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the textbook [4]. Most of the existing wotkn SFM con-
centrates on the case where the scene contains a number of
photometrically distinct “features”, that can be associated to
geometric primitives, such as points or lines, in the scene.
When this is the case, feature correspondence across im-
ages can be established in a number of ways (again, see [4]
for details), at which point the problem becomes purely ge-
ometric, and the framework of epipolar geometry captures
the essential relationships among corresponding points in
the images and their relation to the three-dimensional struc-
ture of the scene.

In this paper, we concentrate on scenes that do not fit
in this general scheme, in the sense of not having any pho-
_ tometrically distinct “point features”, such as the scene in

ies e e ST e figure 1. We operate under the explicit assumption that the
Figure 1: Images of a scene with smooth surfaces and constantSCene is composed of smooth surfaces that support a con-
isotropic radiance. Although pictorially simple, these scenes chal- stant radiance function, which projects onto the image to
lenge most SFM algorithms because of the lack of photometrically yield a piecewise smooth irradiance. These scenes chal-
distinct “features”. lenge the most common algorithms for recovering $FM
We assume that the internal parameters of the cameras are
known, and we seek to infer the shape of the scene, rep-
Abstract " > T
resented by a description of the surface of each object in

. . . some Euclidean reference frame, as well as the relative pose
We describe an algorithm for reconstructing the 3D shape . L s
of the cameras. Since we cannot rely on individual point

of the scene and the relative pose of a number of cameras

. . . correspondences, we set up a cost functional that aims at
from a collection of images under the assumption that the . . . . :
) . o » Mmatching regions, and integrate the irradiance over the en-
scene does not contain photometrically distinct “features”.

We work under the explicit assumption that the scene iSt|re domain of each image. We then develop gradient-based

made of a number of smooth surfaces that radiate ConstantalgomhmS to estimate both the shape of the scene and the

. . . L . relative pose of the cameras.
energy isotropically in all directions, and setup a region-
based cost functional that we minimize using local gradient

flow techniques. 1.1 Relation to previous work

In [25], a method is proposed to solve the multi-frame shape
1 Introduction reconstruction of a smooth shape with constant radiance
as the joint region segmentation of a collection of cali-

We address the problem of estimating the shape of a scendrated images. The reconstruction was remarkably robust
ber of images. This is one of the classical problems of com-—; , : : . .

.. K f . d There are exceptions, which we discuss in section 1.1.
puter vision, known as structure from motion (SFM), an 2Techniques that address this type of scenes by checking the photo-

extensive literature exists, for which we refer the reader to consistency of each “voxel” are available, although most require precise
knowledge of the position of the cameras (algorithms that exploit the oc-

*Work supported by NSF 11S-0208197/CCR-0133736, ONR N00014- cluding boundaries to estimate both shape and camera pose are also avail-
02-1-0720, and AFOSR F49620-03-1-0095. able; see section 1.1 for more details).




piecewise constant radiance assumption, but also particusl.2 Outline and contributions of this paper
larly sensitive to (extrinsic) calibration errors, thereby re-

quiring precise positioning of the cameras. We extend their |~ 75~ ) )
for joint image segmentation and shape reconstruction for a

results to allow the position and orientation of each camera ™" . g . ; ;
to be unknown, and therefore part of the inference process.ca“brated stereo rig. In section 3 we will extend this model
Therefore, we estimate simultaneously surface shape, conlo estimate motion parameters. Although this extension is

stant radiance, and camera motion. Our work is also C|ose|yconceptually straightforward, in practice its implementation

related to the variational approach to stereo reconstruction,S ent!rely non _t”V'aI; we repprt the cglculgﬂons In section
championed by Faugeras and Keriven [3]. They also as-3 Wh|_ch constltuFes the (_)rlgm_al cont_rlbutlon of this paper,
sume the camera positions to be known, and therefore ouA"d discuss the implications in section 3.1. The resulting
work can be interpreted as a special case of of [3], extendeqalgor'thms are tested on real and synthetic image sequences
to allow arbitrary camera pose. It should be note that our In section 4.
approach, like [3, 25, 16], is based on gradient descent al-
gorithms, and therefore we always assume that the roug : :
positioning of the cameras is available to be used as initiar2 Reconstruction for calibrated cam-
conditions to the algorithms. Therefore, our algorithm can eras (review)
be interpreted as a “refinement step” of the results of any
multi-frame stereo calibration or structure from motion al- In [25], a model for joint image segmentation and shape
gorithm. However, the initialization needs not be precise. reconstruction has been proposed. It is assumed that the
In section 4 we will show results obtained by initializing scene is composed of a number of smooth, closed surfaces
the camera positions and orientation by hand. Similarly, supporting smooth Lambertian radiance functions (or dense
this work relates to shape carving techniques [5], since thetextures with spatially smooth statistics) and the back-
reconstruction is achieved by evolving a volume in a way ground, which occupies the rest of the image. Under these
that is consistent with the image data. We explicitly en- assumptions, a subset of brightness (or texture) discontinu-
force smoothness constraints, and therefore our approaclities correspond to occluding boundaries. These assump-
does not work for arbitrary objects. However, for objects tions make the image segmentation problem well-posed, al-
that satisfy the assumptions, our approach exhibits signifi-though not general.
cant robustness to measurement noise. Furthermore, to the
best of our knowledge, motion estimation has not been ad- .
dressed within the context of shape carving, where the Cam-z':L Notation
eras are assumed to be calibrated. Since we assume constanét S to be a smooth surface iR3 with local coordi-
or smooth radiance, most of the shape information concen-nates(u,v) € R2. Let dA be its Euclidean area ele-
trates at the occluding boundaries, and therefore our workment, i.e. d4 = ||S, x S,|; X = [X, Y, Z]T the co-
relates to the literature on Shape from silhouettes [2] Thatordinates of a generic point ofl. We measure imagesl
work has indeed been extended to allow inference of cameray, ; — 1,2, ... n and are given the internal calibration pa-
motion as well as scene shape [1], although that was dongameters, so that the camera is modeled as an ideal per-
within the framework of epipolar geometry. We estimate spective projection:m; : R?® — Q;;:X — x;, where
motion directly using a gradient procedure, and therefore . — [z, vi|T = [X:/Zi, Yi/Z:]T, Q c R?is the do-
do not require establishing correspondence between (reahain of the imagd;, with area elemend(2;. We will use
or virtual) points. Nevertheless, it should be noticed that x, — (X, Vi, Zi]” to represenk in the “camera coordi-
the conditions for unique reconstruction are, of course, thenates” with respect to thieth cameraX andX; are related
same, and therefore we are SUbjeCt to the same constraints qﬁ/ a r|g|d body transformation, described by an element of
in silhouette-based methods. For instance, a unique camerghe Euclidean group; € SE(3), represented in coordi-
motion cannot be recovered in the presence of symmetrieshate by a rotation matri®z; € SO(3) and a translation
of the object. Nevertheless, the shape can still be recoveredyector7; € R3, so that X; = ¢:X = R X + T;. We
albeit relative to an unknown reference frame. describe the backgrourfd as a sphere with angular coordi-
nates® = (6,7) € R? that may be related in a one-to-one

For the computational methods it uses, this paper is also,manner: \t';’]'th the c_oordm\z;\\;esi of eacrlr:nﬁ%e ?)Oml?'@’? q
related to a wealth of contributions in the field of region- rough the mapping;. We assume that the backgroun

based segmentation, starting from Mumford and Shah'’s pi-?Upports a ;admn;:;le funfjt]chn : ? _;foRg anthhe i\fr'
oneering work [6], and including [11, 24, 14, 15, 18, 20, ace supports another radiance function 5 — 8. We

21, 22, 23, 13]. _Our numerical implementation is based on 3The reader will pardon an abuse of notation, since we mix the motion
Osher and Sethian’s level set methods [8]. g; and its representatigiR;, T;); this is done for convenience of notation.

In Section 2, we will review the model proposed in [25]




define the regio@i = m;(S) C Q; and denote its comple-  of S in thei-th image and that the area measiixg of the
ment byQ¢. Although the perspective projection is not image is related to the area measdrk of the surface by
one-to-one (and therefore not invertible), the operation of dx; = (X, - N;)/Z3}dA, whereN is the inward unit normal
back-projecting a poink; from ; onto the surfaces can to S, andN; is N with respect to the coordinates of thh
be defined by tracing the ray starting from thth camera  cameras;(X, N) is a shorthand notation f¢X; - N;)/Z3.
center and passing through, and defining the first inter-  In the simpler case where both radiance functibmndh
section point as the back-projectiomsgfontoS. Therefore, are constant, the overall cost functional can be simplified to:
Witr11 an abuse of notation we denote this back-projection by
1 — Six; — X - 9

In order to infer the shape of a surfacg one can Econstant = ‘)‘/SdAJr Z/ pi (xi) dx;
impose a cost on the discrepancy between the projection n
of a model surface and the actual measurements. Such +Z/ Yi(X)(P2(X) — p2(m:(X)))o:(X, N)dA.
a cost, F, depends upon the surface as well as upon
the radiance of the surfadeand of the backgrount, as

well as the motiong; (through the projectiorr;): E = This simplification relates to the approach of Chan and Vese
E(f,h,S,g1,...,g.). For simplicity, we indicate by the ~ [24] who considered a piece-wise constant version of the
collection of camera motiong, . . ., g,. One can then ad- Mumford-Shah functional for 2-D images in the level set
just the shape of the model surface and radiances to matcliramework [17, 19].

the measured images. Since the unknowns (sutfaard The gradient flow of the cost functional has been de-

radiancesf, h) live in an infinite-dimensional space, we rived in [25]. The flow corresponding to the data fidelity
need to impose regularization. Therefore, the cost func-term is given by

tional is a weighted average of three ternis(f, h, S) =

Edata(fa h, S) + aEgeom<S) + BEsmooth(ﬂ h, S) where ds 1

o, € RT. The data fidelity termE q.(f,h, S, g) i ;3((f—h)[<f—f)+(f—h)]<V><-S)+2X<I—f><Vf-S))N
quantifies the discrepancy between measured images and @)

the images predicted by the model. For simplicity, we

compute it in the sense 013,2 on the image domain Notice that this flow depends only upon the image values,
by Egeta = S0, fQ ( 7Ti (x;)) — Ii(Xi))QdXi + not the_lmage gradientvhich makes it more robust to im-

n age noise when compared to other variational approaches to
2im1 fﬂ (h( i(xi)) = 1i(x l)) dx;. Esmootn(f; b, S) and stereo (i.e. less prone to become “trapped” in local minima).
Egeom(S5) measure the smoothness of the radiance func-  The gradient flow corresponding to the smoothness term,
tions and the surface respectively. ~ They are given giso derived in [25], is given by

by Egeom = [qdA = aredS), and Esnooth =
Js IVsf|2dA + [, [[Vh|>d©, whereV s denotes the in- as 9
trinsic gradient on the manifolfl. (The exact definition and dt = (H(Vsf x N) — | Vst|PH) N 2)

details on its computation can be found in [10]). where the second fundamental form@gf x NV is com-

puted as

2.2 Computation of the gradient flow (re-
View) f2g — 2f £, f + £2

EG — F?

(Vs x N) =
The data fidelity term may be measured To facilitate the

computation of the variation with respect$o we express  and the coefficients, f, ¢ of the second fundamental
these integrals over the surfafe This can be done using  form are given bye = (N, S,.), f = (N, S.,), and
the characteristic functiong (X) = 1 if X visible from the g = (N, S,,) and the coefficients of the first fundamental
i-th camera ang;(X) = 0 otherwise. The data terif;,;, formareE=S, - S,, F=S,-Sy,, G=S, - S,.

is therefore given by: The termVy - S must be defined in the distributional
sense because the characteristic functisdiscontinuous.
Z/ P2 (x;) dx; +/ ) = Li(xi)) — pg(xi)) dx; It can be shown that
VXS = —r,]S|?3(S - N) 3

=S /Q P2 (x;) dx; + /S i () (FE(X) = p2(mi(X)))s(X, N) dA
= where k,, denotes the normal curvature 6f in the u-

where p;(X) = f(X) — L(m(X)) and p;(x;) = direction (the directionS whereS - N = 0). The overall

h(0;(x;)) —I;(x;). We use the fact tha?; is the projection  flow can be computed by summing the flow corresponding



to each component of the cost functional. For the case OfwhereJ _ 01 } and, therefore, the expression

constant radiance, for instance, one gets -1 0
above is given by

ds 1
- = z—g(f—h)[(I—f)Jr(I—h)}(VxS)N
0 —z Yi
kallS|I2 1 oxi | ] ox:
== —_— — — — . . — -t} i 0 —X; d

L A e ko

. . 1 8xi 8)(1' 1 8X7; 6X7;
3 Evolving the motion parameters = (o, <X b = 5 genxi x Gy ) ds
We now consider the same energy functiohaas a func- = H’;” <g§’ ) Ni> ds

7 )

tion of the motion parameters € SE(3). We will use the
exponential parameterization Sf£/(3) via the twist coor-
dinates¢; € R®. The parameterization is established by a
map fromRS to the Lie algebrase(3) via &; — @ which
is exponentiated to lead the motign= exp(gi) € SE(3).
The readgr can cpnsult [7] f_or_ more details on twists and bl /9
exponential coordinates for rigid motions. 2 2\ ||%i Ji
IE\J/Vhat matters, however, isgthat we can represent locally /., <(f —L) - (b 1) ) 23 <8§ij ’Ni> ds ()

g with a six-parameter vectg. We will denote the local i . N .
parameterization vig; = ¢;(£) where¢ = (&1, ..., &) The first step in rewriting the foreground/background inte-

for each camera imagé. Notice that the only term in our ~ 9rals is to re-express the derivative of the back-projected
energy functionalZ which depends upog, is the corre- 3D pointx = m;7"(x, g;) with respect to the calibration
sponding fidelity term inEyq;, (due to the dependence of Parametet;; in terms of the denvgtlve of the forward pro-
771 and®; on&): Egarai(S, £, 0, &) is therefore given by €ction mi(x, gi) = m(gi(x,¢:)), sincem; has an analytic
form while 7ri_1 does not. We begin by fixing a 2D im-
1))~ I.(%)) *dx.: (2N =T (%)) 2 dx age pointx and note thatk = m;(x(X,g¢;),9;) Where
(£(m, (%)~ L(%)) i+ [ (h(64(%)~L(%)) dx, i(x(%, 91). g
O Qs x(X,9;) = 7; "(%,9i) = g; " (771(x),9;) and thus dif-
- N (4) ferentiation with respect tg;; yields:
If we let¢; = 012; denote the boundary 6i; then we may

sincex; and %"S’i are perpendicular tangent vectors§o
Thus, the boundary term written as an integral on the sur-
face S (along the occluding contour;) has the following

form.

express the partial derivative‘oE with respect to one of 0= 2 mi(xg) = am; dx  Omy

the calibration parametets;. % is given by the sum of T oe,; V09 T ox v, | ogy,

three terms: a boundary term, a foreground term and a back- B i{ zi 0 —=xy } dg; Ox i{ 2z 0 —x; } 0g;

ground term, given respectively by 22l 0 s oy Joxogy 2210 s~y ] 0k
~ { zi 0 —x } 0g; 0x :_{ zi 0 —ux } 9g; ®)

/ (" (3)) = 1:(%))° = (h(@xx))—zi<x>)2)<%,m>ds 0 = —vi | 0x 9 0 =z —vi | og,

g; i

2/ (f(r7 (%) - L(%)) <st(ﬂ;1(>_())’ 9 ﬂzl(i)>dXi Notice, though, that (6) does not uni_q_uely spedity/0¢;
& 9&ij but merely gives a necessary condition. We must supple-
2[ (h(04(%)) — I;(%)) <VBh(®i(i)) ment (6) with the addlthnal constraint thak/é)gig- must

Qf be orthogonal to the unit norma&’ of S at the pointx in

order to obtain a unigue solution.
In the boundary term¢ds denotes the arc-length measure a

of ¢;, andn; denotes its outward unit normal. In the fore- ox
ground term,V, denotes the natural gradient operator on dEij '
the surfaces, while in the background terny/, denotes the ‘
gradient operator with respect to the angular coordinates ofNow, combining equations (6) and (7), we have

4]
y 7 04(X) ) dx;
0&ij ()>

N=0 @)

the backgrounds. 2 0~z | g0 oy 50— | g
It is convenient to express the contour integral around [ 0 =z —ui 89" B = { 0z —ui ] 851_
¢;(5) in the image plane as a contour integral arothk) Niz Ny Nip | 0% % o 0 0 Y
on the surface instead, (wherer;(C;) =¢; and wheres is ox (891')*1 (I_ Xi ® Nz-) 9gi ®)
the arc-length parameter 6f). They are related by 0&ij ox x; - N;i ) 0&;
<@ ) ds — <37T4(C_) 3J7T,(O)>d5 The second step proceeds in the same manner as outlined
aE; g, 1 ast ’ earlier in rewriting the data fidelity terms .., by noting



that the measure in the image doméi and the area mea-
sure on the surfacéA are related bylx; = o(x;, N;) dA

WhereO'(Xi, Nz) = (X,‘ . NZ)/zf T
2[ (f— 1) <vsf(7r;1(f<)), 6; n{l(i)>dxi il

Q4

8)( xi'Ni
-2 f— 1) { V.f(x), 2 Niga
/w;l(ﬂ,i)( )< SE() 5§ij> 23

7

total pixel error

The integrand above can be written more explicitly as
1. —1
- (fzfll) <st(x), (%) ((xl - N;) Z?fgf,_i] - (gfgii 'Ni) Xz)> os-

A similar derivation can be followed for the background % w @ wm o w w0
term. The calculations above yield the gradient of the cost _. _ - .
functional E with respect to the local coordinates of the mo- F19Ure 2: value of total squared reprojection errdidu.. in our

tion parameters, %%_ This is transformed into a vector in  €0St functional) initially as only the shape is evolved while fix-

. . e ing the camera poses given by an external calibration procedure
the tangent spaCe/to\the motion paramegeria the lifting (solid line, 500 steps) and subsequently as the camera poses are

to the Lie algebra(%—?) € se(3). The evolution of the mo-  also evolved (dotted line, 150 steps). Units are the sum over all
tion parameters is finally given by The final expression for pixels in each image of the squared intensity differences between
the flow with respect to the local coordinates of the motion the pixel and model intensities (units an?).

parameters is given by

dg /8E\ In general, a full-fledged analysis of the uniqueness of
i (ag)gdt 9 the minimizers of the functional we describe is well beyond

the scope of this paper. However, some conclusions may
To complete the algorithm, one or more steps of the flow (9) be drawn from the analysis of SFM for the case of point

are alternated to one or more steps of the flow (1), until the features, for which we refer the reader to [4].

value of the cost functional reaches steady state (it is easy Naturally, since the algorithm we propose is a gradient

to prove that, with an appropriate choice of step-size, everyflow, convergence is only guaranteed locally, since the al-

step lowers the value of the cost functional). gorithm can get trapped in local minima. However, in every
experiment we have performed, some of which are reported
3.1 Uniqueness, or lack thereof in the next section, we have seldom experienced conver-

gence to local minima despite coarse initialization.

Note that the flow converging to steady-state guarantees that
the shape and motion parameters convemaewhergbut ]
in general it does not guarantee that they converge to thed Experlments
correct shape or relative pose of the camera. For instance,
consider the case of a sphere, imaged by a number of camin figure 1 we show a few images of a test scene meant
eras distributed around a circumference centered at the cento challenge the assumptions common to most SFM algo-
ter of the sphere. The image of the scene in each camerdithms. Our scheme is design to work under these assump-
is identical, and therefore there is no way to tell where the tions.
cameras are. Nevertheless, one can conclude from the im- Infigure 3 we show the evolution of the estimate of shape
ages that the scene is a sphere (assuming the cameras aifethe pose of the cameras is taken to be the result of an
in general position), and minimize the discrepancy of the external calibration procedure, and the significant improve-
model image (the projection of the estimated sphere) from ment that follows when the camera pose is allowed to vary
the measured images. and is part of the inference process. This improvement is

More in general, Euclidean symmetries in shape will quantified in figure 2.
generate ambiguities in the estimates of relative pose. One In figure 4 we show the reprojection error, i.e. the best
can have continuous symmetries (such as in the example ofstimate of shape projected onto the image according to the
the sphere) or discrete symmetries (such as in the case of aest estimate of the camera pose, for when the camera pa-
homogeneous cube). rameters are fixed (top) or allowed to vary (middle). To

Nevertheless, if one is interested in the shape of theemphasize the improvement that follows the evolution of
scene, regardless of the positioning of the camera, the alterthe motion parameters, we also show the reprojection error
nation of the flow (9) and (1) will indeed provide an estimate when the true shape, but wrong parameters, are used.
of shape that simultaneously explains each given image. Finally, to emphasize the importance of incorporating
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Figure 3: Evolution of the estimate of shape when the camera pose is fixed with an external calibration procedure (top, after 0, 50, 100,
300 and 500 steps); evolution of estimate of shape joined with the estimate of the motion parameters (middle, after 30, 60, 90, 110 and 150
steps), final estimate from several viewpoints (bottom).

ir 4. epro;ectio error when the camera Ebs is fixed with an external calibration procedex(top) and when camera pose is estimated
along with scene shape (middle). Reprojection error for the correct shape if the camera parameters were fixed (bottom).



the segmentation procedure behind our modelaig the
process of shape reconstruction and pose estimation rather
than as a “first step”, we show in figure 4 the results of con-
structing the visual hull directly from the segmented im-
ages. Such a procedure, which relates much more directly to
space carving and shape-from-silhouettes than our approach
may seem quite tempting since the images are individually
easy to segment. However, as can be seen in the figure,
the final reconstruction obtained using this serial method of
“first segment then reconstruct” suffers terribly in the pres-
ence of calibration errors. To highlight this point we also
show the visual hull reconstruction using the final updated
camera poses obtained after the evolution illustrated in the
previous figures.

5 Conclusions

We have presented an algorithm to estimate the shape of
a scene composed of smooth surfaces with constant radi-
ance as well as the relative pose of a collection of cameras.
We define a cost functional that penalizes the discrepancy
between the measured images and the projection of the es-
timated model onto the image, as well as regularizing terms
to enforce the smoothness assumptions. We define a gradi-
ent flow procedure that is guaranteed to minimize (locally)
the cost functional. As the experiments show, our algorithm
is very robust to image noise and to the initialization of the
scene shape. It does require initialization of the relative
pose of the cameras, although a manually inputed guess is
usually sufficient. It performs well under the assumptions it
is designed for. It does not work when the scene has non-
smooth radiance, a condition that allows other algorithms
for SFM to work well.

Reconstruction via the visual hull

o
\

o ‘\'
S

i

Reconstructions according to
(poor) initial pose estimates.
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Reconstructions according to
final evolved pose estimates

Reconstruction via stereoscopic segmentation
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