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THE GENERALIZED DYNAMIC-FACTOR MODEL: 
IDENTIFICATION AND ESTIMATION 

Mario Fomi, Marc Hallin, Marco Lippi, and Lucrezia Reichlin* 

Abstract-This paper proposes a factor model with infinite dynamics and 
nonorthogonal idiosyncratic components. The model, which we call the 
generalized dynamic-factor model, is novel to the literature and general- 
izes the static approximate factor model of Chamberlain and Rothschild 
(1983), as well as the exact factor model 'a la Sargent and Sims (1977). We 
provide identification conditions, propose an estimator of the common 
components, prove convergence as both time and cross-sectional size go to 
infinity at appropriate rates, and present simulation results. We use our 
model to construct a coincident index for the European Union. Such index 
is defined as the common component of real GDP within a model including 
several macroeconomic variables for each European country. 

I. Introduction 

ECONOMIC activity in market economies is character- 
ized by phases of upturns followed by phases of 

depression, which is manifested by the cyclical behavior and 
comovements of many macroeconomic variables. If comove- 
ments are strong, it makes sense to represent the state of the 
economy by an index-the reference cycle--describing the 
common behavior of such variables. This idea, first sug- 
gested by Burns and Mitchell (1946), is behind the NBER 
coincident indicator. The formal model that best captures it is 
the index model, or dynamic-factor model, proposed by 
Sargent and Sims (1977) and Geweke (1977). A vector of n 
time series is represented as the sum of two unobservable 
orthogonal components, a common component driven by 
few (fewer than n) common factors, and an idiosyncratic 
component driven by n idiosyncratic factors. If we have only 
one common factor affecting all of the time series only 
contemporaneously (that is, without lags), such a factor can 
be interpreted as the reference cycle (Stock & Watson, 1989). 

Factor models can also be used to address different 
economic issues. For instance, a factor structure is often 
assumed in both financial and macroeconomic literature to 
estimate insurable risk. The latter is measured by the 
variance of the idiosyncratic component of asset prices 
(finance) or of output (macroeconomic risk sharing). More- 
over, factor models can be used to learn about macroeco- 
nomic behavior on the basis of disaggregated data (sectors, 
regions). (Quah and Sargent (1993), Forni and Reichlin 
(1996, 1997, 1998), and Forni and Lippi (1997) are useful 

references.) Finally, factor models can be successfully used 
for prediction (Stock & Watson, 1998). 

In the above examples, n-the number of cross-sectional 
units (different macro variables, returns on different assets, 
data disaggregated by sector or region)-is typically large, 
possibly larger than the number of observations (T) over 
time. VAR or VARMA models are not appropriate in this 
case, because they imply the estimation of too many 
parameters. Factor models are an interesting alternative in 
that they can provide a much more parsimonious parametri- 
zation. To address properly all the economic issues cited 
above, however, a factor model must have two characteris- 
tics. First, it must be dynamic, because business cycle 
questions are typically dynamic questions. Second, it must 
allow for cross-correlation among idiosyncratic compo- 
nents, because orthogonality is an unrealistic assumption for 
most applications. 

The model we propose in this paper has both characteris- 
tics. It encompasses as a special case the approximate-factor 
model of Chamberlain (1983) and Chamberlain and Roth- 
schild (1983), which allows for correlated idiosyncratic 
components but is static. And it generalizes the factor model 
of Sargent and Sims (1977) and Geweke (1977), which is 
dynamic but has orthogonal idiosyncratic components. 

An important feature of our model is that the common 
component is allowed to have an infinite moving average 
(MA) representation, so as to accommodate for both autore- 
gressive (AR) and MA responses to common factors. In this 
respect, it is more general than a static-factor model in which 
lagged factors are introduced as additional static factors, 
because AR responses are ruled out in such a model. 

The paper has three parts: population results, estimation, 
and empirics. In the population section, we show that the 
common and the idiosyncratic components are asymptoti- 
cally identified. Moreover, we prove that, if we have 
q-dynamic factors, the first q-dynamic principal component 
series of the observable variables converge to the factor 
space as n - oo, and the projection of each variable on the 
leads and lags of these principal components converges to 
the common component of the variable. 

The second part focuses on estimation. We propose an 
estimator of the common components which is the empirical 
(finite T) counterpart of the projection above. Building on 
the population results, we show that such an estimator 
converges to the common component as both n and T go to 
infinity. Simulation results show that our estimator performs 
well even when T is relatively small, possibly smaller than n. 

In the empirical section, we use data on several macroeco- 
nomic variables for the countries of the European Monetary 
Union and compute a reference Euro-zone business cycle, 
which is defined as a weighted average of the common 
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components of the GDPs of the countries of the Union and 
can be driven by more than one common factor. On the basis 
of our results, we also evaluate the performance of variables 
(such as the sentiment indicator and the spread) that are 
usually taken as reference for the European business cycle. 

This paper is closely related to three recent papers. Fomi 
and Lippi (1999) analyze the generalized dynamic-factor 
model proposed here from a purely theoretical point of view. 
They do not deal with estimation problems, but, unlike here, 
where we assume a factor structure from the start, they 
provide the conditions in population under which such 
structure exists. Fomi and Reichlin (1998) deal with estima- 
tion and empirics and show consistency of an estimator for 
the common component in a dynamic-factor model in which 
the idiosyncratic terms are mutually orthogonal. They also 
analyze identification of the common factors. Stock and 
Watson (1998) deal mainly with forecasting in a specifica- 
tion that is different from ours in that it allows for 
time-varying factor loadings but not for autoregressive 
dynamics. 

II. The Model 

We suppose that all the stochastic variables taken into 
consideration belong to the Hilbert space L2(fl, g P), 
where (fQ, .9 P) is a given probability space; thus, all first 
and second moments are finite. We will study a double 
sequence 

ixit i E Ngt E }9 

where 

xit = bil(L)ult + bi2(L)u2t + * + biq(L)Uqt + tit, (1) 

L standing for the lag operator, and suppose that assump- 
tions (1) through (4) hold. 

Assumption (1): 

(I) The q-dimensional vector process {(ult u2t ... uqt), 
t E Z} is orthonormal white noise. That is, E(ujt) = 0; 
var (ujt) = 1 for any j and t; ujt L Ujt-k for any j, t, and 
k 0; Ujt I Us,t-k for any s # j, t, and k; 

(II) g = {tit, i E N, t E Z} is a double sequence such that, 
firstly, 

gn =l(tlt t2t . . . tnt) et E Z} 

is a zero-mean stationary vector process for any n, and, 
secondly, tit I Uj,t1 for any i, j, t, and k; 

(III) the filters bij(L) are one-sided in L and their 
coefficients are square summable. 

Assumption 1 implies that the n-dimensional vector 
process Xn = {xnt, t E Z}, where 

Xnt = (Xlt X2t ... Xn. 9 

is zero-mean and stationary for any n. Trend-stationary 
processes can be easily treated with the tools developed 
below, which are applicable to the stationary residuals from 
deterministic detrending (while, in the case of difference 
stationary processes, our analysis can be applied to the result 
of differencing and mean subtracting). 

The variables ujt, j = 1, ... , q, will be called the common 
shocks of model (1), the variables Xit = xit- it and tit will 
be called the common component and the idiosyncratic 
component of xit, respectively. 

Model (1) is a factor analytic model. It is dynamic as the 
models employed in Geweke (1977) and Sargent and Sims 
(1977). However, here the cross-sectional dimension is 
infinite. This feature is the same as in the static-factor model 
of Chamberlain (1983) and Chamberlain and Rothschild 
(1983). An infinite cross section, together with assumptions 
(3) and (4) below, is crucial for the identification of our 
model. Indeed-and this is the third distinctive feature of 
model (1), which differentiates it from the dynamic-factor 
models mentioned above-we are not assuming mutual 
orthogonality of the idiosyncratic components tit. Without 
orthogonality, for fixed n, reasonable assumptions allowing 
for identification of the idiosyncratic and the common 
component would be very hard to find. 

We do not assume rational lag distributions in equation 
(1). Through section III.A, we impose only a bounded 
spectral density for {xitl, for any i. In section III.B, further 
requirements, allowing for consistent estimation, will be 
introduced. We denote by ,n(O) the spectral density matrix 
of the vector process xnt and by -ij(O) its entries. (Note that 
the matrices ,n and I, n < m, are nested, so that no 
reference to n is necessary for oij(0).) 

Assumption (2): For any i E 1N, there exists a real ci > 0 
such that vii(0) ' ci for any 0 E [-ir, 7r]. 

Note that we are not assuming that boundedness of vii(O) 
is uniform in i. Note also that assumption (2) implies that all 
the entries uij(0) Of ,n(0) are bounded in modulus. 

Now, denote by Xnj the function associating with any 0 E 
[-,t, NT] the real nonnegative jth eigenvalue of ln(0) in 
descending order of magnitude. The functions Xnj will be 
called the dynamic eigenvalues of In.- In the same way, with 
obvious notation, Xx and Xn denote the dynamic eigenvalues 
of Ix and V, respectively. The latter will be called common 
and idiosyncratic eigenvalues, respectively. 

I We use the term dynamic eigenvalues to insist on the difference 
between the functions X and the eigenvalues of the variance-covariance 
matrix employed in the static principal component analysis. A standard 
reference for eigenvalues and eigenvectors of spectral density matrices is 
Brillinger (1981, chap. 9). 
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Assumption (3): The first idiosyncratic dynamic eigen- 
value XA is uniformly bounded. That is, there exists a real A 
such that X1(0) ? A for any 0 E [-fT, IT] and any n E R1. 

Assumption (4): The first q common dynamic eigenvalues 
diverge almost everywhere in [ -IT, f]i. That is, 

lim XX.(0) = oo for]j q, a.e. in [-IT, IT]. 
n- oo 

Assumptions (3) and (4) call for some explanation. 
Assumption (3) is clearly satisfied if the x's are mutually 
orthogonal at any lead and lag and have uniformly bounded 
spectral densities, but is more general as it allows, so to 
speak, for a limited amount of dynamic cross-correlation. 
Similarly, assumption (4) guarantees a minimum amount of 
cross-correlation between the common components. With a 
slight oversimplification, assumption (4) implies that each 
uj1 is present in infinitely many cross-sectional units, with 
nondecreasing importance. (On assumption (4), see also 
remark (5) in section III.A.) On the contrary, assumption (3) 
implies that idiosyncratic causes of variation, although 
possibly shared by many (even all) units, have their effects 
concentrated on a finite number of them, and tending to zero 
as i tends to infinity. For example, assumption (3) is fulfilled 
if var (tit) = 1, cov (tit, ti? it) = p 0 0, while cov (it, ti+h,t) = 

Oforh> 1. 
Note that in assumption (4) we require divergence "al- 

most everywhere." The reason is twofold. Firstly, we do not 
need divergence everywhere to prove our results. Secondly, 
cases in which divergence does not hold everywhere can 
arise in very elementary situations. Suppose, for example, 
that xit = Ut + tit, where tit is nonstationary but (1 -L)tit 
is stationary. Then consider the variables (1 - L)xit = 
(1 - L)ut + (1 - L)t. Assuming that the variables (1 -L)it 
fulfill assumption (3), the model for the variables (1 -L)xit 
fulfills assumptions (1) through (4) with Xit = (1 - L) ut and 
XXI(0) = nl -e-i 0I2, which is divergent in [-IT, 'n] with 
the exception of 0 = 0. 

Our first result is the following. 

Proposition (1): Under assumptions (1) through (4), the 
first q eigenvalues of I diverge, as n - oo, a. e. in [-ir, ir], 
whereas the (q + l)th one is uniformly bounded. That is, 
there exists a real M such that n,q+1(0) ' M for any 0 E 
[-13, r] and any n E FN. 

Proof: See the appendix. 

The importance of proposition (1) lies in the fact that it 
transforms statements on the dynamic eigenvalues associ- 
ated with the unobservable components Xn and gn into 
statements on the dynamic eigenvalues associated with xn, 
which is supposed observable. Moreover, as proved by Forni 
and Lippi (1999), the converse of proposition (1) also holds: 
if the first q eigenvalues of I,n diverge, as n - oo, a.e. in 
[-aT, ii], whereas the (q + i)th one is uniformly bounded, 
then the x's can be represented as in equation (1). Thus, if the 

analysis of the dynamic eigenvalues of the observed process 
leads to the conclusion that the first q eigenvalues diverge 
a.e. in [-IT, iii, whereas the (q + l)th one is uniformly 
bounded, then the hypothesis of a model of the form (1) with 
q factors is plausible. 

We call model (1), under assumptions (1) to (4), the 
generalized dynamic-factor model. We will show that, under 
assumptions (1) through (4), the common components Xit 
and the idiosyncratic components tit are identified and can 
be consistently estimated. On the other hand, it must be 
stressed that in this paper we do not deal with identification 
and estimation of the shocks ujt or the filters bij(L). Thus, we 
are not interested here in whether representation (1) has a 
structural interpretation or not.2 In this respect, even the 
assumption that the filters bij(L) are one-sided could be 
dropped with no consequence. 

III. Recovering the Common Components 

A. Population Results 

In this section, our task is to construct an estimator of 
Xit, for any given i, based on the finite set of variables 
{xi, i = 1,.. ., n, t = 1, ... , T}, and to prove consistency 
for such an estimator as n and T tend to infinity. The proof is 
obtained in two steps. In the first step (III.A), we consider 
the projection of xit on all leads and lags of the first 
q-dynamic principal components (see the definition below) 
of xn, obtained from the population spectral density matrix 
in. We show that this projection, call it Xit,n, converges to Xit 
in mean square as n tends to infinity. In the second step 
(III.B), we construct the finite-sample counterpart of Xit,nq 
which is based on the estimated spectral density JT, call it 
Xit*n Then we combine convergence of Xit,n to Xit with the 
fact that XTn is a consistent estimator of Xit,n for any n as T 
tends to infinity, thus obtaining the desired result. 

Let us recall that given the spectral density matrix Kn(O), 
there exist n vectors of complex-valued functions 

Pnj(0) = (Pnj,l(0) Pnj,2 (0) ... *Pj,n(0A)) 

1= 1, 2, ... , n, such that 
(i) pnj(O) is a row eigenvector of Z1(O) corresponding to 

Xnj(0); that is, 

Pnj(O)n(O) = Xnj(O)Pnj(O) for any 0 E [-IT, 7r]; 

(ii) Ipnj(0) 12 = 1 for any j and 0 E [-uq, 7r]; 

(iii) Pnj MOns(0) = 0 for any j / s and any 0 E [-IT, 'iT]; 

(iv) pnj(0) is 0 - measurable on [ -T, IT]; 

where, as usual, we denote by D the adjoint (transposed, 
complex conjugate) of a matrix D. (For existence and 
properties of the functions pnj(0), see Brillinger (1981, ch. 9) 
and Fomi and Lippi (1999).) 

2 On the identification and estimation of the common shocks in a related 
model, see Fomi and Reichlin (1998). 
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Any n-tuple fulfilling properties (i) through (iv) will be 
called a set of dynamic eigenvectors of In. Note that, apart 
from some inevitable complication, dynamic eigenvectors 
are nothing else than eigenvectors of the spectral density 
matrix, as functions of the frequency 0. A consequence of (ii) 
and (iv) is that dynamic eigenvectors can be expanded in 
Fourier series: 

P J__ pr pn(0)ei0 d e-ikO 

(this is the componentwise Fourier expansion of the vector 
pnj(()), where the series on the right side converges in mean 
square. 

Defining 

p~~1(L) = kp=-ik dO]L Pnj(L) 2 Jr p (0)e o Lk, 

the filter pnj(L) is square summable. Moreover, assumption 
(2) implies that the scalar pnj(L)Xnl converges in mean square 
(Brockwell & Davis, 1987, p. 149, theorem 4.10.1). For j = 

1, ... , n, the scalar process Ipnj(L)x,1t, t E Z}, whose spec- 
tral density is 

PnJ((0)In((0)PnJ((0) = X nj(0)9 

will be called the ith dynamic principal component of xn. A 
consequence of (iii) is that, if j / k, then the ith anid kth 
principal components are orthogonal at any lead and lag. 

Now consider the minimal closed subspace of L2(Q, Y P) 
containing the first q principal components 

?6K = span (p 
#(L)x,3t, 

j = 1, ... , q, t E E), 

and the orthogonal projections 

Xit,n= proj (xit I Wn)- 

We can obtain an explicit formula both for Xit,nz and the 
residual ;it,n = Xit- Xit,z by observing that 

In = fni(()Pni(() + Pn2(0)Pn2(0) + * * + Pnn(O)Pnn(0). 

(The vectors ptj(O) are an orthonormal system of eigenvec- 
tors for In.) Therefore, 

xnt = Pn (L)Pn1(L)Xnt + Pn2(L)Pn2(L)Xnt 

+ + Pnn(L)Pnn(L)Xnt 

Taking the ith coordinate, 

xit = [pn1,i(L)Pn1(L)Xnt + fin2,J(L)Pn2(L)Xnt 

+ *+ nq,i(L)Pnq(L)Xnt] + [13n,q+?,i(L)Pn,q+?(L)xnt 

+ *** + ~Pnn,i(L)Pnn(L)Xnt]. 

Now, since the dynamic principal components are mutually 
orthogonal at any lead and lag, 

Xit,n = Kni(L)Xnt, (2) 

with 

Kni(O) = Pin1,U(O)P00(O) + Iln2,J(0)Pn2(0) 

+ *.. + finq,i(0)Pnq(0) 

Remark (1): Note that in equation (2) the orthogonal 
projection Xit,n is expressed as the sum of the orthogonal 
projections of xit on (leads and lags of) each of the first q 
dynamic principal components; that the coefficients of the 
ith orthogonal projection are the coefficients of the filter 

pnj(L); and that, obviously, analogous formulae and obser- 
vations hold for (it,n and the principal components from 
q + I ton. 

Let us now state and comment our first step toward 
recovenng Xit. 

Proposition (2): Suppose that assumptions (1) through (4) 
hold. Then, 

lim Xit,n = Xit 
n---+0 

in mean square for any i and t. 

Proof: See the appendix. 

Remark (2): Note firstly that Xit,n, that is, the population 
approximate common component of xit, results from a 
simple rule involving the dynamic eigenvectors of the 
matrices n, with no intervention of the unobservable x's 
and c's. Thus, we are ready for the second step, in which we 
construct an empirical approximate common component 
based on the observable xnt, for t = 1, . . . , T. 

Remark (3): An intuitive insight into proposition (2) can 
be obtained by considering the following example: 

Xit = Ut + tit, (3) 

where all i's are white noise, have unit variance, and are 
mutually orthogonal at any lead and lag. In this one-factor 
case pnI(L) = (1/ / iF . .. 1/), so that 

Xit,n = 5n ,i(L)PnA)Xnt= (1/n 1/n ... I/n)xnt 

I n 
- ut + - z u. n s=1 

Convergence of Xit,n to Xit in mean square thus follows from 
var (In1=IsIn) = 1/n. In this example, the filter 

j3l,i(L)pD1(L) is nothing else than the standard arithmetic 
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mean of xnt,. In the appendix, we show that in general the 
filters p-n j,A(L)pn(L), for j = 1, . . . , q, which average the x's 
both over the cross section and over time, share with the 
standard arithmetic mean the property that the sum of the 
squared coefficients tends to zero as n tends to infinity. 
Assumption (3) indeed ensures that P-nj,i(L)Pni(L)9nt van- 
ishes as n tends to infinity (see the appendix), so that, 
because 

nj,i(L)Pnj(L)Xnt = finj,i(L)Pnj(L)Xnt + Pnj,i(L)Pnj(L)9nt 

in the limit only the term 5nji(L)Pnj(L)Xnt survives. How- 
ever, proving that in general >1q_1flnj,i(L)pnj(L)Xnt converges 
to Xit is not as elementary as in model (3). 

Remark (4): Assume again, for simplicity, that q = 1 but 
that the model is general: xit = bi(L)ut + (it. Now suppose 
that we take the standard arithmetic mean xnt of xnt, instead 
of the first dynamic principal component and that we project 
xit on all leads and lags of nt. Call -it,n this projection. 
Assumption (3) ensures that the idiosyncratic part of Xnt 
tends to zero, so that the projection Xit,n tends to the 
projection of xit on the space spanned by the common 
components (Xit). This estimation method can be extended to 
q > 1 by using q averages with different systems of weights, 
as in Forni and Reichlin (1998). An advantage of their 
method is that the coefficients of their averages are indepen- 
dent of the x's and not estimated (as in our case). However, 
unless ad hoc assumptions are introduced, near singularity 
of the chosen averages for n growing, with the consequence 
of inaccurate estimation, cannot be excluded. This problem 
is completely solved with dynamic principal components, 
which are mutually orthogonal at any lead and lag. 

Because Xit,n depends only on xnt, proposition (2) has the 
immediate implication that the components Xit and tit are 
identified. More precisely, we can state the following 
corollary. 

Corollary (1): Suppose that xit can be represented as in 
equation (1), and that assumptions (1) through (4) are 
fulfilled. Suppose that xit admits the alternative representa- 
tion 

xit = bi1(L)u'It + bi2(L) I2 + * + bi4(L)Ui4t + (it, (4) 

and that assumptions (1) through (4) are also fulfilled for 
equation (4). Then, Xit = Xit, so that tit = tit. Moreover q4 = q. 

Remark (5): An important consequence of corollary (1) is 
that representation (1) is nonredundant; that is, no other 
representation fulfilling assumptions (1) through (4) is 
possible with a smaller number of factors. In the following 
example, we have a common-idiosyncratic representation of 
the form (1) with one factor. However, because assumption 

(4) is not fulfilled, another representation with zero factors 
fulfilling assumptions (1) through (4) is possible. Specify 
equation (1) as 

xit= b ut + tit, 

where t is defined as in model (3). Now suppose that the 
sequence of coefficients bi, i E RJ, is square summable (that 
is 'i1b 2 < oo). In this case, as the reader can easily check, 
the first eigenvalue of 1,(O) is 1 + EI'lb 2, and is therefore 
bounded as n tends to infinity. Thus, the x's-though the 
correlation between xit and xjt never vanishes-are purely 
idiosyncratic. 

Naturally, in empirical situations we do not know the 
number q. However, another implication of proposition (2) 
is that assuming a q* larger than the actual q has no dramatic 
consequences, because the expected mean-squared differ- 
ence between the resulting projections X*it,n and X*,n aver- 
aged over the cross-sectional units, is asymptotically zero. 
Precisely: 

Corollary (2): Under assumptions (1) through (4), let Xitn 
be the projection of xit on the space spanned by all leads and 
lags of thefirst q * dynamic principal components, with q * > 
q. Then 

I n 

lim - E[(X* *,-Xit,n )2] = ?. 
n-o n i i1 

Proof: See the appendix. 

A dynamic-factor model with an infinite cross-sectional 
dimension is studied by Stock and Watson (1998). Among 
several differences, let us observe here that their model is 
more general than ours in that their factor-loading coeffi- 
cients are allowed to be time varying. On the other hand, in 
Stock and Watson's paper, the common components are 
modeled (in our notation and assuming for simplicity only 
one factor) as ci(L)c(L)u, with polynomials ci(L) of finite 
order, which is dynamically more restrictive than equation 
(1). Stock and Watson construct estimated factors that 
converge to the space spanned by the "true" factors. This 
corresponds, in this paper, to the statement that the estimated 
counterparts of Pnj(L)xnt converge to the space spanned by 
the x's (or the u's). In this paper, we prove this result and go 
a step further, showing that the estimated Xit,n converges to 
Xit for any i. (See the comment under lemma (4), appendix.) 

B. Estimation Results 

Proposition (2) shows that the common component Xit can 
be recovered asymptotically from the sequence Kni(L)Xnt. 
The filters Knj(L) are obtained as functions of the spectral 
density matrices ln(O). Now, in practice, the population 
spectral densities ln(O) must be replaced by their empirical 
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counterparts based on finite realizations of the form 

Xn= (xn1 Xn2 * XnT). 

On the other hand, consistent estimation of the spectral 
density requires a strengthening of assumption (2). Pre- 
cisely, we replace assumption (2) by 

Assumption (2'): The vector xn, has a representation 

x 
Xnt = I CkZt-k, 

k= -oo 

where Zt is an n-dimensional white noise with non-singular 
covariance matrix and fourth-order moments, and 

a ICij,kllkl 12 < X, 
k= -oo 

for i, j=1,.. , n, where Cijk is the i, j entryof Ck. 

Under assumption (2'), if nT(0) denotes any periodo- 
gram-smoothing or lag-window estimator of n(0), based on 
xT, we have 

lim P[ sup o1(O) - u1(O)I > E] = 0, (5) 
T-X-0 0EJ-,nu] 

where UT(0) denotes the i, j entry of NT(0). (See Brockwell 
and Davis (1987, p. 433).) Under assumption (2'), the 
estimated counterpart of Kni(O) allows for a consistent 
reconstruction of the factor space. More precisely, we prove 
that the projection of xit onto the space spanned by the first q 
empirical principal components converges to the common 
component Xit. 

Denote by XT (0) and pnT(0), respectively, the eigenvalues 
and eigenvectors of the matrix Xn'(O). Since eigenvalues and 
eigenvectors are continuous functions of the entries of the 
corresponding matrix, convergence (5) implies that XAT(0) 
and pn(O) converge to Xnj(O) and Pnj(O)g respectively, in 
probability, uniformly in 0 E [-q, a'], for T o oo. More- 
over, considering 

K T(O) = fiT1,O)p (O) + pTi~2(O)pT (O) Kni0 Pnl i(0)PnI(0 +n2,i )n2( 

+ *** + Pn'q,(O)Pn'q(n)q 

that is, the empirical counterpart of Kni(O), i < q, KnT(0) 
converges to Kni(O) in probability, uniformly in 0 E 

[-mg, i], for T - oo. Thus, for all E > 0 and - > 0, there 
exists T1 = T1 (n, E, q) such that, for all T ' T1, 

P[ sup |K T(0) -Kni(0)I > E] ` 1i. (6) 

Now, observe that, in principle, given the estimated 
spectral density matrix JT(0), K T (0) can be computed for 

any 0, so that each of the coefficients of the corresponding 
two-sided filter 

ni(L)= , KnikLk xr K2Tk=Tn 
i 

can be obtained. However, in practice, the projection 
K T (L)Xnt of xi, onto the space spanned by the first q 
empirical principal components cannot be computed, be- 
cause, for t ' 0 and t > T, Xn, is not available. Therefore, 
a truncated version of the estimated filters K T (L), of the 
form Ek--M(T)Ki kLk, where M(T) oo is such that 
lim SUpT 0M3(T)IT < ?o as T - oo, is considered. This T-113 
rate for the window width M(T) is related to the method of 
proof (see the proof of Proposition (3) in the Appendix), and 
is probably not essential to the consistency result itself. Even 
this truncated version of K T.(L) however has to be truncated 
further when acting on Xn,, t < M(T) or t > T -M(T), 
yielding 

min(t- 1,M(T)) 

Kni(L)= 
! Kni, Lk. 

k=max(T-t.-M(T)) 

Due to this unavoidable truncation, the common component 
Xit, for fixed t, never can be recovered, even as n and T tend 
to infinity. Indeed, part of its variance is lost because of the 
non-observability of Xnl, t ' 0 and t > T. We therefore 
restrict our attention to the "central part" of the observed 
series, the values of t of the form t = t*(T), with 

t*(T) t*(T) 
O<a?liminf -limsup b <1. (7) 

T-X'z T T-Xo T 

The following result then provides the empirical counterpart 
of proposition (2). 

Proposition (3): Assume that assumptions (1), (2'), (3), 
and (4) are satisfied. Then, for all E > 0 and - > 0, there 
exists No(E, -q) such that 

[ |K Tt(L)Xnt -Xit I > E] C5 'q 

for all t = t*(T) satisfying equation (7), all n ' No and all T 
larger than some To(n, E, 1q). 

Proof: Throughout, we write aT instead of [aTI (the 
smallest integer larger than or equal to aT), and bT for [bTl 
(the largest integer smaller than or equal to bT). We also 
tacitly assume that T is large enough for M(T) being strictly 
less than min (aT, T - bT + 1, (bT - aT)12). 

For any t E [aT, bT], KnT(L) then reduces to 

-M(T)Kni Lk We have k= nT),k 

P [|KT(L)xnt -Xitl > E] C P[|(KTt(L) - Kli(L))xntI > Ed2] 

+ P[|Kn(L)xnt -Xit > E/2] = RTt + R,32, say. 
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Proposition (2) ensures the existence of an NO(E, -q) such 
that, for n ' No Rn2 ? . As for RT, we have, from the 
definition of KnT2n 

M(T) 

nl P T (Knih - Kni,h)Lh 

Lh =-M(T) 

-M(T)- 1 ?? E' 
- al Kni,hL h- a Kni,hLh Xnt > 

h=-oo h=M(T)+l 2J 

? P [ ) I (Knih - Kni,h)LhXnt > ] 
h = -M(T) 

-M(T)-1 0I 

+ P Kni,hLh - Kni,hLh Xnt >4 
1 kh=-oo h=M(T)+ 1 4h 

=R Tt +R T 
-nli nl2- 

Since Ki(L) is a nonrandom square-summable filter, there 

exists T2(n, E, -q) such that R T 2 ? 4 for all T ' T2 and aT < 

t < bT. Turning to R,Ttl it follows from Chebyshev's 
theorem and equation (6) that, for T ? T1 (n, 8, 8) 

RT C~ [ ( M(T) (KnTih - Kni,h)L' xnt > 4 

and os[up ] Kn(O) -Kni(O)l ? 6] 

+ P E[u supI Kni(O) - Kni(O) |>6]1 

16 [M(T) 2 

-?2 E h (Knih - Kni,h)L xnt 
h =-M(T) 

Xn supIT() ni ~ ni()I- 

X P sup IK T i(0) - Kn( - 8 

If the filter K T* and the observation xnt were independent, 
then, in view of the classical properties of dynamic principal 
components (see the proof of Proposition 1 in the appendix), 
we would have (denoting by 1'n,h = E[Xfl,tXn,t-h], h = 0, +1, 
. . . the autocovariance function of Ixnt1) 

M(T) 2 

h 
- (KE i - K TlK,h)L xnt 
h=-M(T) 

X sup K Kni T)- K- K(O) ?-E)] 

[M(T) M(T) 

=E E= r (Knik- Knisk)Fnllk 
k= -M(T) I= -M(T) 

- (KlIKni,1) |sup |KnT(O) -K_(0) <6)] 

< Eil6e2 f Tan(0) do] = 62 f nt w(0) dO. 

_ ni 

Thus, letting 82 = E2-q/128 fIs7r nI(O) dO, for n ' NO(E, -q) 

and T ' max (Ti(n, 8, 8), T2(n, E, -q)), we would ob- 
tain RnT ? "hence RnT + RnT2 < q for all t = t*(T) 
satisfying condition (7). The proof of Proposition 3 then 
would be complete-without any rate assumption on M(T). 

Unfortunately, Kni and xnt are not independent. For Tlarge 
enough, they are "almost independent," though, so that the 
above reasoning is essentially correct; moreover, it provides 
the right insight into the intuitive ideas underlying the proof. 
A more formal treatment, taking into account the non- 
independence between K?T and Xnt, is given in the Appendix. 

IV. The Proposed Estimator and the Choice of q 

In light of the results of the previous section, we propose 
the following estimator. For some selected integer M = 
M(T), we compute the sample covariance matrix rFT of X,t 
and Xn,t-k for k = 0, 1, ... , M and the (2M + 1) points 
discrete Fourier transform of the truncated two-sided se- 

quencern,-M, . . .,9 rnO' ... 9. rnM where rn,-k = r'nk More 
precisely, we compute 

M 

InT(Oh) = n Fnk(Oke (8) 
k= -M 

where 

oh = 2lhl(2M + 1), h=O, 1, ..., 2M, 

and Wk = 1 - [Ik/(M + 1)] are the weights corresponding to 
the Bartlett lag window of size M. Consistent estimation of 
ln(O) (which is required for the validity of proposition (3)) 
is ensured, provided that M(T) - 

oo and M(T)IT - 0 as 
T ) oo. 

Then we compute the first q eigenvectors pnTj(Oh), = 1, 
2, ... , q, of OT()h), for h = 0, 1, ... , 2M.3 Finally, for 
h = 0, 1, ... , 2M, we construct 

KnT(Oh) 
= 

PIT ,i(Oh)PT1(Oh) + * * + Tqji(Oh)PnTq(Oh). 

The proposed estimator of the filter Knj(L), j = 1, 2, ... , q, 
is obtained by the inverse discrete Fourier transform of the 
vector 

(K (T0) * ... 9 K,T( 2M)), 

that is, by the computation of 

1 2M 

Kni,k 2M + 1 h= ni(Oh)e 

Note that, for M = 0, pnT(00) is simply the jih eigenvector of the 
(estimated) variance-covariance matrix of xnt: the dynamic principal 
components then reduce to the static principal components. 
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for k = -M, . . , M. The estimator of the filter is given by 

M 

(L)- K, Lk. (9) 
k= -M 

Note that the same integer M has been used as the size of 
the Bartlett window in the estimation of T,(0), and as the 
truncation length of KT!(L), so that imposing M(T) = 

O(T113) ensures both consistency of the estimated spectrum 
and consistency of the estimated common component (see 
Proposition 3). In particular, it appears that M(T) = round 
(2T1/3) performs remarkably well in the simulations reported 
in Section V. As an alternative, we could take any sequence 
MO(T) such that MO(T) ) oo as T - oo, and MO(T) = O(T113), 
estimate all of the specifications with 0 ? M ' MO(T), and 
choose the one minimizing some dynamic specification 
criterion. Although a data-dependent rule seems preferable 
in principle, we found that the standard AIC and BIC criteria 
underestimate the optimal lag-window size, so this topic is 
left for further research. 

So far, we have assumed that q, the number of non- 
redundant common factors, is known. In practice of course, 
q is not predetermined and also has to be selected from the 
data. Proposition (1) can be used to this end, because it links 
the number of factors in equation (1) to the eigenvalues of 
the spectral density matrix of x,: precisely, if the number of 
factors is q and g is idiosyncratic, then the first q dynamic 
eigenvalues of Y.,(O) diverge a.e. in [--rr, rr] whereas the 
(q + l)th one is uniformly bounded. 

However, no formal testing procedure can be expected for 
selecting the number q of factors in finite-sample situations. 
Even letting T D oo does not help much. The definition of the 
idiosyncratic component indeed is of an asymptotic nature, 
where asymptotics are taken as n D oo, and there is no way a 
slowly diverging sequence (divergence, under the model, 
can be arbitrarily slow) can be told from an eventually 
bounded sequence (for which the bound can be arbitrarily 
large). Practitioners thus have to rely on a heuristic inspec- 
tion of the eigenvalues against the number n of series. 

More precisely, if T observations are available for a large 
number n of variables xi,, the spectral density matrices ,T, 
r ' n, can be estimated, and the resulting empirical dynamic 
eigenvalues XT) computed for a grid of frequencies. The 
following two features of the eigenvalues computed from 

r T,r = 1, . .. , n, should be considered as reasonable 
evidence that the data have been generated by equation (1), 
with q factors. 

1. The average over 0 of the first q empirical eigenvalues 
diverges, whereas the average of the (q + l)th one is 
relatively stable. 

2. Taking r = n, there is a substantial gap between the 
variance explained by the qth principal component and 
the variance explained by (q + 1 )th one. A preassigned 
minimum, such as 5%, for the explained variance, 

To illustrate the use of criteria (1) and (2), we have 
generated data from a two-factor model (model M4 below) 
with n = 50 and T = 100. Then, we have estimated the 
spectral density matrix for a grid of frequencies, using 
equation (8) with M = 10. Lastly, we have computed the 
eigenvalues of the upper-left r X r submatrices, r = 

1, . .. , n. 
Figure 1 reports the plot of the averages over frequencies 

of the theoretical and estimated eigenvalues. On the horizon- 
tal axis, we indicate the number of cross-sectional units r, 
which obviously is maximum when the whole sample n = 

50 is considered. Features (a) and (b) emerge quite clearly: 
the first q averaged eigenvalues exhibit an approximately 
constant positive slope, while the remaining ones are rather 
flat; moreover, the variance explained by the qth principal 
component is substantially larger than the variance ex- 
plained by the (q + l)th one, even for small r. 

To conclude this section, let us remark that, when 
applying criteria (1) and (2), we should keep in mind that, as 
indicated by corollary (2), setting a number q* of factors 
larger than the true one q cannot have dramatic conse- 
quences on estimation. 

V. Simulation Results 

In order to evaluate the performance of our estimation 
procedure for finite values of n and T, we have carried out 
Monte Carlo experiments on the following four two-factor 
models. 

FIGURE 1 -DYNAMIC EIGENVALUES AVERAGED OVER FREQUENCIES, MODEL M4 
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could be used as a practical criterion for the determina- 
tion of the number of common factors to be retained. 
This 5% limit is used in the empirical exercise of 
section VI. 
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Static model: 

xit = aiult + bjU2t + 2it (M1) 

Static with delay: 

xit = ajul + biu2t + +2git for i even (M2) 

xit = aiult-I + biU2t-I + 2it for i odd. 

MA(1) common component: 

xit = a0iult + aliult-I + bOjU2t + bliu2t_i + 2git. (M3) 

AR(1) common component: 

al b 
Xit =- U1t + U2t + 25tit. (M4) 1-c-L 1-diL 

In all these models, ult, U2t, ai, a0i, ali, bi, boi, bli, and git are 
i.i.d. standard normal deviates, while ci and di are uniformly 
distributed over [-0.8, 0.8], in order to ensure costationarity 
of the x's. Note that the idiosyncratic shocks are multiplied 
by a constant so that, on the average, all cross-sectional units 
have common-idiosyncratic variance ratio 1, in all models. 

We generated data from each model with n = 10, 20, 50, 
100, and T = 20, 50, 100, 200, and applied the estimation 
procedure described in section IV with M(T) = round 

[2T1/3]. Each experiment was replicated 400 times. 
We measured the performance of our estimator, ^it, by 

means of the criterion 

I ( ^it - Xt)2 
i,t 

R(X, X) = 2 

xit 

i,t 

Table 1 reports the average and the standard deviation (in 
brackets) of this statistic across the experiments. 

For all models, we see that the fit improves as both n and T 
increase. To better appreciate the results, we add a row 
reporting R(3, X), where -it is the infeasible estimate of the 
common components obtained by performing OLS regres- 
sions of the variables on the contemporaneous and lagged 
values of the unobservable true common factors ujt; Xit is 
computed only for n = 100. The AIC criterion is used for the 
choice of the number of lags. Note that, for the autoregres- 
sive model M4, the results obtained with n ' 50 are similar 
to those obtained with the true factors or even better, 
indicating that the error involved in approximating the factor 
space is negligible as compared with the error arising from 
the MA approximation of the AR dynamic structure implied 
by the OLS strategy. 

VI. A Coincident Indicator for the EURO 
Currency Area 

In this section, we use our method to compute a coinci- 
dent indicator for the countries of the European Monetary 
Union. We estimate the generalized-factor model, using a 
large panel including several macroeconomic variables for 
each EURO country. The coincident indicator is constructed 
as the weighted average of the common components of 
countries' GDPs. 

Our approach is similar in spirit to Stock and Watson 
(1989), who define the reference cycle as an unobserved 
index, common to many macroeconomic variables. How- 
ever, one important difference is that we allow for the 
possibility that more than one single common shock capture 
the comovements of the macroeconomic variables of inter- 
est. This is relevant whenever there is more than one source 
of aggregate fluctuations. 

We proceed as follows. 
Step (1): We construct a panel pooling seven quarterly 

macroeconomic indicators for all countries of the EURO 
zone, excluding Luxembourg, from 1985 to 1996. (See table 
2, with X and - indicating, respectively, whether the series 
is available or missing.) Data are taken in logs and differ- 
enced (except for the spread, which is not transformed, and 
the sentiment indicator, which is simply taken in logs), and 
normalized dividing by the standard deviation. Thus, n = 63 
andT= 51. 

Step (2): We estimate the spectral density matrix, compute 
the dynamic eigenvalues, and identify q = 3, using criterion 
(2) of section IV. 

TABLE 1.-AVERAGE AND STANDARD DEVIATION (IN BRACKETS) OF R(X,X) 
ACROSS 400 EXPERIMENTS 

T= 20 T= 50 T= 100 T= 200 

Model MI 
n = 10 0.554 (0.281) 0.394(0.201) 0.343 (0.162) 0.296 (0.131) 
n = 20 0.372 (0.174) 0.244 (0.091) 0.194 (0.068) 0.162 (0.045) 
n = 50 0.261 (0.098) 0.150 (0.035) 0.109 (0.024) 0.081 (0.014) 
n = 100 0.227 (0.069) 0.123 (0.024) 0.084 (0.014) 0.059 (0.008) 
R(X, X) with 

n = 100 0.197 (0.105) 0.061 (0.012) 0.030 (0.005) 0.015 (0.002) 
Model M2 

n = 10 0.671 (0.351) 0.472 (0.206) 0.382 (0.187) 0.317 (0.138) 
n = 20 0.505 (0.202) 0.295 (0.100) 0.070 (0.081) 0.047 (0.063) 
n = 50 0.390 (0.117) 0.048 (0.085) 0.026 (0.049) 0.016 (0.032) 
n = 100 0.353 (0.098) 0.032 (0.071) 0.016 (0.041) 0.009 (0.027) 
R(X, X) with 

n = 100 0.366 (0.113) 0.105 (0.019) 0.052 (0.008) 0.025 (0.004) 
Model M3 

n = 10 0.633 (0.255) 0.436 (0.152) 0.340 (0.108) 0.294 (0.081) 
n = 20 0.479 (0.160) 0.289 (0.084) 0.211 (0.051) 0.161 (0.029) 
n = 50 0.384 (0.106) 0.193 (0.039) 0.128 (0.022) 0.092 (0.013) 
n = 100 0.344 (0.084) 0.163 (0.029) 0.103 (0.014) 0.067 (0.007) 
R(X, X) with 

n = 100 0.366 (0.112) 0.103 (0.019) 0.051 (0.007) 0.025 (0.003) 
Model M4 

n = 10 0.642 (0.360) 0.433 (0.213) 0.352 (0.170) 0.299 (0.132) 
n = 20 0.459 (0.187) 0.278 (0.093) 0.201 (0.060) 0.166 (0.047) 
n = 50 0.342 (0.100) 0.193 (0.039) 0.131 (0.025) 0.095 (0.015) 
n = 100 0.322 (0.083) 0.167 (0.028) 0.108 (0.015) 0.073 (0.008) 
R(X, X) with 

n = 100 0.424 (0.118) 0.199 (0.028) 0.114 (0.015) 0.067 (0.007) 
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Step (3): We estimate the common component of GDP for 
each separate country, following the procedure of section IV. 
Figure 2 reports the resulting estimates. 

Step (4): We construct the weighted average of the 
common components above using as weights the GDP 
levels. This is the proposed coincident indicator. We illus- 
trate it in figure 3. 

Some remarks are needed. Firstly, results from step (2) 
show that the presence of a cycle in the strong sense of Stock 
and Watson (1989)-that is, a single common factor-is not 
supported by this data set. 

Secondly, in our methodology, output plays a prominent 
role. Because the data do not support a single static factor, the 
cycle must be defined as the common component of a 
particular cross-sectional unit. Clearly, GDP is the most 
natural choice as the reference variable. On the other hand, 

we are interested in the common component of output and not 
in output itself, because we want to disregard that part of GDP 
variation that is poorly correlated with other variables. Hence, 
the latter also play an indirect role in the construction of the 
index, through the estimated dynamic principal components. 

Finally, with our methodology there is no need to 
distinguish a priori between leading and coincident vari- 
ables. The weight of each variable in the index depends on 
the cross-correlations at all leads and lags: a variable which 
leads with respect to GDP, for example, will have small 
contemporaneous weight and will be shifted automatically 
in the appropriate way. 

In order to understand better the structure of the multicoun- 
try, multivariate correlations, we also compute the common 
components of variables other than GDP and construct two 
sets of statistics. First, for each variable, we compute the 
ratio of the variance of the common component to total 
variance, for each country and for the aggregate EURO area 
(table 3). These ratios measure the degree of commonality of 
each variable in the system. Second, we compute, for each 
variable, the average contemporaneous correlation coeffi- 

TABLE 2.-THE DATA 

Countries GDP Cons. Inv. CPI Spread Sent. I.P. 

Germany X X X X X X X 
France X X X X X X X 
Italy X X X X X X X 
Netherlands X X X X X X X 
Ireland X X X X 
Spain X X X X X X X 
Finland X X X X X X 
Austria X X X X X X 
Belgium X X X X X 
Portugal X X X X X X X 

GDP: GDP, s.a., in national currency, at constant (1990) prices. Source: OECD; for Germany and 
Portugal: IMF. 

Cons.: Private final consumption expenditure, s.a., in national currency at constant (1990) prices. 
Source: OECD; for Germany and Portugal: IMF. 

Inv.: Gross fixed-capital formation, s.a., in national currency at constant (1990) prices. Source: OECD; 
for Germany and Portugal: IMF. 

CPI: Consumer Price Index, base year 1990. 
Spread: Difference between the government bond yield and the Treasury Bill rate (or the money market 

rate depending on data availability), in percentage per year. Source: IMF. 
Sent.: economic sentiment indicator. Source: European Commission, DG II. 
I.P.: Industrial production, s.a., index number, base year 1990. Source: IMF. 

FIGURE 2.-COMMON COMPONENT OF GDP OF NINE COUNTRIES 

OF THE EURO ZONE 
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Horizontal axis: time. Solid line: common component of national GDP. Dotted line: common component 
of aggregate EURO-zone GDP (vertical scale for Portugal is not the same as for all other countries). 

FIGuRE 3.-COINCIDENT INDICATOR FOR THE EURO ZONE 

x 10-3 Coincident indicator for the EURO zone 
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TABLE 3.-PERCENTAGE OF VARIANCE EXPLAINED BY THE COMMON 

COMPONENT 

Countries GDP Cons. Inv. CPI Spread Sent. I.P. 

EURO aggregate 85 70 57 74 95 99 80 
Germany 68 56 49 69 95 95 68 
France 70 43 72 38 96 94 56 
Italy 54 65 71 42 69 98 29 
Netherlands 35 57 29 57 96 65 27 
Ireland 39 51 87 22 
Spain 96 73 96 37 34 68 62 
Finland 46 65 90 46 
Austria 55 99 53 
Belgium 55 55 82 97 44 
Portugal 54 43 54 69 63 69 
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cient with the common components of the other variables of 
the same country, for each country and the aggregate EURO 
area (table 4). These statistics measure the degree of 
synchronization of each variable with the other variables of 
the same country. Through these results, we can also 
evaluate the performance of variables that are typically used 
to describe the state of the economy, such as the sentiment 
indicator and the spread, and validate ex post the choice of 
GDP as the reference variable for the European cycle. 

There are a few interesting findings. First, the common 
component of GDP has the largest average contemporane- 
ous correlation for almost all countries and for the aggregate. 
This fact provides an ex post confirmation of our choice of 
the GDP as the reference variable for the coincident index. 
Note, however, that using directly the GDP, rather than the 
common component of GDP, as the index would not be a 
good choice, due to the presence of an idiosyncratic 
component that accounts for 15% of total variance. 

Second, for most countries and for the aggregate, the 
sentiment indicator has the largest common component. 
However, its synchronization with the other variables is 
lower than that of GDP, which suggests that the sentiment 
indicator is not an appropriate coincident index, probably 
due to its leading behavior. 

Note that the correlations between the common compo- 
nents appearing in table 4 are, in general, unexpectedly 
small. This is mainly due to the fact that, somewhat 
surprisingly, the inflation rate has very low or even negative 
synchronization. 

VII. Summary and Discussion 

The generalized dynamic-factor model analyzed in this 
paper is novel to the literature, in that it allows for both a 
dynamic representation of the common component and 
nonorthogonal idiosyncratic components. We have shown 
that, although for a finite cross-sectional dimension this 
model is not identified, identification of the common and the 
idiosyncratic components is obtained asymptotically as the 
cross-sectional dimension goes to infinity. 

Because the idiosyncratic components are correlated, the 
model cannot be estimated on the basis of traditional 

methods. We have proposed a new method, yielding consis- 
tent estimates of the components as both the cross section 
and the time dimensions go to infinity at some rate. More 
precise information on these rates would be interesting; 
however, such information typically would require much 
heavier assumptions on the heterogeneity of cross-sectional 
units. This is a topic of the authors' ongoing research; see 
Forni, Hallin, Lippi, & Reichlin (2000). The common 
components are computed as the projections of the observa- 
tions onto the leads and lags of the dynamic principal 
components of the observations and the idiosyncratic compo- 
nents are derived as the orthogonal residuals. 

The method is applied to a panel including several 
macroeconomic indicators for each of the EURO countries, 
in order to obtain an index describing the state of the 
economy in the EURO area. The European coincident 
indicator is defined as the common component of the 
European GDP. 

TABLE 4.-AVERAGE CORRELATION OF THE COMMON COMPONENT WITH THE 

COMMON COMPONENTS OF THE OTHER VARIABLES OF THE SAME COUNTRY 

Countries GDP Cons. Inv. CPI Spread Sent. I.P. 

EURO aggregate 0.58 0.36 0.55 -0.20 0.14 0.41 0.51 
Germany 0.55 0.33 0.49 -0.22 0.01 0.34 0.50 
France 0.66 0.47 0.68 0.17 0.39 0.56 0.58 
Italy 0.49 0.48 0.49 0.09 -0.52 0.46 0.34 
Netherlands 0.33 0.09 0.15 0.07 0.26 0.31 0.01 
Ireland - -0.11 0.44 0.36 0.41 
Spain 0.64 0.62 0.63 0.09 0.17 0.55 0.36 
Finland 0.35 - -0.21 - 0.40 0.04 
Austria 0.47 - - 0.22 - 0.58 
Belgium 0.50 - -0.08 0.30 0.31 0.43 
Portugal 0.22 0.50 0.29 0.37 0.32 0.53 
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APPENDIX A 

Proof of Proposition (1). We need the following result (see Brillinger, 
1981, p. 84, Exercise 3.10.16): 
Let A be an n X n, complex, hermitian nonnegative definite matrix, and let 
Xk, k = 1, . . ., n, be its (real) eigenvalues in descending order of 
magnitude. Denote by Db an n X (k - 1) complex matrixfor 1 < k s n, the 
n X 1 null matrix for k = 1. The eigenvalue Xk is the solution of 

min max bAb 
Dk b (10) 

s.t. |b| = 1, bDk = ? 

Note thatfor k = 1 the only constraint is lb = 1. 
Since In = 

IXI + In, given Dj, for bD- = 0 and b| = 1, then 

max bln(4)b ? max blx(O)b, 

mnax bln(O)b s maxb b (n)b + max bn(e)b 

<max bl x(0)b + XA,I (0). 
b n i 

From equation (10) and the above inequalities, we get 

(a) Xnj(0) s AnXj(e) + xtl(e) and (b) X,l1(e) ? A\Xy(0) 

The statement on the first q eigenvalues of I,n follows from equation (b). 
The statement on the (q + l)th one follows from equation (a) and the fact 
that the (q + l)th eigenvalue of Ix vanishes at any frequency. QED 

To prove proposition (2) we need some intermediate results. We 
suppose that assumptions (1) through (4) hold. 

Lemma (1): Denote by PnjJ,(0) the ith component of p,j(0), as defined in 
Section III.A. For j s q, limn-o IPnjJ (0) I = 0 a.e. in [-Tr, Tr]. 

Proof: Let_P,n be the n X n matrix having the eigenvectors Pn3 on the 
rows. From Pn diag (X,, I X,2 ... X,,n) P,i = ,In, one obtains 

q r 

Pn j,i(0) 12,() + I Pnj,i(0) 12X,n(0) = Ui(O), 
j=1 j=q+l 

where oi is the spectral density of xit. By proposition (1), X,j(e) diverges 
a.e. in [-rr, 7r] for j - q. But ui(0) is a.e. finite in [-rr, -r]. QED 

Lemma (2): For given i and n E FN, consider the n-dimensional filters 
(defined in section MIIA) 

q 

Kni(L) = z fi,jj(L)pnj(L). 
j=-1 - 

Then 

lim iJf K,l(0)|2de = 0, 

where IKJ(6) 12 = Kn,(O)kijo) 

Proof: We have 

q 

IK,l,(0)12 = I Pn1,i(e)12 s 1. 
j=1 

Moreover, by lemma (1), I K,i(0) 12 tends to zero a.e. in [-nr, 7r]. The result 
follows from applying the Lebesgue dominated convergence theorem 
(Apostol, 1974, p. 270). QED 

Lemma (3): For n E N let a,,(L) be an n-dimensional two-sided 
square-summablefilter Assume that 

limfT I a,,(0) 1 2de = 0. 

Then 

lim a, (L)gnt = 0 
n boo 

in mean square. 

Proof: From the same argument as in the proof of proposition (1), we 
have 

var (a, (L)g,t)=f a,,(O)tl(O)An(0) de s fr xt(0) I a,(0)12 de. 

The result follows from assumption (3). QED 
Denoting by 4,,i(O) the spectral density of Kni(L)gn,, we have 

ni(O) = Kni(e)Vn(e)Kni(0) C X\tj (O)IK,Ii(e)12. 

Thus, lemma (1) and assumption (3) imply that A>ni() converges to zero 
a.e. in [-rr, wr]. Lemma (2) and lemma (3) imply that 

lim Kni(L)gn = 0 

in mean square. 
With no loss of generality we can assume that 

Assumption (A): \Xn(O) 2lforanyj,n,andeE[--rr,nj]. 
Indeed, possibly by embedding L2(Q, 9 P) into a larger space, we can 

assume that L2(Q, Y; P) contains a double sequence J(it, i E %, t E Z] 
such that, firstly, i, is orthogonal to the u's and the i's at any lead and lag, 
and, secondly, 4+n={j>, t E Z}, where 

+tnt =((+It +2t * *nt) % 

is orthonormal white noise. Defining (it = kit + 'it, and putting 

Yit += it, (11) 

for i E N and t E Z, we have: 

(1) Model (11) fulfills assumptions (1) through (4), with 

n(0) = Yn(O) + I,, 9 ityl(o) = Y;,(0) + Ins 

and therefore Xt j(=) 
- 

+ 1, x\YI(e) = xnj(e) + 1. Moreover, 
Prij = Pnj for any n and j, so that Kyni = Kni for any n and i. 

(2) As a consequence, if we prove proposition (2) for the y's, i.e. if 

lim K,i(L)yn, = Xitg 

then the desired result 

lim K,,i(L)x,,t = Xit 

follows, since limn --)Kni(L)+,t = 0 by lemma 3. 
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Under assumption (A), the function pq1(e) = [xnj(0)]-112 is defined for 
any 6 E [-ir, -i], is bounded and therefore has a mean-square convergent 
Fourier representation. Let us denote by p,q(L) the resulting square- 
summable filter. Now consider the vector of the first corresponding q 
normalized dynamic principal components: 

Wnt = (Wn l,t Wn2,t ... Wnqj,t) 

where W,,j,t = itn(L)pnj(L)xnt. The vector process {Wnt, t E Z} is an 
orthonormal q-dimensional white noise. 

Lemma (4): Consider the orthogonal projection of Wnt on = 

span(uj, j= 1,...,q,tE ): 

(Wnl,t W,,2,t ... W,,q,t)' (12) 
= An(L)(ult U2t . . . Uqt)' + Rnt( 

where An(L) is an n X n two-sided square-summable filter and Rnt is 
orthogonal to &3. Then: (A) the spectral density of Rn, converges to zero 
a.e. in [-ir, ir]; (B) R,t converges to zero in mean square; (C) considering 
the projection of ut on the space spanned by the leads and lags of Wnt, 

(Ult U2t .*-- Uqt) 

(13) 
= A,,(L-1)(W,,It Wn2,t ... Wnq,t)' + Snt( 

where the spectral density of Snt converges to zero a.e. in [-nr, ir] and S,,t 
converges to zero in mean square. 

Proof. Firstly, observe that 

Wnp = pn1(L)p,1j(L)Xnt + p,q(L)Pnj(L)9nt 

Because the x's belong to h?6 and the k's are orthogonal to ?<, ,puj(L) pnj(L) Er,t is 
the residual of the orthogonal projection of Wnp on ?0/. By assumption (3), the 
spectral density pnj of ,p,q(L) pnj(L)E, satisfies 

fnj(o) C5 (pUnj(o))2 I p,lj(o) |12A = (Xnj(O)) -I A. 

By assumption (4),fni(e) converges to zero a.e. in [-rr, -r]. Moreover, by 
assumption (A), fnj(e) ! A, so that the Lebesgue dominated convergence 

theorem applies and fY,fnj(O) de converges to zero. Thus (A) and (B) are 
proved. To prove (C), from equations (12) and (13) we obtain 

Iq = An(e`i)An(ei") + j.(E)=A,.(eiO)An(e-i) + Ys(O), 

where JR (0) and ls(O) are the spectral density matrices of Rnt and Snt, 
respectively. By taking the trace on both sides and noting that the trace of 
An(ei6)A,,(e-iO) is equal to the trace of An(e-iO)An(ei6), we get 

trace (1s(O)) = trace (JR(o)). 

The result follows. QED 
Note that lemma (4) proves that the space spanned by the normalized 

dynamic principal components, which is identical to the space 2,n spanned 
by the dynamic principal components themselves, converges to 21, not 
that Wnt converges to any particular orthonormal white noise in 26. 
Indeed, it is easy to provide examples in which the variables Wnjl,t though 
converging to &2, do not converge to any vector of & . What is stated in 
proposition (2) is that the projection of xi, on h'In, i.e. Xit,nq converges, and 
that the limit is Xit 

Proof of Proposition (2): We have 

xit = Xit + tit = Xit,n + tit,nq (14) 

with 

Xit,, = K (L)x , = K (L)x,T + K,lk(L) , (15) 

Combining equations (14) and (15), we obtain 

[Xit - KNi(L)Xnt] + [tit -tit,j = Kni(L)gt. (16) 

The spectral density of the right side of equation (16), has been denoted by 
Ani(0) (see the comment under lemma (3).) Because tit is orthogonal to 
the x's at all leads and lags, 

A'ni(=) 
= 3,ni(0) + .i(e) - 

(91 denoting the real part of a complex number), where cWni(0) is the 
spectral density of Xit - Kni(L)Xnts, KJ() is the spectral density of ti - 

kit,nq and 9fni(0) is the cross spectrum between kit,n and Xit -Kni(L)Xn 
In the comment under lemma (3), we have explained why Ani(0) 

converges to zero a.e. in [-7r, 7r]. If we show that ??ni(O) converges to zero 
a.e. in [-7r, 7r], then both _,ni(0) and Kni(e) converge to zero a.e. in 
[-rr, 7r], and, because both are obviously dominated by integrable 
functions, by the Lebesgue dominated convergence theorem, the integrals 
of X ni(() and Kni(e) converge to zero and the result is obtained. 

Thus, we must show that the cross-spectrum between tit,n and Xit - 
Kni(L)Xnt converges to zero a.e. in [-nr, nr]. Consider firstly the cross- 
spectrum between tit,n and Xi,. Setting bi(L) = (bil(L) bi2(L) ... 
biq(L)), and using equation (13), we have 

Xit = bi(L)(ult U2t ... Uqt)' 

= bi(L)An(L-)(Wn1,t Wn2,t . . . Wnq,t)' + bi(L)Snt. 

Because tit,n iS orthogonal to the terms pn1(L)xn,, for j = 1, ... . q, at any 
lead and lag, it is also orthogonal at any lead and lag to the terms Wnp. 
Thus, the cross-spectrum between .it,n and Xit is equal to the cross-spectrum 
between titn and bi(L)Snt , call it 9ni(O). The squared modulus of 9`ni(0) is 
bounded by the product of the spectral density of kit,nq which is dominated 
by the spectral density of xit, and the spectral density of bi(L)S,t, that is, by 

bi(e - i0)Jns( )i(ei). 

By lemma (4), all the entries of ls(O) tend to zero a.e. in [-Tr, Tr], so that 
&n(0) tends to zero a.e. in [-nr, nr]. 

Using the same argument, considering the cross-spectrum between tit,n 
and Kni(L)Xnl, we end up with the cross-spectrum between tit,n and 
Kni(L)B,(L)S,t, where Bn(L) is the n X q matrix having the vectors b,(L), 
s = 1, ... . n, on the rows. As for the spectral density of Kni(L)Bn(L)Sn,, 
first observe that, because lx(E) = Bn(e'i0)Bn(ei0) and En(0) = Y-X(O) + 

In (0) 9 

K,ni(0)B,n(e-i')Bk(e"0)k,i(0) =Knli(0)Yx(0)K,ni(0) 

sKnli(OAJ)X()kni(O) 
q 

= f Pn ,i(0) 12x\nj(e), 
j=1 

which is bounded by the spectral density of xit. (See lemma (1).) Next, 
observe that the maximum eigenvalue of ls(e), which is a continuous 
function of the entries, tends to zero a.e. in [-Tr, Tr]. The result then 
follows from the inequality 

Kni0)Bz e -0)nS(0)Bnl(ei1)K,ni(0) 

xs AI (O)Kni(O)Bn(e-i0)fB,(ei')fKni(O)- 

QED 

Proof of Corollaries (1) and (2): Corollary (1) is trivial. For corollary 
(2), suppose that there are q factors but we project on the first q + s = q* 
dynamic principal components. Then 

X -Xi ,,n = Pnq+1,i(L)PTq+ 1(L)Xnt + * + f5nq+s,i(L)Pnq+s(L)XntT 
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Because different dynamic principal components are orthogonal at any 
lead and lag, 

Var (X *tn - Xit,n) ' 
__ xnq+ I(e) de + + _ X,nq+s(O) dO. 

The result follows from assumption (3). QED 

Proof of Proposition (3): As mentioned at the end of Section III, K 1T (L) 
and xnt, for fixed T (and n), are mutually dependent. Their dependence 
structure however is pretty intricate, and hardly can be explicitated. The 
random variables J4M=T)-M(T)(Knih - Kni,h)xn,t-h are not identically distrib- 
uted, since boundary effects imply that the joint distributions of (KnO,2 Xnt) 
are not the same for t = 1 or t = T as for t = (T/2), for instance. However, 
such boundary effects are asymptotically negligible for central values of t, 
satisfying (7) for some a and b. More precisely, there exists a T3 
T3(n, 8, -q) such that, for all s, t E [at, bT], 

hM(T) (KT,h -K,,,h)Lhxft) 2 
SUp 

I 
-E (K T -K K,-iih)L" XnSt I sup IKTi(0) -Kni(0)s K 8s K K 

ItM(T) 
ni 

_2 

[ M(T) 2 

-E s ( - )Lh X. I sup fK, ,)-K ni- (0)I * 
s h=-M(T) OE=[-hr,Mr] 

Averaging over s E- [aT, bT], it follows that, for T77? T3(n, 8, E2rl/256), 

M(T) bT 
- 

M 
2 ([17) T - K Isu KnT,(0) -K 0 

X(bT-aTf (Kni Ehni,hiXn,t ,h- KIis)Lpni | 

s=aT Th-M(T) r,rr 

2 T MT rMT) MT 

+ - = EI~ [ (KTk- Kni,k)h ,kl 
256 sk=-M(T) I=-M(T) 

X (nTil Knil t -8] 256' 

where 

J 1 bT K |k and |k1X|' M(T) 2 Mkor|l| >TM(T) 

Letting s' = s -=k, the matrices Knk i for k nikM(T), l M(T), and I-k 
? 0 take the form 

261 bT-M(T) 

bT- aTEsaT+M(T) 

1 aT+M(T)+k-1 1 

bT-aT z ,s*,,sl+bT-aT 

bT 

X s Xt skX t s- = frk + k + MY, say; 
s=bT--M(T)+k+ 1 

whenever Ik| ' M(T), 11 --- M(T) but 1 - k < 0, letting s" = s - 1, the same 
matrices similarly decompose into 

1 bT-M(T) 1 

fl1d bT - aT S +M(T) bT- aT 

aT+M(T)+I-1 bT 

X E X, S-kXn,s-i + : Xns_kXrl,s-l 
s=aT bT - aT s=bT-M(T)+I+1 

= nT(k) 
+ 

iTkl + Ylk say. 

The conditional expectation in the right-hand side of (17) similarly 
decomposes into 

M(T) M(T) 

E T z (Knik- K _i,k)Fnj>k)(KT,l - ... n 
k=-M(T) 1=-M(T) 

r M(T) M(T) 

+ E [ - (Kni,k - Kni,k) 01l(Kni,l 
- 

Knij) ... < . 

k=-M(T) 1=-M(T) 

M(T) M(T) 
T 

-VT2 T + E (Kni,k- Kni,k @n,k1(Kni,1 Kni,l) . . . S 

k=-M(T) 1=-M(T) 

= En + E, + En , say. 

Due to the fact that the sums (running over s) defining Tn,kl V = 1, 2, 
which are divided by (bT - aT), either involve M(T) + k s 2M(T) or 
M(T) + 1 s 2M(T) terms, the corresponding expectations ET, v = 1, 2 are 
"small" as T - oo. More precisely, assuming that T ? Tl(n, ), 2)' we have 
(denoting by 5XaT a sum running over s, either from aT to aT + M(T) + 
k - 1, or from aTto aT + M(T) + 1 - 1, depending on the sign of ( -k)), 

1 [M(T) M(T) n n 
TI E T (K, - 

bT - aT k=-M(T) 1=-M(T) u=1 v=1 

X (n,s-k)(t,-v(ns Knilv...sj 

s=aT 

282 n n aT+M(T)+k-1 M(T) M(T) 

bT-T E I I E [ (n,s-k)u(Xn,s-1)v1] 
bTa- u=1 v=1 s=aT k=-M(T) 1=-M(T) 

282 
n22M(T)(2M(T) + 1)2 max var ((xn,t)u). (18) 

bT- aT I1-<wn 

The assumption that Tis larger than T1(n, 8, 2) has been used in substituting 
twice the unconditional expectations Et.. .] for the conditional ones E[... I 
. . --- 8]; in view of (6), T 2 T1(n, 8, -) indeed implies that P[supoE[r,r] 
K Ti (0) -Kni (0) | 81] S 2 so that 

ni 2~~~I 
E[ I (X,.,-k)u(Xn,s-,)V I .. <- 8 

E[ I(Xn,s-k)u(xn,s-l)v1] E[ I(Xn,s-k)u(xn,s-l)v1 > 8i]P[ > 8] 

P[supOE[_,,T,TIK T(8) - K~() P [SP0E1S,TS,T]| ni (- ni (O) 8 a 

E[ I (Xn,s-k)u(X,,s-l)vl] 

P[supOE[-T,T]IKT.(0) - Kni(0)I s ] 

-- 2E[ I(Xn,es-k)J(Xn,s-z)V1]- 

It follows from (18) that E TI is 0(82M3(T)/T) as T - oo. A similar 
conclusion holds for ER. Hence, in view of the rate assumption on M(T), 
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we may conclude that there exists T4(n) and a constant M*(n) such that T > 
T*(n, 8) = max (T4(n), T1(n, 8, 2)) entails E + ET (n). 

Turning to the main term EnT, note that F T*,0 h E = is an empiri- 
cal autocovariance function, in which each covariance matrix is computed 
from the same number (bT - aT - 2M(T)) of observations. In contrast 
with T an ,kl, i based on sums which involve a number of tenns 
of the order of T, and are not "small" compared with bT - aT. Associated 
with this empirical autocovariance function is the empirical spectral 
density ~T* with dynamic eigenvalues X T\*(0), j = 1 . ... n. The 
properties of dynamic eigenvalues imply that 

M(T) M(T) 

~~j - ~~~ T* T -K~ E k(K K Inij 
1k=-M(T) 1=-M(T) 

s<E [8)2 f: A,T*1 (9) dO * ? 282E [f:1 (() do] 

provided that T 2 T1(n, ., 2) (the factor 2, as in (18), is due to the 
substitution of unconditional expectations for the conditional ones). Now, 
the random sequence fT, (0) dO is a.s. bounded by 

t-rr [1, (0)] dO = tr [fr [ *()] do] 

n bT-M(T) 

= tr [F,,,O] = (bT - aT1 I (x 
i= I s=aT+M(T) 

(tr (F) stands for the trace of F). Hence (noting that E[(Xns )2] does not 
depend on s), 

L.-ir J L~ a) 

n bT-M(T) 

r \T*(0) dO ' E i=I s=aT+M(T) 

bT - aT - 2M(T) + 1 

bT - aT 
tr (F,,,O) < tr (F,,O) 

for all T. It follows that, for T T, (n, 8, ), 

EnT* - 282E [f 7"TX(O) do] s 282 tr (F nO). 

Summing up, for any E, -q, 8 > 0, we have shown that 

P [IK (L)x,z,t- xit > E] - + - + - 

16 (E2r 
+ -I- + 82(M*(n) + 2 tr (FnO)) E225 

provided that n 2 NO(E, 'q) and T > T* = TO*(n, E, , 8), where 

T* = max (T, (n, 8,) T1 (n, 8), T2(n, E, 'q), 

T3 n, 2^6 T4*(n, 8), Ts*(n, 8) 

Proposition (3) follows, with To(n, E, -q) = T*(n, E, -q, 8), letting 

E2a 

82 = 82(n, E, Ti) = 256(M*(n) + 2 tr (F,,o)) 

QED 
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