν) exp
{
− ψν

2σ2
ν

}

∝ σ−nν
ν (σ2

ν)
−(ασ/2+1) exp

{
− qσ

2σ2
ν

}
exp

{
− ψν

2σ2
ν

}

= (σ2
ν)
−((ασ+nν)/2+1) exp

{
−qσ + ψν

2σ2
ν

}
,

which means that

σ2
ν |d, g,β0,W ∼ IG((ασ + nν)/2, (qσ + ψν)/2). (A.8)

In addition to improving mixing, (A.8) will be useful for obtaining Gibbs draws for σ2 after

accepted grow or prune tree operations or when β may not be available.
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Appendix B

Thoughts on the nugget

Following the development in Hjort & Omre (Hjort & Omre, 1994), a Gaussian process

is often written as

Z(X) = m(X,β) + ε(X). (B.1)

The mean function m(X,β) is taken to be linear in X:

m(X,β) = Fβ.

β are coefficient parameters and F = (1,X>)>. The process variance, governed by ε(X) is

such that

cov(Z(X), Z(X′)) = cov(ε(X), ε(X)) = σ2K(X,X′),

where K is a correlation function depicting the smoothness of the process.

Accordingly, observations zi × xi for i = 1, . . . , n are said to form a Gaussian process
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1.0

||x − x’||

K(x,x’)

0.0

Figure B.1: Graphical depiction of the correlation function (B.3).

if they satisfy

(Z1, . . . , Zn)> ∼ Nn[Fβ, σ2K], (B.2)

where correlation matrix K is constructed using a one of a family of parameterized correlation

functions, such as the power family:

K(xi,xj |d) = exp
{
−||xi − xj ||2

d

}
. (B.3)

Such correlation matrices should be positive definite with all entries less than or equal to one.

Figure B.1 shows an illustration of how correlation, like that described by (B.3), decays as the

distance ||xi − xj || increases.

Relations for interpolation in terms of predicted mean and errors can be obtained

using multivariate normal theory (see Hjort & Omre). This kind of spatial interpolation is

commonly called Kriging. It easily seen that using a parameterized correlation function like

the one in (B.3) results in a predictive mean of Ẑ(xi) = zi, and error

σ̂2(xi) = E[Ẑ(xi)− Z(xi)]2 = 0
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when xi corresponds to any of the input data locations x1, . . . ,xn. For x 6= xi, σ̂2(x) > 0,

increasing as the distance from x to closest xi gets large. An example interpolation is shown

in Figure B.2.

X

Z

Figure B.2: Data interpolated by Kriging, using a correlation function like that in (B.3) with
a model like that in (B.1).

However, if the modeler believes that the observations are subject to measurement

error, then smoothing rather than interpolation is the goal. Figure B.3 shows what a possible

smoothing of the data presented in Figure B.2 might look like.

To smooth the data, the model (B.1) must be augmented to include an additional

variance term account for “measurement error”. However, this is not the approach taken

by everyone in the Geostatistical community. Instead, a common approach is to add a so-

called nugget term (η) directly into the definition of the correlation function (B.3), leaving the

underlying model formulation (B.1) unchanged:

K(xi,xj |d, η) = exp
{
−||xi − xj ||2

d

}
+ ηI{i=j}, (B.4)

where I{·} is the boolean indicator function. Note that the matrix K resulting from (B.4) is no
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X

Z

Figure B.3: A smooth alternative to interpolation of the data presented in Figure B.2

longer a correlation matrix (in the strictest sense) because its diagonal may have entries which

are greater than one. Figure B.4 shows the resulting (dis-continuous) exponential correlation

function graphically.

To my knowledge, the parameter η does not have a straightforward statistical inter-

pretation. In fact, several authors advise against using this approach for this very reason.

However, (B.4) gives that K(x,x|d, η) = 1 + η, which makes the prediction error non-zero for

data locations xi (see Hjort & Omre):

σ̂2(xi) = σ2η, and Ẑ(xi) 6= zi (unless η = 0),

provided that one is careful about the bookkeeping for the standard Kriging equations (see

Section B.1). Thus, the nugget accomplishes the goal of smoothing the data rather than

interpolating. Predictive means and error-bars look similar to those drawn in Figure B.3,

although uncertainty is usually somewhat lower near observed data locations.

The orthodox statistical way to account for measurement error is to augment the
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0.0
||x − x’||

K(x,x’)

1.0

1.0 + ETA

Figure B.4: Graphical depiction of the (dis-continuous) correlation function (B.4) with nugget.

model (B.1):

Z(X) = m(X,β) + ε(X) + η(x), (B.5)

where m and ε are as before, and η(x) is an independent zero-mean noise process, usually

Gaussian. Given observations zi × xi for i = 1, . . . , n, the corresponding Gaussian process can

be written as a sum of independent normals:

(Z1, . . . , Zm)> ∼ Nn[Fβ, σ2K] +Nn[0, τ2I] (B.6)

∼ Nn[Fβ, (σ2 + τ2)K′] (B.7)

where K′ is a (true) correlation matrix defined in terms of K(x,x′|d) from (B.3) by

K ′(xi,xj |d, σ2, τ2) =
σ2

σ2 + τ2
(K(x,x′|d) + τ2I). (B.8)

Equivalently:

K ′(xi,xj |d, σ2, τ2) =
σ2

σ2 + τ2
(K(x,x′) + τ2

I{i=j}). (B.9)

This is essentially the a scaled version of (B.4). Thus, there is really no difference between the
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model in (B.1) with a correlation that includes a nugget term (the nugget model), and a model

like that in (B.5) which includes an explicit noise parameter. The main difference is that now

all three ingredients (σ2, τ2, and K′) have arguably more meaningful statistical interpretations.

Despite its less than satisfactory interpretability or statistical meaning, many authors

have chosen the nugget model because its parameters are easy to estimate using Maximum

Likelihood and Monte carlo based methods. Since σ2 is, in a sense, de-coupled from the nugget

it is possible to obtain Gibbs draws for σ2 which would not be possible under (B.5) using (B.7).

Moreover, the simplified structure allows an integrating out of β in the conditional posterior

for both σ2 and β in the full conditional posterior for K.

B.1 Careful bookkeeping when predicting with the nugget

model.

One has to be careful when applying the Kriging equations (like those in Hjort &

Omre) when using the nugget model formulation mentioned above. To help illustrate, below we

will re-write the prediction equations: The predicted value of z(x) at x is normally distributed

with mean and variance

ẑ(x) = f>(x)β + k(x)>K−1(t− Fβ),

σ̂(x)2 = σ2[κ(x,x)− q>(x)C−1q(x)],

where C−1 = (K + FWF>)−1, q(x) = k(x) + FWf(x), f>(x) = (1,x>), κ(x,y) = K(x,y) +

f>(x)Wf(x), and k(x) is a n−vector with kj(x) = K(x,xj), for all xj ∈ X.

Here, the focus is mainly on the definitions of k(x), κ(x,y), and K(x,y) which are
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measurements of the correlation of a predictive location x and other locations y.

Remember that the covariance matrix K is constructed using the definition for K(·, ·)

from (B.4) giving correlations between the data locations xi ∈ X, and results in a covariance

matrix K which has 1 + η along the diagonal. According to (B.4) K(xi,xj) = 1 + η when

i = j. But when i 6= j we have that K(xi,xj) ≤ 1 even in the case where xi = xj whence

K(xi,xj) = 1.

Therefore, when computing k(x), κ(x,y) one has to be careful to make the distinction

between the covariance between a point and itself, versus the covariance between multiple points

with the same configurations (because they are different). For example, if one is considering

a new set of predictive locations, yi ∈ Y, then k(yi) has entries less than or equal to 1 (no

nugget), with equality only when yi = xj for some xj ∈ X. Alternatively, the correlation

matrix between pairs of predictive locations from Y satisfies the same properties as that of K,

the correlation matrix of for the data locations (X).
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Appendix C

Active Learning – Cohn (ALC)

Section C.1 derives the ALC algorithm (Chapter 4) for a hierarchical Gaussian process

(Chapter 2), and following in Section C.2 for a linear model (Chapter 3).

C.1 For Hierarchical Gaussian Process

The partition inverse equations (Barnett, 1979) can be used to write a covariance

matrix CN+1 in terms of CN , so to obtain an equation for C−1
N+1 in terms of C−1

N :

CN+1 =


 CN m

m> κ


 C−1

N+1 =


 [C−1

N + gg>µ−1] g

g> µ


 (C.1)

where m = [C(x1,x), . . . , C(xN ,x)], κ = C(x,x), for an N + 1st point x where C(·, ·) is the

covariance function, and

g = −µC−1
N m µ = (κ−m>C−1

N m)−1.
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If C−1
N is available, these partitioned inverse equations allow one to compute C−1

N+1, without

explicitly constructing CN+1. Moreover, the partitioned inverse can be used to compute C−1
N+1

with time in O(n2) rather than the usual O(n3).

Using notation for a hierarchically specified Gaussian process, in the context of ALC

sampling, the matrix which requires an inverse is

KN+1 + FN+1WF>
N+1

This matrix is key to the computation of the predictive variance σ̂(x)2.

KN+1 + F>
N+1WFN+1 =


 KN kN (x)

k>N (x) K(x,x)


+


 FNWF>

N FNWf(x)

f(x)>WF>
N f(x)>Wf(x)




=


 KN + FNWF>

N kN (x) + FNWf(x)

k>N (x) + f(x)>WF>
N K(x,x) + f(x)>Wf(x)


 .

(*) Using the notation CN = KN + FNWF>
N , qN (x) = kN (x) + FNWf(x), and κ(x,y) =

K(x,y) + f(x)>Wf(y) yields some simplification:

CN+1 = KN+1 + FN+1WF>
N+1 =


 CN qN (x)

qN (x)> κ(x,y)


 .

Applying the partitioned inverse equations (C.1) gives the following nice expression for (KN+1+

F>
N+1WFN+1)−1:

C−1
N+1 = (KN+1 + F>

N+1WFN+1)−1 =


 [C−1

N + gg>µ−1] g

g> µ


 (C.2)
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where

g = −µC−1
N qN (x) µ = (κ(x,x) − qN (x)>C−1

N qN (x))−1

using the most recent definitions of CN and κ(·, ·), see (*).

From here an expression for the key quantity of the ALC algorithm from Seo et

al. (2000) can be obtained. The expression calculates the reduction in variance at a point y

given that the location x is added into the data:

∆σ̂2
y(x) = σ̂2

y − σ̂2
y(x),

where σ̂2
y = σ2[κ(y,y) − q>N (y)C−1

N q>N (y)],

and σ̂2
y(y) = σ2[κ(y,y) − qN+1(y)>C−1

N+1qN+1(y)].

Now,

∆σ̂2
y(x) = σ2[κ(y,y) − q>N (y)C−1

N qN (y)] − σ2[κ(y,y) − q>N+1(y)C−1
N+1qN+1(y)]

= σ2[qN+1(y)>C−1
N+1qN+1(y) − q>N (y)C−1

N qN (y)].
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Focusing on q>N+1(y)C−1
N+1qN+1(y), first decompose qN+1:

qN+1 = kN+1(y) + FN+1Wf(y)

=


 kN (y)

K(y,x)


+


 FN

f>(x)


Wf(y)

=


 kN (y) + FNWf(y)

K(y,x) + f>(x)Wf(y)


 =


 qN (y)

κ(x,y)


 .

Turning attention back to C−1
N+1qn+1(y), with the help of (C.2):

C−1
N+1qN+1(y) =


 [C−1

N + gg>µ−1] g

g> µ




 qN (y)

κ(x,y)




=


 [C−1

N + gg>µ−1]qN (y) + gκ(x,y))

g>qN (y) + µκ(x,y)]


 .

Then, another multiplication:

q>N+1(y)C−1
N+1qN+1(y)

=


 qN (y)

κ(x,y)



> 
 (C−1

N + gg>µ−1)qN (y) + gκ(x,y))

g>qN (y) + µκ(x,y)




= q>N (y)[(C−1
N + gg>µ−1)qN (y) + gκ(x,y)]

+ κ(x,y)[g>qN (y) + µκ(x,y)].
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Finally:

∆σ̂2
y(x) = σ2[qN+1(y)>C−1

N+1qN+1(y)− q>N (y)C−1
N qN (y)].

= σ2[q>N (y)gg>µ−1qN (y) + 2κ(x,y)g>qN (y) + µκ(x,y)2]

= σ2µ[q>N (y)gg>µ−2qN (y) + 2µ−1κ(x,y)g>qN (y) + κ(x,y)2]

= σ2µ
[
q>N (y)gµ−1 − κ(x,y)

]2
,

and some minor re-arranging after plugging in for µ and g gives:

∆σ̂2
y(x) =

σ2
[
q>N (y)C−1

N qN (x)− κ(x,y)
]2

κ(x,x)− q>N (x)C−1
N qN (x)

.

C.2 For Hierarchical (Limiting) Linear Model

Under the (limiting) linear model, computing the ALC statistic is somewhat more

straightforward. Starting back at the beginning; now with the predictive variance under the

limiting linear model (3.8):

∆σ̂2
y(x) = σ̂2

y − σ̂2
y(x)

= σ2[1− f>(y)Vβ̃N
f(y) − 1− f>(y)Vβ̃N+1

f(y)]

= σ2f>(y)[Vβ̃N
−Vβ̃N+1

]f(y),
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where Vβ̃N+1
from Eq. (2.4) includes x, and Vβ̃N

does not. Expanding out Vβ̃N+1
:

∆σ̂2
y(x)

= σ2f>(y)


Vβ̃N

−
(

W−1

τ2
+

F>
N+1FN+1

1 + g

)−1

 f>(y)

= σ2f>(y)


Vβ̃N

−


W−1

τ2
+

1
1 + g


 FN

f>(x)



> 
 FN

f>(x)





−1 f(y)

= σ2f>(y)

[
Vβ̃N

−
(

W−1

τ2
+

F>
NFN

1 + g
+

f(x)f>(x)
1 + g

)−1
]
f(y)

= σ2f>(y)

[
Vβ̃N

−
(
V−1

β̃N
+

f(x)f>(x)
1 + g

)−1
]
f(y).

Using the Sherman-Morrison-Woodbury formula (Bernstein, 2005) [see Section 3.2.1], where

V ≡ f>(x)(1 + g)−
1
2 and A ≡ V−1

β̃N
gives

∆σ̂2
y(x) = σ2f>(y)



(

1 +
f>(x)Vβ̃N

f(x)
1 + g

)−1

Vβ̃N

f(x)f>(x)
1 + g

Vβ̃N


 f(y).

Combining and rearranging gives

∆σ̂2
y(x) =

σ2[f>(y)Vβ̃N
f(x)]2

1 + g + f>(x)Vβ̃N
f(x)

.
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