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Abstract

As one of the most successful applications of image analysis and understanding, face
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1 Introduction

As one of the most successful applications of image analysis and understanding, face
recognition has recently received significant attention, especially during the past few
years. This is evidenced by the emergence of face recognition conferences such as
AFGR [1] and AVBPA [2], and systematic empirical evaluations of face recognition tech-
niques (FRT), including the FERET [3, 4, 5, 6] and XM2V'TS [7] protocols. There are
at least two reasons for this trend; the first is the wide range of commercial and law
enforcement applications and the second is the availability of feasible technologies after
30 years of research.

The strong need for user-friendly systems that can secure our assets and protect our
privacy without losing our identity in a sea of numbers is obvious. At present, one needs
a PIN to get cash from an ATM, a password for a computer, a dozen others to access
the internet, and so on. Although extremely reliable methods of biometric personal
identification exist, e.g., fingerprint analysis and retinal or iris scans, these methods rely
on the cooperation of the participants, whereas a personal identification system based on
analysis of frontal or profile images of the face is often effective without the participant’s
cooperation or knowledge. The advantages/disadvantages of different biometrics are
described in [8]. Table 1 lists some of the applications of face recognition.

Areas Specific Applications

Drivers’ Licenses, Entitlement Programs
Biometrics Immigration, National 1D, Passports, Voter Registration
Welfare Fraud
Desktop Logon (Windows NT, Windows 95)
Information Security | Application Security, Database Security, File Encryption
Intranet Security, Internet Access, Medical Records
Secure Trading Terminals

Law Enforcement Advanced Video Surveillance, CCTV Control
and Surveillance Portal Control, Post-Event Analysis
Shoplifting and Suspect Tracking and Investigation
Smart Cards Stored Value Security, User Authentication
Access Control Facility Access, Vehicular Access

Table 1: Typical applications of face recognition.

A general statement of the problem can be formulated as follows: Given still or video
images of a scene, identify or verify one or more persons in the scene using a stored
database of faces. Available collateral information such as race, age, gender, facial ex-
pression and speech may be used in narrowing the search (enhancing recognition). The
solution to the problem involves segmentation of faces (face detection) from cluttered
scenes, feature extraction from the face region, recognition or verification. In identifica-
tion problems, the input to the system is an unknown face, and the system reports back
the determined identity from a database of known individuals, whereas in verification
problems, the system needs to confirm or reject the claimed identity of the input face.
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Commercial and law enforcement applications of FRT range from static, controlled
format photographs to uncontrolled video images, posing a wide range of different techni-
cal challenges and requiring an equally wide range of techniques from image processing,
analysis, understanding and pattern recognition. Omne can broadly classify the chal-
lenges and techniques into two groups: static and dynamic/video matching. Within
these groups, significant differences exist, depending on the specific application. The dif-
ferences are in terms of image quality, amount of background clutter (posing challenges
to segmentation algorithms), availability of a well-defined matching criterion, and the na-
ture, type and amount of input from a user. In some applications, such as computerized
aging, one is only concerned with defining a set of transformations so that the images
created by the system are similar to what humans expect based on their recollections.

In 1995, a review paper by Chellappa et al. [9] gave a thorough survey of FRT at
that time. (An earlier survey [10] appeared in 1992.) At that time, video-based face
recognition was still in a nascent stage. During the past five years, face recognition has
received increased attention and has advanced technically. Many commercial systems
using face recognition are now available. Significant research efforts have been focused
on video-based face modeling, processing and recognition. It is not an overstatement to
say that face recognition has become one of the most successful applications of pattern
recognition, image analysis and understanding.

In this paper we provide a critical review of the most recent developments in face
recognition. This paper is organized as follows: In Section 2 we briefly review issues
that are relevant from the psychophysical point of view. Section 3 provides a detailed
review of recent developments in face recognition techniques using grayscale, range and
other images. In Section 4 face recognition techniques based on video are reviewed,
including face tracking, modeling, and non-face/face based recognition. Data collection
and performance evaluation of face recognition algorithms are addressed in Section 5 with
detailed descriptions of two representative protocols: FERET and XM2VTS. Finally, in
Section 6 we discuss two difficult technical problems common to all the algorithms: lack
of robustness to illumination and pose variations, and suggest possible ways to overcome
these limitations.

2 Psychophysics/Neuroscience Issues Relevant to Face Recognition

In general, the human face recognition system utilizes a broad spectrum of stimuli, ob-
tained from many, if not all, of the senses (visual, auditory, olfactory, tactile, etc.). These
stimuli are used either individually or collectively for storage and retrieval of face images.
In many cases contextual knowledge is also used, i.e. the surroundings play an important
role in recognizing faces in relation to where they are supposed to be located. It is futile
(using existing technology) to even attempt to develop a system that can mimic all these
remarkable capabilities of humans. However, the human brain has its limitations in the
total number of persons that it can accurately “remember”. A key potential advantage
of a computer system is its capacity to handle large datasets of face images. In most ap-
plications the images are single or multiple views of 2-D intensity data, which forces the
inputs to computer algorithms to be visual only. For this reason, the literature reviewed
in this section is related to aspects of human visual perception.
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Many studies and findings in psychology and neuroscience have direct relevance to
engineers interested in designing algorithms or systems for machine recognition of faces.
On the other hand, better machine systems can provide better tools for conducting studies
in psychology and neuroscience [11]. For example, a possible engineering explanation of
the lighting effect illustrated in [12] is as follows: for familiar faces a 3D model is usually
built in memory; when the actual lighting direction is opposite to the usually assumed
direction, a shape-from-shading algorithm recovers incorrect structural information and
hence makes recognition of faces harder.

A complete review of relevant studies in psychophysics and neuroscience is beyond
the scope of this paper. We only summarize findings that are potentially relevant to the
design of face recognition systems. For details the reader is referred to the papers cited
below. The issues that are of potential interest to designers are:

e Is face recognition a dedicated process? [13, 14]: Evidence for the existence
of a dedicated face processing system comes from three sources [13]. A) Faces
are more easily remembered by humans than other objects when presented in an
upright orientation. B) Prosopagnosia patients are unable to recognize previously
familiar faces, but usually have no other profound agnosia. They recognize peo-
ple by their voices, hair color, dress, etc. Although they can perceive eyes, nose,
mouth, hair, etc., they are unable to put these features together for the purpose
of identification. It should be noted that prosopagnosia patients recognize whether
the given object is a face or not, but then have difficulty in identifying the face.
C) It is argued that infants come into the world prewired to be attracted by faces.
Neonates seem to prefer to look at moving stimuli that have face-like patterns in
preference to those containing no patterns or jumbled facial features. Some recent
studies on this subject further confirm that face recognition is a dedicated process
which is different from general object recognition [14]. Seven differences between
face recognition and object recognition can be listed based on empirical results: 1)
Configural effects (related to the choice of different types of machine recognition
systems), 2) expertise, 3) differences verbalizable, 4) sensitivity to contrast polarity
and illumination direction (related to the illumination problem in machine recogni-
tion systems), 5) metric variation, 6) rotation in depth (related to the pose variation
problem in machine recognition systems), and 7) rotation in plane/inverted face.

e Is face perception the result of wholistic or feature analysis? [15] Both
wholistic and feature information are crucial for the perception and recognition
of faces. Studies suggest the possibility of global descriptions serving as a front
end for finer, feature-based perception. If dominant features are present, wholistic
descriptions may not be used. For example, in face recall studies, humans quickly
focus on odd features such as big ears, a crooked nose, a staring eye, etc. One of the
strongest pieces of evidence to support the view that face recognition involves more
configural /holistic processing than other object recognition tasks has been the face
inversion effect, where an inverted face is much harder to recognize than a normal
face. An excellent example is given in [16] using the “Thatcher illusion” [17]. In
this illusion, the eyes and mouth of a face are inverted. The result looks grotesque
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in an upright face; however, when shown inverted, the face looks fairly normal, and
the inversion of the features is not readily noticed.

Ranking of significance of facial features: Hair, face outline, eyes and mouth
(not necessarily in that order) have been determined to be important for perceiv-
ing and remembering faces. Several studies have shown that the nose plays an
insignificant role. In face recognition using profiles (which may be important in
mugshot matching applications, where profiles can be extracted from side views),
several fiducial points (“features”) are in or near the nose region. Another outcome
of some of the studies is that both external and internal features are important in
the recognition of previously presented but otherwise unfamiliar faces, and internal
features are more dominant in the recognition of familiar faces. It has also been
found that the upper part of the face is more useful for face recognition than the
lower part. The role of aesthetic attributes such as beauty, attractiveness and/or
pleasantness has also been studied, with the conclusion that the more attractive
the faces are, the better is their recognition rate; the least attractive faces come
next, followed by the mid-range faces, in terms of ease of being recognized.

Caricatures [18]: Perkins [19] formally defines a caricature as “a symbol that
exaggerates measurements relative to any measure which varies from one person to
another”. Thus the length of a nose is a measure that varies from person to person,
and may be useful as a symbol in caricaturing someone, but not the number of
ears. Caricatures do not contain as much information as photographs, but they
manage to capture the important characteristics of a face; experiments comparing
the usefulness of caricatures and line drawings decidedly favor the former.

Distinctiveness: Studies show that distinctive faces are better retained in memory
and are recognized better and faster than typical faces. However, it a decision has
to be made as to whether an object is a face or not, it takes longer to recognize an
atypical face than a typical face. This may be explained by different mechanisms
being used for detection and identification.

The role of spatial frequency analysis: Earlier studies [20, 21] concluded that
information in low spatial frequency bands plays a dominant role in face recog-
nition. Later studies [22] showed that, depending on the recognition task, the
low-, bandpass and high-frequency components may play different roles. For ex-
ample the sex judgment task can be successfully accomplished using low-frequency
components only, while the identification task requires the use of high-frequency
components. The low-frequency components contribute to the global description,
while the high-frequency components contribute to the finer details required in the
identification task.

Viewpoint-invariant recognition?[23, 24]: Much work in visual object recogni-
tion (e.g., [24]) has been cast within a theoretical framework introduced by Marr [25]
in which different views of objects are analyzed in a way which allows access to
(largely) viewpoint-invariant descriptions. Recently, there has been some debate
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about whether object recognition is viewpoint-invariant. In face recognition it
seems clear that memory is highly viewpoint-dependent. Hill et al. [26] show that
generalization even from one profile viewpoint to another is poor, though general-
ization from one 3/4 view to the other is very good.

e Effect of lighting change[12, 15, 27]: It has long been informally observed that
photographic negatives of faces are difficult to recognize. However, relatively little
work has explored why it is so difficult to recognize negative images of faces. In [12],
experiments were conducted to explore whether difficulties with negative images
of faces, and inverted images of faces, arise because each of these manipulations
reverses the apparent direction of lighting, rendering a top-lit image of a face as
if lit from below. This work demonstrated that bottom lighting does indeed make
it harder to identity familiar faces. In [27], the importance of top lighting for
face recognition, using the task of matching surface images of faces for identity, is
demonstrated.

e Movement and face recognition[l5, 28]: A recent intriguing study [28] shows
that famous faces are easier to recognize when shown in moving sequences than
in still photographs. This observation has been extended to show that movement
helps in the recognition of familiar faces under a range of different types of degrada-
tions — negated, inverted, or thresholded (shown as black-and-white images) [15].
Even more interesting is that movement seems to provide a benefit even if the
information content is equated in dynamic and static conditions. On the other
hand, experiments with unfamiliar faces suggest no additional benefit from viewing
animated rather than static sequences.

e Facial expression[29]: Based on neurophysiological studies, it seems that analysis
of facial expressions is accomplished in parallel to face recognition. Some prosopag-
nosic patients, who have difficulties in identifying familiar faces, nevertheless seem
to recognize facial expressions due to emotions. Patients who suffer from “organic
brain syndrome” do poorly at expression analysis but perform face recognition quite
well. Normal humans also exhibit parallel capabilities for facial expression analysis
and face recognition. Similarly, separation of face recognition and “focused visual
processing” tasks (look for someone with a thick mustache) has been claimed.

3 Face Recognition from Single Intensity or Other Images

In this section we survey the state of the art in face recognition in the engineering litera-
ture. Extraction of features such as the eyes and mouth, and face segmentation/detection
are reviewed in Section 3.1. Sections 3.2 and 3.3 are detailed reviews of recent work in
face recognition, including statistical and neural approaches.



3.1 Segmentation/detection and feature extraction
3.1.1 Segmentation/detection

Up to the middle 90’s, most of the work in this area was focused on single-face seg-
mentation from a simple or complex background. The approaches included using a face
template, a deformable feature-based template, skin color, and a neural network. During
the past five years, more reliable face detection methods have been developed to cope
with multiple face detection in a complex background, where the face images may be
partly occluded, rotated in plane, or rotated in depth. For technical details, please refer
to [30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. Some of these methods were tested on relatively
large databases, e.g. [30, 38]. A recent survey paper on face detection is [40]. Here we re-
view two well-known approaches: The neural network approach of Kanade et al. [38, 39]
and the example-based learning approach of Sung and Poggio [30]. A recent approach
using a Support Vector Machine (SVM) is also briefly reviewed [37].

In [30], an example-based learning approach to locating vertical frontal views of hu-
man faces in complex scenes is presented. This technique models the distribution of
human face patterns by means of a few view-based “face” and “non-face” prototype
clusters. At each image location, a difference feature vector is computed between the
local image pattern and the distribution-based model. This difference vector is then fed
into a trained classifier to determine whether or not a human face is present at the cur-
rent image location. The system detects faces of different sizes by exhaustively scanning
an image for face-like local image patterns at all possible scales. More specifically, the
system performs the following steps:

1. The input sub-images are all rescaled to size 19 x 19, and a mask is applied to elim-
inate near-boundary pixels. Normalization in intensity is done by first subtracting
a best-fit brightness plane from the un-masked widow pixels and then applying
histogram equalization.

2. A distribution-based model of canonical face- and non-face-patterns is constructed
from samples. The model consists of 12 multi-dimensional Gaussian clusters; six of
them represent face- and six represent non-face-pattern prototypes. The clusters are
constructed by an elliptical k-means clustering algorithm which uses an adaptively
varying normalized Mahalanobis distance metric.

3. A vector of matching measurements is computed for each pattern. This is a vector
of distances between the test window pattern and the canonical face model’s 12
cluster centroids. Two metrics are used; one is a Mahalanobis-like distance defined
on the subspace spanned by the 75 largest eigenvectors of the prototype cluster,
and the other is Euclidean distance.

4. A MLP classifier is trained for face /non-face discrimination using the 24-dimensional
matching measurement vectors. The training set consists of 47316 measurement
vectors, 4150 of which are examples of face patterns.

To detect faces in an image, preprocessing is done as in step 1, followed by matching
measurement computation (step 3), and finally the MLP is used for detection. Results
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are reported on two large databases; the detection rate varied from 79.9% to 96.3% with
a small number of false positives.

In [38], face knowledge is incorporated into a retinally connected neural network.
The neural network uses image windows of size 20 x 20, and has one hidden layer with
26 units, where 4 units cover 10 x 10 non-overlapping subregions, 16 units cover 5 x 5
subregions, and 6 units cover 20 x 5 overlapping horizontal stripes. The image windows
are preprocessed as described in step 1 above. To deal with overlapping detections, two
heuristics are used: 1) “thresholding”, where the classification of a face depends on the
number of detections in a neighborhood, 2) “overlap elimination”, where when a region
is classified as a face, overlapping detections are rejected.

To further improve system performance, multiple neural networks are trained and
their outputs are combined using an arbitrary strategy including ANDing, ORing, voting,
or a separate arbitration neural network. A detection rate on a dataset of 130 test images
varying from 77.9% to 90.3%, with an acceptable number of false positives, was reported.
To handle faces at different angles, in [39] the authors propose using a router neural net
to detect the angles of the faces. After angle detection, the virtual face detection system
can be applied. The router neural network is a fully connected MLP with one hidden
layer and 36 output units (each unit represents 10°).

In [37], a face detection scheme based on SVMs is proposed. SVM is a learning
technique developed by Vapnik et al. at AT&T [41]. It can be viewed as a way to
train polynomial, neural network, or Radial Basis Function classifiers. While most of
the techniques used to train these classifiers are based on the idea of minimizing the
training error, the empirical risk, SVMs operate on another induction principle, called
structural risk minimization, which minimizes the upper bound of the generalization
error. From an implementation point of view, training an SVM is equivalent to solving a
linearly constrained Quadratic Programming (QP) problem. The challenge in applying
SVMs to face detection is the complexity of solving a large scale QP problem. The
authors propose using a decomposition algorithm to replace the original problem with a
sequence of smaller problems. Their system is very similar to that in [30] except that no
matching measurements are computed and the classifier is a SVM. The authors reported
comparable results on two databases.

3.1.2 Feature Extraction

Feature extraction is the key to both face segmentation and recognition, as it is to any
pattern classification task. For a comprehensive review of this subject see [9]. Here we
review only a few representative techniques.

There has been renewed interest in the use of the Karhunen-Loeve (KL) expansion for
the representation [42, 43] and recognition [44, 45] of faces. [42] considered the problem
of KL representation of cropped face images. Noting that the number of images M
usually available for computing the covariance matrix of the data is much less than the
row or column dimensionality of the covariance matrix, leading to singularity of the
matrix, a standard method from linear algebra [46] is used that calculates only the M
eigenvectors that do not belong to the null space of the degenerate matrix. Once the
eigenvectors (referred to as eigenpictures) are obtained, any image in the ensemble can
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be approximately reconstructed using a weighted combination of eigenpictures. By using
an increasing number of eigenpictures, one gets an improved approximation to the given
image. Examples of approximating an arbitrary image (not included in the calculation
of the eigenvectors) by the eigenpictures are also given.

A generalized symmetry operator is used in [47] to find the eyes and mouth in a face.
The motivation stems from the almost symmetric nature of the face about a vertical
line through the nose. Subsequent symmetries lie within features such as the eyes, nose
and mouth. The symmetry operator locates points in the image corresponding to high
values of a symmetry measure discussed in detail in [47]. The procedure is claimed to
be superior to other correlation-based schemes such as that of [48] in the sense that it is
independent of scale or orientation. However, since no a priori knowledge of face location
is used, the search for symmetry points is computationally intensive. A success rate of
95% 1is reported on a face image database, with the constraint that the faces occupy
between 15-60% of the image.

A statistically motivated approach to detecting and recognizing the human eye in
an intensity image with a frontal face is described in [49], which uses a template-based
approach to detect the eyes in an image. The template has two regions of uniform
intensity; the first is the iris region and the other is the white region of the eye. The
approach constructs an “archetypal” eye and models various distributions as variations
of it. For the “ideal” eye a uniform intensity is chosen for both the iris and whites. In an
actual eye discrepancies from this ideal are present; these discrepancies can be modeled
as “noise” components added to the ideal image. An a-trimmed distribution is used for
both the iris and the white, and the amount of degradation, which determines the value
of a, is estimated. « is easily optimized since the percentage of trimming and the area of
the trimmed template are in 1-1 correspondence. A “blob” detection system is developed
to locate the intensity valley caused by the iris enclosed by the white. In the experiments
three sets of data were used. One consisted of 25 images used as a testing set, another
had 107 positive eyes, and the third consisted of images with most probably erroneous
locations which could be chosen as candidate templates. For locating the valleys, as
many as 60 false alarms for the first data set, 30 for the second, and 110 for the third
were reported A tabular representation of results for three sets of values for the a’s is
presented. An increase in the hit rate is reported when using an a-trimmed distribution.
The overall best hit rate reported was 80%.

[50] proposes an edge-based approach to accurately detecting two-dimensional shapes
including faces. The motivations for proposing such a shape detection scheme are the
following observations: 1) many two-dimensional shapes including faces can be well ap-
proximated by straight lines and rectangles, and 2) in practice it is more difficult to model
the intensity values of an object and its background than to exploit the intensity differ-
ential along the object’s boundary. Rather than looking for a shape from an edge map,
edges are extracted directly from an image according to a given shape description. This
approach is said to offer several advantages over previous methods of collecting edges into
global shape description such as grouping and fitting. For example, it provides a tool
for systematic analysis of edge-based shape detection. The computational complexity of
this approach can be alleviated using multi-resolution processing.

To demonstrate the effectiveness of the proposed approach, results of face and facial
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Figure 1: Face detection and facial feature detection in a group photo

feature detection are presented. One of these results is shown in Fig. 1 where the algo-
rithm was applied to a group photo. For the detection of facial features, a small set of
operators was designed. To limit the search space, the face center region is estimated
using an ellipse-shaped operator, and is marked by a white dotted ellipse having the
matched ellipse size. The face region detection is biased because only simple ellipses
were fitted to the faces. Iris and eyelid detections are marked.

[51] presents a method of extracting pertinent feature points from a face image. It
employs Gabor wavelet decomposition and local scale interaction to extract features at
curvature maxima in the image. These feature points are then stored in a data base and
subsequent target face images are matched using a graph matching technique. The 2-D
Gabor function used and its Fourier transform are

g(x.y tuo,v0) = exp(—[a?/207 +y*/207] + 2miluoz + voy]) (1)
G(u,v) = exp(=27*(o3(u — uo)* + oy (v — v0)?)) (2)

where o, and o, represent the spatial widths of the Gaussian and (ug, vo) is the frequency
of the complex sinusoid.

The Gabor functions form a complete, though non—orthogonal, basis set. As with
Fourier series, a function ¢g(x,y) can easily be expanded using the Gabor functions:

O\(2,y,0) = exp[(—=A*(a” +y)) + ina’] (3)
¥ = xcosl+ ysinb (4)
y' = —asinf +ycosh (5)

where 6§ is the preferred spatial orientation and A is the aspect ratio of the Gaussian.
The feature detection process uses a simple mechanism to model end-inhibition. It

uses interscale interaction to group the responses of cells from different frequency chan-

nels. This results in the generation of the end-stop regions. The orientation parameter 4
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determines the direction of the edges. Hypercomplex cells are sensitive to oriented lines
and step edges of short lengths, and their response decreases if the lengths are increased.
They can be modeled by

Ly (2, y) = max g (|| W(2,y,0) =7 Wa(z,y,0) [|) (6)

and

W](:I;,y,@):f®q)(oz]:1;,oﬂy,(9), ] :{07_17_27} (7)

where f represents the input image, ¢ is a sigmoid non-linearity, - is a normalizing factor,
and n > m. The final step is to localize the features at the local maxima of the feature
responses.

Recently, the issue of feature detection accuracy has been addressed. In many systems,
good recognition results are dependent on accurate feature (eyes, mouth) registration,
and performance degradation is observed if the feature locations are not determined
accurately enough [52]. [533] describes a robust and accurate feature localization method.
In this method, images are pairwise registered using a robust form of correlation. The
registration process is treated as an optimization problem in a search space defined by the
set of all possible geometric and photometric transformations. At each point of the search
space, a score function is evaluated and the optimum of this function is localized using
a combined gradient-based and stochastic optimization technique. To meet real-time
requirements and ensure high registration accuracy, a multiresolution scheme in used in
both the image and parameter domains. After global registration, feature selection is
based on minimizing the intra-class variance and at the same time maximizing the inter-
class variance. Good results were obtained in experiments on a database (the extended

M2VTS database [54]) containing 295 subjects.

3.2 Recognition from intensity images
3.2.1 Statistical Approaches

Eigenpictures (also known as eigenfaces) are used in [44] for face detection and identifi-
cation. Given the eigenfaces, every face in the database can be represented as a vector
of weights; the weights are obtained by projecting the image into eigenface components
by a simple inner product operation. When a new test image whose identification is
required is given, the new image is also represented by its vector of weights. The iden-
tification of the test image is done by locating the image in the database whose weights
are the closest (in Euclidean distance) to the weights of the test image. By using the
observation that the projection of a face image and a non-face image are quite different,
a method of detecting the presence of a face in a given image is obtained. The method
is illustrated using a large database of 2500 face images of sixteen subjects, digitized
at all combinations of three head orientations, three head sizes and three lighting con-
ditions. Several experiments were conducted to test the robustness of the approach to
variations in lighting, size, head orientation, and the differences between training and
test conditions. Impressive recognition rates were reported. It was also reported that
the approach is fairly robust to changes in lighting conditions, but degrades quickly as
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the scale changes. One can explain this by the significant correlation between images
obtained under different illumination conditions; the correlation between face images at
different scales is rather low. Another way to interpret this is that the eigenfaces ap-
proach works well as long as the test image is “similar” to the ensemble of images used
in the calculation of eigenfaces. The approach was also extended to real-time recognition
of a moving face image in a video sequence. A spatio-temporal filtering step followed
by a nonlinear operation is used to identify a moving person. The head portion is then
identified using a simple set of rules and handed over to the face recognition module.

The capabilities of the system in [44] are extended in [45] in several directions. Ex-
tensive tests are reported based on 7562 images of approximately 3000 people. Twenty
eigenvectors were computed using a randomly selected subset of 128 images. In addition
to eigenrepresentation, annotated information on sex, race, approximate age and facial
expression was included. Unlike mugshot applications, where only one front and one side
view of a person’s face is kept, in this database some of the persons are represented by
many images with different expressions, headwear, etc.

More recently, practical face recognition systems have been developed based on eigen-
face representations. In [33], the eigenface method based on simple subspace-restricted
norms 1s extended to use a probabilistic measure of similarity. The proposed similarity
measure is based on a standard Bayesian analysis of image differences of two categories:
1) intra-personal variations in the appearance of the same individual due to different
expressions or lighting, and 2) extra-personal variations in appearance due to difference
in identity. The high-dimensional probability density functions for each class are then
obtained from training data using an eigenspace density estimation technique and are
subsequently used to compute a similarity measure based on the a posteriori probability
of membership in the intra-personal class. Performance improvement of this probabilistic
matching over the eigenface approach was demonstrated.

Face recognition systems using Linear/Fisher Discriminant Analysis [55] as the clas-
sifier have also been very successful [56, 57, 58, 59, 60, 61, 62, 63]. LDA training is
carried out via scatter matrix analysis [64]. For an M-class problem, the within- and
between-class scatter matrices .S,,, S, are computed as follows:

S = Z_; Pr(w;)C;, (8)
Sb = Z_: Pr(wz)(mz — 1’1’10)(1’1’12 — l’l’lo)T (9)

where Pr(w;) is the prior class probability and usually is replaced by 1/M in practice with
the assumption of equal priors. Here S, is the within-class scatter matrix showing the
average scatter C; of the sample vectors x of different classes w; around their respective
means m;:

Ci = E[(X — mz)(x — mi)T|w = wi] (10)

Similarly S, is the between-class scatter matrix, representing the scatter of the con-
ditional mean vectors m; around the overall mean vector mgy. Various measures are
available for quantifying the discriminatory power, a commonly used one being the ratio
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of the determinant of the between-class scatter matrix of the projected samples to the
within-class scatter matrix of the projected samples:

TS, T
T = e (1)

Let us denote the optimal projection matrix which maximizes J(7T') by W; then W
can be obtained by solving the generalized eigenvalue problem [65]

S,W = S, W Aw (12)

In [56], a face image retrieval system is reported based on discriminant analysis of the
eigenfeatures, and in [57], a framework based on LDA for general object recognition is de-
scribed. A general learning/recognition framework called SHOSLIF (Self-Organizing Hi-
erarchical Optimal Subspace Learning and Inference Framework) is employed. SHOSLIF
uses the theory of linear optimal projection to generate a hierarchical tessellation of a
space defined by the training images. Using tree-structure learning, the eigenspace and
LDA projections are recursively applied to smaller and smaller sets of samples. Such
recursive partitioning is carried out for every node until the samples assigned to the node
belong to a single class.

A comparative performance analysis was carried out in [58]. Four methods are com-
pared: 1) a correlation-based method, 2) a variant of the linear subspace method sug-
gested in [66], 3) an eigenface method [43, 44], and 4) a Fisher-face method which uses
subspace projection prior to LDA projection to avoid the possible singularity in S, as
in [56, 57]. Experiments were performed on a database of 500 images described in [67]
and a database of 176 images created at Yale. The results show that the Fisher-face
method performed significantly better than the other three methods. However, no claim
is made about the relative performance of these algorithms on much larger databases.

To solve the generalization/overfitting problem when performing face recognition on
a large face dataset but with very few training face images available per class, a holistic
face recognition method based on subspace LDA was proposed [68](Fig. 2). Like existing
methods [56, 58], this method consists of two steps: first the face image is projected into
a face subspace via Principal Component Analysis (PCA), where the subspace dimension
is carefully chosen, and then the PCA projection vectors are projected into the LDA to
construct a linear classifier in the subspace. Unlike other methods, the dimension of the
face subspace is fixed (for a given training set) regardless of the image size as long as
the image size surpasses the subspace dimensionality. The property of relative invariance
of the subspace dimension enables the system to work with smaller face images without
sacrificing performance. This claim was supported by experiments using normalized face
images of different sizes to obtain different face subspaces [62]. The choice of such a fixed
subspace dimension is mainly based on the characteristics of the eigenvectors instead
of the eigenvalues [60]. Such a choice of the subspace dimension enables the system
to generate class-separable features via LDA from the full subspace representation, so
that the generalization/overfitting problem can be addressed. In addition, a weighted
distance metric guided by the LDA eigenvalues was employed to improve the performance
of the subspace LDA method. The improved performance of generalized recognition was
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demonstrated on FERET datasets [63] and the MPEG-T7 content set [69] in a proposal
to MPEG-T7 on robust face descriptors [70, 71]. A sensitivity test of the subspace LDA
system is also reported in which an original face image is electronically modified by
creating occlusions, applying Gaussian blur, randomizing the pixel location, and adding
an artificial background. Figure 3 shows electronically modified face images which were
correctly identified.

A 'Universa’ Task Specific
Subspace Projection
Input ¢ N ¢ N
\ Geometric & Subspace LDA Weighted | Yes/No
Photometric |— PrOJeC'fIOn — |:’fOJeC'f'On — Metric |
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Input Image Mean Image Eigenimage Eigenlmage Eigenimage
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Figure 2: The subspace LDA face recognition system

Figure 3: Electronically modified images that were correctly identified.

3.2.2 Neural Network Approaches

Neural networks (NN) have been used in face recognition to address several problems:
gender classification, face recognition, and classification of facial expressions. One of the
earliest demonstrations of NN for face recall applications used Kohonen’s associative map
[72]. Using a small set of face images, accurate recall was reported even when the input
image was very noisy or when portions of the images were missing. This capability has
also been demonstrated using optical hardware [73].
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[74] describes an NN approach to gender classification using a vector of sixteen numer-
ical attributes such as eyebrow thickness, widths of nose and mouth, six chin radii, etc.
Two HyperBF networks [75] were trained, one for each gender. The input images were
normalized with respect to scale and rotation by using the positions of the eyes, which
were detected automatically. The 16-dimensional feature vector was also automatically
extracted. The outputs of the two HyperBF networks were compared, the gender label
for the test image being determined by the network with greater output. In the actual
classification experiments only a subset of the 16-dimensional feature vector was used.
The database consisted of 21 males and 21 females. The leave-one-out strategy [64] was
employed for classification. When the feature vector from the training set was used as the
test vector, 92.5% correct recognition accuracy was reported; for faces not in the train-
ing set, the accuracy dropped to 87.5%. Some validation of the automatic classification
results has been reported using humans.

By using an expanded 35-dimensional feature vector, and one HyperBF per person,
the gender classification approach has been extended to face recognition. The motivation
for the underlying structure is the concept of a grandmother neuron: a single neuron (the
Gaussian function in the HyperBF network) for each person. As there were relatively
few training images per person, a synthetic data base was generated by perturbing the
average of the feature vectors of available persons, and these persons were used as testing
samples. For different sets of tuning parameters (coefficients, centers and metrics of the
HyperBF’s), classification results were obtained. Some corroboration of the caricatural
behavior of the HyperBF networks, by psychophysical studies, was also presented.

The systems presented in [76] and [77] were based on the Dynamic Link Architecture
(DLA). DLAs attempt to solve some of the conceptual problems of conventional artificial
neural networks, the most prominent problem being the expression of syntactical rela-
tionships in neural networks. DLAs use synaptic plasticity and are able to instantly form
sets of neurons grouped into structured graphs and maintain the advantages of neural
systems. Both [76] and [77] used Gabor based wavelets for the features. A minimum of
two levels, the image domain and the model domain, are needed for a DLA. The image
domain corresponds to primary visual cortical areas and the model domain to the inter-
temporal cortex in biological vision. The DLLA machinery is based on a data format able
to encode information about attributes and links in the image domain and to transport
that information to the model domain without including the image domain position. The
structure of the signal is determined by three factors: the input image, random sponta-
neous excitation of the neurons, and interaction with the cells of the same or neighboring
nodes in the image domain. Binding between neurons is encoded in the form of temporal
correlations and is induced by the excitatory connections within the image. Four types
of bindings are relevant to object recognition and representation: binding together all
the nodes and cells that belong to the same object, expressing neighborhood relation-
ships in the image of the object, bundling feature cells for features in different locations,
and binding corresponding points in the image graph and model graph to each other.
The DLA’s basic mechanism, in addition to the connection parameter between pairs of
neurons, is a dynamic variable (.JJ) between pairs of neurons (¢, j). J-variables play the
role of synaptic weights for signal transmission. The connection parameters merely act
to constrain the J-variables. The connection weights J;; are controlled by the signal cor-
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relations between neurons ¢ and j. Negative signal correlations lead to a decrease, and
positive signal correlations to an increase, in J;;. In the absence of correlation, J;; slowly
returns to a resting state. Each stored image is presented by appropriately positioning a
rectangular grid of points over the image and storing each grid point’s locally determined
jet. New image recognition takes place by mapping the image into the grid of jets and
matching it to all the stored images. Conformation of the DLA is done by establishing
and dynamically modifying links between the grid points.

The DLA architecture has been recently extended to Elastic Bunch Graph Match-
ing [78, 79]. This is similar to the method described above, but instead of attaching only
a single jet to each node, a set of jets is attached, each derived from a different facial
image. To handle the pose variation problem in face recognition, the face pose is first
determined using prior information [36] and the transformations of the sets under pose
variation are learned [80]. Systems based on the EBGM approach have been applied
in face detection, feature finding, pose estimation, gender classification, sketch image
based recognition, and general object recognition. It is claimed that the success of the
DLA/EBGM system may be due to its resemblance to the human visual system [14].

3.3 Other sensing modalities
3.3.1 Range Images

The discussion so far has considered only face recognition methods and systems that use
data obtained from 2-D intensity images. Another topic being studied by researchers
is face recognition from range image data. A range image contains the depth structure
of the object in question. Although such data is not available in most applications it
is important to determine the value of the added information present in range data in
terms of its effect on the accuracy of face recognition.

[81] describes a template-based recognition system involving descriptors based on
curvature calculations made on range image data. The data are obtained from a ro-
tating laser scanner system with resolution better than 0.4mm. Surfaces are classified
into planar, spherical, and surfaces of revolution. The data are stored in a cylindrical
coordinate system as f(6,y). At each point on the surface the magnitude and direction
of the minimum and maximum normal curvatures are calculated. Since the calculations
involve second-order derivatives, smoothing is required to remove the effects of noise in
the image. This smoothing is done using a Gaussian filter.

Surface regions are classified as convex, concave and saddle. Ridges and valley lines
are determined by obtaining the maxima and minima of the curvatures. The strategy
used for face recognition is as follows:

e The nose is located.
e Locating the nose facilitates the search for the eyes and mouth.

o Other features such as forehead, neck, cheeks, etc. are determined by their surface
smoothness (unlike hair and eye regions).
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e This information is then used for depth template comparison. Using the locations of
the eyes, nose and mouth the faces are normalized into a standard position. This
position is re-interpolated to a regular cylindrical grid and the volume of space
between the two normalized surfaces is used as the mismatch measure.

This system was tested on a dataset of 24 images of eight persons with three views of
each. The data represented four male and four female faces. Adequate feature detection
was achieved for 100% of these faces. 97% recognition accuracy was reported for the
individual features and 100% for the whole face. In related work [82], the process of
finding the features was formalized for recognition purposes.

3.3.2 Sketches and Infra-Red Images

In [83, 84], face recognition based on sketches, which are quite common in law enforce-
ment, is described. Humans have a remarkable ability to recognize faces from sketches.
This ability provides a basis for forensic investigations: an artist draws a sketch based
on the witness’s verbal description; then a witness looks through a large database of
real images to determine possible matches. Usually, the database of real images is quite
large, possibly containing thousands of real photos. Therefore, building a system capable
of automatically recognizing faces from sketches has practical value. The first step in
[83] is feature detection using deformable templates, applied to both the sketch image
and the real photograph images. Then comes the key step of the system, photometric
standardization. In this step, the pixels in the sketch image that have high intensity vari-
ations around facial features are replaced by Gaussian blurred versions, yielding so-called
pseudo-images. Next, the pseudo-images and the real database images are geometrically
standardized using a mesh face model. Finally, the eigenface method is used for classifi-
cation. Recognition results are reported using 7 sketches and 16 photographs.

In [84], a system called PHANTOMAS (phantom automatic search) is described. This
system is based on [77], where faces are stored as flexible graphs with characteristic visual
features (Gabor features) attached to the nodes of the graph. The system was tested
using a photo database of 103 persons (33 females and 70 males) and 13 sketches drawn
by a professional forensic artist from the photo database. The results were compared
with the judgments of five human subjects and were found to be comparable.

[85] describes an initial study comparing the effectiveness of visible and infra-red (IR)
imagery for detecting and recognizing faces. One of the motivations in this paper is that
changes in illumination can cause significant performance degradation for visible image
based face recognition. Hence infra-red imagery, which is insensitive to illumination
variation, can serve as an alternative source of information for detection and recognition.
However, the inferior resolution of IR images is a drawback. Further, though IR imagery
is insensitive to changes in illumination, it is sensitive to changes in temperature. Three
face recognition algorithms were applied to both visible and IR images. The recognition
results on 101 subjects suggested that visible and IR imagery perform similarly across
algorithms, and that the fusion of IR and visible imagery is a viable means of enhancing
performance beyond that of either alone.

So far we have not distinguished between two concepts: face identification and face
verification. Strictly speaking, recognition includes both identification and verification.
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In identification tasks, the input to the system is an unknown face, and the system reports
its identity using a database of known individuals; whereas in verification tasks, the
system needs to confirm or reject the claimed identity of the input face. To illustrate the
difference between these two tasks, we will give a real example, the FERET evaluation,
in Section 5.

3.4 Summary

Significant progress has been achieved in segmentation, feature extraction and recognition
of faces in intensity images. As long as range images or stereo pairs are not available in
commercial /law enforcement applications, face recognition can be viewed as a 2-D image
matching and recognition problem with provisions for at most two or three views of each
person’s face.

In a recent comprehensive FERET evaluation [3, 4, 5, 6], aimed at evaluating different
systems using the same, large database containing thousands of images, the systems
described in [33, 44, 56, 60, 79], as well as others were evaluated. The neural network
method based on Elastic Bunch Graph Matching [79], the statistical method based on
subspace LDA [60], and the probabilistic PCA method [33] were adjudged to be among
the top three, with each method showing different levels of performance on different
subsets of sequestered images. More details on the FERET evaluations will be presented
in Section 5.

4 Face Recognition from Image Sequences

In surveillance applications, face recognition and identification from a video sequence is
an important problem. After over twenty years of research on image sequence analysis
[86, 87, 88, 89], only a little of that research had been applied to the face recognition
problem [90, 91, 92, 93, 94, 95] up to the mid-nineties. During the last five years, re-
search on human action/behavior recognition from video has been very active. Generic
description of human behavior not particular to an individual is interesting and useful.
For example, an interactive computer/smart room [96, 97] can recognize such behavior
and initiate appropriate action. Another example is the detection of a driver’s tired-
ness [98] by monitoring the driver’s facial expressions and head movements. But the
task of recognizing individuals from a surveillance video is still difficult for the following
reasons:

1. The quality of the video is low. Usually videotaping occurs outdoors and
the subjects are not cooperative, hence there are possibly large illumination and
pose variations in the face images. In addition, partial occlusions and disguise
are possible. One possible way to improve the quality of face images is to apply
super-resolution techniques [99, 100, 101, 102].

2. The face images are small. Again, due to the acquisition conditions, the face
image sizes are smaller (sometimes much smaller) than the assumed sizes in most
existing still image based face recognition systems. For example, the valid face
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region could be as small as 20 x 20 pixels, whereas the face image sizes used in still
image-based systems are as large as 128 x 128. Small-size images not only make the
recognition task difficult, but also affect the accuracy of face segmentation, as well
as the accurate detection of the fiducial points/landmarks that are often needed in
recognition methods.

3. The characteristics of face/human objects. One of the main reasons for the
feasibility of generic description of human behavior is that the intra-class variation
of human objects, and in particular face objects, is much smaller than the objects
outside of the class. For the same reason, recognition of individuals within the
class is difficult. For example, detecting and localizing faces is much easier than
recognizing a specific face.

4.1 Basic techniques in video-based face processing

In [9], four computer vision areas were mentioned as being important for video-based face
recognition: segmentation of moving objects (humans) from a video sequence; structure
estimation; 3-D models for faces; and non-rigid motion analysis. Recent developments in
face tracking, modeling and recognition from video verify this prediction. For example,
in [103] a face modeling system which estimates facial features and texture from a video
stream is described. This system utilizes all four techniques: segmentation of the face
based on skin color to initiate tracking; 3D models for the face based on laser-scanned
range data to normalize the image (by facial feature alignment and texture mapping into
a frontal view) and construct an eigen-subspace for 3D heads; structure from motion at
each feature point to provide depth information; and non-rigid motion analysis of the
facial features based on simple 2D SSD tracking constrained by a global 3D model. We
briefly review these four areas in the following paragraphs.

1. Video-Based Object Segmentation Early attempts [44, 104] at segmenting
moving faces from an image sequence used simple pixel-based change detection
procedures based on difference images. These techniques may run into difficulties
when multiple moving objects and occlusion are present. Flow field based methods
for segmenting humans in motion are reported in [105]. There is a large body of
literature analysis on segmenting/detecting moving objects in video obtained from
a stationary or moving platform. Methods based on analysis of difference images,
discontinuities in flow fields using clustering, line processes or Markov random field
models are available. Some of these techniques have been extended to situations
in which both the camera and the objects are moving. A good approach to face
segmentation from image sequences is to combine motion detection/clustering and
face detection in the individual images. Skin color can also be utilized to enhance
the robustness of face detection algorithms.

2. Structure from Motion The problem of structure from motion is to estimate the
3-D depths of points from a sequence of images. Unless the camera can be moved
along a known baseline, techniques such as motion stereo are not applicable. The
structure from motion problem has been approached in two ways. In the differential
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approach, one computes some type of flow field (optical, image or normal) and uses
it to estimate the depths of visible points. The difficulty in this approach is reliable
computation of the flow field. In the discrete approach, a set of features such as
points, edges, corners, lines or contours are tracked over a sequence of frames, and
the depths of these features are computed. The difficulty here is the correspondence
problem — the task of matching the features over a sequence of frames. In both the
differential and discrete approaches, the parameters that characterize the motion
of the camera appear jointly with the depth parameters. The motion parameters
may be useful in predicting where objects will appear in subsequent frames, mak-
ing the segmentation of these frames somewhat easier. The depth information is
useful in building 3-D models for objects and possibly using these models for ob-
ject recognition in the presence of occlusion. It should be pointed out that if only
a monocular image sequence is available, the depth information is available only
up to a scale factor; whereas if a binocular (or multi-camera) image sequence is
available, one can get absolute depth values using stereo triangulation. Given that
laser range finders may not be practical for surveillance applications, multi-camera
image sequences may be the best way to get depth information. Another point
worth mentioning is that when a discrete approach is used, the depth values are
available only at sparse points, requiring interpolation; when a flow-based method
is used, dense depth maps can be constructed. Over the last 25 years, hundreds of
papers dealing with structure from motion have appeared. It is beyond the scope
of this paper to give even a brief summary of major techniques. We list here only

books [86, 87, 106, 107, 108, 109] and review papers [110, 111, 112].

3. 3D Models for Faces 3D models of faces have been employed [113, 114, 115] in the
model-based image compression literature by several research groups. Such models
are also useful in applications such as forensic face reconstruction from partial
information, and computerized aging. They may also be useful for face recognition
in the presence of disguises. In [116], real-time 3D modeling and tracking of faces
is described; a generic 3D head model is aligned to match frontal views of the face
in a video sequence.

4. Non-rigid Motion Analysis A final area of relevance to FRT is the motion
analysis of non-rigid objects [117, 118, 119, 120]. Some of the work [121, 122] is
potentially useful in face recognition. Another application of non-rigid motion to
faces to is the recognition of facial expressions from image sequences [123].

4.2 Tracking, modeling and non-face-based recognition

During the past five years, tracking, modeling and recognition of hand gestures and
human behaviors have been extensively studied. We briefly review some of these topics
here. Research on human emotion recognition has been extended to a new area —
affective computing [124], in which cues such as facial expressions and body movements,
as well as psychological data, are used [125].
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4.2.1 Tracking and modeling face objects

After faces are located using one of the many methods reviewed earlier, they can be
tracked. Face tracking can be divided into three categories: 1) Head tracking, which in-
volves tracking the motion of a rigid object that is performing rotations and translations,
2) Facial feature tracking, which involves tracking non-rigid deformations that are lim-
ited by the anatomy of the head, and 3) complete tracking, which involves tracking both
the head and the facial features. Early efforts focussed on the first two problems: head
tracking [126, 127] and facial feature tracking [121, 122]. In [127], an approach to head
tracking using points with high Hessian values was proposed. Several such points on the
head are tracked and the 3D motion parameters of the head are recovered by solving an
over-constrained set of motion equations. Facial feature tracking methods may make use
of the feature boundary or the feature region. Feature boundary tracking attempts to
track and accurately delineate the shape of the facial feature, e.g., to track the contours
of the lips and mouth [117, 122]. Feature region tracking addresses the simpler problem
of tracking a region such as a bounding box that surrounds the facial feature [128]. Facial
features are subject to general types of motions: rigid motion due to the head’s rotation
and translation, articulated motion due to speech or facial expressions, and deformable
motion due to muscle contractions and expansions.

In [128], a tracking system based on local parameterized models is used for recognizing
facial expressions. The models include a planar model for the head, local affine models
for the eyes, and local affine models and curvature for the mouth and eyebrows. A face
tracking system was used in [129] to estimate the pose of the face. This system used a
graph representation with about 20-40 nodes/landmarks to model the face. Knowledge
about faces is used to find the landmarks in the first frame. Two tracking systems
described in [103, 116] model faces completely with texture and geometry. Both systems
use 3D models and structure from motion to recover the face structure. [103] tracks fixed
feature points (eyes, nose tip), while[116] tracks only points with high Hessian values.
Also, [103] tracks 2D features in 3D by deforming them, while [116] relies on direct
comparison of a 3D model to the image. Methods are proposed in [130, 131] to solve the
varying appearance problem in tracking.

An important application of tracking and modeling is to enhance face recognition by
providing additional information. After face pose is estimated as in [129], a virtual frontal
face can be synthesized, so that the performance of face recognition can be improved.
Another useful application of facial feature tracking is the recognition of gaze, based on
both head and eye tracking.

4.2.2 Recognition of facial expressions

Facial expression recognition has received increased attention during the last five years.
Previously, head tracking and facial feature tracking were treated as two separate prob-
lems. By jointly addressing the two problems, the recognition of facial expressions has
become possible even when large head motion is present.

The rationale for facial expression recognition based on motion can be derived from
studies in psychology. Such studies have indicated that at least six emotions are uni-
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versally associated with distinct facial expressions [132]: happiness, sadness, surprise,
fear, anger, and disgust. Most psychological studies of facial expressions have made use
of mug-shot images that capture the subject’s expression at its peak [133]. Only a few
studies have investigated the influence of the motion and deformation of the facial fea-
tures on the interpretation of facial expressions. Bassili [134] suggested that motion in
the image of a face could allow emotions to be identified even with minimal information
about the spatial arrangement of the features.

In the engineering literature, early efforts [123, 135] were based on analysis of the
optical flow field of the image sequence, which provides clues to the spatial changes in the
facial features. [128] demonstrated successful facial expression recognition in extensive
laboratory experiments involving 40 subjects as well as in television and movie sequences.
3D motion estimation has also been used to recognize facial expressions [136].

In principle, facial expression recognition can be integrated into a face recognition
system so the system is robust to expression variations. In practice, however, it seems that
moderate, non-dramatic expressions can be handled by many existing face recognition
systems.

4.2.3 Recognition of hand gestures

Hand gestures are another important cue to understanding human behavior. They are
usually recognized from the temporal characteristics of the hand movements and the
poses of the hands during pauses. Hidden Markov Models (HMMs) [137] are the most
commonly used tool for gesture recognition. [138] used HMMs to recognize gestures
in binary image sequences, using a rotation-invariant representation the images and a
neural net. [139] incorporated multiple representations in an HMM framework, using
eigenimage weights as features. [140] used geometrical parameters (the image coordi-
nates and orientations of the hands) as image features and employed an HMM five-state
topology for gesture classification; good results were reported on classifying 40 American
Sign Language gestures in real-time video. In [141], this approach was extended to use
3D measurements obtained from a stereo system as features. Gesture recognition was
performed on a set of 18 T’ai Chi gestures (an ancient Chinese martial art), and the
performance of ten different feature vectors derived from 3D hand and head tracking
data was compared.

Researchers have also done hand sign and pose recognition from still imagery. [142]
described a general framework for learning-based hand sign recognition. Discriminant
analysis was used to automatically select the most discriminating features and good
recognition results were obtained for 28 different static hand signs. [143] applied an
elastic graph matching based approach to gesture recognition.

[144] describes the use of hand gesture analysis in combination with speech recogni-
tion in a bi-modal interface for controlling a 3D display. For a review of hand gesture
recognition techniques, see [145]; for more detailed descriptions of various techniques, see

the Proceedings of the AFGR Conferences [1].
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4.2.4 Recognition of body movement and behavior

Much work has been done on human body tracking. It is impossible to discuss all the
relevant references; we only review a few papers briefly here. In [146, 147] the body is
modeled by rigid segments that meet at joints. In [148] motion templates are used to track
people, in [149] color blobs are used, and in [119] nonrigid models are used. More recently,
[150] presents a new visual motion estimation technique that is able to accurately recover
high-degree-of-freedom articulated human body configurations in video sequences. This
work used a model of the human body consisting of segments attached at joints, subject
to constraints involving twist and a product of exponential map.

Pfinder [149] is a real-time person tracking system which uses a multi-class statistical
model of color and shape to segment the person from the background. It finds and tracks
the person’s head and hands under a wide range of viewing conditions. In [151], many
levels of representation based on mixture models, EM, recursive Kalman and Markov
estimation are used to learn and recognize human dynamics. In [152] a real-time system
(the W* system) for detecting/tracking people and monitoring their activities in an
outdoor environment is described. This system operates on monocular gray-scale video
imagery or on video imagery from an infrared camera. It uses a combination of shape
analysis and robust estimation to locate the people and their parts (head, hands, feet,
torso) and to create models of the people’s appearances. Building these appearance
models enables the system to track the people through occlusions or interactions during
which tracking cannot be carried out. The system can also track multiple people through
occlusions. In [153] the W* system was extended to include a stereo matching module.
The system is expected to be expanded in the near future to include more modules to
recognize various types of actions, e.g. taking leaving, or exchanging objects. In [154],
a vision system is described that monitors activities in a site over extended periods of
time. The system uses a distributed set of sensors to cover the site, and an adaptive
tracker to detect multiple moving objects. The tracker data are used for self-calibration
— determining the positions of all the cameras relative to each other; construction of
rough site models — determining the ground plane and marking occupied areas; robust
detection of objects in the site and classification of the detected objects (e.g., vehicles
or pedestrians); and learning common activity patterns, and thereby detecting unusual
events in the site from extended observations.

4.2.5 Speechreading: enhancing speech recognition

Visual facial cues have been found to be valuable for enhancing speech recognition system
performance under noisy conditions [155]. A typical speechreading system consists of two
sub-systems: a video sub-system and an audio sub-system. In the video sub-system, a
camera captures images of the speaker, which are then digitized and processed to extract
useful features for speech recognition. Possible low-level features include the width and
height of the mouth, its shape and rounding, the location and velocity of the jaw, and
the position of the tongue. Higher-level features include rounding (protrusion of the lips
as in /OK/) and the f-tuck (touching of the upper teeth to the lower lip, as in /fa/ and
/va/). Important issues in building a speechreading system are how to choose appropriate
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visual features and how to integrate the video and audio sub-systems. Many papers on
this subject have appeared over the past 15 years; examples are [156, 157, 158]. For
reviews of this subject see [155, 159].

4.3 Video-based face recognition

As mentioned earlier, face recognition in surveillance video is difficult for several reasons.
However, there are many situations in which video-based FRT is feasible. For example,
in applications such as access control and ATM, the video is acquired in a relatively
controlled environment and the face region is also relatively large. In such cases, video-
based FRT offers several advantages over still-image-based FRT:

1. Video provides abundant image data; we can select good frames on which to perform
classification.

2. Video provides temporal continuity [90]; this allows reuse of classification informa-
tion obtained from high-quality frames in processing low-quality frames.

3. Video allows tracking of face images; hence phenomena such as facial expressions
and pose changes can be compensated for, resulting in improved recognition.

Most video-based FRT systems consist of three modules: a face detection module, a
face tracking module, and a face recognition module. Nearly all systems apply still-image-
based recognition to selected good frames. The face images are warped into frontal views
whenever pose and depth information about the faces is available [95]. Some systems [95]
use non-visual cues (speech, for example) to enhance their performance. A number of
commercial systems are available — for example, Visionics’ Facelt [160]; however, due to
proprietary concerns, their techniques are not open to the public, though their systems
may have been initially based on published algorithms.

[90] describes a system for video-based face recognition. This system uses an RBF
(Radial Basis Function) network as the learning/recognition engine, and DoG (Difference
of Gaussian) filters or Gabor wavelet analysis as the feature representation. The main
reasons for the use of a two-layer RBF are its fast learning rate and well-developed
mathematical theory. Detection and segmentation of face images is based on motion;
the details are not described in [90] and it is indicated that the segmentation results
can be imperfect. To train and test the system, two sets of data were used, primary
sequences and secondary sequences. Each primary set was a controlled set, including the
types of variability the trained system should be tolerant to. Fight primary sequences
were collected; each consisted of a person seen against a plain, mid-grey background and
turning his head from one profile view to the other. Only one secondary sequence was
collected; in it, a person moves from side to side, stopping and starting against a cluttered,
changing background. The lengths of the primary sequences were from 62 to 94 frames (a
total of 554 frames), while the length of the secondary sequence was 169 frames. Widely
varying performance results were reported. For example, only 40% correct classification
was obtained when training on 16 frames and testing on the remaining 538 frames from
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the primary sequences. On the other hand, 96% correct classification was reported when
training on 278 frames and testing on 276 frames, with a 12% rejection rate.

An access control system based on person authentication is described in [91]. The
system combines two complementary visual cues: motion and facial appearance. In order
to reliably detect significant motions, spatio-temporal zero crossings computed from six
consecutive frames were used. These motions were grouped into moving objects using a
clustering algorithm and Kalman filters were employed to track the grouped objects. An
appearance-based face detection scheme using RBF networks (similar to [38]) was used to
confirm that an object is a person. The face detection scheme was “bootstrapped” using
motion and object detection to provide an approximate head region. Face tracking based
on the RBF network was used to provide feedback to the motion clustering process
to help deal with occlusions. Good tracking results were demonstrated, but person
authentication results are referred to as future work.

In [92], a fully automatic person authentication system is described which includes
video break, face detection, and authentication modules. Video skimming was used to
reduce the number of frames to be processed. The video break module, corresponding
to key-frame detection based on object motion, consisted of two units. The first unit
implemented a simple optical low method; it was used when the image SNR level is low.
When the SNR level was high, simple pair-wise frame differencing was used to detect
the moving object. The face detection module consisted of three units: face localization
using analysis of projections along the z- and y-axes; face region labeling using a decision
tree learned from positive and negative examples taken from 12 images each consisting
of 2759 windows of size 8 X 8; and face normalization based on the numbers of face
region labels. The normalized face images are then used for authentication, using an
RBF network. This system was tested on three image sequences; the first was taken
indoors with one subject present, the second was taken outdoors with two subjects, and
the third was taken outdoors with one subject in stormy conditions. Perfect results were
reported on all three sequences, as verified against a database of 20 still face images.

In [161], a generic approach to simultaneous object tracking and verification is pro-
posed. The approach is based on posterior probability density estimation using sequential
Monte Carlo methods [162, 163]. Tracking, which is a temporal correspondence problem,
is formulated as a probability density propagation problem, with the density 7;(x) being
defined over a state space characterizing the object configuration. Using sequential im-
portance sampling, the density is approximated at time ¢ by a set of samples and weights,
{Xt(j), wz(fj)}. The tracked object is then specified by evaluating the mean value as

>, X () qpld)

(13)

Using this approach and reparametrization, tracking applications involving different rep-
resentations such as edge maps, intensity templates, and feature point sets can be uni-
formly processed by the same algorithm. In addition to tracking, the algoorithm also
provides verification results. This is realized by hypothesis testing using the posterior
probabilities, which are obtained by integrating (summing, in discrete cases) the esti-
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Figure 4: Left: Sample frames of a sequence. Middle: results when correct templates are
overlaid on the video; Right: results when the templates are incorrect.

mated densities m(x) = pi(x]7)
P(wi]Z) = / pile|Z)da (14)
A

where w; denotes class ¢, Z the observation, and p;(x|7) the conditional posterior density
for class .

Figure 4 shows sample frames (left column) of a sequence showing two persons moving
around; their face templates are used to track and verify them in the video. In the middle
and right columns, the templates are overlaid on the video. For easy visualization, a black
block is used for the template corresponding to the face of the man in the white shirt
(denoted M1), and a white block for the template corresponding to the second man’s
face (denoted M2). The middle column illustrates the situation where the algorithm is
correctly initialized, meaning that the templates are put on the correct persons. The
figure shows that tracking is always maintained for M1, and is able to recover from
occlusion for M2. The right column shows a case in which the templates were put on
the wrong persons. It is seen that M2 eventually drops onto the background, while M1,
after tracking the wrong person, is attracted to the right person after they meet. In both
cases, the posterior probabilities provide verification results.

The systems described above were tested only on small databases (if at all); their
main purpose was to demonstrate the feasibility of video-based face recognition. Two
other systems [93, 95] are more practical in terms of accuracy and size of the database.
Both of these systems use more than one cue; for example [95] uses both audio and video,
and [93] uses stereo. (For more information about recognition based on video and audio

see the Proceedings of the AVBPA Conferences [2].)
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In [93], a system called PersonSpotter is described. This system is able to capture,
track and recognize a person walking toward or passing a stereo CCD camera. It has
several modules, including a head tracker, preselector, landmark finder, and identifier.
The head tracker determines the image regions that are changing due to object motion
based on simple image differences. A stereo algorithm then determines the stereo dis-
parities of these moving pixels. These disparity values are used to compute histograms
for image regions. Regions with in a certain disparity interval are selected and referred
to as “silhouettes”. Two types of detectors, skin color based and convex region based,
are applied to these silhouette images. The outputs of these detectors are clustered to
form regions of interest which usually correspond to heads. To track a head robustly,
temporal continuity is exploited in the form of the thresholds used to initiate, track and
delete an object.

To find the face region in an image, the preselector uses a generic sparse graph con-
sisting of 16 nodes learned from 8 example face images. The landmark finder uses a dense
graph consisting of 48 nodes learned from 25 example images to find landmarks such as
the eyes and the nose tip. Finally, an elastic graph matching scheme is employed to
identify the face. For details about these modules, see [93]. A recognition rate of about
90% was achieved (the size of the database is not known). The system was implemented
using ANSI C++ on a Unix platform (a four-processor 90-Mhz SGI) and was able to
process 6-8 persons per minute. The size of the normalized face images should be about
the same as [77], i.e. about 128 x 128 pixels.

A multimodal based person recognition system is described in [95]. This system
consists of a face recognition module, a speaker identification module, and a classifier
fusion module. It has the following characteristics:

e The face recognition module can detect and compensate for pose variations; the
speaker identification module can detect and compensate for changes in the auditory
background.

e The most reliable video frames and audio clips are selected for recognition.

e 3D information about the head is used to detect the presence of an actual person
as opposed to an image of that person.

Recognition and verification rates of 100% were achieved; for 26 registered clients.
The face recognition module consists of three units:

(a) Face Detection and Tracking The face is detected using skin color information
using a learned model of a mixture of Gaussians. The facial features (eyes, mouth,
nose) are then located using symmetry transforms and image intensity gradients.
Correlation-based methods are used to track the feature points. The locations of
these feature points are used to estimate the pose of the face. This pose estimate
and a 3D head model are used to warp the detected face image into a frontal view.

(b) Eigenspace Modeling For recognition, the feature locations are refined and the
face is normalized with eyes and mouth in fixed locations. Images from the face
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tracker are used to train a frontal eigenspace, and the leading 35 eigenvectors
are retained. Since the face images have been warped into frontal views a single
eigenspace 1s enough. Face recognition is then performed using the eigenface ap-
proach with additional temporal information added. The projection coefficients of
all images of each person are modeled as a Gaussian distribution, and the face is
classified based on the probability of match.

Depth Estimation For greater robustness, depth information at each feature
position is obtained using an SfM technique. This depth information can be used
to distinguish a real head from a head image; this makes it difficult to fool the
system with still face images.

The speaker recognition module has four units:

(a)

Event Detection Coarse segmentation of the audio is used to identify segments
that are likely to contain speech. This segmentation is performed using a sim-
ple event detector constructed by thresholding the total energy and incorporating
constraints on event length and surrounding pauses.

Feature Extraction The (16kHz sampled) audio is then filtered with a weak high-
pass filter to remove DC offsets and boost higher frequencies. Mel-scaled frequency
coefficients (MFCs) are then computed for audio frames 32 ms long and 16 ms
apart.

Modeling An HMM, estimated from speech samples, is used to model the spectral
signature of each person’s speech. However, experiments showed that 1-state HMM
models with 30 Gaussians performed best, suggesting that the use of HMMs is
unnecessary.

Background Adaption It is well known that statistical models trained on clean
speech perform poorly in noisy or altered environments. Two common types of
noise are convolutional noise (due primarily to the use of different microphones
and sound cards) and additive noise (due to the presence of other sound sources).
Here only additive noise was considered, and HMMs were used to model the clean
speech, the additive noise, and the combination of both.

Finally, the face and speaker recognition modules are combined using a Bayes net.

The system was tested in an ATM scenario. An ATM session begins when the subject
enters the camera’s field of view and the system detects his/her face. The system then
greets the user and begins the banking transaction, which involves a series of questions
by the system and answers by the user. Data for 26 people were collected; the normalized
face images were 40 x 80 pixels and the audio was sampled at 16 kHz. The experiments

showed that the combination of audio and video improved performance, and that per-
fect (100%) recognition and verification were achieved when the image/audio clips with
highest confidence scores were used.
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5 Evaluation of Face Recognition Systems

Given the numerous theories and techniques that are applicable to face recognition, it is
clear that evaluation and benchmarking of these algorithms is crucial. Previous work on
the evaluation of OCR and fingerprint classification systems [164, 165] provided insights
into how the evaluation of algorithms and systems can be performed efficiently. One of
the most important facts learned in these evaluations is that large sets of test images
are essential for adequate evaluation. It is also extremely important that the sample
be statistically as similar as possible to the images that arise in the application being
considered. Scoring should be done in a way that reflects the costs of errors in recognition.
Reject-error behavior should be studied, not just forced recognition.

In planning an evaluation, it is important to keep in mind that the operation of a
pattern recognition system is statistical, with measurable distributions of success and
failure. These distributions are very application-dependent, and no theory seems to exist
that can predict them for new applications. This strongly suggests that an evaluation
should be based as closely as possible on a specific application.

During the past five years, several large, publicly available face databases have been
collected and corresponding testing protocols have been designed. The series of FERET
evaluations [3, 4, 5, 6] attracted many institutions and companies to participate. We
describe here the two most important face databases and their associated evaluation
methods.

5.1 The FERET protocol

Until recently, there did not exist a common FRT evaluation protocol that included large
databases and standard evaluation methods. This made it difficult to assess the sta-
tus of FRT for real applications, even though many existing systems reported almost
perfect performance on small databases. Measuring the performance of FRT in a frame-
work that models real-world settings was one of the three primary goals of the FERET
program [166, 167, 168, 5]. The other two goals were advancing FRT and collecting a
large database of facial images to support algorithm development and evaluation. The
database was collected between August 1993 and July 1996, and consists of 14,126 images
of 1199 individuals. The FERET database was divided into development and sequestered
portions. The development portion was made available to researchers for algorithm devel-
opment, and the sequestered portion was retained for independent evaluation and testing
of algorithms. In late 2000 the entire FERET database is being released along with the
Sep96 evaluation protocols, evaluation scoring code, and baseline PCA algorithms.

The first FERET evaluation test (Aug94) was administered in August 1994 [168].
This evaluation established a baseline for face recognition algorithms, and was designed
to measure performance of algorithms that could automatically locate, normalize, and
identify faces. This evaluation consisted of three tests, each with a different gallery and
probe set. (A gallery is a set of known individuals, while a probe is a set of unknown faces
presented to a system for recognition.) The first test measured identification performance
from a gallery of 316 individuals with one image per person; the second was a false-alarm
test, and the third measured the effects of pose changes on performance. The second
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Figure 5: Images from the FERET dataset; these images are of size 384 x 256.

FERET evaluation (Mar95) was administered in March 1995; it consisted of a single
test that measured identification performance from a gallery of 817 individuals, and
included 463 duplicates in the probe set [168]. (A duplicate is a probe for which the
corresponding gallery image was taken on a different day; there were only 60 duplicates
in the Aug94 evaluation.) The third and last evaluation (Sep96) was administered in
September 1996 and March 1997. The design of this evaluation was more complex than
the first two evaluation, and allowed for more detailed performance characterization of
face recognition systems.

5.1.1 Database

Currently, the FERET database is the only large database that is generally available
to researchers without charge [167, 168]. The images in the database were initially
acquired with a 35-mm camera, using color Kodak Ultra film. The film was processed
by Kodak and stored on CD-ROM using Kodak’s multiresolution technique for digitizing
and storing imagery. The color images were retrieved from CD-ROM and converted
into 8-bit gray scale images. Fach image was assigned a file name that encoded the
subject’s identity, the date the image was taken, the nominal pose of the head, and
special variations.

The images were collected in 15 sessions between August 1993 and July 1996. Each
session lasted one or two days, and the location and setup did not change during the
session. Sets of 5 to 11 images of each individual were acquired under relatively uncon-
strained conditions; see Figure 5. They included two frontal views; in the first of these
(fa) a neutral facial expression was requested and in the second (fb) a different facial
expression was requested (these requests were not always honored). For 200 individuals,
a third frontal view was taken using a different camera and different lighting; this is
referred to as the fc image. The remaining images were non-frontal and included right
and left profile, right and left quarter profile, and right and left half profile. The FERET
database consists of 1564 sets of images (1199 original sets and 365 duplicate sets) —
a total of 14,126 images. A development set of 503 sets of images were released to re-
searchers; the remaining images were sequestered by the Government for independent
evaluation.
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5.1.2 Evaluation

For details of the three FERET evaluations see [166, 167, 168, 5]. The results of the
Sep96 FERET evaluation, the most recent, will be briefly reviewed here. This evaluation
was administered in September 1996 and March 1997. Each algorithm was given two sets
of images, a target set and a query set; these are different from the gallery and probe sets
used to compute performance statistics. The target set contained 3323 images and the
query set contained 3816 images. An algorithm reported a similarity score for all pairs
of images taken, respectively, from the target and query sets; this resulted in 12,680,568
similarity scores. (A similarity score is an estimate of how similar two faces are.) Because
of the design of the target and query sets, different galleries were constructed from the
target set, and different probe sets were constructed from the query set. This allowed for
more comprehensive reporting of performance statistics for a larger range of conditions
than the first two evaluations. For the Sep96 evaluation, there was a primary gallery
consisting of one frontal image (FA) per person for 1196 individuals. This was the core
gallery used to measure performance for the following four different probe sets.

o FB probes—Gallery and probe images of an individual taken on the same day with
the same lighting (1195 probes).

o fc probes—Gallery and probe images of an individual taken on the same day with
different lighting (194 probes).

e Dup I probes—Gallery and probe images of an individual taken on different days—
duplicate images (722 probes).

o Dup II probes—QGallery and probe images of an individual taken over a year apart
(the gallery consisted of 894 images; 234 probes).

Performance was measured using two basic methods. The first measured identification
performance, where the primary performance statistic is the percentage of probes that
are correctly identified by the algorithm. The second measured verification performance,
where the primary performance measure is the equal error rate between probability of
false alarm and probability of correct verification. (A more complete method of reporting
identification performance is a cumulative match characteristic; for verification perfor-
mance it is a receiver operating characteristic (ROC).)

The Sep96 evaluation tested the following ten algorithms:

e An algorithm from Excalibur Corporation (Carlsbad, CA)(Sept. 1996)
e Two algorithms from MIT Media Laboratory (Sept. 1996) [44, 169]

o Three Linear Discriminant Analysis based algorithms from Michigan State Univer-
sity [56] (Sept. 1996) and the University of Maryland [59, 60] (Sept. 1996 and
March 1997)

e A gray-scale projection algorithm from Rutgers University [170] (Sept. 1996)
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o An Elastic Graph Matching algorithm from the University of Southern Califor-
nia [79, 171] (March 1997)

o A baseline PCA algorithm [44, 172, 173]

e A baseline normalized correlation matching algorithm.

The month the evaluation was administered is given in parentheses.

Three of the algorithms performed very well: Probabilistic Eigenface from MIT [169],
Subspace LDA from UMD [60, 63], and Elastic Graph Matching from USC [79]. To sep-
arate recognition from localization, two versions of the evaluation were designed: A fully
automatic version in which the facial features needed to located, and a semi-automatic
version in which the eye coordinates were given. All of the above algorithms took the
semi-automatic version, and one of the MIT algorithms and the USC algorithm took the
fully automatic version. Noticeable (but not significant, especially for the USC algorithm)
performance degradation was observed.

A number of lessons were learned from the FERET evaluations. The first is that
performance depends on the probe category and there is a difference between best and
average algorithm performance. This is shown in Figure 6, which plots the best and
average performance of the partially automatic algorithms from the Sep96 evaluation.
This is especially true for the fc probes (lighting change). The second is that the avail-
ability of a large data set combined with periodic evaluations led to measurable increases
in performance. This is directly supported by the results for the MIT and UMD algo-
rithms. In September 1996 two MIT algorithms were tested. One of them was the same
algorithm that was tested in March 1995, and the second was a new algorithm developed
since March 1995. For UMD, one algorithm was tested in September 1996, and a second
algorithm was tested in March 1997. Results from the September 1996 evaluation were
used as input in designing the second algorithm. The identification rates for the FB and
Dup I probe categories are shown in Figures 7 and 8. A third lesson is that the scenario
has an impact on performance. For identification, on the FB and duplicate probes, the
USC scores were 94% and 59%, and the UMD scores were 96% and 47%. However, for
verification, the equal error rates were 2% and 14% for USC, and 1% and 12% for UMD.
The verification equal error rates for the FB and Dup I probe categories are shown in
Figures 9 and 10.

Detailed and robust testing can provide insight into the underlying properties of
algorithms. During the period of the FERET evaluations there was a debate in the
face recognition community about what was the best representation for faces; in fact,
the debate is ongoing. A large number of the representations were projection-based.
In this class of representations, an N x M image is interpreted as a point in N x M-
dimensional Fuclidean space, and the algorithm represents a face in a linear subspace of
much lower dimension. The mapping from the original image space to the subspace is a
linear projection. Faces are identified by a nearest neighbor classifier. Two examples are
PCA and LDA-based algorithms.

The FERET evaluations compared a number of these competing representations;
however, the evaluations did not systematically compare different implementations of
the same representation. Moon and Phillips [172, 173] systematically compared different

31



100

90
E 80
c 70
S
> 60
(@]
®
5 50
(@]
© 40
®
S 30
O
S 20

10

92

84

82

B Best score

O Average score

FA

fc

29

Dup |
Dup I

Figure 6: The best and average identification scores for the FERET Sep96 evaluation by
probe category. The probe categories are: FB, fc, Dup I, and Dup II.

32



100+
80+
60 -
Identification rate (%)

40
20+

¢ ToE 5 & 2 2z 2 &

S« g2 £ = a2 & o =

L9 == = s o = 5 o i

A I g = n = 2 =

& 25 4 = E g §

= 5 5

Algorithm
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Figure 8: Identification rate for Dupl probes (gallery: 1196, probe: 722).
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Figure 9: Equal error rate for FB probes (gallery: 1196, probe: 1195).
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Figure 10: Equal error rate for Dupl probes (gallery: 1196, probe: 730).
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implementations of a PCA-based face recognition algorithm. For each implementation,
the Sep96 performance scores were computed. One class of variations examined was the
use of seven different distance metrics in the nearest neighbor classifier, which they found
was the most critical element in their implementation. On the Dup I probes, the range of
performance for the seven different classifiers is roughly the same for the projection-based
algorithms evaluated in the Sep96 evaluation; see Figure 11. This raises the question of
what 1s a more important factor in algorithm performance, the representation or the
specifics of the implementation. It also shows the importance of an accepted evalua-
tion methodology and a detailed scientific investigation into the different aspects of an
implementation.

MPEG-7 Evaluation The subspace LDA algorithm has also been tested on an MPEG-
7 content set. In [70], a proposal entitled Descriptor for Human Face Image Objects in
Multimedia Databases was submitted to MPEG-T using the subspace LDA method. The
performance of this proposed descriptor in retrieving face image objects from a database
was evaluated using MPEG-7 Test Content Set S4 [69]. This set contains a total of
178 face images obtained from 14 different persons (classes). Of the 178 images, 140
are frontal views and the rest are non-frontal views (rotated out of the image plane).
The querying procedure usually consisted of two steps: processing of the input image to
obtain a representation; and ranking of the retrieved items with respect to a similarity
measure.

Subspace LDA projection coefficients were proposed as descriptors of a face image
object. The full representation for a face database is the PCA projection matrix ®, the
LDA projection matrix W, and the vector z for each face image. The PCA projection ¢
(of dimension 2016 x 300) was computed from the 1038 FERET images, and the LDA
projection W was computed from the available MPEG-7 images, which consisted of 14
classes, yielding a matrix W of size 300 x 13. Five images selected from each of the
14 classes (one of them a non-frontal view) were used to compute the matrix W. Two
experiments were performed:

e Full querying All 70 images used in the LDA training stage were stored in the
database. Fach of the 178 available images was used as a query image, and retrieval
from the database was performed using subspace LDA. Using the criterion that the
top-ranked retrieved image must belong to the correct class, a correct retrieval
rate of 86.5% was obtained. Using the criterion that one of the three top-ranked
retrieved images must belong to the correct class, a correct retrieval rate of 90.4%
was obtained.

e Frontal-view querying All 70 training images were again stored in the database,
and each of the 130 available frontal-view images was used as a query image. Correct
retrieval rates of 93.1% and 95.4% were obtained using the top-ranked and three-
top-ranked criteria, respectively.

Some of the query images and the corresponding three top-ranked retrieved database
images are shown in Fig. 12.
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Query Example I1

Query Image Top choice  Second choice Third choice

Figure 12: Query examples for the MPEG-7 image database.

5.1.3 Summary

The availability of the FERET database and evaluation technology has had a significant
impact on progress in the development of face recognition algorithms. Because of its use
of a large database and independent tests, the FERET program has made it possible
to objectively evaluate algorithms under close to real-world conditions. The series of
tests has allowed advances in algorithm development be quantified — for example, the
performance improvements in the MIT algorithms between March 1995 and September
1996, and in the UMD algorithms between September 1996 and March 1997 (Fig. 13).

Another important contribution of the FERET program is the identification of areas
for future research. In particular, the August 1994 test suggested two directions for future
research: recognition from images collected months or years apart, and recognition under
pose changes.

The March 1995 test measured the performance of the algorithms on a larger database
that contained more duplicates. Absolute performances on the 1994 and 1995 tests were
comparable, in spite of the increase in difficulty, indicating that steady advances were
being made in face recognition capability.

Based on the previous tests, an important goal of the September 1996 test was to
study the ability of algorithms to recognize people from images taken days, months, or
years apart. In general the test results revealed two major problem areas: recognizing
duplicates and recognizing people under illumination variations.

The FERET evaluation protocol is the basis of the Face Recognition Vendor Test
2000 and the HumanID database.
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Figure 13: UMD FERET test results from September 96 and March 97: (a)fa vs fb,
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of Army Research Laboratory]
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5.2 The XM2VTS protocol

Multi-modal methods are a very promising approach to user-friendly (hence acceptable),
highly secure personal verification. Recognition and verification systems need training;
the larger the training set, the better the performance achieved. The volume of data
required for training a multi-modal system based on analysis of video and audio signals
is on the order of TBytes; technology that allows manipulation and effective use of such
volumes of data has only recently become available in the form of digital video. The
XM2VTS multimodal database [7] contains four recordings of 295 subjects taken over
a period of four months. Each recording contains a speaking head shot and a rotating
head shot. Available data from this database include high-quality color images, 32 KHz
16-bit sound files, video sequences, and a 3D model.

The XM2VTS database is an expansion of the earlier M2VTS database [174]. The
M2VTS project (Multi-Modal Verification for Teleservices and Security Applications), a
European ACTS (Advanced Communications Technologies and Services) project, deals
with access control by multimodal identification of human faces. The goal of the project
was to improve recognition performance by combining the modalities of face and voice.
The M2VTS database contained five shots of each of 37 subjects. During each shot,
the subjects were asked to count from ‘0’ to ‘9’ in their native language (most of the
subjects were French speaking) and rotate their heads from 0° to —90°, back to 0°, and
then to +90°. They were then asked to rotate their heads again with their glasses off,
if they wore any. Three subsequences were extracted from these video sequences: voice
sequences, motion sequences, and glasses-off motion sequences. The voice sequences can
be used for speech verification, frontal view face recognition, and speech/lips correlation
analysis. The other two sequences are intended for face recognition only.

It was found that the subjects were relatively difficult to recognize in the fifth shot
because it varied significantly in face/voice/camera setup from the other shots. Several
experiments have been conducted using the first four shots [175, 176, 177, 178, 179, 180],
with the goals of investigating

o text-dependent speaker verification from speech

o text-independent speaker verification from speech

o facial feature extraction and tracking from moving images

e verification from an overall frontal view

e verification from lip shape

e verification from depth information (obtained using structured light)
e verification from a profile

e synchronization of speech and lip movement
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5.2.1 Database

The XM2VTS database differed from the M2VTS database primarily in the number of
subjects (295 rather than 37). The M2VTS database contained five shots of each subject
taken at sessions over a period of three months; the XM2VTS database contained eight
shots of each subject taken at four sessions over a period of four months (so that each
session contains two repetitions of the sequence).

The XM2VTS database was acquired using a Sony VX1000E digital camcorder and
a DHR1000UX digital VCR. This VCR captures video at a color sampling resolution of
4:2:0 and audio at a frequency of 32kHz and a sampling rate of 16 bits. It was chosen
because it can be interfaced to a computer via a firewire port. At present only the PC
architecture is supported, but SUN, SGI and DEC are all working on firewire solutions.
Software has been written that allows a user to move video and audio sequences and
individual frames to a PC’s hard disk directly from the VCR.

In the XM2VTS database, the first shot is a speaking head shot. Each subject, who
wore a clip-on microphone, was asked to read three sentences that were written on a
board positioned just below the camera. The subjects were asked to read the three
sentences twice at their normal pace and to pause briefly at the end of each sentence.
The three sentences, which were the same in all four recording sessions, were

1. 0123456789
2.50692813747
3. “Joe took father’s green shoe bench out”

The audio sentences were stored in 7080 files which are available on four CDROMs as
mono, 16BIT, 32 KHz, and PCM wave files.

The second shot is a rotating head sequence. Each subject was asked to rotate his/her
head to the left, to the right, up, and down, and finally to return to the center. The
subjects were told that a full profile was required and were asked to repeat the entire
sequence twice. The same sequence was used in all four sessions. A set of profile images
is available on four CDROMs. These consist of one left profile and one right profile of
each person from each session — a total of 2,360 images. The images are stored in color
PPM format at a resolution of 720 x 576. A set of frontal images, one per subject per
session (1,180 images in all), is also available on two CDROMS.

An additional dataset containing a 3D model of each subject’s head was acquired
during each session using a high-precision stereo-based 3D camera developed by the
Turing Institute’. This data set is available in the form of 295 VRML models and
texture images on a single CDROM.

5.2.2 Evaluation

A protocol was designed (see Tables 2 and 3) to evaluate the performance of vision- and
speech-based person authentication systems on the XM2VTS database. This protocol

'Turing Institute Web Address: http://www.turing.gla.ac.uk/
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was defined for the task of verification. The features of the observed person are com-
pared with stored features corresponding to the claimed identity, and the system decides
whether the identity claim is true or false on the basis of a similarity score. The subjects
whose features are stored in the system’s database are called clients, whereas persons
claiming false identity are called imposters.

The database is divided into three parts: a training set, an evaluation set, and a test
set. The training set is used to build client models. The evaluation set is used to compute
client and imposter scores. On the basis of these scores, a threshold is chosen that
determines whether a person is accepted or rejected. In multi-modal classification, the
evaluation set can also be used to optimally combine the outputs of several classifiers. The
test set is selected to simulate a real authentication scenario. 295 subjects were randomly
divided into 200 clients, 25 evaluation imposters and 70 test imposters. Two different
evaluation configurations were used (see Tables 2 and 3) with different distributions of
client training and client evaluation data.

Session  Shot Clients Imposters
1 1 Training
2 Evaluation
9 1 Training
2 Evaluation | Evaluation | Test
3 1 Training
2 Evaluation
4 1 Test
2

Table 2: Configuration I of the evaluation protocol

Session  Shot Clients Imposters

| 1
2 Training

9 1
2 Evaluation | Test
1

3 9 Evaluation

4 ! T
9 est

Table 3: Configuration II of the evaluation protocol

5.2.3 Summary
The results of the M2VTS/XM2VTS projects can be used for a broad range of applica-

tions. In the telecommunication field, the results should have a direct impact on network
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services where security of information and access will become increasingly important.
(Telephone fraud in the U.S. has been estimated to cost several billion dollars a year.)

6 Two Challenges: Illumination and Pose Variation

Though many face recognition techniques have been proposed and have demonstrated
significant promise, the task of robust face recognition is still difficult [68]. The recent
FERET test revealed that there are at least two major challenges: The illumination
variation problem and the pose variation problem. Either of these problems may cause
serious performance degradation for most existing systems. For example, change in
illumination conditions can change the 2D appearance (face image) of a 3D face object
dramatically, and hence can seriously affect system performance. These two problems
have been documented in many evaluations of FRT systems [4, 181] and in the divided
opinions of the psychology community [24, 23, 15]. Unfortunately, they are unavoidable
when face images are acquired in an uncontrolled environment as in surveillance video
clips. In this section, we examine the two problems and review some approaches to
solving them. We also point out the pros and cons of these approaches so an appropriate
approach can be applied to a specific task.

6.1 The illumination problem in face recognition

The illumination problem is illustrated in Fig. 14 where the same face appears different
due to a change in lighting. The changes induced by illumination are often larger than
the differences between individuals, causing systems based on comparing images to mis-
classify input images. This was experimentally observed in [181] using a dataset of
25 individuals, and was theoretically proved in [182] for systems based on eigenface
projection.

-
b | E
Figure 14: The same face appears differently under different illuminations.

The illumination problem is quite difficult and has received consistent attention in
the image understanding literature. In the case of face recognition, many approaches to
this problem have been proposed that make use of domain knowledge, in particular of the
knowledge that all faces belong to one face class. These approaches can be divided into
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four types [68]: 1) heuristic methods, e.g. discarding the leading principal components,
2) image comparison methods in which appropriate image representations and distance
measures are used, 3) class-based methods using multiple images of the same face in
a fixed pose but under different lighting conditions, and 4) model-based approaches in
which 3D models are employed.

6.1.1 Heuristic Approaches

When the face eigen-subspace domain is used, it has been suggested that by discarding
the three most significant principal components, variations due to lighting can be reduced.
It was experimentally verified in [58] that discarding the first few principal components
works reasonably well for images obtained under different lighting conditions. However, in
order to maintain system performance for normally illuminated images, while improving
performance for images acquired under changes in illumination, it must be assumed that
the first three principal components capture only variations due to lighting. In [52], a
heuristic method based on face symmetry was proposed to enhance system performance
under lighting changes.

6.1.2 Image Comparison Approaches

In [181], approaches based on image comparison using different image representations
and distance measures were evaluated. The image representations used were edge maps,
derivatives of the gray level, images filtered with 2D Gabor-like functions, and a repre-
sentation that combines a log function of the intensity with these representations. The
distance measures used were pointwise distance, regional distance, affine-GL (gray level)
distance, local affine-GL distance, and log pointwise distance. For more details about
these methods and about the evaluation database, see [181]. It was concluded that none
of these representations alone can overcome the image variations due to illumination. A
recently proposed image comparison method [183] used a new measure robust to illu-
mination change. This method is based on the observation that the difference between
two images of the same object is smaller than the difference between images of different
objects. However, the proposed measure is not strictly illumination-invariant.

6.1.3 Class-Based Approaches

Under the assumptions of Lambertian surfaces and no shadowing, a 3D linear illumina-
tion subspace for a person was constructed in [66, 67, 184, 185] for a fixed viewpoint,
using three aligned faces/images acquired under different lighting conditions. Under ideal
assumptions, recognition based on this subspace is illumination-invariant. More recently,
an illumination cone has been proposed as an effective method of handling illumination
variations, including shadowing and multiple light sources [185, 186]. This method is
an extension of the 3D linear subspace method [66, 67] and also requires three aligned
training images acquired under different lighting conditions. One drawback of using this
method is that more than three aligned images per person are needed. More recently, a
method based on a quotient image was introduced [187]. An advantage of this approach
over previous approaches is that it only uses a small set of sample images. This method
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assumes that faces of different individuals have the same shape and different textures.
Better rendered results are obtained with this method than when using methods such as
the bi-linear model approach [188].

6.1.4 Model-Based Approaches

In [189], Principal Component Analysis (PCA) was suggested as a tool for solving the
parametric shape-from-shading (SFS) problem. An eigen-head approximation of a 3D
head was obtained after training on about 300 laser-scanned range images of real human
heads. The ill-posed SFS problem is thereby transformed into a parametric problem,
but constant albedo is still assumed. This assumption does not hold for most real face
images and it is one of the reasons why most SFS algorithms fail on real face images.
To overcome the constant albedo issue, the authors of [68, 182] proposed using a varying
albedo reflectance model. They first proposed a new SFS scheme, symmetric SFS. Unlike
existing SFS algorithms, Symmetric SFS theoretically allows pointwise 3D information
about a symmetric object, represented by the shape gradients (p,¢), to be uniquely
recovered from a single 2D image. The Symmetric SFS algorithm represents albedo
information in the form of a self-ratio image, defined as

_ Lzl playlPs
Y T ] T T gl alQr 13

where [ is the image and is related to the light source (Ps, Qs) by

1+ plz,y| P, + gz, y]Q,
VI + ple, v + gle, y]2y /14 P2+ Q2

Iz, y] = plz,y] (16)

so that recovery of the albedo p is not necessary. However, in practical face recognition
applications the implementation of this approach is not robust enough. A direct 2D-to-
2D approach using a generic 3D model has therefore been proposed. Let the prototype
image [, with a = 0 be

1
Lz, y]l = p———orn--—. 17
plr,yl=p T (17)
Comparing (16) and (17), we obtain
K

Lz, y] = m

where K = /1 + P2+ Q2. This simple equation directly relates the prototype image
I, to I[x,y] + I[x, —y] which is already available. This direct computation of I, from [
offers the following advantages over the traditional two-step procedure:

e There is no need to recover the varying albedo p[x, y].

e There is no need to recover the full shape gradients (p, ¢).
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Figure 15: Image rendering comparison. The original images are shown in the first
column. The second column shows prototype images rendered using the local SF'S algo-
rithm. Prototype images rendered using symmetric SFS are shown in the third column.
Finally, the fourth column shows real images that are close to the prototype images.

The rationale behind this method is the observation that all faces have a similar 3D shape;
hence the required ¢ can be obtained from a generic model. Using this approach very good
prototype images synthesized from front-view input images have been obtained using two
publicly available databases, the Yale and Weizmann databases. These databases contain
15 and 24 persons, respectively; each person is represented by four images obtained under
different illuminations.

In order to achieve a fully automatic system, light source estimation is needed. After
reviewing existing source-from-shading methods, the authors proposed a new model-
based symmetric source-from-shading algorithm. Basically it can be formulated as a
minimization problem:

(@™, 77) = arg,, . min(rIMF (o, 7)) —r1)* (19)

where ry is the self-ratio image, and ry,, is the self-ratio image generated from the 3D
face model My given the hypothesized light source direction represented by « and 7.
One advantage of using a 3D face model is that both attached-shadow and cast-shadow
effects can be handled.

Figure 15 shows some comparisons between rendered images obtained using this
method and using a local SFS algorithm [190]. Significant performance improvements
have been reported when the prototype images are used in a subspace LDA system in
place of the original input images (Fig. 16).

6.2 The pose problem in face recognition

The performance of face recognition systems also drops significantly when pose variations
are present in the input images. This difficulty is clearly revealed in the most recent
FERET test report, and solving the rotation-in-depth problem has been suggested as
a major research issue [3]. When illumination variation is also present the task of face
recognition becomes even more difficult (Fig. 17).

Researchers have proposed various methods of handling the rotation problem. They
can be divided into three types: 1) Methods in which multiple database images of each

45



Performance Comparison for Yale Dataset

Figure 16: Enhancing subspace LDA. The thin lines represent the cumulative scores
obtained by applying subspace LDA to the original images, while the thick lines represent
the scores obtained by applying it to the prototype images. The curves in (a) are for the
Yale face database, and those in (b) are for the Weizmann database.

Figure 17: The same face appears different under different poses and illuminations.
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person are available [191, 192, 193, 194], 2) hybrid methods when multiple images are
available during training but only one database image per person is available during
recognition [80, 195, 196, 197], and 3) single image based methods when no training is
carried out. The second approach seems to be the most popular one; the third approach
does not seem to have received much attention.

6.2.1 Multi-Image Based Approaches

One of the earliest examples of the first class of approaches is [193], where a template-
based correlation matching scheme is proposed. In this work, pose estimation and face
recognition are coupled in an iterative loop. For each hypothesized pose, the input im-
age 1s aligned to database images corresponding to that pose. The alignment is first
carried out via a 2D affine transformation based on three key feature points (eyes and
nose), and then optical flow is used to refine the alignment of each template. After
this step, the correlation scores of all pairs of matching templates are used for recogni-
tion. The main limitations on this method are 1) many different views per person are
needed in the database, 2) no lighting variations or facial expressions are allowed, and
3) the computational cost is high since iterative searching is involved. More recently,
an illumination-based image synthesis method [194] has been proposed to handle both
pose and illumination problems. This method is based on the illumination cone ap-
proach [185]. It can handle illumination variation quite well. To handle variations due to
rotation, it needs to completely resolve the GBR (generalized-bas-relief) ambiguity when
reconstructing the 3D shape.

6.2.2 Hybrid Approaches

Numerous algorithms of the second type have been proposed. These methods, which
make use of prior class information, are the most successful and practical methods up
to now. We review three representative examples here; the first is a linear class based
method [196], the second is a graph matching based method [79], and the third is a
view-based eigenface approach [45]. The image synthesis method in [196] is based on the
assumption of linear 3D object classes and the extension of linearity to images that are
2D projections of the 3D objects. It extends the linear shape model (which is very similar
to the active shape model of [198]) from a representation based on feature points to full
images of objects. To implement this method, a correspondence between images of the
input object and a reference object is established using optical flow. Correspondences
between the reference image and other example images having the same pose are also
computed. Finally, the correspondence field for the input image is linearly decomposed
into the correspondence fields for the examples. Compared to the parallel deformation
scheme in [195], this method reduces the need to compute correspondences between im-
ages of different poses. This method is extended in [197] to include an additive error
term for better synthesis. In [79], a robust face recognition scheme based on EBGM is
proposed. The authors assume a planar surface patch at each feature point (landmark),
and learn the transformations of “jets” under face rotation. Their results demonstrate
substantial improvement in face recognition under rotation. Their method is also fully
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automatic, including face localization, landmark detection, and flexible graph matching.
The drawback of this method is its requirement for accurate landmark localization, which
is not an easy task, especially when illumination variations are present. The popular
eigenface approach [44] to face recognition has been extended to a view-based eigenface
method in order to achieve pose-invariant recognition [45]. This method explicitly codes
the pose information by constructing an individual eigenface for each pose. More re-
cently, a unified framework called the bilinear model was proposed in [188]. Despite their
popularity, these methods have some common drawbacks: 1) they need many example
images to cover all possible views, and 2) the illumination problem is separated from the
pose problem.

6.2.3 Single Image Based Approaches

Finally, the third class of approaches includes low-level feature based methods, invariant
feature based methods, and 3D model based methods. In [51], a Gabor wavelet based
feature extraction method is proposed for face recognition which is robust to small-
angle rotations. There are many papers on invariant features in the computer vision
literature, but to our knowledge, serious application of this technology to face recog-
nition has not yet been explored. However, it is worth pointing out that some recent
work on invariant methods based on images [199] may lead to progress in this direction.
3D face models have been used for synthesizing face images under different appear-
ances/lightings/expressions in the computer graphics, computer vision, and model-based
coding communities [81, 122, 200]. In these methods, face shape is usually represented by
either a polygonal model or a mesh model which simulates tissue. Due to its complexity
and computational cost, no serious attempt to apply this technology to face recognition
has been made except for [81]. In [201], a unified approach was proposed to solving the
pose and illumination problems. This method is a natural extension of the method pro-
posed in [182] to handle the illumination problem. Using this method, input images can
be converted into prototype images and then input into existing systems. More specifi-
cally, using a generic 3D model, we can approximately solve the correspondence problem
required in a 3D rotation and arrive at a direct image-to-image computation:
1

]€[$/7y/] = 1Z7€]p[$7y]((:080 —p[l‘,y] Slna)m

x[tan(6 4 0o) Ps + ciiﬁﬁfgo))Qs + 1],

(20)

where 1, 4 is the indicator function indicating possible occlusion determined by the shape
and rotation angle, the single light source is (FP;, )5, 1), and the image (rotated in the -z
plane about the y-axis) is 1°[2/,3’]. Asin the pure illumination case, we need to estimate
the light source. In addition, pose estimation of the 3D face is needed. To address
the varying albedo issue, we again use the self-ratio image and propose the following
combined estimation problem (including the pose ):

T[MF(Oé,T) — T[F(Q,Oé,T)]z, (21)

where 174 o -y is the self-ratio image for the virtual frontal view generated from the
original image I via image warping and texture mapping. For further details, see [201].
Image synthesis examples are shown in Fig. 18.
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Figure 18: Synthesis of a virtual frontal view from another view: The first column shows
the frontal view, the second column shows the rotated view, and the third column shows
the virtual frontal view.
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7 Summary and Conclusions

In this paper, we have presented an extensive survey of machine recognition of human
faces. We have focused on segmentation, feature extraction and recognition aspects of
the face recognition problem, using information drawn from intensity and range images
of faces. In addition, face recognition from image sequences has been reviewed, including
basic techniques used in video-based face processing, tracking, modeling, and non-face-
based recognition. To emphasize the importance of system evaluation two protocols, the
FERET and XM2VTS protocols, have been described in full detail. Finally, we have
identified two key problems for any face recognition system: the illumination problem
and the pose problem, have categorized proposed methods of solving these two problems,
and have discussed the pros and cons of these methods.

We give below a concise summary, followed by conclusions, in the same order in which
the topics appear in the paper.

e Machine recognition of faces is emerging as an active research area spanning several
disciplines such as image processing, pattern recognition, computer vision, and
neural networks. There are numerous commercial applications of FRT such as
face verification based ATM and access control, while law enforcement applications
include video surveillance. Due to its user-friendly nature, face recognition remains
attractive despite the existence of extremely reliable methods of biometric personal
identification such as fingerprint analysis and iris scans.

e Over thirty-five years of research in psychophysics and neurosciences on human
recognition of faces is documented in the literature. Although we do not feel that
machine recognition of faces should strictly follow what is known about human
recognition of faces, it is beneficial for engineers who design face recognition systems
to be aware of the relevant findings, for example, lighting effects. On the other hand,
better machine systems can provide better tools to conduct studies in psychology
and neuroscience.

e Segmentation of a face region from a still image or a video is the first key step
in a fully automatic face recognition system. During the past five years, signifi-
cant achievements have been made in this area. Two representative approaches are
neural network based systems and example-based learning systems. Face segmen-
tation also has potential application in human-computer interfaces and surveillance
systems.

e Both global and local face descriptions are useful. The most significant global
descriptions are based on the KL expansion. Local descriptors are derived from
regions that contain the eyes, mouth, nose, etc. For better local feature detection,
domain knowledge such as face shape should be used.

e Face recognition methods based on sensor modalities such as range images, sketches
and infrared images are interesting, but are hard to apply in practice. Many meth-
ods have been proposed for face recognition based on image intensities [9]. Basically
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they can be divided into holistic template matching based systems [33, 44, 56, 58,
59, 60], geometrical local-feature-based schemes [51, 171], and hybrid methods [45].
Even though all these types of systems have been successtully used for to face
recognition, they have advantages and disadvantages. Thus appropriate schemes
should be chosen based on the specific requirements of a given task. For example,
the EBGM-based system [171] has very good performance in general. However, it
requires a large-size image, e.g., 128 x 128. This severely restricts its application
to video-based surveillance, where the face image size is very small. On the other
hand, the subspace LDA system [63] works well with both large and small images,
e.g., 96 x 84 or 24 x 21.

Recognition of faces in a video sequence (especially, in a surveillance video) is still
the most challenging problem in face recognition, because the video is of low quality
and the images are small. Nevertheless, video-based systems using multiple cues
have demonstrated good results in relatively controlled environments

During the past five years, tracking, modeling and non-face-based recognition of
hand gestures and human behavior have been actively studied. One of the reason for
this is that generic description of human behavior, not particular to an individual,
is both interesting and useful.

A crucial step in face recognition is the evaluation and benchmarking of numerous
algorithms. Two of the most important face databases and their associated eval-
uation methods are reviewed: the FERET protocol and the XM2VTS protocol.
The availability of these protocols has had a significant impact on progress in the
development of face recognition algorithms.

Though many face recognition techniques have been proposed and have demon-
strated significant promise, robust face recognition is still difficult. There are at
least two major challenges: the illumination and pose problems. An extensive re-
view of methods proposed for solving these problems has been presented and the
pros and cons of these methods have also been pointed out. Some difficult issues
still remain to be addressed — for example, the problem of aging.

Methods of multi-modal recognition are needed, though some initial work in this
direction has been done. Such methods include the fusion of face recognition with
information about speech, iris patterns, fingerprints, and gait.
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