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Abstract

In distributed object systems it is desirable to be able to migrate ob-
jects transparently between locations, for instance in order to support
load balancing and efficient resource allocation. Existing approaches
build complex message routing infrastructures, typically on top of ip,
using e.g. message forwarding chains, or centralized object location
servers. These solutions are costly in terms of complexity and over-
head. In an earlier paper we have shown how location independent
routing can be used to implement process overlays in a sound, fully ab-
stract, and efficient manner on top of an abstract network of processing
nodes connected by asynchronous point to point channels. The overlays
considered in that work allowed only one type of message, with mod-
est requirements on global consistency. In this paper we show how the
approach can be generalized to more complex object overlays involving
futures, essentially placeholders for method return values that need to
be kept consistent and propagated correctly to all objects that eventu-
ally need them.

1 Introduction

The ability to transparently and efficiently relocate objects between pro-
cessing nodes is a basic prerequisite for many tasks in large scale dis-
tributed systems, including tasks such as load balancing, resource alloca-
tion, and management. By freeing applications from the burden of resource
management they can be made simpler, more resilient, and easier to man-
age, resulting in a lower cost for development, operation and management.

The key problem is how to efficiently handle object and task mobility.
Since in a mobile setting objects location changes dynamically, some form
of application level routing is needed for inter-object messages to reach
their destination. Various approaches have been considered in the litera-
ture (cf. [34] for a survey). One common implementation strategy is to use
some form of centralized, replicated, or decentralized object location reg-
ister, either for forwarding or for address lookup cf. [14, 34, 1, 18]. This
type of solution requires some form of synchronization to keep registers
consistent with physical location, or else it needs to resort to some form



of message relaying, or forwarding. Forwarding by itself is another main
implementation strategy used in e.g. the Emerald system [25], or in more
recent systems like JoCaml [10]. Other solutions exist such as broadcast
or multicast search, useful for recovery or for service discovery, but hardly
efficient as a general purpose routing device in large systems.

In general one would like a mechanism for object mobility with the fol-
lowing properties:

* Low stretch: In stable state, the ratio between actual and optimal
route lengths (costs) should be small.

* Compactness: The space required at each node for storing route in-
formation should be small (sublinear in the size of the network).

» Self-stabilization: Even when started in a transient state, computions
should proceed correctly, and converge to a stable state. Observe that
this precludes the use of locks.

* Decentralization: Routes and next hop destinations should be com-
puted in a decentralized fashion, at the individual nodes, and not rely
on a centralized facility.

Existing solutions are quite far from meeting these requirements: Location
registers (centralizes or decentralized) and pointer forwarding regimes both
preclude low stretch, and the use of locks precludes self-stabilization.

In a precursor to this paper [11] we suggest that the root of the difficul-
ties lies in a fundamental mismatch between the information used for search
and identification (typically, object identifiers, OID’s), and the information
used for routing, namely host identifiers, typically IP numbers. If we were
to route messages not according to the destination location, but instead to
the destination object, it should be possible to build object network overlays
which much better fit the desiderata laid out above. In [11] we show that
this indeed appears to be true (even if the problem of compactness is left for
future investigation). The key idea is to use a form of location independent
(also known as flat, or name independent) routing [20, 2, 21] that allows
messages (rpc’s) to be routed directly to the called object, independently of
the physical node on which that object is currently executing. In this way a
lot of the overhead and performance constraints associated with object mo-
bility can be eliminated, including latency and bandwidth overhead due to
looking up, querying, updating, and locking object location databases, and
overhead due to increased traffic, for instance for message forwarding.

The language considered in [11] allows to define a dynamically growing
or shrinking collection of objects communicating by asynchronous rpc, and
thus its functionality is not much different from a core version of Erlang [5],
or the nomadic PICT language studied in [34]. The question we raise in [11]
is how program behaviour is affected by being run in the networked model,
as compared with a more standard (reference) semantics given here using
rewrite logic. This comparison is of interest, since the reference semantics
is given at a high level of abstraction and ignores almost all aspects of phys-
ical distribution, such a location, routing, message passing, and so on. In



[11] we show that, with a maximally nondeterministic networked semantics,
and in the sense of barbed equivalence [31] which is a standard equivalence
to study in these types of applications [9, 16, 17], programs exhibit the same
behaviour in both cases.

Messaging in [11] is very simple. The implicit channel abstraction used
in the reference semantics is essentially that of a reliable, unordered com-
munication channel. Messages (calls) are sent according to the program
order, but the order in which they are acted upon is arbitrary'. Soundness
and full abstraction for the networked semantics is therefore an interesting
and useful observation, since it allows many conclusions made at the level
of abstract program behaviour to transfer to the setting of the networked
realization.

The question is how sensitive these results are to the type of communica-
tion taking place at the abstract level. The overlays considered in the earlier
work allows only one type of message, with modest requirements on global
consistency. It is of interest to examine also languages with richer commu-
nication structures than asynchronous point to point message passing. To
this end we enrich in this paper the language studied earlier, and show that
the conclusions of our previous work remain valid, however with more in-
volved constructions. The extension results in much more complex object
overlays involving so-called future variables that need to be kept consistent
and propagated correctly to all objects that may eventually need them.

Future variables [7, 15, 27, 36, 28, 13] are placeholder variables for
values that may be waiting to get instantiated. Futures are used exten-
sively in many concurrent and distributed high-level languages, libraries,
and models including Java, .NET, scheme, concurrent LISP, Oz, to name just
a few. Many versions of future variables exist in the literature. Our work
uses futures as placeholders for return values of remote method calls, as
in [6, 13, 8]. Other models exists, such as the transparent first-class fu-
tures considered in [3], or the concurrent constraint store model of e.g. Oz
[35, 28].

Futures need a messaging infrastructure to propagate instantiations.
Consider a remote method call x = obj.m(arg). The effect of the call is
the creation of two items:

1. A remote thread evaluating obj.m(args)

2. The assignment of a future to x. The future is initially uninstantiated,
but is intended to become instantiated after the remote call has re-
turned.

This allows long running tasks to be offloaded to a remote thread with the
main thread proceeding to other tasks. When the return value is eventually

IThis is not strictly speaking true in general, as in the reference semantics, the program
order on calls may induce happens-before constraints on external method calls that cannot be
realized in the networked semantics because messages are explicitly queued and can always be
shuffled. However, barbed equivalence is not sensitive to this type of happens-before constraint
in the reference semantics.



needed, the calling thread can request it by executing a get on the future.
If x is uninstantiated, this causes the future to block.

The problem is that futures can be transmitted as parameters between
threads as well. If y is a future occurring in args, there must be some
means for the value eventually assigned to y to find its way to the remote
thread computing obj.m(args), either by forwarding the value after it be-
comes available, or by the remote thread querying either the caller or some
centralized lookup server for the value of y, if and when it is needed. This
creates very similar problems to those arising from object migration. Thus
it would seem likely that location independent routing could benefit propa-
gation of futures as well, and as we show in this paper, indeed this is so. In
the case of futures, however, the problems are aggravated: In order for the
networked implementation to be correct (sound and fully abstract) we must
be able to show that future assignments are unique and propagate correctly
to all objects needing the assignment, without resorting to solutions that are
overly inefficient such as flooding.

Many strategies for future propagation exist in the literature [19, 30].
In this work we use eager forward chaining where assignments are prop-
agated along the flow of futures as soon as they are instantiated. Other
propagation strategies exist, including strategies that use various forms of
location registers, and lazy strategies which look up futures only as needed.
Either approach may benefit from the use of location independent routing.

Our main result is to show that, with a fully nondeterministic semantics,
the abstract semantics and the networked semantics with futures imple-
mented by eager forward chaining correspond in the sense of barbed equiv-
alence. This is interesting in itself, as it shows that the networked semantics
captures the abstract behaviour very accurately. Also it follows that, for the
case when a scheduler is added (pruning some execution branches), a simi-
lar correspondence holds, but now for barbed simulation instead of barbed
bisimulation.

The proof uses a normal form construction in two stages. First, it is
shown that each well-formed configuration in the networked semantics can
be rewritten into an equivalent form with optimal routes. The second stage
of the normalization procedure then continues rewriting to a form where in
addition all messages that can be delivered also are delivered, and where all
objects are migrated to some central node. Correctness of the normalization
procedure essentially gives a Church-Rosser like property, that transitions
in the networked semantics commute with normalization. Normalization
brings configurations in the networked semantics close to the form of the
reference semantics, and this then allows the proof to be completed.

The paper is organized as follows: In section 3 we first introduce the
mABS language syntax, and the network oblivious reference semantics of
mABS is given in section 4. In section 5 we present type 1 barbed equiv-
alence, the notion of barbed equivalence adapted to the reference seman-
tics. Then, in section 6, we turn to the network semantics and present the
runtime syntax and the reduction rules. We proceed by detailing the well-
formedness conditions for the network semantics in section 7 and adapt



barbed equivalence to the network semantics in section 8. We then present
the normal form construction in section 9 and continue by completing the
correctness proof in section 10. in section 11 we discuss scheduling, and
finally in section 12 we conclude. Longer proofs have been deferred to the
appendix.

2 Notation

We use a standard boldface vector notation to abbreviate sequences, for
compactness. Thus, x abbreviates a sequence xy,...,x,, possibly empty,
and f(x) abbreviates a sequence f1 z1,..., fn ,, etc. Let x = x1,..., 2.
Then z(, x abbreviates zq,...,x,. Let g : A — B be a finite map. The update
operation for g is g[b/a)(z) = g(z) if * # a and g[b/a](a) = b. We use L for
bottom elements, and A, for the lifted set with partial order C such that
a C b if and only if either a = b € A or else a = L. Also, if z is variable
ranging over A we often use x, as a variable ranging over A,. For g a
function g : A — B, we write g(a) | if g(a) € B, and g(a) 1 if g(a) = L.
The product of sets (flat cpo’s) A and B is A x B with pairing (a,b) and
projections m; and .

3 mABS

We define a small concurrent object-based language mABS, short for milli-
ABS, with asynchronous calls and futures, as depicted in fig. 1. The mABS
language is an extension of the language pABS (micro-ABS) of message-
passing processes introduced in [11] with return values as futures, and it
corresponds essentially to the asynchronous fragment of the core ABS lan-
guage extensively studied in the EU FP7 project HATS. The language is

z,y € Var Variable

ee€ Exp Expression

P u=  CL{x,s} Program

CL == class C(x){y,M} Class definition
M = mx){y,s} Method definition
s n=  s1;82 | * =rhs | skip Statement

| if e{s1} else {s2}
| while e{s} | returne

rhs == e | new C(e) Right hand sides
| elm(e) | e.get

Figure 1: mABS abstract syntax

fairly self-explanatory. A program is a sequence of class definitions, along
with a set of global variables x, and a "main" statement s. The class hierar-
chy is flat and fixed. Objects have parameters x, local variable declarations
y, and methods M. Methods have parameters x, local variable declara-
tions y and a statement body. For simplicity we assume that variables have



class Serverl(){,
serve(x){,return foo(x)}

}

Figure 2: yABS Code Sample 1

class Server(){,
serve(x){sl,s2,f1,f2,rl1,r2,
if small(x){return foo(x)}
else {
sl = new Server() ;
s2 = new Server() ;
f1l = sl!serve(upper(x)) ;
f2 = s2!serve(lower(x)) ;

rl = fl.get ;
r2 = f2.get ;
return combine(rl,r2)

Figure 3: uABS Code Sample 2

unique declarations. Expression syntax is left open, but is assumed to in-
clude the constant self. We require that expressions are side effect free. We
omit types from the presentation. Types could be added, but they would not
affect the results of the paper is any significant way and consequently left
out.

Statements include standard sequential control structures, and a mini-
mal set of constructs for asynchronous method invocation, object creation,
and retrieval of futures (get statements).

Example 3.1. A very simple server applying foo to its argument is shown
in fig. 2.

Example 3.2. Assume that combine(upper(x),lower(x)) = foo(x). The pro-
gram example in fig. 3 returns immediately with the result, if the argument
to serve is small. If the argument is not small, two new servers are spawned,
and computation of the result on upper and lower tranches is delegated to
those servers. The results are then fetched from the two newly spawned
servers by evaluating the get statements, combined, and returned.

4 Reduction Semantics

We first present an abstract “reference” semantics for mABS using rewrit-
ing logic. The presentation follows [11] quite closely. We use the abstract



semantics as the point of reference for the concrete network-oriented se-
mantics which we present later. The reduction semantics uses a reduction
relation cn — cn’ where cn, cn/ are configurations, as determined by the
runtime syntax in fig. 4. Later on, we introduce different configurations
and transition relations, and so use index 1, or talk of e.g. configurations
of “type 1”, for this first semantics when we need disambiguate. Terms

x € Var Variables

o€ OID Object id

p € PVal Primitive values

f € Fut Futures

v e Val = PValU OID U Fut Values

z € Name = FutU OID Names

l e MEnv = VarU{ret} — Val, Method environment
a € OEnv = Var — Val, Object environment
tsk € Tsk == t(o,l,s) Task

obj € Obj = o(o,a) Object

fut € fut = f(f,v1) Future

call € Call == c(0,0',m,V) Call

ct € Ct = sk | obj | call | fut Container

cn € Cn = 0| ¢t | cnen' | bind z.cn  Configuration

Figure 4: mABS type 1 runtime syntax

of the runtime syntax are ranged over by M, and =< is the subterm rela-
tion. The runtime syntax uses disjoint, denumerable sets of object identi-
fiers o € OID, futures f € Fut, and primitive values p € PVal. Values are
either primitive values, OID’s, or futures. Lifted values are ranged over
by v; € Val,, and we use C for the standard, associated partial ordering.
OID’s and futures are subject to w-calculus like binding. Later, in the type 2
semantics, this type of explicit binding is dropped. Accordingly, names are
either OID’s or futures, we use z as a generic name variable, and names are
bound using the 7-like binder bind. We assume throughout that names are
uniquely bound. The free names of configuration cn is the set fn(cn), and
OID(cn) = {o | Ja.o(o,a) = cn} is the set of OID’s of objects occurring in
cn. Similarly, Fut(cen) = {f | Jvo f(f,v1) =X cn} is the set of futures in cn.
Standard alpha-congruence applies to name binding.

Configurations are “m-scoped” multisets of containers of which there
are four types, namely tasks, objects, futures, and calls. Configuration
juxtaposition is assumed to be commutative and associative with unit 0.
In addition we assume the standard structural identities bind 2.0 = 0 and
bind z.(cny cng) = (bind z.cny) cny when z € fn(cnz). We often use a vec-
torized notation bind z.cn as abbreviation, letting bind €.cn = ¢n where ¢
is the empty sequence. The structural identities then allows us to rewrite
each configuration into a standard form bind z.cn such that each member of
z occurs free in cn, and c¢n has no occurrences of the binding operator bind.
We use standard forms frequently.

Tasks are used for method body elaboration, and futures are used as
centralized stores for assignments to future variables. Task and object envi-



ronments [ and a, respectively, map local variables to values. Task environ-
ments are aware of a special variable ret that the task can use in order to
identify its return future. Upon invocation, the task environment is initial-
ized using the operation locals(o, f, m,v) by mapping the formal parameters
of m in o to the corresponding actual parameters in v, by initializing the
method local variables to suitable null values, by mapping self to o, and by
mapping ret to f, intended as the return future of the task being created.
Object environments are initialized using the operation init(C,v), which
maps the parameters of C' to v, and initializes the object local variables
as above.

In addition to locals and init, the reduction rules presented below use the
following helper functions:

* body(o, m) retrieves the statement of the shape s in the definition body
for m in the class of o.

* ¢é(a,l) € Val evaluates e using method environment [ and object envi-
ronment o.

Calls play a special role in defining the external observations of a configu-
ration cn. An observation, or barb, is a call expression of the form olm(v),
ranged over by obs. In order to define the observations of a given configura-
tion, we assume a fixed set Ezt of external OID’s to which outgoing method
calls can be directed. Names in Fzxt are not allowed to be bound. A barb,
then, is an external method call, i.e. a method call to an OID in Ezt. Calls
that are not external are meant to be completed in usual reduction seman-
tics style, by internal reaction with the called object, to spawn a new task.
External calls could be represented directly, without introducing a special
container type (which is not present in the core ABS semantics of [23]), by
saying that a configuration c¢n has barb obs = olm(v) if and only if ¢n has
the shape

bind 01.(cn’ o(02,a) t(02,1, e1lm(ez); s)) , (1)

where €(a,l) = o € Ext and €2(a,l) = v. However, in a semantics with
unordered communication, which is what we are after, consecutive calls
should commute, i.e. there should be no observational distinction between
the method bodies e;!m;(e}); ealma(e}) and eslmo(e}); e1lmy(€]). This, how-
ever, is difficult to reconcile with the representation (1). To this end call
containers are introduced, to allow configurations like (1) to produce a cor-
responding call, and then proceed to elaborate s.

We next present the reduction rules. For ease of notation the rules as-
sume that sequential composition is associative with unit skip. Figures 5
and 6 present the reduction rules. The rules use the notation cn - c¢cn’ —
cn'’ as shorthand for ecn ¢n’ — cn cn’. We use —; when we want to make
the reference to the type 1 reduction semantics explicit. Fig. 5 gives the
mostly routine rules for assignment, control structures, and contextual rea-
soning, and fig. 6 gives the more interesting rules that involve inter-object
communication, external method invocation, and object creation. A method
call causes a new future to be created, along with its future container, initial-
ized to 1. Internal and external calls are treated somewhat asymmetrically,



ctxt-1: If cn1 — cno then en - cn1 — cno

ctxt-2: If ecny — c¢ng then bind z.¢n1 — bind z.cno

wlocal: If z € dom(l) then t(o,l,z = e;s) — t(o,[é(a,l)/x], s)

wfield: If z € dom(a) then o(o, a) t(o,l,z = e;s) — o(o, alé(a,l)/x]) t(o,l, s)
skip: t(o, [, skip; s) — t(o,1,s)

if-true: If é(a,l) # 0 then o(o0,a) F t(o,1,if e{s1} else {s2};s) — t(o,1, 51; 5)

if-false: If é(a,l) = 0 then o(o, a) - t(o, 1, if e{s1} else {s2};s) — t(o,1, s2;5)

)
while-true: If é(a,l) # 0 then o(o, a) - t(o,1, while e{s1}; s) — t(o,l, s1; while e{s1 }; s)

while-false: If é(a,l) = 0 then o(o0, a) F t(o,l, while e{s1 };s) — t(o,l, s)

Figure 5: mABS reduction semantics part 1

since external calls are only used to define barbs, and barbs corresponding
to the act of receiving a external return value are not very meaningful in
a reduction semantics setting?. Future instantiation is done when return
statements are evaluated, and get statements cause the evaluating task to
hang until the value associated to the future is defined. Wait statements can
easily be added; they contribute nothing essential to this presentation. Ob-
ject creation (new) statements cause new objects to be created along with
their OID’s in the expected manner.
We note some basic properties of the reduction semantics.

Proposition 4.1.
1. If en — cn’ then fn(en’) C fn(en’)
2. Ifo(o,a) < cn, then o(o,a’) = ¢n’ for some object environment a’

3. Iff(f,v1) < cn thenf(f,v") < en’ for some v, such thatv, C v/

2They are very meaningful in labelled semantics setting, but that is a different story.

call: Let o’ = €i(a,l) in o(0,a) o(0’,a’) F t(o,l,z = e1!m(ez2);s) —
bind /.t(o, 11 /], ) (o', locals o', m, f, 6 (a, 1), body (o, m)) £(f, 1)

call-ext: If o' = é1(a,l) € Ext then
o(o,a) F t(o,l,z = e1lm(ez); s) — t(o,1,s) c(o,0',m, 62(a, 1))

ret: Let l(ret) = f in o(o,a) F t(o,l,return e; s) f(f, L) — f(f,é(a,l))
get: If v # L then o(o, a) f(é(a,l),v) F t(o, 1,z = e.get; s) — t(o,l[v/x], s)

new: o(o,a) + t(o,l,z = new C(e); s) — bind o".t(o,[0/x], s) o(d', init(C, &(a,l)))

Figure 6: mABS reduction semantics part 2



Proof. No structural identity nor any reduction rule allows an OID or future
to escape its binder. Also no rules allow futures to be re-instantiated. The
result follows. O

Consider a program CL{x,s}. Assume a reserved OID main and a re-
served future f;,;;. A type 1 initial configuration is any configuration of the
shape

CNingt = bind main, finir.0o(main, L) t(main, linit, $) f(finit, L)

where [;,;;,1 is the initial type 1 method environment assigning suitable de-
fault values to the variables in x, and /(ret) = f;,;;. The program can place
calls to any of the external objects with OID’s in Fxt, and in this way produce
externally observable output.

We say that a configuration cn,, of type 1 is reachable if there is a deriva-
tion ¢npie = cng — - -+ — cn, where cn;,;; is an initial configuration. Reach-
able configurations satisfy some well-formedness conditions which we make
significant use of later in the paper.

Definition 4.2 (Type 1 Well-formedness). A configuration cn is type 1 well-
formed (WF1) if cn satisfies:

1. OID Uniqueness: Suppose o(01,a1),0(02,a2) = cn are distinct object
occurrences. Then o; # 0y

2. Task-Object Existence: If t(o,l,s) = c¢n then o(o,a) <X cn for some
object environment a

3. Object Existence: Suppose o ¢ Ezxt occurs in cn. Then o(o,a) < ¢n for
some object environment a

4. Object Nonexistence: Suppose o € Ext. Then o(o,a) A c¢n for any
object environment a

5. Object Binding: Suppose o € Exzt. Then o & fn(cn)

6. Future Uniqueness: Suppose f(f1,v11),f(f2,v12) =< cn are distinct
future occurrences. Then f; # f>

7. Single Writer: If t(o,1,s) < ¢n then f(I(ret), L) < ¢n
8. External Calls: If c(0,0',m,v) < ¢n then o' € Euxt

Well-formedness is important as it ensures that objects and futures, if
defined, are defined uniquely, and that, e.g., tasks are defined only along
with their accompanying object. The existence properties are needed to
ensure that the partitioning of OID’s into external and (by extension) inter-
nal is meaningful, in that external references are always routed outside the
“current configuration”. The Single Writer property reflects the fact that
only the task that was spawned along with some given future is able to as-
sign to that future, and hence, if the task has not yet returned, the future
remain uninstantiated.

10



Proposition 4.3 (WF1 Preservation). If cn is WF1 and cn — cn’ then cn’ is
WF1.

Proof. By inspection of the rules. O

Theorem 4.4. If cn is type 1 reachable then cn is WF1.

Proof. 1t is sufficient to check that any initial configuration is WF1, and then
use proposition 4.3. O

5 Type 1 Barbed Equivalence

Our approach to implementation correctness uses barbed equivalence [31].
The goal is to show that it is possible to remain strongly faithful to the ref-
erence semantics, provided all nondeterminism is deferred to be handled
by a separate scheduler. This allows to draw strong conclusions also in the
case a scheduler is added, as we discuss in section 11. Barbed equivalence
requires of a pair of equivalent configurations that the internal transition re-
lation — is preserved in both directions, while preserving also a set of exter-
nal observations. Although weaker than corresponding equivalences such
as bisimulation equivalence on labelled transition systems, barbed equiva-
lence in nonetheless of interest for the following two reasons:

1. Barbed equivalence offers a reasonable notion of observationally iden-
tical behaviour on closed systems, i.e. when composition of (in our
case) subconfigurations to build larger configurations is not consid-
ered because it a) is for some reason not important or relevant, or b)
does not offer new observational capabilities.

2. Barbed equivalence can be strengthened in a natural way to con-
textual equivalence [29] by adding to barbed equivalence a natural
requirement of closure under context composition. Furthermore, a
number of works, cf. [22, 32] have established very strong relations
between contextual equivalence for reduction oriented semantics and
bisimulation (logical relation) based equivalences for sequential and
higher-order computational models.

It is, however, far from trivial to devise a natural notion of context that
works at the level of the network semantics introduced later, and such that
the notions of context correspond at both the abstract, reference semantics
level we consider at present, and at the network level. For this reason the
account of this paper based on barbed equivalence is also a natural stepping
stone towards a deeper study of the notion of context in real-world—or at
least not overly artificial—networked software systems.

Let obs = o'!m(v). The observation predicate cn | obs is defined to hold
just in case c¢n can be written in the form

bind o.(cn’ c(0,0',m,Vv)) .

The derived predicate cn |} obs holds just in case cn —* ¢n’ | obs for some

en'.

11



Definition 5.1 (Type 1 Witness Relation, Type 1 Barbed Equivalence). Let
‘R range over binary relations on WF1 configurations. The relation R is a
type 1 witness relation, if cniRcny implies

1. ¢noReny (symmetry)

2. If eny — cnf then cny —* cnf, for some cn), such that enfReny (reduc-
tion closure)

3. If cny | obs then cnsy |} 0bs (barb preservation)

~

The WF1 configurations c¢n; and cny are type 1 barbed equivalent, cn, =2
cng, if cniReng for some type 1 witness relation R.

We establish some well-known, elementary properties of barbed equiva-
lence for later reference.

Proposition 5.2. The identity relation is a type 1 witness relation. Barbed
equivalence is a type 1 witness relation. If R, Ri, Ro are type 1 witness
relations then so is

1. R71

2. R*

3. RioRaoRy
Proof. See appendix 1. O
We may conclude that = has the expected basic property:
Proposition 5.3. = is an equivalence relation.

Proof. The result follows from prop. 5.2. For transitivity, in particular, we
use prop. 5.2.3. O

The following property of barbed equivalence illustrates well its closed sys-
tem nature:

Proposition 5.4. Suppose cn is WF1, o & fn(cn), and cn o(o,a) is WF1.
Then cn = ¢n o(o, a)

Proof. See appendix 1. O

This is reasonable from a closed system perspective, as if o & fn(cn)
there is no way o(o, a) can be exercised without outside stimulus, but barbed
equivalence lacks a context formation clause that can allow such stimulus
to be produced. Thus, from a modeling perspective, all stimulus (= model
input) that needs to be considered in a given modeling exercise must be
included from the outset.
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6 Network Semantics

We now turn to the second, main part of the paper where we address the
problem of efficiently executing mABS programs on an abstract network
graph using the location independent routing scheme alluded to in the in-
troduction. The approach follows closely the network semantics introduced
in [11], with the important difference that return values, as futures, are now
included. In addition to the naming, routing, and object migration issues al-
ready addressed in [11] the additional challenge is to ensure that futures
are correctly assigned and propagated at the network level.

In the network semantics we assume an explicitly given network “un-
derlay”: A network of nodes and directional links to which message buffers
are associated, modeling a concrete network structure with asynchronous
point-to-point message passing. Object execution is localized to each node.
At the outset nodes know only of their “own” objects, but as routing infor-
mation is propagated, inter node messaging becomes possible. Objects may
choose to migrate between neighbouring nodes. When this is done is not
addressed here; we discuss possible adaptation/scheduling strategies in a
separate paper [12]. The propagation of routing information will automat-
ically see to it that routing tables are eventually updated. How and when
this is done is again left to a scheduler. Method calls can be issued if the
caller task knows the OID of the called object. The call is delivered once a
route to the callee is known.

For the language considered in this paper the network semantics must
be extended to cover also return values and futures. In this paper we use
a form of eager forward chaining [6]. Each object mentioning a future can
subscribe to that future at some other object. This may happen in remote
method calls where the caller subscribes to the return value later to be
provided by the callee. It may also happen when a value containing a future
is passed from some sender object to some receiver object. In that case
the receiver object becomes subscriber at the sender object for that future.
When a future gets instantiated to an actual value at some object, it is the
task of that object to forward the instantiation to the subscribing objects.
This is the implementation strategy applied in our work as well, and it is the
objective of the proof to show that this approach is sound and fully abstract
for our network semantics, even when routing is in an unstable state.

Example 6.1. An example illustrating future propagation and the interac-
tion with routing is shown in Figure 7. In configuration 1 an rpc with argu-
ment f, a future, is sent from object 0bj; residing on nd; is sent to object
obj; on node nds. This causes the following events:

* The forwarding list for f at object obj; is augmented to include object
0bj3
* A new future g is created at object obj;, to hold the return value of

method obj;.m

* Object obj; is augmented with placeholders for f and g, and the for-
warding list for g is augmented to point to obj;

13



Figure 7: Futures in the mABS network semantics

The scheduler now decides to migrate obj; from nds; to nds. No action is
required other than regular routing table updates, as the forward pointers
keep pointing to the same objects. Finally, the remote method returns the
future f 3. The forwarding chain for g has now outlived its purpose and can
be garbage collected (our semantics does not actually accomplish this quite
yet). The forwarding chain for f is augmented to point to the return future
g. The resulting loop costs additional messaging in the current rather basic
semantics, and could be eliminated. However, it does not cause additional
latency as obj, is able to discover an assignment to f at obj, when it is first
made.

6.1 mABS-NET Runtime Syntax

In fig. 8 we present the mABS-NET runtime syntax, i.e. the shape of the
runtime state. Recall from section 4 that we reuse symbols as much as
possible and use indices to disambiguate. Thus, for instance, Obj, is the set
Obj of the type 1 semantics in fig. 4, and Obj, is the corresponding set in
fig. 8. We adopt the same syntactical conventions as in section 4. Tasks are

3This might not appear wholly optimal, but for the sake of the example . ..
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u € NID Node identifier

a€ OEnvy = (Var — Valy) x Object environment
(Fut — (Val. x (OID list)) 1)

t € RTable = OID — (NID x w)1 Routing table

g€ @ = Msg* Message queue

obj € Obj, = o(o,a,u,gin, Gout) Object

nd € Nd = n(u,t) Network node

Ink € Lnk = I(u,q,u’) Network link

ct € Cty = tsk | obj | nd | Ink Runtime container

cn € Cna = cty...cty Configuration

msg € Msg == call(o,0, f,m,v) | future(o, f,v) | Message

table(t) | object(cn)

Figure 8: tABS-NET runtime syntax

unchanged from fig. 4. We write t(¢n) for the multiset of tasks in cn, i.e. the
multiset {tsk | Ien’.cn = tsk en’}, and o(en) for the multiset of objects in ¢n,
similarly defined. We also write m(cn) for the multiset {msg | msg < cn}.
We proceed to explain the different types of containers and the opera-
tions on them, concentrating on the treatment of futures. For a detailed
explanation of other features, in particular routing, we refer to [11].

Network and Routing The network graph contains a vertex u for each
node container n(u,t) and an edge (u,u’) for each link I(u, g, u’). The reduc-
tion semantics given later does not allow nodes or links to be dynamically
changed, so in the context of any given transition (or, execution), the net-
work graph remains constant. Note that there is no a priori guarantee that
the network graph is a well-formed graph. For the remainder of the paper
we impose some constraints on the well-formedness of the network graph,
including (i) endpoints of edges exist, (ii) vertices and edges are uniquely
determined, (iii) the network graph is reflexive and symmetric, and (iv) the
network graph is connected. For routing we adopt a simple Bellman-Ford
distance vector (d.v.) discipline. For a routing table ¢, t(0) = (u,n) indicates
that, as far as ¢ is concerned, there is a path from the current node (the node
to which ¢ is attached) to the node v with distance n that first visits the node
u. We only count hops in this work, for simplicity. A more realistic routing
scheme attaches weights to the edges, reflecting latency or capacity con-
straints. Next hop lookup is performed by the operation nzt(o,t) = w1 (t(0))
where m; is the first projection. There is also an operation of updating a
routing table ¢ by a routing table ¢’ received from a neighbouring node u,
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defined by the function

1 ifo & dom(t) U dom(t)
t(o) else, if o € dom(t')
, ) (u,ma(t'(0)) +1) else, if o & dom(t)
upd(t, u,t')(0) = (u,ma(t'(0)) +1) else, if 71 (t'(0)) =u
(u,m2(t'(0)) + 1) else, if t'(0) < ma(t(0)) — 1
t(0) otherwise

Finally, there is an operation reg(o, u,t) that returns the routing table ¢’ ob-
tained by registering o at t’s current node u, i.e. such that

n_ [ (u,0) ifo=0

reg (0, u,£)(0') = { t(o') otherwise

Message Queues Queue operations are standard: eng(v,q) enqueues v
onto the tail of g, hd(q) returns the head of ¢, and deq(q) returns the tail of
the ¢, i.e. ¢ with hd(q) removed. If ¢ is empty then hd(q) = deg(q) = L.

Objects and Object Environments Objects o(0, a, u, Gin, ¢out) are now at-
tached to a node u and a pair of an ingoing (¢;,) and an outgoing (q,.:) fifo
message queue, and the notion of object environment is refined to take fu-
tures into account in a localized manner. In the type 2 semantics, object
environments ¢ are now augmented by mapping futures fut to pairs (v, ,0)
where:

* v, is the lifted value currently assigned to fut at the current object,
and

* ois a forwarding set of the objects subscribing to updates to fut at the
current object.

For instance, if a(fut) = (L, 01 :: 02 :: €) the future fut is as yet uninstanti-
ated (at the object to which a belongs), and, if fut eventually does become
instantiated, the instantiation must be forwarded to o; and 05, in random
order.

We introduce some syntax to help manipulating object environments:

* a(x) abbreviates 71 (a)(z), a(f) abbreviates ma(a)(f)

* af[v/x] is a with 71 (a) replaced by the expected update. Similarly a[v/ f]
updates m2(a) by mapping f to the pair (v, m(a(f))), i.e. the assigned
value is updated and the forwarding list remains unchanged. If f ¢
dom(ma(a)) then a[v/f](f) = (v,¢€), i.e. the update to value takes effect.
Finally we use a[(v, 0)/ f] for the expected update where both the value
and the forwarding list is updated.

* fw(v,o,a) updates 72 (a) by for each future f occurring in v adding o to
the forwarding list of a(f), i.e. by mapping f to the pair either (L, o) if
a(f) is undefined (= 1), or (m1(a(f)), o0 :: m2(a(f))) otherwise.
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* init(C, v) returns an initial objects environment by mapping the formal
parameters of C to —-.

* nit(f,a) augments a by mapping f to the pair (L,e). If f & dom(a)
then init(f,a) = a.

* init(v,a) augments a by mapping each f in v which is uninitialized in
a (i.e. such that f & dom(a)) to (L,e).

As a consequence of this change, futures are eliminated as containers in
the type 2 runtime syntax. In other respects, the type 2 runtime syntax is
unchanged: Syntactical conventions that are not explicitly modified in the
type 2 syntax above are unchanged, in particular we continue to assume
multiset properties of configuration juxtaposition.

Messages The network semantics uses four types of messages. The first is
a method call message of the shape call(o, o', f,m,v), already implicit in the
reduction semantics (and explicit for external calls). The remaining three
are new: future(o, f,v) is a future instantiation message, informing object o
that f now has been instantiated to value v, table(t) encodes the routing ta-
ble ¢, and object(cn) is used for object migration. The first two types of mes-
sages are said to be object bound, and the two latter are node bound. We de-
fine dst(msg), the destination of msg to be o’ for msg of the first form above,
o for msg of the second form, and dst(msg) = L in the remaining two cases.
For an object message object(cn) to be valid, the configuration c¢n needs to
be an object closure of the form o(o, a, u, gin, Gout) t(0,11,51) ... tsk(o,lpn, sn).
Specifically, if ¢n is any configuration then clo(cn, 0), the closure of object o
with respect to c¢n, is the multiset of all type 2 containers of the form either
o(o,d' v, ¢y, hue) OF t(0',1',s") such that o' = o, and objof(cn) is a partial
function returning o if all type 2 containers in c¢n are either objects or tasks,
with OID o.

6.2 Reduction Semantics

An important distinction between the reference semantics and the network
semantics is the absence of binding. For the standard semantics, name
binding plays an important role to avoid clashes between locally generated
names. However, in a language with BID’s this device is no longer needed,
as globally unique name can be guaranteed easily by augmenting names
with their generating NID. Since all name generation in the yABS-NET se-
mantics below takes place in the context of a given NID, we can simply
assume operations newf(u), resp. newo(u), that return a new future, resp.
OID, which is globally fresh for the “current context". We use new(z) for
either newf or newo when the nature of z is not known.

We present the mABS-NET reduction rules. First, fig. 5 applies with the
following two minor modifications:

* Rule ctxt-2 is dropped as name binding is dropped from the type 2
runtime syntax
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* Rule wfield is modified in the obvious way to read: If # € dom(a) then
O(O, Qa, U, Qin, QOut) t(O, l,x = e 5) - O(O a[ (a l)/l‘] U, Qin,s QOut) (07 L 5)

The remaining reduction rules are presented in fig. 9.

t-send: n(u,t) F I(u, g,u’) — I(u, eng(table(t), q), u’)
t-rev: If hd(q) = table(t') then I(v’, g, u) n(u,t) — 1(v/, deq(q),w) n(u, upd(t,u’,t"))
msg-send: If hd(qout) = msg, dst(msg) = o’ and nat(o’,t) = u’ then
n(u,t) = 1(u, g, u") o(o, a, u, gin, qout) — (u, eng(msg, q),u’) o(o, a, u, gin, deq(gout))
msg-rcv: If hd(q) = msg and dst(msg) = o then
I(uly q, U) 0(07 a; Uy Gins qOUi) - I(ul7 deq(q)’ u) 0(07 a, u, enQ(msgv an), QOut)
msg-route: If hd(q) = msg, dst(msg) = o and nzt(o,t) = u” # u then
n(u, t) = 1w, q,u) (u, ¢, u”) = 1(u', deq(q), ) I(u, eng(msg, q'),u”)
msg-delay-1: If hd(q) = msg, dst(msg) = o and nat(o,t) 1 then
n(u,t) = 1(u', g, u) W(u, q',u) = (v, deq(q), u) I(u, eng(msg, q'), u)
msg-delay-2: If hd(gout) = msg, dst(msg) = o, and nat(o’,t) 1 then
n(uv t) F O(Oa Q@ Uy Gin, QOut) l(u7 q, u) - 0(07 Q, U, Gin, deq(qmﬂ)) l(uv 6nQ(msga q)7 u)
call-send: Let o' = €1(a,l), v = €2(a,l), f = newf(u) in
0(0, @, U,y Gin, qOUt) t(O, l? T = 61!’)’)1(62); S) -
0(O7fw(v7 O/7 ”u/t(f7 )) U, Qin, enq(ca“(07 0,7 f7 m, V)v CIout)) t(07 l[f/CL'L S)
call-rcv: If hd(qm) = call(d’, 0, f,m, v) then o(o, a, u, Gin, Qout) —
(vaw(fv o ) Z?’L’Lt(V, ’LTLZt(f, )))7 u, d€Q(q1n)7 qoui)
t(o, locals(o,m, f,Vv), body (o, m))
fut-send: If a(f) = (v, 01 :: 02) then
O(Oa @, U,y Gin, qmﬂ) - O(vaw(va 01, a[(v, 02)/f])a Uy Gin,y enQ(fUture(Oh fa v))7 qOUt)
fut-rev: If hd(gin) = future(o, f,v) then
O(Oa @, Uy Gin, qout) - 0(07 a[v/f], U, deQ(qin)7 Qout)
ret-2: o(o, a, U, Gin, qout) t(0,l, return e; s) — o(o,alé(a,l)/l(ret)], u, Gin, out)
get-2: If é(a,l) = f and a(f) = v then
0(0, a, u, Gin, gout) F t(o,l,x = e.get; s) — t(o,l[v/x], s)
new-2: Let o’ = newo(u) in
o(o,a u,qm,qout) n(u,t) t(o,l,z = new C(€);s) —
n(u, reg(o’, u,t)) t(o, o' /], s) o(0’, init(C, &(a,l)),u, €, )
obj-send: Let c¢n’ = clo(cn,0) in
n(u,t) I(u, q,u") en — n(u, reg(o, v, t)) I(u, eng(object(cn’), q),u’) (cn — cn’)
obj-rcv: If hd(q) = object(cn’) then
(v, q,u) n(u,t) en — (v, deq(q),u) n(u, reg(objof (cn’),u,t)) cn cn’

Figure 9: mABS-NET reduction rules

Routing The first set of rewrite rules, t-send and t-rcv, are concerned with
the exchange of routing tables.
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Message Passing The three rules msg-send, msg-rcv and msg-route are
used to manage message passing, i.e. reading a message from a link queue
and transferring it to the appropriate object in-queue, and dually, reading a
message from an out-queue and transferring it to the attached link queue.
If the destination object does not reside at the current node, the message
is routed to the next link. In rule msg-rcv note that the receiving node is
not required to be present. This, however, will be enforced by the well-
formedness condition later, which prohibits output links.

Unstable Routing The two rules msg-delay-1 and msg-delay-2 are used to
handle the case where routing tables have not yet stabilized. For instance it
may happen that updates to the routing tables have not yet caught up with
object migration. In this case, a message may enter an out-queue without
the hosting nodes routing table having information about the message’s
destination (rule msg-delay-2). Another case is where a node receives a
message on a link without knowing where to forward it (rule msg-delay-1).
This situation is particularly problematic as a blocked message may prevent
routing table updates to reach the hosting node, thus causing deadlock. The
solution we propose is to use a network self-loop as a buffer for temporarily
unroutable messages.

Producing and Consuming Messages The four rules call-send, call-rcv,
fut-send, fut-rcv produce and consume messages, method calls and future
instantiations. A method call causes a local future to be created and passed
with the call message. Upon reception of the call, the callee first initialized
those received futures it does not already know about, and then augments
the resulting local object environment to forward instantiations of the re-
ceived future to the caller. Observe that it may be that the callee already
knows about the return future of the call. Since message order is not as-
sumed to be preserved a later call referring to the original return future may
overtake the earlier call. The eventual return value becomes bound to the
return future by the assignment to the constant ret during initialization of
the called methods local environment. The rule fut-send may cause future
instantiations to be forwarded to objects in the forwarding list whenever
the future is seen to have received a value, and fut-rcv causes the receiving
object to update its local environment accordingly. A future may itself be
instantiated to a future. The local forwarding table may thus need to be
updated.

Language Constructs The three rules ret-2, get-2, new-2 handle the cor-
responding language constructs. Return statements cause the correspond-
ing future to be instantiated, as explained. Get statements read the value
of the future provided it has received a value, and new statements cause a
new object to be created, initialized, and registered at the local node.

Object Migration The final rules concern object migration. Those rules
are global in that they are not allowed to be used in subsequent applications
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of the ctxt-1 rule. In this way we can guarantee that only complete object
closures are migrated. In rule obj-send, cn — c¢n’ is multiset difference.

It is important to notice that all of the above rules are strictly local and
appeal only to mechanisms directly implementable at link level: Tests and
simple datatype manipulations taking place at a single node, or accesses
to a single nodes link layer interface. The “global" property appealed to
above for the migration rules is merely a formal device to enable an elegant
treatment of object closures.

The reduction rules can be optimized in several ways. For instance,
object self-calls are always routed through the “network interface”, i.e. the
hosting nodes self-loop. This is not necessary. It would be possible to add
a rule to directly spawn a handling task from a self call without affecting
the results of the paper. We note some elementary properties of the type 2
semantics.

Proposition 6.2. Suppose that cn — cn’.
1. Ifn(u,t) < cn then n(u,t’) < en’ for some t/
2. Ifilnk = (u, q,v') X ¢n then l(u,q’,u') < ¢n’ for some ¢
3. If obj = o(0, a,u, Gin, qout) = cn then there is an object
obj’ = o(o',d' ', 4l Quy) = e/

(the derivative of obj in ¢n’) such that o' = o, v’ = u, for all z, ifa(z) |
then o' (z) |, for all f, if a’(f) | then o'(f) |, and if m(a(f)) | then

m(a'(f)) 4-

4. If tsk = t(o,l,s) < c¢n then either there is a task t(o',l',s’) < ¢n/
(the derivative of tsk in cn) such that o’ = o, dom(l) C dom(l’'), and
'(ret) = I(ret), or else there is an object o(0, a,u, Gin, qout) SUch that

i (a(l(ret))) |
Proof. By inspecting the rules. O

We then turn to initial configurations. Let a program CL{x, s} be given
with reserved OID main and a reserved future f;,;;.

Definition 6.3 (Type 2 Initial Configuration). A type 2 initial configuration
has the shape

CNinit = CNgraph O(MAIN, Qingt.2, Winit, €, €) t(main, linit 2, 5)
where:
* limt,2 identical to linit,ll except that linit,2(finit) = J_,
® Qinit2 = L[(L, &)/ finit),
* CNgrapn is a configuration consisting only of nodes and links,
* Ungt Names a node N(Winit, tinit) N N graph,
® tim-t(o) = (uinit> O), and tinit (0/) = 1 for o 7& o, and

* t(o) = L for all routing tables ¢ # tn; in cnjpie.
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7 Type 2 Well-formedness

Well-formedness becomes more complex in the case of the network seman-
tics, as account must be taken of e.g. queues, messages in transit, and rout-
ing, to ensure that e.g., multiple nodes are never given identical names, that
futures are never assigned inconsistent values, as detailed below. A particu-
larly delicate matter concerns the way future instantiations are propagated.
The well-formedness condition needs to ensure that either all objects that
may some time need the value of a future will also eventually receive it, or
else no object does so (in case the method for which the future holds the
return value fails to terminate). This is the “future liveness” property in def.
7.4 below. To this end we first define when a future f is active at a given
object.

Definition 7.1 (Active Futures). Fix a configuration c¢n. The future f is
active in o if one of the following two conditions hold:

1. There is an object container o(o, a, w, Gin, out) = cn such that a(f) J.
2. A message call(d’, o0, f,m,v) is in transit in ¢n and f occurs in v.

Thus a future f is active in o if either o already has a value for f, or o has
received f but not its value, or if o is about to receive a method call which
contains f among one of its parameters.

We then define which objects are due to be notified by eventual future
instantiations.

Definition 7.2 (Notification Path). Fix a type 2 configuration ¢n and an
object container o(o, a,u, Gin, ¢out) = cn. Let n > 1. Inductively, o is on the
notification path of f in n steps, if n is minimal such that one of the following
conditions hold:

1. n=0,and m1(a(f)) =v #0
2. n =1, and there is a task t(o, [, s) = ¢n with I(ret) = f
3. n =1, and there is a future message future(o, f,v) < cn

4. n = n' + 1 and there is an object o(¢',a', v/, ¢}, ¢,:) = cn such that

o € m2(d/(f)), and o’ is on the notification path of f in n’ steps
5. n = 2, and there is a call message call(o,0’, f,m,v) < ¢n

Say that o is on the notification list of f if 0 is on the notification list of f in
some number of steps.

Condition 1 is the base case when f has already been instantiated. Con-
dition 2 holds if o is due to receive the return value from one of its pending
tasks. Condition 3 holds if a future has been resolved and a future message
is in transit to o. Condition 4 holds if 0 has been inserted into a forwarding
list for f at closer distance to the “source”, and condition 5 holds if a call
has been sent off to o’ with return future f. o is then on the notification list
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of f since the call message is guaranteed to be received at the callee’s site
and the forwarding list there updated. No clause corresponding to a future
being transmitted from o’ to o as part of the argument list, as in that case
rule call-send sees to it that o’:s forwarding list is updated already when the
call is made.

We prove that if o is on the notification path of f then in the next con-
figuration o remains on the notification path of f, without increasing the
number of steps.

Lemma 7.3. Fix cn and an object obj = o(0,a, u, ¢in, qout) < cn. If o is on
the notification path of f in n steps in the configuration cn, cn — cn’, then
o is on the notification path of f in at most n steps in cn’.

Proof. See appendix 2. O

We say that cn assigns v to f if there is an object container

0(0’ Q, Uy Qin, qout) j cn
such that a(f) = v # L, or else there is a future message future(o, f,v) < cn.

Definition 7.4 (Type 2 Well-formedness). A type 2 configuration cn is type
2 well-formed (WF?2) if ¢n satisfies:

1. OID Uniqueness: If o(0;, a;, Ui, Gin.i, Gout,i), ¢ € {1, 2}, are distinct object
occurrences in cn then o; # o0,

2. Object-Node Existence: If o(o,a,u, Gin, out) € cn then n(u,t) € cn for
some t

3. Task-Object Existence: If t(o,l,s) < ¢n then o(o, a, u, ¢in, qout) = cn for
some a, U, Qin, Qout

4. Object Existence: If o ¢ FExt occurs in cn then o(o, a, u, Gin, Gout) = cn
for some a, u, ¢in, Gout

5. Object Nonexistence: Suppose o € FEzt. Then o(o0,a,u, Gin, out) A cn
for any a, u, qin, qout

6. Buffer Cleanliness: If o(0,a,u, Gin, qout) = cn and msg < ¢, Or msg <
Gout then msg is object bound. Also, if msg < ¢;, then dst(msg) = o

7. Local Routing Consistency, 1: If n(u,t),0(0,a,u,qin,qout) € cn then
nzt(o,t) = (u,0)

8. Local Routing Consistency, 2: If n(u,t) < ¢n and m (nzt(o,t)) = u’ then
there is a link I(u, ¢,u’') < ¢n

9. Future Uniqueness: If c¢n assigns v; to f, i € {1,2}, then v; = v

10. Single Writer: If t(o,l,s) < ¢n then cn does not assign any v to I(ret)
and no message future(o’,l(ret), v) is in transit for any o/, v.
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11. Future Liveness: If f is pending in o then o is on the notification path
from f

Conditions 7.4.1 to 7.4.8 are inherited from [11]. Condition 7.4.11 is
the future propagation property discussed above. We use the term “future
liveness” not as a guarantee that f will eventually be instantiated, but to in-
dicate that, if eventually f is instantiated somewhere a notification path ex-
ists along which the update can be propagated. The rationale behind 7.4.10
is that mABS enforces a single-writer discipline on futures which must be
reflected in the well-formedness constraints at the mABS-NET level. Once
the future has been assigned through the evaluation of a return statement,
the task is “garbage collected”. For 7.4.6 observe that only object bound
messages (for in-queues, with messages appropriately addressed) enter the
object queues. Buffer cleanliness is needed to prevent the formation of con-
texts that are deadlocked because an in- or out-queue contains messages of
the wrong type. For 7.4.7 the requirement should hold only when the object
is not in transit, as otherwise the object may be on the wire away from node
u, and wu:s routing table will then have been updated.

Lemma 7.5 (Type 2 Well-formedness Lemma). If cn is WF2 and cn — cn’
then cn' is WF2.

Proof. See appendix 2. O
Corollary 7.6. If cn is type 2 reachable then cn is WF2.

Proof. First check that initial configurations are WF2 and closed and then
use lemma 7.5. O

An easy but important consequence of type 2 well-formedness is that
assignments to futures cannot be updated.

Proposition 7.7. Suppose that cn is WF2. If cn assigns v to f and cn’
assigns v’ to f thenv = v'.

Proof. Since cn is WF2, if cn assigns v to f there cannot be a task t(o, 1, s) <
cn such that I(ret) = f. But the only way of assigning v # v to f is through
ret-2, the result follows. O

8 Type 2 Barbed Equivalence

We adapt the notion of barbed equivalence to the type 2 setting as in [11].
The only difficulty is to define the type 2 correlate of the observation pred-
icate. Say an observation obs = o!m(v) is enabled at a configuration cn if
a corresponding call message call(o’,0,m,v) is located at the head of one
of the object output queues in c¢n. More precisely, the type 2 observability
predicate is ¢n | obs, holding if and only if cn has the following shape;

cn = cn’ 0(0/,a,U,QmaqOut) (2)

and hd(qout) is defined and equal to call(o’, 0,m, v).
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It may be thought that the fifo queue discipline goes against the treat-
ment of external calls in the type 1 semantics as there an external call con-
tainer, once created, will remain as an inert element of all future config-
urations. Thus, once, say, 5 call containers have been created, all 5 calls
can be observed at all configurations from that point onwards. This is obvi-
ously not the case in the type 2 semantics. On the other hand, in the type
2 semantics, external call messages can always be recycled on the reflexive
link, allowing available external calls to be shuffled.

There are other ways of defining the observability predicate that may be
more natural. For instance one may attach external OID’s to specific NID’s
and restrict observations to those NID’s accordingly. It is also possible to
add dedicated output channels to the model, and route external calls to
those. None of these design choices have any effect on the subsequent
results, however, but add significant notational overhead, particular in the
latter case.

With the observation predicate set up, the weak observation predicate is
derived as in section 5, and, as there, we define a type 2 witness relation as
a relation that satisfies symmetry, reduction closure, and barb preservation.
Thus:

Definition 8.1. Type 2 Barbed Equivalence Let cny =5 cno if and only if
cn1 R cno for some type 2 witness relation R.

In fact, for the purpose of this paper there in no real need to distinguish
between the type 1 and type 2 equivalences, and hence we conflate the
notions of witness relation and barbed equivalences, by letting the type of
the configuration arguments be determined by the context, and use = as
the generic notion.

9 Normal Forms

An mABS-NET program can be run from an initial state in either the type
1 or the type 2 semantics. We want to show that the behaviour of the pro-
grams is preserved, in the sense that the initial states at type 1 and type 2
levels are barbed equivalent.

The key to the proof is a normal form lemma for mABS-NET saying,
roughly, that any well-formed type 2 configuration can be rewritten into a
form where queues have been emptied of all routable messages, where rout-
ing tables have been in some expected sense normalized, where all futures
that are assigned a value somewhere are assigned a value everywhere the
value might be needed (by well-formedness this value is unique), and where
all objects have been moved to a single node. We perform this rewriting two
steps:

» First we show that routing can be stabilized and inter node links emp-
tied, except for external messages (messages addressed at an external
OID). This part if the proof is identical to the corresponding proof in
[11]. For this reason we only describe it cursorily here.
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Algorithm 1: Stabilize routing and read internal link messages

Input Type 2 well-formed configuration cn on a connected network graph
Output Configuration with stable routing and external link messages
only

repeat
Use t-send on each proper link in ¢n to broadcast routing tables to all
neighbours ;
repeat
Use t-rcv to dequeue one message on a link in cn
until t-rcv no longer enabled ;
Use msg-rcv, msg-route, msg-delay-1, obj-rcv to dequeue one message
from each link, if possible
until link queues contain only external messages, and routing is stable

Figure 10: Algorithm 1- Stabilize routing and empty link queues of internal
messages

* We then complete the construction by emptying object queues, propa-
gating futures, and moving all objects to a single node.

9.1 Stabilization

In the context of a configuration cn call a proper link any link I(u, ¢, u’) for
which u # u'.

Definition 9.1 (Stable Routing, External Queued Messages). Let cn be a
type 2 configuration.

1. ¢n has stable routing, if for all nd(u,t), o(o,a,u, ¢in, qout) = cn, if
nzt(o,t) = u” then there is a minimal length path from « to v’ which
visits u”

2. c¢n has external link messages only, if |(u,q,u’) € ¢n and msg =< ¢
implies msg is external.

The idea is to first empty link queues as far as possible as we simulta-
neously exchange routing tables to converge to a configuration with stable
routing. This first stage is accomplished using algorithm 1 in fig. 10 where
we hide uses of ctxt-1 to allow the transition rules to be applied to arbitrary
containers. Write A;(cn) ~» c¢n’ if ¢n’ is a possible result of applying algo-
rithm 1 to cn. We then say that cn’ is in stable form. Stable forms are almost
unique, but not quite, since routing may stabilize in different ways.

Proposition 9.2. Algorithm 1 terminates.
Proof. See appendix 3. O

Let t1(cn) = {tsk | tsk < ¢n} and let o1(cn) be the multiset of object
containers ct = 0(0, a,u, Gin, out) in cn such that either ¢t € o(cn), or else
o(0,a, v, gin, Gout) is in transit in c¢n from some u’ to u (since then, after
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applying alg. 1, u will host the object). Finally, let m;(cn) be the multiset of
external messages in transit in c¢n, or of messages occurring in an object in-
or out-queue.

Proposition 9.3. If A;(cn) ~ cn' then
1. graph(cn) = graph(cn’)

2. cn’ has stable routing

3. c¢n’ has external link messages only

4. t(en') =t1(cn)

5. o(en’) = o1(cn)

6. m(cn') = my(cn)

Proof. Property 1 and 2 are immediate. Property 3 and 4 can be read out
of the termination proof. For the remaining three properties observe first
that ty, o1, and m; are all invariant under the transitions used in algorithm
1. The equations follows by noting that only external messages (and so no
object closures) are in transit in cn’. O

Prop. 9.3 shows the “almost uniqueness” property alluded to above.
The normal form property suggested by prop. 9.3 motivates a notion of
equivalence “up to stabilization” defined below.

Definition 9.4 (=;).

1. Let ¢ny Ry cng if eny and cng are WF2, graph(cni) = graph(cns),
tl(cnl) = t1(cn2), 01(6n1) = 01(cn2), and m1(C7l1) = ml(cng).

2. Let cny = cny if there are cnf, cn), such that

Ai(eny) ~ en] Ry enby e Aq(z2 1 cng)

Prop. 9.3 together with termination of .4; allows the existential quanti-
fiers in def. 9.4.2 to be exchanged by universal ones.
Corollary 9.5. If A;(cn) ~» ¢n’ then cn =1 en’
Proof. We have A;(cn) ~ cn'Ren’ « Aq(cen’). O
Lemma 9.6. =, is reduction closed

Proof. See appendix 3. O

Proposition 9.7. =; is a type 2 witness relation
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Algorithm 2: Normalization

Input Type 2 well-formed configuration z : cn on a connected network
graph Output Configuration in type 2 normal form

fixa NID u ;
run alg. 1 ;
while some object queue is nonempty {
use msg-send, msg-delay-2, call-rcv, fut-rcv to dequeue one
message from each nonempty object queue ;
while fut-send is enabled { apply fut-send } };
while an object exists not located at u {
use obj-send to send the object towards u ;
run alg. 1 }

Figure 11: Algorithm 2 — Normalization

Proof. Symmetry is immediate, and reduction closure follows by lemma 9.6.
For barb preservation, if

cny =1 cne (3)

enp —* enf (4)
and cnj | tick(n) then by lemma 9.6 we find c¢n}, such that
cny =1 cnb, (5)

and by corollary 9.5 and transitivity of =; we can assume that cn), has ex-
ternal link messages only. But then cn}, | tick(n) as well. O

Corollary 9.8. If A;(cn) ~ ¢n' then en = cn/

Proof. By prop. 9.7 and corollary 9.5. O

9.2 Normalization

We then turn to the second normalization step, to empty object queues,
propagate futures, and migrate all object closures to a central node. The
normalization procedure is algorithm 2 shown in fig. 11. Let As(cn) ~ cn’
if ¢n’ is a possible result of applying algorithm 2 to cn. Initially a node u
is chosen towards which all objects will migrate during normalization. Nor-
malization is performed in cycles, each cycle starting and ending in a stable
configuration. In each cycle one message is read from the object in- and
out-queues. By well-formedness, object queues contain only calls and future
messages. Receptions of future messages may cause object environment to
instantiate futures. This may cause new future instantiation messages to be
enabled. Accordingly, those messages are generated and sent to the objects
out-queue. Once this is done, objects not yet at u will be migrated.

Proposition 9.9. Algorithm 2 terminates
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Proof. See appendix 3. O

We then turn to normal forms and define first a couple of ancillary oper-
ations. Let ty(cn) be the multiset of method containers ¢sk = t(o,1, s) such
that one of the following cases apply:

e tsk is a task container in cn.

» There is a message call(d’, o, f,m,v) in transit, o is not external, | =
locals(o,m, f,v) and s = body(o, m).

Let oz2(cn) be the multiset of object containers o(o,a,u’,¢,¢) for which the
following apply:

cu =u
» There is an object container obj = o(o,a’, u”, ¢in, Gout) =< cn
* a/(x) = a(x) for all variables z

* d/(f) = (v,e) with v # L if and only if for some object container
0(01,a1, U1, @in,15 Qout,1) = cn, ai(f) = (v,0), and otherwise a'(f) =
(L,¢e), if for some such a4, a1(f) = (L, 0).

Also say that cn has external messages only, if link queues in cn contain
only external messages.

Definition 9.10 (Normal Form). A well-formed configuration cn is in nor-
mal form, if

1. ¢n has stable routing
2. cn has external messages only
3. t(en) = ta(cn)
4. o(cen) = o0z(cn)
5. m(cn) = my(cn)
Proposition 9.11. Suppose cn is WF2. If As(en) ~» cn’ then
1. ¢n' is in normal form
2. graph(cn) = graph(cn’)
3. ta(cen) =t(en’)
4. o3(cn) =o(en’)
5. my(en) = m(cen’)
Proof. See appendix 3. O

Proposition 9.11 motivates the following definition of normal form equiv-
alence.

28



Definition 9.12 (=>). 1. Let c¢ni Ro cng if and only if ¢cny; and cns are
WEF2, graph(cni) = graph(cns), ta(cny) = ta(eng) , 0a2(eny) = o2(cns),
and ml(cnl) = ml(cng).

2. Let cny =5 cny if and only if there are cn/, cnf such that
As(eny) ~ en) Ra enly e As(cna)
Clearly, =5 identifies more extended configurations than =;.
Corollary 9.13. =,C=,

Proof. If t1(cny) = ti1(cng) then ty(cny) = ta(cng) and similar for o, and o,.
The result follows. O

We also obtain that normalization respects normal form equivalence.
Corollary 9.14. If Ay(cn) ~ cn’ then en =5 en/
Proof. By prop. 9.11. O
The proof of reduction closure follows that of lemma 9.6 quite closely.
Lemma 9.15. =, is reduction closed.
Proof. See appendix 3. O
Proposition 9.16. =, is a type 2 witness relation
Proof. Similar to the proof of prop. 9.7. O
It follows that if cnqy =5 cns then cny = cns.
Corollary 9.17. If Ay(cn) ~» cn’ then cn = cn/

Proof. None of the rules used in alg. 2 affects the shape of the normal form.
Thus, if Ay(cn) ~ c¢n’ then ¢n =5 ¢n’. But then ¢n = ¢n’, by prop. 9.16. O

10 Correctness

In this section we prove correctness of the network semantics by mapping
each well-formed type 1 configuration bind z.cn in standard form to a well-
formed type 2 configuration down(cn) on an arbitrary underlying network
graph. We then prove that the two configurations are barbed equivalent,
i.e. that bind z.cn = down(cn).

Defining the Underlying Network Graph We first fix a graph repre-
sented as a well-formed type 2 configuration cng.qp, With a distinguished
UID wug, similar to the way initial configurations are defined in section 6.
Thus, cngrqpn consists of nodes and links only, each node u in cngpqp, has
the form (u,t), and each link has the form (u,e,u'). The routing tables ¢ are
defined later.
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Representing Names and Values To represent names, one complication
is that names in the type 1 semantics need to be related to names in the
type 2 semantics, which does not include the binding construct of the type
1 semantics, but on the other hand has different generator functions (the
functions newf and newo). This prevents the name relation from being mod-
eled using the identity relation. To address this we assume that names and
futures in the type 1 semantics are really symbolic, connected to concrete
names/futures used in the type 2 semantics by means of an injective name
representation map rep, taking internal names f, o in the type 1 semantics
to names rep(f), rep(o) in the type 2 semantics. For convenience we extend
the name representation map rep to arbitrary values and task environments
as follows:

» rep(o) = o, if 0 € Eut,
* rep(p) =p, if p e PVal,

« rep(l)(x) = rep(i(x)), rep(l)(vet) = rep(i(ret))

Representing Object Environments To extend rep also to object envi-
ronments a complication is that object environments in the type 2 semantics
must be defined partially in terms of the type 1 environments (for object
variables) and partially in terms of the future containers available in the
“root configuration", since the type 1 semantics uses future containers in
place of forwarding lists stored in object environments. To this end we first
define an auxillary function oenvmap(cn,p, rep) € Fut — Val, on triples of
type 1 configurations, a pool of OID/future constants, and a name represen-
tation map, as a function which gathers together assignments to futures as
determined by the future containers in cn:

» oenvmap(0,p, rep)(f) = oenvmap(tsk, p, rep) = oenvmap(obj,p, rep)
= oenvmap(call,p, rep) = L

» oenvmap(f(f,vy),p,rep)(f') = if rep(f) = f' then rep(v, ) else L

(
» oenvmap(bind o.cn,p U {0}, rep)(f) = oenvmap(cn, p, rep[o’ /o])(f)
* oenvmap(bind f.cn,p U {f"}, rep)(f") = oenvmap(cn, p, rep[f'/ f1)(f")
« oenvmap(eny eng, p, rep)(f) =
oenvmap(en,p, rep) (f) U oenvmap(ena, p, rep) (f)

Fix now a root type 1 configuration cng and a large enough pool pg of
names (proportional to the size of c¢ng, and computed using newf(ug) and
newo(ug) to conform with our naming policy). Assume that cng is in stan-
dard form, i.e. ¢ng = bind zg.cn{, where cn{, does not have binders. Fix
g = oenvmap(cno,po, L) and cngrapr as above. We can now extend rep to
object environments by:

o mi(rep(a))(x) = rep(m(a)(x))
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ifg(f) # 1L

otherwise

* my(rep(a))(f) = { Ei(,fglg(cno))

Since we have left the nature of expressions unspecified we need to ad-
ditionally assume that the representation map commutes with expression
semantics in the following way, i.e. that for all ¢, a, [ the following equation
holds:

rep(é(a,1)) = é(rep(a), rep(1)) (6)

Proposition 10.1. Fix a type 1 well-formed root configuration cng in stan-
dard form and pool py as above. Then rep(a)(f) = (v,e) if and only if
f(f,v) = en.

Proof. By well-formedness the future, if it exists, is unique. Pick a name
representation map rep. Then oenvmap(cng, po, rep)(f) is defined and equal
to v if and only if f(f,v) < cno. This is easily seen by induction on the
structure of cng. O

Representing Call Containers Another complication is that we need an
operation to represent a type 1 call container as a message in the type 2
semantics. This is done in the obvious way by the operation send as follows:

send(c(o, O/a f7 m, V)7 0(07 a, U, Gin, qout) Cn)
= O(Ovaaua Qi’ru qu(ca”(O, O/af7m7v)7qout)) cn (7)
Representing Configurations Given a name representation map rep we
can now define the representation of a type 1 configuration as a transformer

on type 2 configurations, initially the underlying network graph, as the map-
ping down as follows:

* down(0, rep)(cn) = cn

* down(cny cng, rep) = down(cnq, rep) o down(cng, rep)

* down(o(o,a), rep)(cn) = o(rep(0), rep(a), uo, €,€) cn

(
(
* down(t(o,1,5), rep)(cn) = t(rep (o), rep(l), s) cn
(
* down(f(f,vL), rep)(cn) = cn

(

* down(c(o,0, f,m,v),rep)(cn) = send(c(o,0', f,m,v), cn, up)

In other words, we represent type 1 configurations by first assuming some
underlying network graph, secondly distributing the (centralized) assign-
ments to futures in each object environment with the trivial forwarding lists,
and then, once this is done, mapping the containers individually to type 2
level.

31



Defining Routing Tables The only detail remaining to be fixed above is
the routing tables. For ug the initial routing table, ¢;, needs to register all
objects in cny, i.e.

to = reg(g(0o), o, reg(g(01), uo, reg(- -+ reg(g(om), uo, L)) ---))

where oy, . .., 0., are the OID’s in ¢n(. For nodes n(u,t) where u # ug we let
t be determined by some stable routing. This is easily computed using alg.
1, and we leave out the details.

Definition 10.2 (Representation Map down). Let a network graph cn gpn
and a name representation map rep be given. For each well-formed type
1 configuration cng, the type 2 representation of cng is the configuration
down(cng) = down(cno, rep)(cngrapn)-

In this definition, forwarding lists are overapproximated as compared to
the type 2 semantics, which forward futures only to objects that have ac-
tually received them. To handle this slight complication we need a little
lemma saying that for well-formed type 2 configurations, forwarding lists
can be extended without affecting observable behaviour. To make this pre-
cise say that o(o, a,u, gin, Gout) €xtends o(o’,a’, v, ¢}, @bys), if 0 = 0, u =/,
Gin = Qins Qout = Qoyp» a(x) = d/(z) for all x, and m(a(f)) = m(a’(f)) and
ma(a(f)) 2 ma(a'(f)) for all f.

Lemma 10.3. Suppose that cn is WF2, and cn’ differs from cn only by
replacing each object obj by an object obj’ such that obj’ extends obj. Then
cn' is WF2 as well, and cn =2 cn/.

Proof. The check that cn is WF2 only if cn’ is, is straightforward. Relate
cn and cn’ by the relation R such that each object obj in cn is replaced by
objects obj’ in ¢n’ such that obj’ extends obj, or vice versa. We show that
R is a type 2 witness relation. Evidently R is symmetric. For the remaining
properties (reduction closure and barb preservation) it suffices to note that
{ceny | Az(en) ~ ceni} = {cna | Az(en’) ~» cno}. This property relies heavily
on Future Liveness, def. 7.4. This establishes the result. O

Following [11] we can now show a key lemma allowing us to relate tran-
sitions in the two semantics under barbed equivalence.

Lemma 10.4. Let bind z.cn be WF1 in standard form.
1. Ifbind z.cn — bind z’.cn’ then down(cn) —* o = down(cn’)

2. If down(cn) — cn” then for some z’, cn/, bind z.cn —* bind z’.cn’ and
en” 22 down(cn’)

Proof. See appendix 4. O

We can now state the main result.

Theorem 10.5 (Correctness of the Type 2 Semantics). For all well-formed
type 1 configurations cn on a connected network graph,

en = down(cn)
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Proof. We exhibit a barbed bisimulation relation R as follows:
R = {(cn, en’) | down(cn) = en'} (8)

We show that R is a witness relation.

First for reduction-closure: If ¢cniRceng then down(cng) = cng. If cng —
cnf then by lemma 10.4.1, down(cny) —* en’ = down(cn}). It follows that
cng —* cnfy such that en’ 2 enfy. But then cn)Ren). Conversely, if cny — cnl
then down(cny) —* ¢n’ and cn’ 2 ¢nf. By lemmma 10.4.2, ¢nqy —* ¢n and
en’ 2 down(cnf). But then cnfRenly as desired.

For Barb Preservation assume cni;Rcenge. Then cny | olm(v) if and only if
down(cny) | olm(v) if and only if cny || olm(v). O

11 Scheduling

The type 2 semantics is highly nondeterministic. The semantics says noth-
ing about how frequently routing tables are to be exchanged, when mes-
sages should be passed between the different queues, when future mes-
sages are to be sent, and when, and to where, objects are to be transmitted.
Resolving these choices is a crucial tradeoff between management overhead
and performance. For instance, if routing tables are exchanged at a very
high frequency, routing can be always assumed to be in stable state. This
ensures short end to end routes, but at the expense of a large management
overhead. This raises the question of how to determine these parameters,
something which we address in more detail in [12].

Regardless how this is done, a real implementation needs to resolve
these choices. This is tantamount to eliminating nondeterminism from the
type 2 semantics, essentially by removing transitions. Thus, in a sense, the-
orem 10.5 achieves more than is called for, as soundness and full abstraction
a priori applies only to the type 2 semantics with all transitions included.

A scheduler can be viewed abstractly as a predicate on histories in the
following way. Let a scheduled execution be any sequence p = cngcny --- cny,
such that cn; — cn;41 forall i : 0 < ¢ < n where the cn; are well-formed
type 2 configurations. A scheduler is a predicate S on such sequences, with
the property that

1. S({en)) for any cn where (cn) is the one element execution consisting
of cn (a scheduler kicks in only when execution is started), and

2. ifS(eng - -+ eny,) and en,, — cng, 41 for some cng, 1 then S(eng - - enp cngp41)
for exactly one cn,41.

Then a scheduled type 2 semantics is a transition system on executions
p = cng- - cny such that p — p' if and only if p' = eng - - - enyeng 41 and S(p').

Define now the barbed simulation preorder C on executions by requir-
ing the existence of a witness relation R which satisfies reduction closure
and barb preservation (when cng - - - ¢n,, | obs if and only if ¢n,, | obs), but
not necessarily symmetry. We immediately obtain from theorem 10.5 the
following corollary:

33



Corollary 11.1. For all well-formed type 1 configurations cn on a connected
network graph,
(down(en)) C en .

Proof. It suffices to note that if p = ¢ng---cn, — p = cng--- cnpyq then
cNp — cnpt1, and if p | obs then cn,, | obs as well. O

12 Concluding Remarks

The contribution of the present paper has been to show that, using location
independent routing, it is possible to devise novel and elegant network-
based execution models for object-oriented languages with fairly sophis-
ticated features such as futures, and with attractive properties regarding
correctness, performance, and scalability. The present paper focuses on
correctness. In other ongoing work [12] we study the use of the model
presented here adapted to the full asynchronous fragment of the core ABS
language [23] studied in the EU FP7 HATS project. In that paper we report
on experimental results on autonomous performance adaptation for load
balancing and latency management, with very promising results.

The correctness analysis is based on barbed equivalence, similar to other
past work mostly belonging to the w-calculus school of process algebra
[16, 9, 17]. A closely related precursor is Nomadic Pict [34]. In compar-
ison with that work we obtain a simpler and in our opinion more elegant
correctness treatment, chiefly because our solution obviates the need for
locking and consequently preemption, which has well-known detrimental
consequences in a bisimulation-oriented setting. Other related works in-
clude JoCaml [10] which also uses forward chaining, along with an elabo-
rate mechanism to collapse the forwarding chains. In the Klaim project [1]
compilers were implemented and proved correct for several variants of the
Klaim language, using the Linda tuple space communication model and a
centralized name server to identify local tuple servers. The Oz kernel lan-
guage [35] uses a monotone shared constraint store in the style of concur-
rent constraint programming. The Oz/K language [26] adds to this a notion
of locality with separate failure and mobility semantics, but no real distribu-
tion or communication semantics is given (long distance communication is
reduced to explicit manipulation of located agents, in the style of Ambient
calculus [4]). Past correctness analyses for languages with futures include
[8] which prove a confluence result for their language of asynchronous se-
quential processes, however without an explicit treatment of distribution,
communication, and routing.

Substantial work has been going on in the HATS project on the ABS lan-
guage and its extensions, for instance towards software product lines [33].
In a sequence of papers, Johnsen and coworkers, cf. [24], have studied an
extension of ABS with deployment components that can be used as a re-
flection mechanism for explicit performance management. We are mainly
interested in automating the performance adaptation process, and so re-
flection mechanisms are not top priority.
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Scalability is not fully resolved in the present work. We use a rather
naive distance vector routing scheme based on Bellman-Ford. Distance
vector routing has unit stretch but is not compact: Routing tables need
to contain on the order of one entry per network node. This is no prob-
lem for networks of moderate size, but for scalability other routing schemes
are needed, as outlined in the introduction. The Bellman-Ford scheme has
other wellknown drawbacks that arise in the case of intermittent network
partitioning.

Besides routing we see two main directions for future work. The first is
to examine richer language semantics, specifically towards more dynamic-
ity. In ongoing work we are studying power control: Adding an explicit knob
to the network semantics for turning nodes on and off. Further down the
line it is of interest to consider both crash failures and byzantine failures.
The second, parallel, avenue is to study performance adaptation in richer
and more realistic settings. In [12] our only management knob is object
migration, and the management objective is to obtain good load balancing
combined with good clustering properties. However, a real implementa-
tion, in particular when combined with network dynamicity will have many
more management knobs such as buffer sizes, processor load, and power
control. How to effectively control object network performance in such a
multi-dimensional setting is a significant future challenge.
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Appendix 1: Proofs for Section 5

Proposition 5.2 The identity relation is a type 1 witness relation. Barbed
equivalence is a type 1 witness relation. If R, R1, Re are type 1 witness
relations then so is

1. R7!
2. R*
3. Rl ORQ ORl

Proof. The identity relation is trivially symmetric, reduction closed and barb
preserving. Suppose cni = cno. Then cniRcensy for some type 1 witness re-
lation. Then cnyReny by symmetry, such that cny & ¢nq, so symmetry holds.
If cny — enf then we find cnf, such that cne —* ¢nf and enfRenfy. But then
eny = c¢nh, and we have shown reduction closure. For barb preservation,
if eny | obs then cny |} obs, as R is barb preserving. Inverse closure fol-
lows from symmetry, and reflexive, transitive closure follows by a straight-
forward inductive argument. For property 3, if cn1R1 o Ro o Ricnsy then
CTLlRlCTLLlRQCﬂLQRlCTLQ for some Ny, €ni2 SO CnQ’Izlcnl’QRQCnl,lRlcnl
by symmetry of R; and R. Second, if cny — cnjy we find cnj , cnj,, cnj
such that cny,1 —* cnf ; etc. such that, by stepwise iteration, cnjR; o Ry 0
R1cnf, showing reduction closure. Barb preservation is similar, but sim-
pler. O

Proposition 5.4 Suppose cn is WF1, o & fn(cn), and cn o(o,a) is WF1.
Then cn = ¢n oo, a)

Proof. Let ¢cnRen' if and only if ecn’ = c¢n o(o,a) as described in the the
statement of the proposition. We show that R U R~! is a type 1 witness
relation:

Symmetry: Trivial

Reduction closure: First if ¢cn — c¢ny then ¢n o(o,a) — ¢ny o(o,a), and
enyReny o(o,a). If e¢n o(o,a) — cny and cn; does not have the required
shape cn) o(o,a) such that ¢cn — cn) then the transition must be an instance
of call, and o must be the callee. This is so, as in any other case, a transition
involving o requires a task at o to be present in cn. But then o is free in cn
as well, contrary to assumptions.

Barb preservation: If c¢n | obs then c¢n o(o,a) | obs, and it ¢n o(o,a) | obs
then cn | obs, as o & fn(cn). O

Appendix 2: Proofs for Section 7
Lemma 7.3 Fix c¢n and an object obj = o(o,a,u, ¢in, Gout) = cn. If o is on

the notification path of f in n steps in the configuration cn, cn — cn’, then
o is on the notification path of f in at most n steps in cn'.
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Proof. The proofis by induction on n. We follow the case analysis in def. 7.2.
In case 1 we obtain that 7 (a(f)) # L and then by prop. 6.2.3 we find ob;’
such that 71 (a/(f)) |. In case 2, by prop. 6.2.4 there are two options: Either
we find a task t(o0,l’,s’) < cn’ with I’(ret) = f or else we find obj’ such that
m1(a’(I(ret))) |. In case 3 we obtain that either future(o, f,v) < ¢n/, or else
71(a’(f)) = v. In case 4 we find an object obj” = o(0”,a”,u",q! ,q".:) =< cn
such that o” is on the notification path of f in n—1 steps in cn. By prop. 6.2.3
we find the derivative obj"”’ = o(o”,a" ,u", ¢!, q"",) < cn’ of obj”, and by the
induction hypothesis 0" is also on the notification path of f in c¢n’, now in
some n” < n—1 steps. By inspection of the rules we see that either w5 (a’”’(f))
is a suffix of m2(a”(f)), or else there is a message future(o, f,m(a”(f))) =
cn’. In either case we can conclude. Finally, in case 5, by inspection of the
rules we either find that the call message call(o,0”, f,m,v) < ¢n’, or else
there is a task t(0”,1”,s”) < en’ such that ”(ret) = f, and we are done. O

Lemma 7.5 Ifcn is WF2 and c¢cn — cn’ then cn' is WF2.

Proof. We consider each transition rule in turn. For well-formedness, NID
and link uniqueness is trivial, as graph(cn) = graph(cn’).

OID uniqueness: In all rules except new-2 there is a 1-1 correspondence
between object occurrences in cn and object occurrences in cn’. This is
sufficient to conclude. For new-2 it is sufficient to note that o’ is a freshly
generated OID.

Object-Node Existence, Task-Object Existence: The properties follow since
nodes and objects are never removed. In the first instance objects can only
be created when the node is present, and in the second instance tasks can
only be created when the object is present.

Object Existence, Object Nonexistence: SImple invariant checks.

Buffer cleanliness: We check that only object bound messages enter in- and
out-queues. This concerns the rules msg-rcv, call-send, fut-send, msg-delay-
1 and msg-delay-2 only. The check is routine.

Local Routing Consistency, 1, 2: Easily proved by case analysis.

Future uniqueness: We only need to consider rules which assign a non-L
value to futures. This happens in rules fut-send, fut-rcv and ret-2. The
former two rules are immediate, and for ret-2 we use the assumption that
cn satisfies 7.4.5.

Single writer: Again we only need to consider the rules fut-send, fut-rcv and
ret-2. Since for the former two rules cn assigns v to f if and only if ¢n’ does
so, only ret-2 remains, which is immediate.

Future liveness: Let o(o,d’, v, ¢.,,, ¢.,.) be the derivative of o(0, a, u, ¢in, Gout)
in ¢n, and assume that f is pending in o for the configuration c¢n’. If 0 is a
newly created OID, no future is pending in o. Either a'(f) |, or else a call
message callo’, o, f’,m, v is in transit in c¢n’ and f occurs in v. We proceed
by cases on the transition rule leading to cn’. Any rule that does not directly
affect any of the conditions in def. 7.1 or def. 7.2 immediately allows to
conclude that f is pending in o also in ¢n. By the induction hypothesis we
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can conclude that o is on the notification path from f in ¢n and then o is on
the notification path from f also in c¢n’, as the only exception in lemma 7.3
is when o:s environment is updated. For the remaining rules there are the
following cases to consider:

» call-send: Assume first that o is the sending object. Either f is the
newly introduced future in which case o is on the notification path from
f according to 7.2.5, since a call message is in transit from o to o’ with
return future f. If f is another future which is pending in o in ¢n’ then
f is also pending in o in c¢n. By the induction hypothesis, o is on the
notification path from f in ¢n. Then o is also on the notification path
from f in cn/ by lemma 7.3. On the other hand if o is not the sending
object the case is immediately closed by the induction hypothesis, as
the “pending” relation transfers from cn’ to cn. We then apply the IH
to conclude that o is on the notification path from f in ¢n, and then we
use lemma 7.3 to conclude that this also applies to cn'.

 call-rcv: Assume first that o is the object receiving the call, and that f
is the future of the call. Then o is on the notification path from f by
def. 7.2.2. Another option is that f is a future in v (referring to the
transition rule in fig. 9). Then f is pending in o in cn as well, by def.
7.1. If f is some other future the case is completed by the IH as above.

» fut-send: Follows from the induction hypothesis and lemma 7.3, as in
the case for call-send.

e fut-rcv: If f is pending in o for the configuration cn’ then f is pending
in o also for cn, and f is not the received future. But then the result
follows by the IH and lemma 7.3.

 ret-2: If f is pending in o for ¢n’ then f is not the return future and we
again complete by the induction hypothesis.

O

Appendix 3: Proofs for Section 9

Proposition 9.2 Algorithm 1 terminates.

Proof. In each iteration of the outermost loop of alg. 1, exactly one mes-
sage is enqueued on each proper link, and at least one message is dequeued
(from all link queues), so the sum of messages in transit in link queues does
not exceed its initial value. The rules msg-rcv, msg-delay-1, obj-rcv cause
messages to leave the link queues, except for external messages. Moreover,
if the link queues have only routing table messages the algorithm terminates
in that iteration. So if the algorithm fails to terminate it must be because
msg-route is from some point ny onwards applied in each iteration of the
outermost loop. From ny onwards, no messages other than table updates
are delivered (to the receiving node, or to the receiving object). In particu-
lar, no object messages can be in transit on a link from that point onwards.
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We show that then routing tables must at some point stabilize. At point ng
(as all other points) each node u has t(o) = (u,0) whenever o:s host is u,
by def. 7.4.9. Let mg be the length of the largest link queue at the point
from which no messages are delivered. After ng + mg + 1 iterations, each
node u has received at least one table update from each of its neighbours
v/, and the last table update applied to u has ¢(0) = 0. As result, at point
nog +mo + 1 each node v has t(o) = (v/,1) whenever the host of o is v’ and
the minimal length path from « to «’ has length 1. The entry of u:s routing
table for o will not change from that point onwards. We say that those en-
tries are stable. Proceeding, let m; be the length of the largest link queue
at at point ng + mg + 1. After ng + mo + 1 + my + 1 iterations each routing
table entry with length 2 (or less) will be stable. In the limit each entry will
be stable. It follows that algorithm 1 must terminate, since, once routing
has stabilized, rule msg-route can only be applied a finite number of times
before the message will be delivered.

The only detail remaining to be checked is that a message can always
be read from a link, but table and object messages can always be delivered,
and call and future messages can also always be delivered, if nothing else
to the self loop, in case the routing table has not yet been updated, or if the
message is external and the destination object is not known to the routing
table. This is the only case where msg-delay-1 is used, in fact. O

Lemma 9.6 =; is reduction closed.

Proof. Assume that

cny — cn'l 9)
and

cny =1 ¢cng , (10)
and show that

cng —* cnb (11)
such that

cny =1 cnj . (12)

The proof is by cases on the rewriting rule applied. Most cases are straight-
forward. For rules not among call-send-in, call-send-out, call-rcv, fut-send,
fut-rev, if

Al(cnl) ~> CNp Rl Cna 1 < ./41(6”2) (13)

and A;(cn}) ~ cny; then we obtain
eny g Rienig (14)

by prop. 9.3 and since the correspondences between tasks, objects, and
call and future messages are maintained in pre- and poststates. For the
remaining rules:
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call-send: From (9) we may assume that

cny = cny1 0(0,a,U, @in, Gour) t(0, 1,z = e1lm(ez); s) (15)
Cnll = (N1 O(O,f’LU (V, O/a “”t(fv a))a U, Gin, enq(msg, QOut))
t(o, I[f(z], s) (16)

where v = €x(a,l), f = newf(u), msg = call(o, ', f,m,v), o’ = ¢€1(a,l). From
(10) we get
Ai(eny) ~ enf Ry eny «~ Ai(cenz) . 17)

By prop. 9.3, (15) and (17),

0(0, a, U, Gin, Qin, Gout ), t(0, 1, & = e1!m(ez); s) € en! (18)
and hence, by the definition of R,

0(0,a,U, Gin, Gin, Qout ), t(0, 1, = e1!m(ez); s) € cnf) (19)

as well. But then it follows that the configuration cn, can mimick the call-
send step by cn; by first stabilizing to ¢n) and then performing the call-send
step, obtaining cn). It is also clear by prop. 9.3 that (12) holds, completing
the case.

The remaining cases are involve a similar amount of detail but are, as
this, essentially straightforward. O

Proposition 9.9 Algorithm 2 terminates.

Proof. Routing is stable after each run of alg. 1, and none of the rules ap-
plied in the outermost loop in the first outermost loop affect routing. Thus,
one of msg-send or msg-delay-2 will be enabled whenever the output out-
queue is nonempty, causing output queue size to decrease by one. By Buffer
Cleanliness, one of call-rcv or fut-rcv will be applicable if the object in-queue
is nonempty, decreasing in-queue size by one. Thus, when the inner while
loop is reached, each nonempty inqueue has decreased in size by one, and
each outqueue may have increased in size by one if the in-queue head posi-
tion contains a delayed message.

Sending future messages may cause out-queues to increase in size. Each
application of fut-send causes a forwarding list to decrease in length by one.
Thus termination of the inner while loop is clear. We need to argue that the
outer while loop also terminates.

We first show that, eventually, no forwarding list is incremented. Only
two rules can cause forwarding lists to increase in size, namely call-send
and call-rcv. Of these, call-send is never used in either alg. 1 or alg. 2.
Each application of call-rcv consumes one call message, and none of the
rules cause new call messages to be created. Thus, eventually, call-rcv is
never applied, and from that point onward forwarding lists are either emp-
tied completely by the inner loop, or they remain untouched, since their
corresponding future is undefined. Futures can become instantiated by fut-
rcv, but again, this can only happen a bounded number of times. Moreover,
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the only rule causing futures to be created is msg-send, so the supply of
futures to consider is fixed. Consequently, eventually, each future either
remains uninstantiated forever, or else the corresponding forwarding list is
empty. From that point onward, no fut-send is enabled, and the innermost
loop terminates trivially in all future iterations. In this situation, since msg-
send, call-rcv, and fut-rcv all consume messages from a bounded resource
(the set of messages in transit), if the outermost loop fails to terminate the
only option is that, from some point onwards, only msg-delay-2 is applied.
From this point onward, since routing is stable, all messages will eventually
be delivered.

Termination of the final loop is trivial. Observe that alg. 2 does not rely
on routing to move the object towards u. For the algorithm it is sufficient to
establish that some good direction exists, and this is clearly the case as the
network is stable. O

Proposition 9.11 Suppose cn is WF2. If Ay(cn) ~ cn’ then
1. ¢n’ is in normal form
2. graph(cn) = graph(cn’)
3. ta(en) = t(en’)
4. os(cn) =o(en')
5. my(en) = m(en’)

Proof. Property 9.11.2 follows from prop. 9.3.1.

For property 9.11.3 observe first that the function ts is invariant under tran-
sitions used in alg. 2. On termination of alg. 2 only external messages are
in transit, and since no rule causes a task to be modified, 9.11.3 follows.

For 9.11.4 let o(02, as, U2, ¢in2; Gout,2) € o(cn’). We show

0(02, az, Uz, Gin,2, Gout,2) € 02(cn) .

By definition, g2 = Gout,2 = €. Also, us = u. We know that there is an
object container o(o,a’, u”, ¢in, gout) = c¢n, as there is a 1-1 correspondence
between object containers in pre- and poststate for each transition used in
alg. 2. We also know that a'(x) = as(x) for all z. Suppose finally that an
object container ct = o(01, a1, U1, ¢in,1, Gout,1) €Xists in en with a1 (f) = (v, 0).
Let o(01, ay, U1, GGy 15 Qoue,1) be the derivative of ct in cn’. Then i (a)(f)) = v
as well, by prop. 7.7. We know by Future Uniqueness that as(f) = (v/,0’)
implies v = v. It remains to show that 7 (a2(f)) # L. Assume not. The
future f is then pending in 0;. By the Type 2 Subject Reduction Lemma,
7.5, ¢cn’ is WF2, so by Future Liveness, oz is on the notification path from f
in cn’ in some n steps. We proceed by induction on n:

* n=0and m(az(f)) = v # L. This is a contradiction.
* n = 1 and there is a task t(os,l2, s2) =< cn’ with l3(ret) = f. By Future

Binding, 7 (a}(f)) = L, a contradiction
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* n = 1 and there is a future message future(os, f,v’) < ¢n/, which is a
contradiction, since the only queued messages in c¢n’ are external

* n = n' 4+ 1 and there is an object o(o, a,u, gin, gour) < cn’ such that
02 € ma(a(f)), and o is on the notification path from f in n’ steps. Either
m(a(f)) = v # L, but then c¢n’ is not in normal form, contradiction.
Alternatively, we conclude by the IH.

» There is a call message call(oz, 0, f,m,v) < c¢n’. This again contradicts
the external messages only property.

We can thus conclude that o(o0g, as, 2, ¢in 2, Gout,2) € 02(cn). Conversely, as-
sume that o(02, az, U2, ¢in 2, Gout,2) € 02(cn). Object o, has exactly one deriva-
tive in cn’/, by well-formedness. That object has empty queues, the same
UID as in cn, preserves assignments to variables, and has as(f) assigned to
anon-_| value if and only if some object in ¢n’ has so, by the above argument.

For 9.11.5 the property holds as it does so already for alg. 1.

We finally need to prove 9.11.1. Property 9.10.1 is trivial, as each run of alg.
2 ends with a run of alg. 1, and alg. 1 ensures that cn’ has stable routing.
Property 9.10.2 holds since alg. 1 ensures almost empty link queues, and
since on termination, alg. 2 ensures empty object queues. For 9.10.3 the
result follows since only external messages are in transit in cn’. For 9.10.4,
if obj = o(0,a,v’,¢,¢) satisfies the properties defining o, above then, refer-

ring to those conditions, v’ = u” = u, d’ = a, ¢;, = € = qous, and obj € cn’
as needed to be shown. Finally, 9.10.5 holds since it does so already for alg.
1. O

Lemma 9.15 =, is reduction closed.

Proof. Assume that

cny — cny (20)
and

cny =9 cngy , (21)
and we show that

cng —* enb (22)
for some cn}, such that

cn) =9 cnl (23)

As above the proof is by cases on the rewrite rule justifying 20. We can
assume that cns is in normal form, by 9.14 and transitivity of =5. For rules
that do not affect ta(cny), 02(cny), or my(cny) the result is trivial. Rules in
fig. 5 commute directly, i.e. the same rule applied to cn; can be applied to
cng, in the same way. This follows since cnsy is in normal form. Rules such
as msg-send, msg-rcv that ship around messages between object and link
queues are also very easy to prove, by reference to prop. 21.
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call-send: From (20) we may assume that

Ny = CN1,1 O(O,CL,U, Qi’IHQOut) t(O,l,Jf = 61!771(82);5) (24)
Cnll = Cnia o(o,fw(v,ol, Z’I“th(f7 a)),%%m enq(msgaqout))
t(o,I[f(2), s) (25)

where v = €3(a,l), f = newf(u), msg = call(o, o', f,m,v), o’ = éi(a,l). By 21,
since cns is in normal form, we obtain

As(cny) ~ enf Ra cna (26)
for some choice of ¢nf. By prop. 9.11 we obtain that
cng = cna1 0(0,a’ u,e,e t(o, I,z = e;lm(ez); s) 27)

where a/(z) = a(x) for variables x, and a'(f) = (v/,¢) if and only if a;(f) =
(v',0) for some o, where a; is an object environment in c¢n;. It follows that
cn’, can be chosen so that

cnl2 = CN21 o(o,fw(v7 O/a ant(fv a’l))a u, €, enq(msg7 ‘S)) t(O, l[f(l’), 8)7 (28)

and

As(en’) ~ eny 3 (29)
with ¢nq g3 = eny 4 o(o, fw(v, o, init(f,a’)),u, e, eng(msg, €)) t(o,l[f(x), s) such
that cni 4 Ra cng . It follows that cne — cnb and enf =2 cnb, as desired.
fut-send: From 20 we can assume

Ny = CNi1 o(o,a,u, qin7qout) (30)

cnl,l 0(07 a[(v, 02)/f]7 U, Qin, qu(future(Ol, f’ U)v qout)) (31)

cny
where a(f) = (v,01 :: 02). Using 21, since cns is in normal form, we obtain
Az(cny) ~ en Ra ena (32)
for some choice of cn}, and we can write cnf in the form
en = en!’ o(0,d,u, ¢, €) (33)

where a/(z) = a(z) and o’ (f') = (v/,¢) if and only if some object environment
in cnq assigns v’ to f’. By prop. 9.11 we get

cng = cng o(o,d’ u,e,€) (34)
and then we can choose cn, as
cnly = cng, o(o,a’[(v,€)/ f], u, e, eng(future(oy, f,v),€)) (35)

noting that then (23) holds.

call-rcv: In this case we get

cni = cnyj 0(0,a,U, gin, Gout) (36)
Cn/l = Cnia O(O,fﬂ)(f, Ola im't(v, init(fa a)))» u, deq(qin)a qout)
t(o, locals(o,m, f,v), body(o,m)) (37)
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where hd(g;,) = call(o’,0, f,m,v). Again using prop. 21 with ¢ny in normal
form we get that
As(cny) ~ en Ro cna (38)

where cn] can be written as
eny = en!" o(o0,d’,u, €, €) t(o, locals(o,m, f,v), body(o, m)) (39)

where a’ is as in the previous case. Now using prop. 21, since hd(g;,) =
call(d’, o, f,m,v), we obtain

cng = cna o(o,d’ u,e,€) t(o, locals(o,m, f,v), body(o,m)) , (40)

and cnf R cnq, completing the case.

The remaining cases fut-rcv, ret-2, get-2, new-2, and the object migration
rules are proved in a similar fashion as the above.
O

Appendix 4: Proofs for Section 10

Lemma 10.4 Let bind z.cn be WF1 in standard form.
1. Ifbind z.cn — bind z’.¢n’ then down(cn) —* o = down(cn’)

2. If down(cn) — cn” then for some z’, cn’, bind z.cn —* bind z’.cn’ and
en’ = down(cen’)

Proof. 1. We proceed by cases on the nature of the given type 1 transition.
Let
bind z.cn — bind z’.¢cn’ . 41)

Fix cngrqpn and name representation map rep. As above we elide uses of
ctxt-1 in both semantics by applying the rules to arbitrary configuration
subsets, and we elide uses of ctxt-2 in the type 1 semantics, by considering
transitions in arbitrary binding contexts. Each of the remaining transitions
in fig. 5 immediately translates into a corresponding transition at type 2
level, and moreover, the resulting type 2 configuration is in normal form.

Consider for instance rule wfield. We obtain a type 1 transition of the
form

bind z.cn o(o,a) t(o,l,z = e; $) — bind z.cn o(o,alé(a,l)/x]) t(o,l,s) (42)

47



where = € dom(a). We obtain:

down(cn o(o,a) t(o,l,z = e; s))

= (down(cn, rep) o down(o(o,a), rep) o down(t(o,l,x = e; ), rep)) (N grapn)

= down(cn, rep)(down(o(o, a), rep)(down(t(o,l,x = e;s), rep)(cngraph)))
= down(cn, rep)(down(o(o, a), rep)(t(rep(o), rep(l), x = €;8) cNgrapn))
= down(cn, rep)(o(rep(0), rep(a), ug, €, €) t(rep(o), rep(l), x = €;5) cNgrapn)
—  down(cn, rep)(o(rep(o), rep(a)[é(rep(a), rep(l))/x], ug, €, €)

t(rep(0), rep(l), s) cngrapn)
= down(cn, rep)(o(rep(o0), rep(alé(a,l)/x]), uo, €, €)

t(rep(0), rep(l), s) cngrapn)

)
= down(cn o(o,alé(a,l)/x]) t(o,1, s))

using (6) to justify the second but last step and the type 2 wfield rule to
derive the transition.

The remaining rules in fig. 5 are proved in the same manner, so we proceed
to the rules in fig. 6.

call: Consider the following type 1 transition:

bind z.cn o(0,a) o(0,a’) t(o,l,z = e1!m(ez); s)
—  bind z, f.cn o(0,a) o(d,a’) t(o,l[f/z],s)
t(0', locals(o',m, f,€2(a, 1)), body(o',m)) f(f, L) (43)

where o' = €3(a,l). We calculate:

down(cn o(o0,a) o(d',a’) t(o,l,z = e1!m(eq);s))

= down(cn, rep)(down(o(o, a), rep)(down(o(o’,a’), rep)
(down(t(o,l,x = e1!m(ez);s), rep)(cngrapn))))

= down(cn, rep)(o(rep(o), rep(a), ug, €, ) o(rep(o’), rep(a’), ug, €, €)
t(rep(o), rep(l), z = e1lm(e2); ) cngraph)

—  down(cn, rep)(o(rep(0), fw(rep(v), rep(d’), init(f', rep(a))), ug, €,
eng(call(rep(o), rep(o'), f',m, rep(v)), €)) o(rep(o”), rep(a’), uo, €, €)
t(rep(0), rep()[f'/], 5) cngrapn)

")(o(rep’ (o), fw(rep’(v), rep’(o'), init(rep’(f), rep'(a))), uo, &,
enq(call(rep’(0), rep’ (0'), rep’ (f), m, rep’ (v)), €)) o(rep’ (0'), rep’(a’), ug, €, €)
t(rep’(0), rep’ (D[rep'(f) /], 8) cngrapn)

= down(cn, rep”)(o(rep’(0), fw(rep’ (v), rep’ (0'), init(rep’ (f), rep’(a))), uo, €,
enq(call(rep’(0), rep’ (0'), rep’ (f), m, rep’(v)),€)) o(rep’(0'), rep’(a’), uo, €, €)
t(rep'(0), rep’(I[f/]), 8) cngrapn)

!
= cn

= down(cn, rep

where by (6), v = €x(a,l), o’ = €1(a,l), f' = newf(ug), and where rep’ =
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rep[f’/f]. Using corollary 9.17 and the definition of =; we obtain

en’ = down(en, rep’)(o(rep’(0), a1, uo, ,€) o(rep’ (o), as, ug, €, €)
t(rep' (o), rep’ (1)[f' /], 5)
t(rep’(0"), locals(rep’ ("), m, f',v), body(rep(0’),m)) cngrapn)

"
= cn

where a1 (x) = rep(a)(x) and as(z) = rep(a’)(x) for all x in dom(a), dom(a’),
respectively, and where a;1(f) = a2(f) = (v,¢) if "' (f) = (v, 0) for some a’”
in ¢n’ and o, and a1(f) = a2(f) = (L,e) a’’(f) has the shape (L,0) for all

a”’ in ¢n’ and moreover some such o’ exists. In this case a; = rep’(a) and
as = rep’(a’) by prop. 10.1. Then

en” = down(cn, rep’)(o(rep’(0), rep’(a), ug, €, €) o(rep’ (o), rep’(a’), ug, €, €)

)
t(rep’(0), rep’ (1) [rep’ (f)/x], 5)
t(rep’(0'), locals(rep’ ("), m, rep’ (f),v), body(rep’(0'),m)) cngrapn)
= down(cn o(o,a) o(o',a) t(o,l[f/x],s)
t(0’, locals(o',m, f,€2(a,1)), body(o’,m)) f(f, L))
= down(cn o(o,a) o(o',ad) t(o,l[f/x],s)
t(0', locals(o',m, f, €2(a, 1)), body(o',m)) f(f, L))

as desired.
call-ext: Consider the following type 1 transition:

bind z.cn o(o, a) t(o,l,x = e1!m(ez); s)

—  bind z.cn o(0,a) t(o,1,s) c(o,0,m,Vv) (44)
where o = €;1(a,l) € Ext and v = €2(a, 1) . We calculate:

down(cn o(o, a) t(o,l,z = erlm(ez);s))

= down(cn, rep)(down(o(o, a), rep)(down(t(o,l,x = e1!lm(ez2); s), rep)
(¢ngrapn)))

= down(cn,rep)(o(rep(o ) rep(a), ug, €, €)
t(rep(o), rep(l), x = e1lm(e2); s) cngrapn)

— down(cn, rep)(o(rep(o ) fw(v, rep(d'), init(f', rep(a))), uo, €,
eng(call(rep(o), rep(0), f',m, rep(v)),€)) t(rep(o), rep(l)[f' /], 5)
CNgraph)

= down(cn, rep)(send(call(rep(0), rep(o'), f',m, rep(v)), €),
o(rep(0), fw(v, rep(0'), init(f', rep(a))), uo, €, €) t(rep(o), rep(l)[f'/x], s)
CNgraph)

= down(cn, rep)(send(call(rep(o), rep(o’), f',m, rep(v)), €),
o(rep(o), 7ep(a), o, €, €) t(rep(0), rep() '), )

CMgraph)
= down(cn oo, a) t(o,l,s) c(o,0',m,v)) .
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ret: Consider next the type 1 transition below:
bind z.cn o(0, a) t(o,l,return ¢;s) f(f, L) — bind z.cn o(o,a) f(f,v) (45)
where [(ret) = f and v = é(a,l). Again we calculate:
down(cn o(o, a) t(o,l, return e; s) f(f, L))
= down(cn, rep)(o(rep(0), rep(a), ug, €, €) t(rep(o), rep(l), return e; s)
CNgraph,)
—  down(cn, rep’)(o(rep(o), rep(a)[é(rep(a), rep()) /l(ret)], uo, €, &)
CNgraph)

—  down(en, rep!)(o(rep’ (o), rep’ (@), 0, €,€) gnaph)
= down(cn o(o,a) f(f,v))

where in the second but last step we use the fact that
rep’ = replé(rep(a), rep(l))/l(ret)] .
get: Now consider the following type 1 transition:

bind z.cn o(o,a) f(f,v) t(o,l,z = e.get; s)
—  bind z.cn o(o0,a) f(f,v) t(o,l[v/z], s) (46)

where f = é(a,l). Again we calculate:

en o(o,a) f(f,v) t(o,l,x = e.get; s)
= down(cn, rep)(o(rep(0), rep(a), ug, €, €) t(rep(o), rep(l), x = e.get; s)
Cgraph.)
—  down(cn, rep)(o(rep(0), rep(a), ug, €, €) t(rep(o), rep(1)[v/x]s) cngrapn)
= down(cn o(o,a) f(f,v) t(o,l[v/x],s))

new: The final case is for object creation:

bind z.cn o(o, a) t(o,l,z = new C(e); s)
—  bind z,0".cn o(0, a) t(o,1[0'/z], s)o(d, init(C, &(a,1))) (47)

We obtain:

down(cn o(o,a) t(o,l,z = new C(e);s))

= down(cn, rep)(o(rep(o), rep(a), ug, €, €)
t(rep(o), rep(l), z = new C(€);S) cngraph)

—  down(cn, rep”)(o(rep’(0), rep’(a), uo, €, €)
t(rep’ (o), rep'(I)[rep’(0') /2], 5)
o(rep’ ('), init(C,&(rep’ (a), rep’(1))), uo, €,€) cNgraph)

= down(cn,rep)(o(rep’(0), rep’(a), ug, &, €) t(rep’ (o), rep’ (1[0’ /x]), s)
o(rep'(0'), rep’ (init (C, &é(a, 1))), ug, €,€) cngrapn)

= down(cn o(o,a) t(o,l[0’ /x], s)o(d, init(C, &(a,l1))))
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where we switch from rep to rep’ and use (6) as usual. This completes the
proof of statement 1.

2. We proceed now by cases on the type 2 transition. Suppose down(cn) —
cn”, and we find z’, cn’ to complete the diagram as stated in the lemma.
As above we apply the rules to configuration subsets, to elide uses of ctxt-
1. Rules in the type 2 instance of fig 5 are straightforward and left to the
reader. For the rules in fig. 9 excepting call-send, ret-2, get-2, and new-2
we can choose z’ = z and ¢n’ = c¢n, since by def. 9.12 and corollary 9.17,
down(cn) =2 ¢n’. For the four remaining cases (five, since call-send splits in
two dependent on whether the called OID is internal or not), each case is
obtained by reversing the arguments, i.e. proving that if the type 2 transi-
tion holds, depending on the rule application and shape of configurations,
then also the type 2 transition holds. This completes the argument. O
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