LAMBDA CALCULI WITH TYPES

Henk Barendregt
Catholic University Nijmegen

To appear in

HaANDBOOK oF LoGic IN COMPUTER SCIENCE, Volume II,
Edited by

S. Abramsky, D.M. Gabbay and T.S.E. Maibaum
Oxford University Press

Comments are welcome. Author’s address:

Faculty of Mathematics and Computer Science
Toernooiveld 1

6525 ED Nijmegen

The Netherlands

E-mail: henk@cs.kun.nl

Lambda Calculi with Types

H.P. Barendregt

Contents

1 Imtroduction. 4
Type-free lambda calculus 7
2.1 Thesystem 7
2.2 Lambda definability 14
2.3 Reductiono 20

3 Curry versus Church typing 34
3.1 The system A—-Curry 34
3.2 The system A—-Church 42

4 Typing a la Curry 46
4.1 Thesystems 47
4.2 Subject reduction and conversion a7
4.3 Strong normalization o000 61
4.4 Decidability of type assignment 67

5 Typing @ la Church 76
5.1 The cube of typed lambda calculi 77
5.2 Pure typesystems oL 96
5.3 Strong normalization for the A-cube 114
5.4 Representing logics and data-types 132
5.5 Pure type systems not satisfying normalization 163

References 184

2 H.P. Barendregt

Dedication

This work 1s dedicated to

Nol and Riet Prager

the musician/philosopher and the poet.

Lambda Calculi with Types 3

Acknowledgements

Two persons have been quite influential on the form and contents of this
chapter. First of all, Mariangiola Dezani-Ciancaglini clarified to me the
essential differences between the Curry and the Church typing systems.
She provided a wealth of information on these systems (not all of which
has been incorporated in this chapter; see the forthcoming Barendregt and
Dekkers (to appear) for more on the subject). Secondly, Bert van Benthem
Jutting introduced me to the notion of type dependency as presented in
the systems AUTOMATH and related calculi like the calculus of construc-
tions. His intimate knowledge of these calculi—obtained after extensive
mathematical texts in them—has been rather useful. In fact it helped me
to introduce a fine structure of the calculus of constructions, the so called
A-cube. Contributions of other individuals—often important ones—will be
clear form the contents of this chapter.

The following persons gave interesting input or feedback for the con-
tents of this chapter: Steffen van Bakel, Erik Barendsen, Stefano Berardi,
Val Breazu-Tannen, Dick (N.G.) de Bruijn, Adriana Compagnoni, Mario
Coppo, Thierry Coquand, Wil Dekkers, Ken-etsu Fujita, Herman Geu-
vers, Jean-Yves Girard, Susumu Hayashi, Leen Helmink, Kees Hemerik,
Roger Hindley, Furio Honsell, Martin Hyland, Johan de longh, Bart Jacobs,
Hidetaka Kondoh, Giuseppe Longo, Sophie Malecki, Gregory Mints, Al-
bert Meyer, Reinhard Muskens, Mark-Jan Nederhof, Rob Nederpelt, Andy
Pitts, Randy Pollack, Andre Scedrov, Richard Statman, Marco Swaen, Jan
Terlouw, Hans Tonino, Yoshihito Toyama, Anne Troelstra and Roel de Vri-
jer.

Financial support came from several sources. First of all Ozford Uni-
versity Press gave the necessary momentum to write this chapter. The
Research Institute for Declarative Systems at the Department of Computer
Science of the Catholic University Niymegen provided the daily environ-
ment where I had many discussions with my colleagues and Ph.D. stu-
dents. The EC Stimulation Project ST2J-0374-C (EDB) lambda calcul typé

4 H.P. Barendregt

helped me to meet many of the persons mentioned above, notably Berardi
and Dezani-Ciancaglini. Nippon Telephon and Telegraph (NTT) made it
possible to meet Fujita and Toyama. The most essential support came from
Philips Research Laboratories Eindhoven where I had extensive discussions
with van Benthem Jutting leading to the definition of the A-cube.

Finally I would thank Mari€lle van der Zandt and Jane Spurr for typing
and editing the never ending manuscript and Wil Dekkers for proofreading
and suggesting improvements. Erik Barendsen was my guru for TgX. Use
has been made of the macros of Paul Taylor for commutative diagrams and
prooftrees. Erik Barendsen, Wil Dekkers and Herman Geuvers helped me
with the production of the final manuscript.

Nijmegen, December 20, 1991 Henk Barendregt

1 Introduction

The lambda calculus was originally conceived by Church (1932;1933) as
part of a general theory of functions and logic, intended as a foundation
for mathematics. Although the full system turned out to be inconsistent,
as shown in Kleene and Rosser(1936), the subsystem dealing with func-
tions only became a successful model for the computable functions. This
system is called now the lambda calculus. Books on this subject e.g. are
Church(1941), Curry and Feys (1988), Curry et al.(1958; 1972), Barendregt
[1984), Hindley and Seldin(1986) and Krivine(1990).

In Kleene and Rosser (1936) it is proved that all recursive functions can
be represented in the lambda calculus. On the other hand, in Turing(1937)
it is shown that exactly the functions computable by a Turing machine can
be represented in the lambda calculus. Representing computable functions
as A-terms, i.e. as expressions in the lambda calculus, gives rise to so-called
functional programming. See Barendregt(1990) for an introduction and
references.

The lambda calculus, as treated in the references cited above, is usu-
ally referred to as a type-free theory. This is so, because every expression
(considered as a function) may be applied to every other expression (con-
sidered as an argument). For example, the identity function | = Az.z may
be applied to any argument z to give as result that same z. In particular
| may be applied to itself.

There are also typed versions of the lambda calculus. These are intro-
duced essentially in Curry (1934) (for the so-called combinatory logic, a

Lambda Calculi with Types 5

variant of the lambda calculus) and in Church (1940). Types are usually
objects of a syntactic nature and may be assigned to lambda terms. If M
is such a term and, a type A is assigned to M, then we say ‘M has type
A’ or ‘M in A’; the notation used for this is M : A. For example in most
systems with types one has | : (A—A), that is, the identity | may get as
type A—A. This means that if being an argument of | is of type A, then
also the value lz is of type A. In general A—B is the type of functions
from A to B.

Although the analogy is not perfect, the type assigned to a term may be
compared to the dimension of a physical entity. These dimensions prevent
us from wrong operations like adding 3 volts to 2 ampéres. In a similar
way types assigned to lambda terms provide a partial specification of the
algorithms that are represented and are useful for showing partial correct-
ness.

Types may also be used to improve the efficiency of compilation of
terms representing functional algorithms. If for example it is known (by
looking at types) that a subexpression of a term (representing a functional
program) is purely arithmetical, then fast evaluation is possible. This is
because the expression then can be executed by the ALU of the machine
and not in the slower way in which symbolic expressions are evaluated in
general.

The two original papers of Curry and Church introducing typed versions
of the lambda calculus give rise to two different families of systems. In the
typed lambda calculi @ la Curry terms are those of the type-free theory.
Each term has a set of possible types. This set may be empty, be a singleton
or consist of several (possibly infinitely many) elements. In the systems d
{a Church the terms are annotated versions of the type-free terms. Each
term has a type that is usually unique (up to an equivalence relation) and
that is derivable from the way the term is annotated.

The Curry and Church approaches to typed lambda calculus correspond
to two paradigms in programming. In the first of these a program may be
written without typing at all. Then a compiler should check whether a
type can be assigned to the program. This will be the case if the program
is correct. A well-known example of such a language is ML, see Milner
(1984). The style of typing is called ‘implicit typing’. The other paradigm
in programming is called ‘explicit typing’ and corresponds to the Church
version of typed lambda calculi. Here a program should be written together
with its type. For these languages type-checking is usually easier, since no
types have to be constructed. Examples of such languages are ALGOL
68 and PASCAL. Some authors designate the Curry systems as ‘lambda
calculi with type assignment’ and the Church systems as ‘systems of typed
lambda calculus’.

Within each of the two paradigms there are several versions of typed
lambda calculus. In many important systems, especially those ¢ la Church,

6 H.P. Barendregt

it is the case that terms that do have a type always possess a normal
form. By the unsolvability of the halting problem this implies that not all
computable functions can be represented by a typed term, see Barendregt
(1990), theorem 4.2.15. This is not so bad as it sounds, because in order
to find such computable functions that cannot be represented, one has to
stand on one’s head. For example in A2, the second-order typed lambda
calculus, only those partial recursive functions cannot be represented that
happen to be total, but not provably so in mathematical analysis (second-
order arithmetic).

Considering terms and types as programs and their specifications is not
the only possibility. A type A can also be viewed as a proposition and a
term M in A as a proof of this proposition. This so-called propositions-as-
types interpretation is independently due to de Bruijn (1970) and Howard
(1980) (both papers were conceived in 1968). Hints in this direction were
given in Curry and Feys (1958) and in Lauchli (1970). Several systems of
proof checking are based on this interpretation of propositions-as-types and
of proofs-as-terms. See e.g. de Bruijn (1980) for a survey of the so-called
AUTOMATH proof checking system. Normalization of terms corresponds
in the formulas-as-types interpretation to normalisation of proofs in the
sense of Prawitz (1965). Normal proofs often give useful proof theoretic
information, see e.g. Schwichtenberg (1977). In this chapter several typed
lambda calculi will be introduced, both a la Curry and a la Church. Since
in the last two decades several dozens of systems have appeared, we will
make a selection guided by the following methodology.

Only the simplest versions of a system will be consid-
ered. That is, only with (-reduction, but not with e.g.
n-reduction. The Church systems will have types built up
using only — and Il, not using e.g. x or Y. The Curry
systems will have types built up using only —, N and p.

(For this reason we will not consider systems of constructive type theory
as developed e.g. in Martin-Lof (1984), since in these theories ¥ plays an
essential role.) Tt will be seen that there are already many interesting
systems in this simple form. Understanding these will be helpful for the
understanding of more complicated systems. No semantics of the typed
lambda calculi will be given in this chapter. The reason is that, especially
for the Church systems, the notion of model is still subject to intensive
investigation. Lambek and Scott (1986) and Mitchell (1990), a chapter
on typed lambda calculus in another handbook, do treat semantics but
only for one of the systems given in the present chapter. For the Church
systems several proposals for notions of semantics have been proposed.
These have been neatly unified using fibred categories in Jacobs (1991). See

Lambda Calculi with Types 7

also Pavlovi¢ (1990). For the semantics of the Curry systems see Hindley
(1982), (1983) and Coppo (1985). A later volume of this handbook will
contain a chapter on the semantics of typed lambda calculi.

Barendregt and Hemerik (1990) and Barendregt (1991) are introductory
versions of this chapter. Books including material on typed lambda calculus
are Girard et al. (1989) (treats among other things semantics of the Church
version of A2), Hindley and Seldin (1986) (Curry and Church versions of
A—), Krivine (1990) (Curry versions of A2 and AN), Lambek and Scott
(1986) (categorical semantics of A—) and the forthcoming Barendregt and
Dekkers (199-) and Nerode and Odifreddi (199-).

Section 2 of this chapter is an introduction to type-free lambda-calculus
and may be skipped if the reader is familiar with this subject. Section 3
explains in more detail the Curry and Church approach to lambda calculi
with types. Section 4 is about the Curry systems and Section 5 is about
the Church systems. These two sections can be read independently of each
other.

2 Type-free lambda calculus

The introduction of the type-free lambda calculus is necessary in order to
define the system of Curry type assignment on top of it. Moreover, al-
though the Church style typed lambda calculi can be introduced directly,
it is nevertheless useful to have some knowledge of the type-free lambda
calculus. Therefore this section is devoted to this theory. For more infor-
mation see Hindley and Seldin [1986] or Barendregt [1984].

2.1 The system

In this chapter the type-free lambda calculus will be called ‘A-calculus’ or
simply A. We start with an informal description.

Application and abstraction

The A-calculus has two basic operations. The first one is application. The
expression

FA

(usually written as F'A) denotes the data F' considered as algorithm applied
to A considered as input. The theory A is type-free: it is allowed to consider
expressions like F'F', that is, F' applied to itself. This will be useful to
simulate recursion.

The other basic operation is abstraction. If M = M[z] is an expression
containing (‘depending on’) #, then Az.M[z] denotes the intuitive map

8 H.P. Barendregt
v Ma),

i.e. to z one assigns M[z]. The variable # does not need to occur actually
in M. In that case Az.M|[z] is a constant function with value M.

Application and abstraction work together in the following intuitive
formula:

Az.z?+1)3=32+1 (= 10).

That is, (Az.z? + 1)3 denotes the function — z? + 1 applied to the
argument 3 giving 3% + 1 (which is 10). In general we have

(Az.M[z])N = M[N].
This last equation is preferably written as
(Axz.M)N = Mz := NJ, (8

where [z := N] denotes substitution of N for z. This equation is called
(G-conversion. It is remarkable that although it is the only essential axiom
of the A-calculus, the resulting theory is rather involved.

Free and bound variables

Abstraction is said to bind the free variable x in M. For example, we say
that Az.yz has « as bound and y as free variable. Substitution [z := N] is
only performed in the free occurrences of x:

yz(Az.z)[x .= N] = yN(Az.z).

In integral calculus there is a similar variable binding. In fab f(z,y)dz the
variable z is bound and y is free. It does not make sense to substitute 7 for
z, obtaining fba (7, y)d7; but substitution for y does make sense, obtaining
fba flz, de.

For reasons of hygiene it will always be assumed that the bound vari-
ables that occur in a certain expression are different from the free ones.
This can be fulfilled by renaming bound variables. For example, Az.z be-
comes Ay.y. Indeed, these expressions act the same way:

(Az.z)a =a = (Ay.y)a
and in fact they denote the same intended algorithm. Therefore expressions

that differ only in the names of bound variables are identified. Equations
like Az.z = Ay.y are usually called a-conversion.

Lambda Calculi with Types 9

Functions of several arguments

Functions of several arguments can be obtained by iteration of application.
The idea is due to Schonfinkel (1924) but is often called ‘currying’, after
H.B. Curry who introduced it independently. Intuitively, if f(z, y) depends
on two arguments, one can define

Fe = dy.f(z,y)
F = Az F;.
Then
(Fa)y = Fpy = f(z,y). (1)

This last equation shows that it is convenient to use assoctation to the left
for iterated application:

FM ... M, denotes (..((FMy)Ms)...M,).
The equation (1) then becomes
Fry = f(z,y).
Dually, iterated abstraction uses association to the right:
Azy - xn. f(x1,. .., 2,) denotes Azy.(Aza.(...(Azn. f(z1,...,20))..)).
Then we have for F' defined above
F = ey .f(z,y)

and (1) becomes
(Azy.f(z,y))zy = f(=,y).
For n arguments we have

(Azy.coxn flor,. . zp))2r .o = f21, ..., 20),

by using (5) n times. This last equation becomes in convenient vector
notation

(AZ.f(D)Z = f(Z);
more generally one has

(AES(@)N = f(N).

Now we give the formal description of the A-calculus.

10 H.P. Barendregt

Definition 2.1.1. The set of A-terms, notation A, is built up from an
infinite set of variables V' = {v, v, v"”, ...} using application and (function)
abstraction:

eV = z €A,

M,NeA = (MN)eA,

MeAzeV = (AxM)eA.

Using abstract syntax one may write the following.
Vi=o |V
A==V | (AA) | (AVA)

Example 2.1.2. The following are A-terms:

Convention 2.1.3.

1. @,y,z,...denote arbitrary variables;
M,N,L,...denote arbitrary A-terms.

2. As already mentioned informally, the following abbreviations are used:
FM; ... M, stands for (..((FM1)Ms)...Mp,)

and

Azy - xn. M stands for (Azq(Aza(. .. (Az,(M)).)).

3. Outermost parentheses are not written.

Using this convention, the examples in 2.1.2 now may be written as follows:
ryxz; Ar.wz;
(Az.zz)y;
(Ay.(Az.z2)y)w.

Note that Az.yx is (Az(yz)) and not ((Azy)z).

Lambda Calculi with Types 11

Notation 2.1.4. M = N denotes that M and N are the same term or can
be obtained from each other by renaming bound variables. For example,
Az.z)z = (Az.x)z;
Az.x)z = (Ayy)z
(Az.x)z £ (Ar.y)z.

Definition 2.1.5.

1. The set of free variables of M, (notation F'V(M)), is defined induc-
tively as follows:

FV(z) = {z}
FV(MN) = FV(M)UFV(N);
FV(z.M) = FV(M)-{z}.

2. M is a closed A-term (or combinator) if FV(M) = 0. The set of
closed A-terms is denoted by A°.

3. The result of substitution of N for (the free occurrences of) z in M,
notation M [z := NJ, is defined as follows: Below z # y.

z[z:=N] = N;
yle:=N] = y;

(PQ)z:=N] = (Plz:= N])(Q[z:= NJ);
(Ay.P)[z:=N] = Ay.(Plx := NJ), provided y # =;
(Az.P)[x :=N] = (Mz.P).

In the A-term
y(Azy.zyz)

y and z occur as free variables; x and y occur as bound variables. The
term Azy.zxy is closed.

Names of bound variables will be always chosen such that they differ
from the free ones in a term. So one writes y(Azy .zy'z) for y(Azy.xyz).
This so-called ‘variable convention’ makes it possible to use substitution
for the A-calculus without a proviso on free and bound variables.

Proposition 2.1.6 (Substitution lemma). Let M, N, L € A. Suppose
z#yandx¢ FV(L). Then

Mz := N]ly:= L] = M[y := L][x := Ny := L]].

Proof. By induction on the structure of M. R [|

Now we introduce the A-calculus as a formal theory of equations between
A-terms.

12 H.P. Barendregt

Definition 2.1.7.

1. The principal axiom scheme of the A-calculus is
(Az.M)N = M[z := N] (8)

for all M, N € A. This is called 3-conversion.

2. There are also the ‘logical’ axioms and rules:

M= M,;
M=N = N=M;
M=NN=L = M=L;
M=M = MZ=MZ
M=M = ZM=Z2ZM,
M=M = lx.M=X.M. €3]

3. If M = N is provable in the A-calculus, then we write A\F M = N or
sometimes just M = N.

Remarks 2.1.8.

1. We have identified terms that differ only in the names of bound vari-
ables. An alternative is to add to the A-calculus the following axiom
scheme of a-conversion.

Az M = dy.M[z =y, (@)

provided that y does not occur in M. The axiom (§) above was
originally the second axiom; hence its name. We prefer our version of
the theory in which the identifications are made on a syntactic level.
These identifications are done in our mind and not on paper.

2. Even if initially terms are written according to the variable conven-
tion, a-conversion (or its alternative) is necessary when rewriting
terms. Consider e.g. w = Az.zz and 1 = Ayz.yz. Then

wl = (Az.ax)(Ayz.yz)
= (Ayz.yz)(Ayz.yz)
= dz.(Ayz.yz)z
= dz.(Ayy)z

Lambda Calculi with Types 13

= Adzz'.zd
= Ayz.yz
= 1
3. For implementations of the A-calculus the machine has to deal with
this so called a-conversion. A good way of doing this is provided by
the ‘name-free notation’ of N.G. de Bruijn, see Barendregt (1984),

Appendix C. In this notation Az(Ay.zy) is denoted by A(A21), the 2
denoting a variable bound ‘two lambdas above’.

The following result provides one way to represent recursion in the A-
calculus.

Theorem 2.1.9 (Fixed point theorem).

1. VFAXFX = X.
(This means that for all FEA there is an X €A such that A\ F FFX = X.)

2. There is a fixed point combinator
Y = Mf.(Az.f(zz))(Az f(zz))
such that
VF F(YF)=YF.
Proof. 1. Define W = Az.F(zxz) and X = WW. Then
X =WW = (Ae.Fzz))W = F(WW) = FX.

2. By the proof of (1). Note that
YF = Az Fzz))(Az . Fzz)=X. 1
| |

Corollary 2.1.10. Given a term C = C|[f, z] possibly containing the dis-
played free variables, then

IFYX FX = C[F, X].
Here C[F, X] is of course the substitution result C[f := F|[z := X].

Proof. Indeed, we can construct F' by supposing it has the required prop-
erty and calculating back:

VX FX = C[FX]
= Fe = C[F,z]
= F = Xz.C[F]
= F = (Afz.Clf,2])F
= F = YAfz.Clf,z]).m

This also holds for more arguments: 3FVZ F& = C[F, &].

14 H.P. Barendregt

As an application, terms F' and G can be constructed such that for all
terms X and Y

FX = XF,
GXY = YG(YXG).

2.2 Lambda definability

In the lambda calculus one can define numerals and represent numeric
functions on them.

Definition 2.2.1.

1. F"(M) with n € N (the set of natural numbers) and F, M € A, is
defined inductively as follows:

FY (M) = M;
FHY M) = F(F™(M)).
2. The Church numerals cg, ¢y, ca, ... are defined by

cn = Afa.fr ().

Proposition 2.2.2 (J. B. Rosser). Define

Ay = Azypq.ap(ypg);
Ao = Jdzyz.a(yz);
Acep = Azy.yz.

Then one has for all n,m € N

1. Afcpcm = Cngm.
2. AvCnCm = Cpom.-

3. AcepCnCm = C(nm), except for m = 0 (Rosser starts at 1).

Proof. We need the following lemma.

Lambda Calculi with Types 15

Lemma 2.2.3.
1. (enz)™(y) = 2™ (y);
2. (cn)"(x) = cnmy(x), for m > 0.

Proof. 1. By induction on m. If m = 0, then LHS = y = RHS. Assume
(1) is correct for m (Induction Hypothesis: TH). Then

(caz) ™! (1) en((ca2)" (1)
ena (2" (1))
2@ ()

xn*(m+1)(y).

[l
—
s

2. By induction on m > 0. If m = 1, then LHS = ¢,z = RHS. If (2) is
correct for m, then
cpti(z) = enle](2))
—=IH Cn(c(nm)(m)
= /\y.(c%m)(x))”(y)
=) Ayx"™ (y)
= Cnm+1)Z. ||

||
Now the proof of the proposition.
1. By induction on m.
2. Use the lemma (1).
3. By the lemma (2) we have for m >0
AcrpCnCm = €ty = Ax.¢," (T) = AZ.C(ym)T = C(nm),
since Ae. Mz =M if M = Ay.M'[y] and z ¢ FV(M). Indeed,
Az. Mz = dz.(Ay-M'[y)z
= Az.M'[z]
= Ay.M'[y]
M.
||

We have seen that the functions plus, times and exponentiation on N
can be represented in the A-calculus using Church’s numerals. We will show
that all computable (recursive) functions can be represented.

16 H.P. Barendregt

Boolean truth values and a conditional can be represented in the A-
calculus.

Definition 2.2.4 (Booleans, conditional).
1. true = Azy.z, false = Azy.y.
2. If B is a Boolean, i.e. a term that is either true, or false, then
if B then P else)
can be represented by BP(Q@. Indeed, trueP(@ = P and falsePQ =
Q.
Definition 2.2.5 (Pairing). For M, N € A write
[M,N]=Az.zMN.

Then
[M,N]true= M

[M, N]false = N

and hence [M, N] can serve as an ordered pair.

Definition 2.2.6.

1. A numeric function is a map f : NP —N for some p.

2. A numeric function f with p arguments is called A-definable if one
has for some combinator ¥

Fep,.ooen, = Ct(ni,...,np) (1)

for all ny,...,n, € N. If (1) holds, then f is said to be A-defined by
F.

Definition 2.2.7.
1. The initial functions are the numeric functions U?, ST, Z defined by:

Ui(zy,...,x,) = z;, 1<i<wr
St(n) = n+1;
Z(n) = 0.

2. Let P(n) be a numeric relation. As usual
um.P(m)
denotes the least number m such that P(m) holds if there is such a

number; otherwise it is undefined.

As we know from Chapter 2 in this handbook, the class R of recur-
sive functions is the smallest class of numeric functions that contains all

Lambda Calculi with Types 17

initial functions and is closed under composition, primitive recursion and
minimalization. So R is an inductively defined class. The proof that all re-
cursive functions are A-definable is by a corresponding induction argument.
The result is originally due to Kleene (1936).

Lemma 2.2.8. The initial functions are A-definable.

Proof. Take as defining terms

U = A Xp.Ei;
Si = Azyzy(zyz) (= Apcr);
VA = Az.cg. l

Lemma 2.2.9. The A-definable functions are closed under composition.

Proof. Let g, hy, ..., hy, be A-defined by G, Hy, . . ., Hy, respectively. Then

is A-defined by

Lemma 2.2.10. The A-definable functions are closed under primitive re-
CUTSION.

Proof. Let f be defined by

f(0,7) = g(n)
f(k + 1:ﬁ) = h(f(k:ﬁ):k:ﬁ)

where g, h are A-defined by G, H respectively. We have to show that f is A-
definable. For notational simplicity we assume that there are no parameters
7l (hence G' = c;(gy.) The proof for general 7 is similar.

If £ is not an argument of A, then we have the scheme of iteration.
Iteration can be represented easily in the A-calculus, because the Church
numerals are iterators. The construction of the representation of f is done

18 H.P. Barendregt

in two steps. First primitive recursion is reduced to iteration using ordered
pairs; then iteration is represented. Here are the details. Consider

T = Ap.[ST (ptrue), H(pfalse)(ptrue)].
Then for all k& one has
T([ek, erar])

[fSte, Hegpyer]
[Crt1, Cf(k+1)]~

By induction on k it follows that

[ek, crr)] = Tt [co, ¢p(0)]-

Therefore
cpxy = cx1'co, cp(0)] false,

and f can be A-defined by
F = Xe.kT[co, G] false. B
||

Lemma 2.2.11. The A-definable functions are closed under minimaliza-
tion.

Proof. Let f be defined by f(7@) = pm[g(@i, m) = 0], where @ = ny,...,ng
and g is A-defined by G. We have to show that f is A-definable. Define

zero = An.n(true false)true.

Then
Zero ¢y = true,

zero cp41 = false.

By Corollary 2.1.10 there is a term H such that
Hity = if (zero(Giiy)) then y else Hii(S1y).
Set F' = Ari.HZc0. Then F' A-defines f:

Fez = Hejeg
= c¢g, if Gezeg = cg,
= Hczep else;
= ¢, if Gezeq = cg,
= Hcjes else;
= Cg, if ...
Here ¢z stands for ¢y, ...Cp,. W | |

Theorem 2.2.12. All recursive functions are A-definable.

Lambda Calculi with Types 19
Proof. By 2.2.8-2.2.11.m [|

The converse also holds. The idea is that if a function is A-definable,
then its graph is recursively enumerable because equations derivable in the
A-calculus can be enumerated. It then follows that the function is recur-
sive. So for numeric functions we have f is recursive iff f is A-definable.
Moreover also for partial functions a notion of A-definability exists and one
has 1 is partial recursive iff ¢ is A-definable. The notions A-definable and
recursive both are intended to be formalizations of the intuitive concept of
computability. Another formalization was proposed by Turing in the form
of Turing computable. The equivalence of the notions recursive, A-definable
and Turing computable (for the latter see besides the original Turing, 1937,
e.g., Davis 1958) Davis provides some evidence for the Church-Turing the-
sis that states that ‘recursive’ is the proper formalization of the intuitive
notion ‘computable’.

We end this subsection with some undecidability results. First we

need the coding of A-terms. Remember that the collection of variables
is {v, v/, 0", ..}

Definition 2.2.13.
1. Notation. v(?) = v; v(?*+1) = y(n)7,

2. Let (,) be a recursive coding of pairs of natural numbers as a natural
number. Define

1) = {0,n);
HMN) = (2,(8(M),4(N));
1Ae. M) = (3,(8(z),4(M))).

3. Notation

Definition 2.2.14. Let A C A.

1. A is closed under = 1f

McA DFM=N = NcA.

2. A is non-trivial if A # 0 and A # A.
3. A is recursive if 4 = {{M | M € A} is recursive.

The following result due to Scott is quite useful for proving undecidability
results.

20 H.P. Barendregt

Theorem 2.2.15. Let A C A be non-trivial and closed under =. Then A
15 not recursive.

Proof. (J. Terlouw) Define
B={M|M"M"c A}.

Suppose A is recursive; then by the effectiveness of the coding also B is
recursive (indeed, n € {8 < (2, (n,fc,)) € §4). It follows that there is an
F € A° with

MeB & F"M™"=cg;

M¢B & F'M'=c.
Let Mo e A, My ¢ A. We can find a G € A such that

MeB & G"M'=M ¢A,
M¢B < G M'=M€A.

[Take Gz = if zero(Fxz) then M, else My, with zero defined in the proof
of 2.2.11.] In particular

GeB & G G¢A opgs GEB,
GgB & G'G'eAd opg GeB,

a contradiction. B [|

The following application shows that the lambda calculus is not a de-
cidable theory.

Corollary 2.2.16 (Church). The set
{M | M = true}
is not recursive.

Proof. Note that the set is closed under = and is nontrivial. & [|
2.3 Reduction

There is a certain asymmetry in the basic scheme (). The statement
(Az.z? + 1)3 =10

can be interpreted as ‘10 is the result of computing (Az.z% + 1)3’, but not
vice versa. This computational aspect will be expressed by writing

(Az.2® +1)3 — 10

which reads ‘(Az.z? + 1)3 reduces to 10’.

Lambda Calculi with Types 21

Apart from this conceptual aspect, reduction is also useful for an ana-
lysis of convertibility. The Church—Rosser theorem says that if two terms
are convertible, then there is a term to which they both reduce. In many
cases the inconvertibility of two terms can be proved by showing that they
do not reduce to a common term.

Definition 2.3.1.

1. A binary relation R on A is called compatible (w.r.t. operations) if

MRN = (ZM)R(ZN),
(MZ)R(NZ), and
(Az.M) R (Az.N).

2. A congruence relation on A is a compatible equivalence relation.

3. A reduction relation on A is a compatible, reflexive and transitive
relation.

Definition 2.3.2. The binary relations —3,—s and =g on A are defined
inductively as follows:

1. (a) (Ax.M)N —p M[z:= NJ;

(a)
(b) M =3 N = ZM —3 ZN, MZ —5 NZ and Ax.M —p Az.N.
2. (a) M —5 M,
(b)M—qu = M—»ﬁN
) M =3 NN =3 L = M-—glL.
14 B B
3. (a)M—»@N = MIﬁN;
(b) @N = N:ﬁM;
(C) @N,N:ﬁL = M:@L.

These relations are pronounced as follows:

M —g N : M B-reduces to N;
M —g N : M pB-reduces to N in one step;
M= N : M is -convertible to N.

By definition —4 is compatible. The relation —4 is the reflexive transitive
closure of —g and therefore a reduction relation. The relation =5 is a
congruence relation.

22 H.P. Barendregt
Proposition 2.3.3. M =3 N & AFM =N.

Proof. (<) By induction on the generation of . (=) By induction one
shows

M—sN = AFM=N,
M—3s N = AFM=N,
M=N = ArM=N.m

Definition 2.3.4.

1. A p-redez is a term of the form (Az.M)N. In this case M[z := N]is
its contractum.

2. A Mterm M is a f-normal form (f-nf) if it does not have a F-redex
as subexpression.

3. A term M has a f-normal formif M =g N and N is a §-nf, for some
N.

Example 2.3.5. (Az.zz)y is not a f-nf, but has as f-nf the term yy.

An immediate property of nf’s is the following.

Lemma 2.3.6. Let M, M' N,LcA.
1. Suppose M is a 3-nf. Then

M—s N = N=M.

2. If M —3 M', then M[z:= N]| —g M'[z := N].

Proof. 1. If M is a B-nf, then M does not contain a redex. Hence never
M —g N. Therefore if M —5 IV, then this must be because M = N.

2. By induction on the generation of —;. B

Lambda Calculi with Types 23
||

Theorem 2.3.7 (Church—Rosser theorem). If M —3 N1, M —5 No,
then for some N3 one has N1 —g N3 and No —5 N3; in diagram

M

Ny No

The proof is postponed until 2.3.17.

Corollary 2.3.8. If M =g N, then there is an L such that M —5 L and
N —»g L.

Proof. Induction on the generation of =4.

Case 1. M =g N because M —g N. Take L = N.

Case 2. M =3 N because N =g M. By the IH there is a common
B-reduct L1 of N, M. Take L = L.

Case 3. M =3 N because M =g N', N’ =3 N. Then

M N’ N
\\(IH)’/ \fIHV
Ly . CR .Lz

Corollary 2.3.9.

1. If M has N as (3-nf, then M —p5 N.

2. A A-term has at most one 3-nf.

24 H.P. Barendregt

Proof. 1. Suppose M =g N with N in 8-nf. By corollary 2.3.8 one has
M —g L and N —3 L for some L. But then N = L, by Lemma
2.3.6,s0 M —5 N.

2. Suppose M has f-nf’s Ny, No. Then N1 =3 Ny (=g M). By Corol-
lary 2.3.8 one has Ny —3 L, Ny —3 L for some L. But then
Ny =L = N3 by Lemma 2.3.6(1). ®

| |

Some consequences.

1. The A-calculus is consistent, i.e. A I/ true = false. Otherwise true
=g false by Proposition 2.3.3, which is impossible by Corollary 2.3.8
since true and false are distinct G-nf’s. This is a syntactical consis-
tency proof.

2. Q = (Az.zx)(Az.zz) has no fnf. Otherwise @ —5 N with N in
G-nf. But Q only reduces to itself and is not in 3-nf.

3. In order to find the f-nf of a term, the various subexpressions of
it may be reduced in different orders. If a G-nf is found, then by
Corollary 2.3.9 (2) it is unique. Moreover, one cannot go wrong:
every reduction of a term can be continued to the g-nf of that term
(if it exists). See also Theorem 2.3.20.

Proof of the Church—Rosser theorem

This occupies 2.3.10 - 2.3.17. The idea of the proof is as follows. In order
to prove the theorem, it is sufficient to show the following strip lemma:

M

e

Ny B

In order to prove this lemma, let M —5 N; be a one step reduction
resulting from changing a redex R in M in its contractum R’ in Ny. If
one makes a bookkeeping of what happens with R during the reduction
M — Ny, then by reducing all ‘residuals’ of R in Ny the term N3 can be
found. In order to do the necessary bookkeeping an extended set A D A

Lambda Calculi with Types 25

and reduction 3 is introduced. The underlining is used in a way similar to
‘radioactive tracing isotopes’ in experimental biology.

Definition 2.3.10 (Underlining).

1. A is the set of terms defined inductively as follows:

eV = z€EA
M,NeA = (MN)eA;
MeAzeV = (AaM)eA;
M NeAzeV = ((Az.M)N)eA.

2. Underlined (one step) reduction (—g and) —p are defined starting
with the contraction rules a a

(Axz.M)N—M[z := N,

(Az. M)N—M[z := N].

Then — is extended to the compatible relation —4 (also w.r.t. A-
abstraction) and — 4 is the transitive reflexive closure of —g.

3. If M € A, then |M|€A is obtained from M by leaving out all under-
linings. For example, |(Az.2)((Az.z)(Az.z))| = I(I).

4. Substitution for A is defined by adding to the schemes in definition
2.1.5(3) the following:

(Az.M)N)[y := L] = (Az.M[y := L))(N[y := L]).

Definition 2.3.11. A map ¢:A—A is defined inductively as follows:

plz) =
@(AﬁN) = o(M)p(N), if M,N € A;
e(Ae. M % Az.p(M);

)
P(Ar.MN) = @(M)[z = p(N)].

In other words, the map ¢ contracts all redexes that are underlined, from
the inside to the outside.

Notation 2.3.12. If M| = N or (M) = N, then this will be denoted
by respectively

26 H.P. Barendregt

M —Nor M ——N.

[i
Lemma 2.3.13.
M o - N’
Y
N | | M',N"€A,
M,N €A.
M N
B

Proof. First suppose M —5 N. Then N is obtained by contracting a redex
in M and N’ can be obtained by contracting the corresponding redex in
M'. The general statement follows by transitivity. B [|

Lemma 2.3.14. Let M, M’ , N, L€ A . Then

1. Suppose x Zy and v ¢ FV(L). Then

2.
(M[a := N)) = p(M)[z := p(N)]
3.
M N
5
14 ¥ M,NeA
SD(M) s <p(N)
B

Proof. 1. By induction on the structure of M.

2. By induction on the structure of M, using (1) in case M = (Ay.P)Q.
The condition of (1) may be assumed to hold by our convention about
free variables.

3. By induction on the generation of — 5 , using (2). B

Lambda Calculi with Types 27

||
Lemma 2.3.15.
M
N ® MeA,
N,L eA.
N e -
g
Proof. By induction on the structure of M. ® [|

Lemma 2.3.16 (Strip lemma).

M
y
Ny
B

M,Nl,Nz,Ng,EA.

No

Proof. Let N; be the result of contracting the redex occurrence R =
(Az.P)Q in M. Let M’ € A be obtained from M by replacing R by R' =
(Az.P)Q. Then |M'| = M and ¢(M') = N;. By Lemmas 2.3.12, 2.3.13

and 2.3.14 we can construct the following diagram which proves the strip

lemma.
M
g \
M

Ny

28 H.P. Barendregt
||

Theorem 2.3.17 (Church-Rosser theorem). If M —3 N1, M —5 No,
then for some N3 one has N; —3 N3 and Ny —3 N3.

Proof. If M —3 Ny, then M = My —g My —g ... M, = N;. Hence the
CR property follows from the strip lemma and a simple diagram chase:

M
Ml/
L]
L[]
Nl/
' “ 2
L]
“ 2
L[]
o
L[]
“ *
. |]
[|
Normalization

Definition 2.3.18. For M €A the reduction graph of M, notation Gg(M),
is the directed multigraph with vertices {N | M —3 N} and directed by
—g. We have a multigraph because contractions of different redexes are
considered as different edges.

Example 2.3.19. Gp(l(la)) is

)
I(Ia) .
| V)

a or simply .

|

a *

Lambda Calculi with Types 29

A lambda term M is called strongly normalizing iff all reduction se-
quences starting with M terminate (or equivalently iff Gg(M) is finite).
There are terms that do have an nf, but are not strongly normalizing be-
cause they have an infinite reduction graph. Indeed, let Q = (Az.zz)(Az.zz).
Then

Q—pQ—pQ—pQ—p....

Now KIQ =3 I, but the left hand side also has an infinite reduction graph.
Therefore a so-called strategy is necessary in order to find normal forms.
We state the following theorem due to Curry; for a proof see Barendregt

(1984), theorem 13.2.2.

Theorem 2.3.20 (Normalization theorem). If M has a normal form,
then iterated contraction of the leftmost redex (i.e. with its main lambda
leftmost) leads to that normal form.

In other words: the leftmost reduction strategy is normalizing.

The functional language (pure) LIsP uses an eager or applicative eval-
uation strategy, i.e. whenever an expression of the form FA has to be
evaluated, A is reduced to normal form first, before ‘calling’ F'. In the A-
calculus this strategy is not normalizing as is shown by the two reduction
paths for KIQ above. There is, however, a variant of the lambda calculus,
called the Al-calculus, in which the eager evaluation strategy is normalizing.
See Barendregt [1984], Ch 9, and §11.3. In this Al-calculus terms like K|
‘throwing away’ Q in the reduction KIQ — I, do not exist. The ’ordinary’
A-calculus is sometimes referred to as AK-calculus.

In several lambda calculi with types one has that typable terms are
strongly normalizing, see subsections 4.3 and 5.3.

Bohm trees and approximation

We end this subsection on reduction by introducing Bohm trees, a kind of
‘infinite normal form’.

Lemma 2.3.21. Each M € A is either of the following two forms.

1. M =Xey...zy.yNy ... Ny, with n,m > 0, and y a variable.
2. M =Xxy...20.(Ay.No)N1 ... Ny, with n > 0,m > 1.

Proof. By definition a A-term is either a variable, or of the form PQ (an
application) or Az.P (an abstraction).

If M is a variable, then M is of the form (1) with n = m = 0.

If M is an application, then M = PyP; ... P, with Py not an applica-
tion. Then M is of the form (1) or (2) with n = 0, depending on whether
Py is a variable (giving (1)) or an abstraction (giving (2)).

30 H.P. Barendregt

If M is an abstraction, then a similar argument shows that M is of the
right form. B [|

Definition 2.3.22.

1. A Aterm M is a head normal form (hnf) if M is of the form (1) in
Lemma 2.3.21. In that case y is called the head variable of M.

2. M has an hnf if M =5 N for some N that is an hnf.

3. If M is of the form (2) in 2.3.21, then (Ay.Ng)N; is called the head
redez of M.

Lemma 2.3.23. If M =3 M’ and
M has hnf M1 = Axq-- -2, yNy ... Npy,
M’ has hnf M{ = Azy -z .y N{ ... N/,

thenn=n',y=y ,m=m' and Ny =g N{,..., Ny, =3 N/ ..

Proof. By the corollary to the Church-Rosser theorem 2.3.8 M; and M
have a common reduct L. But then the only possibility is that

L=Az;-- ~:L‘nu.y”N{' .. .NT’,;,,
with
n=n'"=n,y=y' =y, m=m"=m'and Ny =5 N{' =5 N{,... . ®

The following definitions give the flavour of the notion of Bohm tree.
The definitions are not completely correct, because there should be an or-
dering in the direct successors of a node. However, this ordering is displayed
in the drawings of the trees. For a precise definition, covering this order,

see Barendregt (1984), Ch.10.

Definition 2.3.24.

1. A tree has the form depicted in the following figure.

Lambda Calculi with Types 31

o/.\o
o/ \o

®
That is, a tree is a partially ordered set such that

(a) there is a root;
(b) each node (point) has finitely many direct successors;

(c) the set of predecessors of a node is finite and is linearly ordered.
2. A labeled tree is a tree with symbols at some of its nodes.

Definition 2.3.25. Let M € A. The Bohm tree of M, notation BT(M),
1s the labeled tree defined as follows:

BT(M) = Axq - -y, if M has as hnf

Y)
\ Axy-2q yNy ... Ny
... BT(Np)

if M has no hnf.

BT(Ny)
= 1

bl

Example 2.3.26.

1.
BT(Aabc.ac(bc)) = Aabe.a

SN\

BT((Azx.zx)(Az.zx)) = L.

32 H.P. Barendregt
BT(YY) =Af. f

|

f

|

This is because Y = Af.wsws with wy = Az. f(zz).
Therefore Y = Af. f(wjwy) and

BT(Y) = \f. [.
BT(‘-‘"f‘-"f)
now wywy = fwswy) so
BT(wjws)= f = f
BT(‘-‘"f“f) J:“

Remark 2.3.27. Note that Definition 2.3.25 is not an inductive definition
of BT(M). The Ni,..., Ny, in the tail of an hnf of a term may be more
complicated than the term itself. See again Barendregt (1984), Ch.10.

Proposition 2.3.28. BT(M) is well defined and
M =5 N = BT(M)= BI(N).

Proof. What is meant is that BT'(M) is independent of the choice of the
hnf’s. This and the second property follow from Lemma 2.3.23. B [|

Definition 2.3.29.
1. AL is the extension of the lambda calculus defined as follows. One of
the variables is selected for use as a constant and is given the name
1. Two contraction rules are added:

Ar.L—1;

1 M—1.

Lambda Calculi with Types 33

The resulting reduction relation is called §L- reduction and is de-
noted by —45 .

2. A BL- normal form is such that it cannot be f1-reduced
3. Bohm trees for AL are defined by requiring that a A L-term
Ary--xn.yNy ... Ny
is only in fL-hnfif y£ 1L orif n =m = 0.
Note that if M has a 8-nf or G-hnf, then M also has a f1-hnf. This is

because an hnf Azy ...z,.yNy... Ny, is also a fL-hnf unless y = 1. But
in that case Az ...2,.yNi ... Ny —51 L and hence M has a B-hnf.

Definition 2.3.30.
1. Let A and B be Bohm trees of some AL-terms. Then A is included in

B, notation A C B, if A results from B by cutting off some subtrees,
leaving an empty node. For example,

Aab. a C Aab. a
L b a b
b

2. Let P,@ be AL- terms. Then P approzimates (), notation P C @, if
BT(P) C BT(Q).

3. Let P be a AL-term. The set of approzimate normal forms (anf’s)
of P, is defined as

AP) = {QCP|Qisaplnf}
Example 2.3.31. The set of anf’s of the fixedpoint operator Y is
AY) ={L A fLALFL,)

Without a proof we mention the following ‘continuity theorem’, due to

Wadsworth (1971).

34 H.P. Barendregt
Proposition 2.3.32. Let I, M € A be given. Then

VPeA(FM)3Q e A(M) PecA(FQ).

See Barendregt (1984), proposition 14.3.19, for the proof and a topo-
logical explanation of the result.

3 Curry versus Church typing

In this section the system A— of simply typed lambda calculus will be
introduced. Attention is focused on the difference between typing a la
Curry and a {a Church by introducing A— in both ways. Several other
systems of typed lambda calculus exist both in a Curry and a Church
version. However, this is not so for all systems. For example, for the
Curry system AN (the system of intersection types, introduced in 4.1) it
is not clear how to define a Church version. And for the Church system
AC (calculus of constructions) it is not clear how to define a Curry version.
For the systems that exist in both styles there is a clear relation between
the two versions, as will be explained for A—.

3.1 The system A—-Curry

Originally the implicit typing paradigm was introduced in Curry (1934)
for the theory of combinators. In Curry and Feys (1958), Curry et al.
(1972) the theory was modified in a natural way to the lambda calculus
assigning elements of a given set T of types to type free lambda terms. For
this reason these calculi @ la Curry are sometimes called systems of type
assignment. If the type o € T is assigned to the term M € A one writes
F M : o, often with a subscript under F to denote the particular system.
Usually a set of assumptions I' is needed to derive a type assignment and
one writes I' = M : ¢ (pronounce this as ‘T yields M in ¢’). A particular
Curry type assignment system depends on two parameters, the set T and
the rules of type assignment. As an example we now introduce the system
A—-Curry.

Definition 3.1.1. The set of types of A—, notation Type(A—), is induc-
tively defined as follows. We write T= Type(A—).

a,a ... €T (type variables);
o, T€ET = (c—7) €T (function space types).

Such definitions will occur more often and it is convenient to use the
following abstract syntax to form T:

Lambda Calculi with Types 35
T=V|T-T
with V defined by
V=a]|V (type variables).
Notation 3.1.2.
1. If o1,...,0, €T then
01—03— " -—0p

stands for

(o1—= (02— - —(opn_1—00)..));
that is, we use association to the right.

2. «,fB,7, ... denote arbitrary type variables.

Definition 3.1.3 (A—-Curry).
1. A statement i1s of the form M : o with M € A and o € T. This

statement is pronounced as ‘M € ¢’. The type o is the predicate and
the term M is the subject of the statement.

2. A declaration is a statement with as subject a (term) variable.

3. A basis is a set of declarations with distinct variables as subjects.

Definition 3.1.4. A statement M : o is derivable from a basis I' , notation

r |_>\—>—Curry M:o

'y Mo

or

I'FM o

if there is no danger for confusion) if I' F M : ¢ can be produced by the
following rules.

36 H.P. Barendregt

A—-Curry (version 0)

(z:o)el = TFraz:o;
'tM:(c—1), TFN:¢ = TF(MN):m

TyzobM:1 = TFQeM):(o—r1).

Here T, z:0 stands for TU {z:0}. If T = {&1:01,..., 200} (or T = &)
then instead of T' - M : o one writes z1:01,...,2p:00 F M 10 (or = M : o).
Pronounce F as ‘yields’.

The rules given in Definition 3.1.3 are usually notated as follows:

A—-Curry (version 1)

(axiom) I'tz:o, if (z:0) €T

'FM:(c—71) THFN:o
LF(MN):r ’

(—-elimination)

FxobM: T
TF(Az.M): (c—T) .

(—-introduction)

Another notation for these rules is the natural deduction formulation.

A—-Curry (version 2)

Elimination rule Introduction rule
—0
M:(c—7) N:o M:T
MN : 7 (Az. M) : (o—T)

In this version the axiom of version 0 or 1 is considered as implicit and is

not notated. The notation
.0

M:T

Lambda Calculi with Types 37

means that from the assumption z:0 (together with a set T' of other state-
ments) one can derive M : 7. The introduction rule in the table states that
from this one may infer that (Az.M) : (c—7) is derivable even without the
assumption z:o (but still using T'). This process is called cancellation of an
assumption and is indicated by striking through the statement tzey.

Examples 3.1.5.
1. Using version 1 of the system, the derivation

ro,yThzx o

zo k- (Ay.z) : (t—0)

F (Azy.x) : (o0—1—0)

shows that - (Azy.x) : (c—7—0) for all o, 7 € T.
A natural deduction derivation (for version 2 of the system) of the
same type assignment is
w2 71
z.o

|
(Ay.z) @ (7—0))

(Azy.z) : (c0—1—0)

The indices 1 and 2 are bookkeeping devices that indicate at which
application of a rule a particular assumption is being cancelled.

A more explicit way of dealing with cancellations of statements is
the ‘flag-notation’ used by Fitch (1952) and in the languages AU-
TOMATH of de Bruijn (1980). In this notation the above derivation
becomes as follows.

.o

(Ay.z) : (1—0)

(Azy.z) : (c—T1—0)

38 H.P. Barendregt

As one sees, the bookkeeping of cancellations is very explicit; on the
other hand it is less obvious how a statement is derived from previous
statements.

2. Similarly one can show for all 0 € T

F(Az.z) : (o—0).

3. An example with a non-empty basis is the following
yio b (Qz.x)y:o.

In the rest of this chapter we usually will introduce systems of typed
lambda calculi in the style of version 1 of A—-Curry.

Pragmatics of constants

In applications of typed lambda calculi often one needs constants. For
example in programming one may want a type constant nat and term
constants 0 and suc representing the set of natural numbers, zero and the
successor function. The way to do this is to take a type variable and two
term variables and give these the names nat, 0 and suc. Then one forms
as basis

I'y; = {0:nat, suc:(nat—nat)}.

This I'y will be treated as a so called ‘initial basis’. That is, only bases
I" will be considered that are extensions of I'y. Moreover one promises not
to bind the variables in I'y by changing e.g.

O:nat, suc:(nat—nat) - M : o
into
F (AOAsuc.M) : (nat—(nat—nat)—oc).

(If one does not keep the promise no harm is done, since then 0 and suc
become ordinary bound variables.)

The programming language ML, see Milner [1984], is essentially A—-
Curry extended with a constant Y and type assignment Y : ((6—0)—0)
for all o.

Properties of A—-Curry

Several properties of type assignment in A— are valid. The first one anal-
yses how much of a basis is necessary in order to derive a type assignment.

Lambda Calculi with Types 39

Properties of A—-Curry

Several properties of type assignment in A— are valid. The first one anal-
yses how much of a basis is necessary in order to derive a type assignment.

Definition 3.1.6. Let I' = {z1:01,...,2,:0,} be a basis.

1.

Write dom(T') = {#1,...,2,}; 0; = ['(2;). That is, T is considered
as a partial function.

. Let Vi be a set of variables. Then T [Vy = {20 |z€Vy & 0 = T'(2)}.

. For o, 7 € T substitution of 7 for « in ¢ is denoted by ofa := 7].

Proposition 3.1.7 (Basis lemma for A—-Curry).
Let I' be a basis.

1.

IfI" D T is another basis, then
'+-M:0=>0"FM:o.

2THFM:0=FV(M)C domT.
3TFM:oc=T [FV(M)FM :0.

Proof. 1. By induction on the derivation of M : o. Since such proofs

will occur frequently we will spell it out in this simple situation in
order to be briefer later on.

Case 1. M : o0 is z:0 and is element of I'. Then also z:0 € I’ and hence

I'+tM:o.

Case 2. M : 0 is (M1 M) : o and follows directly from M; : (r—0o) and

My : 7 for some 7. By the IH one has I = M; : (tr—0o) and
I''F My : 7. Hence IV - (M1 M) : 0.

Case 3. M : 0 is (Az.My) : (01—02) and follows directly from T, z:0 -

M : 03. By the variable convention it may be assumed that
the bound variable z does not occur in dom I'Y. Then I, z:01 is
also a basis which extends I', xz:0;. Therefore by the IH one has
I z:.00 F My : 02 and so TV F (Az. M) : (01—072).

. By induction on the derivation of M : 0. We only treat the case that

M : o is (Ax. M) : (c1—02) and follows directly from T, z:0; - M :
oa. Let y€ FV(Ax.My), then y€ FV(M;) and y # . By the IH one
has yedom(T', z:01) and therefore ye dom T.

. By induction on the derivation of M : 0. We only treat the case

that M : o is (M1 M>) : o and follows directly from M; : (r—o) and

40 H.P. Barendregt

My : 7 for some 7. By the IH one hasT' | FV(M;) - M, : (t—0) and
'l FV(Ms2)F Ms : 7. By (1) it follows that ' | FV (M M) & M :
(r—o)and T' [FV(M1My) = My : 7 and hence T' [FV (M M)
(MlMQ) ol

[|

The second property analyses how terms of a certain form get typed. It
is useful among other things to show that certain terms have no types.

Proposition 3.1.8 (Generation lemma for A—-Curry).

1.TFz:0= (x0)€l.
2THFMN:r=3c[TFM:(c—7)&TF N :0].

3. TFXeM:p=Jo,r[leobM:7&p=(c—T)].

Proof. By induction on the length of derivation. B [|

Proposition 3.1.9 (Typability of subterms in A—-Curry). Let M’
be a subterm of M. Then '+ M : 0 = I+ M’ : ¢’ for some I" and o’.
The moral is: if M has a type, i.e. ' - M : o for some I' and o, then every
subterm has a type as well.

Proof. By induction on the generation of M. R [|

Proposition 3.1.10 (Substitution lemma for A—-Curry).

LTFM:o=Ta=71FM:ofa:=71]

2. Suppose I'yz:ot M :7and T N :0. Then T+ M[z := N]: 1.

Proof. 1. By induction on the derivation of M : o.

2. By induction on the generation of I'z:o0 - M : 7. B

The following result states that the set of M € A having a certain type
in A— is closed under reduction.

Lambda Calculi with Types 41

Proposition 3.1.11 (Subject reduction theorem for A—-Curry).
Suppose M —5 M'. Then

'tM:0 = THM 0.
Proof. Induction on the generation of — 3 using Propositions 3.1.8 and
3.1.10. We treat the prime case, namely that M = (Az.P)Q and M’ =

Plz := Q). Well, if
'k (Az.P)Q : o,

then it follows by the generation lemma 3.1.8 that for some 7 one has
'F(Az.P):(r—o)and TFQ: T
Hence once more by Proposition 3.1.8 that
FzrFP:ocand'FQ : 7
and therefore by the substitution lemma 3.1.10
F'FPlz:=Q]:0. 1

Terms having a type are not closed under expansion. For example
Fl:(c—0), but I/ Kl(Az.zz) : (c—0).

See Exercise 3.1.13. One even has the following stronger failure of subject
expansion, as is observed in van Bakel (1991).

Observation 3.1.12. There are M, M'€A and o, 0’ €T such that M’ —g
M and

FM:o,

Mo
but

VM :o.

Proof. Take M = dzy.y, M' = SK, 0 = a—(F—0)
and o' = (f—a)—(f—p); do Exercise 3.1.13. & [|
Exercises 3.1.13.
o Let | =Az.z, K = Azy.z and S = Azyz.zz(yz).
* Show that for all o, 7, p € T one has
FS:(o—1—p)—=(0—1)—=(0—p)

FSK: (6—71)—0—0;

FKl: (r—o—0)
* Show that t/ SK : (r—o—0).
* Show that Az.zz and Kl(Az.zz) have no type in A—-.

42 H.P. Barendregt
3.2 The system A—-Church

Before we give the formal definition, let us explain right away what is the
difference between the Church and Curry versions of the system A—. One
has

Fourry (Az.2) 1 (0—0),

but on the other hand

Feharch (Azio.z) 1 (o—0).

That is, the term Az.z is annotated in the Church system by “:¢’. The
intuitive meaning is that Az:o.2 takes the argument z from the type (set)
o. This explicit mention of types in a term makes it possible to decide
whether a term has a certain type. For some Curry systems this question
is undecidable.

Definition 3.2.1. Let T be some set of types. The set of T-annotated
A-terms (also called pseudoterms), notation A, is defined as follows:

A =V | ApAg | Az TAg
Here V denotes the set of term variables.
The same syntactic conventions for A are used as for A. For example
Axq:oq - kpion. M = (Azio1(Azaios .. (Azy 0, (M))).
This term may also be abbreviated as
AE:F.M.

Several systems of typed lambda calculi a la Church consist of a choice of
the set of types T and of an assignment of types o € T to terms M € Ar.
However, as will be seen in Section 5, this is not the case in all systems a
la Church. In systems with so-called (term) dependent types the sets of
terms and types are defined simultaneously. Anyway, for A—-Church the
separate definition of the types and terms is possible and one has as choice
of types the same set T = Type (A—) as for A—-Curry.

Definition 3.2.2. The typed lambda calculus A—-Church is defined as
follows:

1. The set of types T = Type (A—) is defined by

T =V|T-T.

Lambda Calculi with Types 43

2. A statement is of the form M : o with M € AT and o € T.

3. A basis is again a set of statements with only distinct variables as
subjects.

Definition 3.2.3. A statement M : o is derivable from the basis I', nota-
tion ' M :o,if M : o can be produced using the following rules.

A—-Church

(axiom) I'tz:o, if (z:0) €T

'FM:(o—1) THFN:o
I+ (MN):r ’

(—-elimination)

LxobM: T
'k (Az:io. M) : (c—T7) .

(—-introduction)

As before, derivations can be given in several styles. We will not need
to be explicit about this.

Definition 3.2.4. The set of (legal) A—-terms, notation A(A—), is defined
by
AA=)={M Ay |30 T'F M :0}.

In order to refer specifically to A—-Church, one uses the notation
r '_)\—>Church M:o.

If there is little danger of ambiguity one uses also Fx_ , Fonurch O just .
Examples 3.2.5. In A—-Church one has

1. F (Azio.x) : (0—0);

2. F (Azody:mz) : (0—17—0);

3. zio b (Ay:rz) @ (T1—0).

As for the type-free theory one can define reduction and conversion on the
set of pseudoterms Ar.

44 H.P. Barendregt

Definition 3.2.6. On A7 the binary relations one-step 3-reduction, many-
step B-reduction and (-convertibility, notations —g, —5 and =g respec-
tively, are generated by the contraction rule

(Az:o.M)N — Mz := N] (8)
For example one has
(Az:o.x)(Ay:Tyy) —p Ay:T.yy.

Without a proof we mention that the Church—Rosser theorem 2.3.7 for
—»g also holds on Aq. The proof is similar to that for A; see Barendregt
and Dekkers (to appear) for the details. The following results for A—-
Church are essentially the same as Propositions 3.1.7- 3.1.11 for A—-Curry.
Therefore proofs are omitted.

Proposition 3.2.7 (Basis lemma for A—-Church). Let T' be a basis.
1. IfT" D T is another basis, thenI'F M : 0 = I"F M : 0.
2THFM:0= FV(M)C dom (T).
3.TFM o= T [FV(M)FM :o.

Proposition 3.2.8 (Generation lemma for A—-Church).

I.TFz:0 = (xi0)€el.

2THFMN:7 = Jo[TFM:(c—1)andTF N : 0]

3. TF(AeoM):p=>3r[p=(c—7)andT,z:0 - M : 7].
Proposition 3.2.9 (Typability of subterms in A—-Church). If M
has a type, then every subterm of M has a type as well.

Proposition 3.2.10 (Substitution lemma for A—-Church).

IL.LTFM:o=Ta=71F Ma:=1]:0a:=r1].

2. Suppose I';z:cb- M :7and T+ N :0. Then T+ M[z:= N]: 7.

Proposition 3.2.11 (Subject reduction theorem for A—-Church).
Let M —p3 M’'. Then

'-M:c=TFM :o.

This proposition implies that the set of legal expressions is closed under
reduction. It is not closed under expansion or conversion. Take for example

Lambda Calculi with Types 45

| =5 KIQ annotated with the appropriate types; it follows from proposition
3.2.9 that KIQ has no type. On the other hand convertible legal terms have
the same type with respect to a given basis.

Proposition 3.2.12 (Uniqueness of types lemma for A—-Church).

1. Suppose ' M : 0 andT'+ M :¢'. Then o = o'.
2. SupposeI' M 0, TEM':0" and M =3 M'. Then o = ¢o’.

Proof. 1. Induction on the structure of M.

2. By the Church—Rosser theorem for A, the subject reduction theorem
3.2.11and (1). m
||

As observed in 3.1.12 this proposition does not hold for A—-Curry.

Original version of A—

Church defined his A— in a slightly different, but essentially equivalent,
way. He defined the set of (legal) terms directly and not as a subset of the
pseudoterms Aq. Each variable carries its own type. The set of terms of
type o, notation A,(A—) or simply A,, is defined inductively as follows.
Let V be the set of variables.

ceT, ze€V = 27 €A,
MeA,—., NeA, = (MN)eA;;
MeA, = (A" M)eA,_;.

Then Church’s definition of legal terms was
AA—) = UUETAU()\—O.

The following example shows that our version is equivalent to the original
one.

Example 3.2.13. The statement in A—-Church
zo b (Ayra) : (1—o)
becomes in the original system of Church
Ay".2%) e Ars.

It turns out that this original notation is not convenient for more compli-
cated typed lambda calculi. The problem arises if types themselves become
subject to reduction. Then one would expect that

46 H.P. Barendregt

c—gT = x7 =gz’
= Az%.x7 —p5 Az’ .27,

However, in the last term it is not clear how to interpret the binding
effect of Az? (is 7 bound by it?). Therefore we will use the notation of
definition 3.2.1.

Relating the Curry and Church systems

For typed lambda calculi that can be described both ¢ la Curry and «a la
Church, there is often a simple relation between the two versions. This will
be explained for A—.

Definition 3.2.14. There is a ‘forgetful’ map | - | : Ap—A defined as
follows:
lz] = &
IMN| = |M|N];
[Az:c. M| = Az |M]|.
The map | - | just erases all type ornamentations of a term in Ag. The

following result states that ornamented legal terms in the Church version
‘project’ to legal terms in the Curry version of A—; conversely, legal terms
in A—-Curry can be ‘lifted’ to legal terms in A—-Church.

Proposition 3.2.15.
1. Let M € Aqp. Then

r '_Church M:.:oc = T '_Curry |M| . 0.

2. Let M € A. Then

Fl_CurryM:O' = HM/EAT[Fl_ChurChM/ZU&|MI|EM].

Proof. (1), (2). By induction on the given derivation. ® [|
Corollary 3.2.16. In particular, for a type o € T one has

o is inhabited in A—-Curry < o inhabited in A—-Church.

Proof. Immediate. B [|

Lambda Calculi with Types 47

4 Typing a la Curry

4.1 The systems

In this subsection the main systems for assigning types to type-free lambda
terms will be introduced. The systems to be discussed are A—, A2, Ay and
AN. Moreover, there are also two extra derivation rules EQ and A that can
be added to each of these systems. In Figure 1 the systems are represented
in a diagram.

A2
+EQ
D ——
+A
AN

Fig. 1. The systems d la Curry

The systems A2, Ay and AN are all extensions of A—-Curry. Several
stronger systems can be defined by forming combinations like A2y or AuN.
However, such systems will not be studied in this chapter.

Now we will first describe the rules EQ and A and then the systems A2,
Ap and AN.

Definition 4.1.1.
1. The equality rule, notation EQ is the rule

M:o M= N
N:o

2. The approzimation rule, notation A, consists of the following two
rules. These rules are defined for AL introduced in Definition 2.3.29.
The constant L plays a special role in the rule A.

48 H.P. Barendregt

'k P:oforall Pe AM)
I'-M:o

3

Rule A

I'-1l:0

See 2.3.30 for the definition of A(M). Note that in these rules the
requirements M =g N and P € A(M) are not statements, but are, so to
speak, side conditions. The last rule states that 1 has any type.

Notation 4.1.2.

1. A=7T is A— extended by rule EQ.

2. A—A is A— extended by rule A.

So for example A2T = A2 + EQ and AuA = Au + A.

Examples 4.1.3.

1. One has
Famt+ (Apg.(Ar.p)(qp)) : (c—T—0)

since Apq.(Ar.p)(gp) = Apg.p. Note, however, that this statement is
in general not provable in A— itself. The term has in A— only types
of the form o—(o—7)—0, as follows form the generation lemma.

2. Let Y be the fixed point operator Af.(Az.f(za))(Az.f(zxz)). Then
Famsa Y :((0—0)—0),

Indeed, the approximants of Y are

(LA FL, . Aff L,)

and these all have type ((¢c—0)—0). Again, this statement is not
derivable in A— itself. (In A— all typable terms have a normal form
as will be proved in Section 4.2)

Now it will be shown that the rule EQ follows from the rule A. So in
general one has A— AT = A—A.

Lambda Calculi with Types 49

Proposition 4.1.4. In all systems of type assignment A—A one has the
following.

I.TFM:0cand PEAM) = THP:o.
2. Let BT(M) = BT(M"). Then
I'-M:0 = I'FM 0o

3. Let M =g M'. Then
r'-M:06 = I'M 0.

Proof. 1. If P is an approximation of M, then P results from BT'(M)
by replacing some subtrees by L and writing the result as a A-term.
Now L may assume arbitrary types, by one of the rules A. Therefore
P has the same type as M. [Example. Let M =Y, the fixedpoint
combinator and let P = Af.f(fLl) be an approximant. We have
FY: (c—0o)—0o. By choosing o as type for L, one obtains - P :
(c0—0)—0l]

2. Suppose BT (M) = BT(M'); then A(M) = A(M’). Hence
'FM:0 = VPeAM)=AM)TFEP:o, by(1),
= [+ M :0, byrule A

3. If M =g M’ , then BT(M) = BT(M'), by proposition 2.3.28. Hence
the result follows from (2).
| |

The system A2

The system A2 was introduced independently in Girard (1972) and Reynolds
(1974). In these papers the system was introduced in the Church paradigm.
Girard’s motivation to introduce A2 was based on proof theory. He ex-
tended the dialectica translation of Godel, see Troelstra (1973), to analysis,
thereby relating provability in second-order arithmetic to expressibility in
A2. Reynolds’ motivation to introduce A2 came from programming. He
wanted to capture the notion of explicit polymophism.

Other names for A2 are

e polymorphic typed lambda calculus
e second-order typed lambda calculus
e second-order polymorphic typed lambda calculus

e system F.

Usually these names refer to A2-Church. In this section we will introduce
the Curry version of A2, leaving the Church version to Section 5.1.

50 H.P. Barendregt
The idea of polymorphism is that in A—
(Az.z) : (a—a)
for arbitrary a. So one stipulates in A2
(Az.z) : (Va.(a—a))

to indicate that Az.x has all types c—o0.
As will be seen later, the mechanism is rather powerful.

Definition 4.1.5. The set of types of A2, notation T = Type(A2), is de-
fined by the following abstract grammar:

T=V|T—T|¥VT

Notation 4.1.6.

1. Yai - - - ay.0 stands for (Vo (Vas ... (Van(0)) .. .)).

2. V binds more strongly than —.
So Yao—1 = (Yao)—T; but Va.c—1 = Va(o—T).

Definition 4.1.7. Type assignment in A2-Curry is defined by the follow-
ing natural deduction system:

(z:0) el .

(start rule) :
F'kFz:o

o 'FM:(c—7) 'FN:o
(—-elimination) :

I'F(MN):7

TFz:o0FM: 71
rk ()\I.M)Z(O'—W'),

A2 | (—-introduction)

' M: (Va.o)
(V-elimination) :

I'FM:(cla:=1])

'tM:o
(V-introduction) ——— — a¢ FV(I).
't M: (Va.o)

Lambda Calculi with Types 51

Examples 4.1.8. In A2-Curry one has the following.

1. F(Az.2) i Va.a—a);

2. F(Qzyy) o (YaB.a—p—p);

3. F(Afe.fre) @ (Va(a—a)—a—a);
4. F (Az.zz) (VB Naa—p);

5. F (Az.zx) (VB Naa—(8—0));
6. F(Az.zx) i (Vaa)—(Vaa).

Example (3) shows that the Church numerals ¢,, = Afz.f" have type
Va.(a—a)—a—a. This type is sometimes called ‘polynat’. One reason for
the strength of A2 is that the Church numerals may not only be used as
iterators for functions of a fixed type a—a, but also for iteration on oc—o
for arbitrary o. This makes it possible to represent in A2 the term R for
primitive recursion of Godel’s 7" and many other computable functions, see
subsection 5.4.

In subsection 4.3 it will be shown that only strongly normalizing terms
have a type in A2.

The system Au

The system Ay is that of recursive types. These come together with an
equivalence relation & on them. The type assignment rules are such that
if M :0 and o ~ ¢, then M : o/. A typical example of a recursive type is
a og such that
og R Op—0¢. (1)

This og can be used to type arbitrary elements M € A. For example

rog b z:og—op

zog b zx 09

FAz.zz: og—0yg

FAz.zz:og

F (Az.ze)(Az.ax) : og
A proof in natural deduction notation of the last statement is the following:

1

o7
T 0g—0p €T 0g
zx):og

@)oo
(Az.zz) : og—0g
(Az.zz) : cg—0p (Az.zz) : og

(Az.zz)(Aw.xz): og

In fact, equation (1) is like a recursive domain equation D = [D— D] that
enables us to interpret elements of A. In order to construct a type og

52 H.P. Barendregt

satisfying (1), there is an operator u such that putting oy = pa.a—a
implies (1).

Definition 4.1.9.

1. The set of types of Ay, notation T = Type(Ap), is defined by the
following abstract grammar.

T=V|T—T|uV.T

2. Let ¢ € T. The tree of o, notation T'(c), is defined as follows:

T(«) = a, if o a is type variable;
T(o—T1) = — ;
T(O’)/ \T T
T(pa.o) = 1, ifo=ub .. puhha
for some n > 0;
= T(o[a:= pa.o]), else.

3. For o, 7 € T one defines

Examples 4.1.10.

1. If 7 = pa.a—y, then

2. If 0 = (pa.a—y)—pdpf.G, then

Lambda Calculi with Types 53
— .
N
— 1L
/N
- 7
VRN
e 04

3. (no.a—y) & (pa(a—y)—7).

T(r)=

4. po.o = oo = pa.o| for all o, even if o = uf..

Definition 4.1.11. The type assignment system Ay is defined by the nat-
ural deduction system shown in the following figure.

x: r
(start rule) % :
'tz:o
'tM:(c—1) TFN:0o
(—-elimination) ;

'F(MN):7

LxobM: T
I'F(Az.M): (c—T) ’

(—-introduction)

I'tM:0 oxrT
'M:r

(~-rule)

The following result is taken from Coppo(1985).

Proposition 4.1.12.
Let o be an arbitrary type of Au. Then one can derive in Au

1. FY:(0—0)—0;
2.FQ:0.

Proof. 1. Let 7 = pav.a—o. Then 7 & T7—0.
Then the following is a derivation for

54 H.P. Barendregt
Y =M. f(ze))(Ae. f(ze)) : (6—0)—0.

1

T
x:T—0 x:T

fro—o’ rr o
flzz) o

Ax.f(zz) : T—0
Av.f(zx) :7—o Aw.f(ze):T
Az f(zx))(Ax.f(zx)) : o
Y = A.(Ae.f(ze))(Ae. f(ze)) : (c—0)—0

2. Note that YI —4 Q and prove and use the subject reduction theorem
for Ap; or show F Q : o directly. m
||

The System AN
The system AN of intersection types is sometimes called the Torino system,
since the initial work on this system was done in that city, for example by
Coppo, Dezani and Venneri [1981], Barendregt, Coppo and Dezani [1983],
Coppo, Dezani, Honsell and Longo [1984], Dezani and Margaria [1987] and
Coppo, Dezani and Zacchi [1987]. See also Hindley [1982].

The system makes it possible to state that a variable x has two types
o and 7 at the same time. This kind of polymorphism is to be con-
trasted to that which is present in A2. In that system the polymorphism is
parametrized. For example the type assignment

(Az.z) : (Va.a—a)

states that Az.z has type a—a«a uniformly in «. The assignment z : o N 7
states only that z has both type o and type 7.

Definition 4.1.13.
1. The set of types of AN, notation T = Type(AN), is defined as follows:
T=V|T—T|TNT
2. One of the type variables will be selected as a constant and is notated
as w.

In order to define the rules of type assignment, it is necessary to introduce
a preorder on T.

Lambda Calculi with Types 95

Definition 4.1.14.

1. The relation < is defined on T by the following axioms and rules:
o <o
c<7,7<p => o<p
o < w;
w < w—w;
(6=p) N (0—7) < (6—(p N 7))
cNt<o,onNt <]
c<1,0<p => o<T1TNP;
c<o,7<7 = od—=r<o>T7.

2.0~7 & o<t&T1<0.

For example one has

w~ (w—w);

((e—=1)N(c'—=7)) < ((e N’)—T).

Definition 4.1.15. The system of type assignment AN is defined by the
following axioms and rules:

xo)el
(start rule) &;
I'tz:0o
'M:(c—7) TFN:0o

LF(MN):r ’

(—-elimination)

lxobM:T
' (Ax.M): (c—T) ’

(—-introduction)

T'FM:(ocnT)
'M:0 THFM:7’

AN (N-elimination)

'-M:c0 THFM:7T
T'EM:(ocnT) ’

(N-introduction)

(w-introduction) m ;

''tM:o o<r
rEM:r

(<-rule)

56 H.P. Barendregt
Examples 4.1.16. In AN one has

1. FAzaz: (e—=1)No)—rT

2.FQ:w

3. F (Apq.(Ar.p)(gp)) : (6—(1—0)).

Proof. 1. The following derivation proves the statement:

ﬁfﬁﬁ—ﬁ—&l
r:0—T Z:0

(zz): T

(Az.zz): ((o—1)No)—T

2. Obvious. In fact it can be shown that M has no head normal form
iff only w is a type for M, see Barendregt, et al. (1983).

2
(Aq.(Ar.p)(gp)) : (1—0)
(Apq.(Ar.p)(gp)) : (6—(1—0))

3n

In van Bakel (1990) it is observed that assignment (3) in Example 4.1.16
is not possible in A—.

Also for AN there are some variants for the system. For example one
can delete the rule (axiom) that assigns w to any term. In van Bakel (1990)
several of these variants are studied; see theorem 4.3.12.

Combining the systems a la Curry

The system A2, Ap and AN are all extensions of A—. An extension A2uN
including all these systems and moreover cartesian products and direct
sums is studied in MacQueen et al. (1984).

Lambda Calculi with Types a7

Basic Properties

The Curry systems A—, A2, Ag and AN enjoy several properties. The
most immediate ones, valid for all four systems, will be presented now. In
subsection 4.2 it will be shown that subject reduction holds for all systems.
Some other properties like strong normalization are valid for only some of
these systems and will be presented in subsections 4.2, 4.3 and 4.4.

In the following F refers to one of the Curry systems A—, A2, Au and
AN. The following three properties are proved in the same way as is done
in section 3.1 for A—.

Proposition 4.1.17 (Basis lemma for the Curry systems). Let ' be
a basis.

1. IfT' DT is another basis, then ' HF M :0 = I'F M :o0.
2THFM:0 = FV(M)Cdom(T).
3.TFM:0 = T|FV(M)FM :o0.

Proposition 4.1.18 (Subterm lemma for the Curry systems). Let
M’ be a subterm of M. Then

T'FM:0c = T'F M ¢ for someT’ and o'.

The moral is: If M has a type, then every subterm has a type as well.
Proposition 4.1.19 (Substitution lemma for the Curry systems).

LTFM:o=Ta=71FM:ola:=r71]
2. Suppose I';z:oc - M : 7 and ' N : 0. Then

'k Mlz:=N]:r.

Exercise 4.1.20. Show that for each of the systems A—, A2, Ay and AN
one has I K : (¢—a) in that system.

4.2 Subject reduction and conversion

In this subsection it will be shown that for the main systems of type as-
signment a la Curry, viz. A—, A2, Ap and AN with or without the extra
rules A and EQ, the subject reduction theorem holds. That is,

I‘I—M:UandM—»ﬁM/ = TFM:o0.

58 H.P. Barendregt

Subject conversion or closure under the rule EQ is stronger and states that
'+M:cand M =g M = TFM:o0.

This property holds only for the systems including AN or rule A (or trivially
if rule EQ is included).

Subject reduction

We start with proving the subject reduction theorem for all the systems.
For A— this was already done in 3.1.11. In order to prove the result for
A2 some definitions and lemmas are needed. This is because for example
Proposition 3.1.8 is not valid for A2. So for the time being we focus on A2
and T = Type(A2).

Definition 4.2.1.

1. Write o > 7 if either

T = VYa.o, for some «,

or
o =VYa.o; and 7 = o1 [a := 7] for some 7 € T.

2. > is the reflexive and transitive closure of >.

3. A map o : T—T is defined by

a’ = a, if @ is a type variable;
(c—1)° = o—71;
(Va.o)® = o°.

Note that there are exactly two deduction rules for A2 in which the
subject does not change: the V introduction and elimination rules. Several
of these rules may be applied consecutively, obtaining

M:o

M:T

The definition of > is such that in this case ¢ > 7. Also one has the
following.

Lambda Calculi with Types 59

Lemma 4.2.2. Let 0 > 7 and suppose no free type variable in o occurs
in I'. Then
'rM:oc = I'EFM:7

Proof. Suppose 'F M :ocand o > 7. Thenoc =0y > --- > 0, = 7 for
some o1, ...,0,. By possibly renaming some variables it may be assumed
that for 1 <4 < n one has

oiy1 =Va.o;, = a¢ FV(D)

By definition of the relation > and the rules of A2 it follows that for all
it<nonehal'FM:0;, = TI'kM:0;41. Therefore '-M 0, =7. 1
| |

Lemma 4.2.3 (Generation lemma for A2-Curry).
I.TFz:0 = 3Jo' >0 (z0')eT.
2TH(MN):7 = Joar'>7TFM:0—7" andT F N :0].
3. TFAeM):p = Fo,7[l,zioct M : 7 and o—1 > p.

Proof. By induction on derivations. [|
Lemma 4.2.4.

2. 01200 = 3&3IT o) =of[ad:=T].

3. (0—p) > (c'—=p') = 3Fa@I7 o'—p' =(c—p)d =7

Proof. 1. Induction on the structure of o.

2. It suffices to show this for o7 > o9.

Case 1. 03 = Va.oy. Then 0§ = of.
Case 2. o1 =Va.p and oy = pla = 7].
Then by (1) one has 6§ = p°[a := 7] = o) := 7'].

3. By (2) we have

(o'=p") = (o'=p') = (o—=p)°[d = 7] = (c—p)[d :=7]. W

Theorem 4.2.5 (Subject reduction theorem for A2-Curry).
Let M —3 M'. Then for A2-Curry one hasT' - M :0 = T'FM':0.

60 H.P. Barendregt

Proof. Induction on the derivation of M —3 M’. We will treat only the
case that M = (Az.P)Q and M' = Pz := @]. Now

I'F((Az.P)Q): o
= Fpd' > o[+ (Az.P): (p—dYa THQ:p]
= FpAo" >o[[,e:pFP:0"& p—0" > p—d'& THQ :p]

by Lemma 4.2.4 (3) it follows that
(p—0') = (p'—0")[d = 7]
and hence by Lemma 4.1.19 (1)

= T,zptP:0', TEQ:pandd >0,
= TFPlz:=Q]:0" and ¢’ > o, by Lemma 4.1.19 (2)
= Tk Plz:=Q]:0, by Lemma 4.2.2. B

In Mitchell (1988) a semantic proof of the subject reduction theorem for
A2 is given.

The proof of the subject reduction theorem for Ay is somewhat easier
than for A2.

Theorem 4.2.6 (Subject reduction theorem for Au).
Let M —p3 M'. Then for A one has

'-M:0c = T+FM o

Proof. As for A2, but using the relation & instead of >. H [|

The subject reduction theorem holds also for AN. This system is even
closed under the rule EQ as we will see soon.

Subject conversion

For the systems AN and A—A we will see that the subject conversion theorem
holds. It is interesting to understand the reason why AN is closed under
B-expansion. This is not so for A—, A2 and Au. Let M = (Az.P)Q and
M' = Plz := @]. Suppose I' Fan M’ : o in order to show that T'Fyq M : 0.
Now @ occurs n > 0 times in M’ , each occurrence having type 7;, say,
for 1 < i< n Definer=nnNn---N71,ifn >0and 7 =wifn = 0.
Then THFQ :7and Tz : 7F P :o. Hence T F (Az.P) : (t—0) and
't (Az.P)Q: 0.

Lambda Calculi with Types 61

In A—, A2 and Ay it may not be possible to find a common type for the
different occurrences of). Note also that the type w is essential in case

z ¢ FV(P).

Theorem 4.2.7 (Subject conversion theorem for AN). Let M =g M'.
Then for AN one has

r-M:¢ = TI'FM:o.

Proof. See Barendregt et al. (1983), corollary 3.8. ® [|

Exercise 4.2.8. Let M = Apq.(Ar.p)(gp).

e Show that although M =g Apg.p : (a—F—a)in A—, the term M does not
have a—f3—a as type in A—, A2 or Au.

o Give a derivation in AN of - M : (a—pf—a).

4.3 Strong normalization

Remember that a lambda term M is called strongly normalizing iff all re-
duction sequences starting with M terminate. For example KIK is strongly
normalizing, while KIQ not. In this subsection it will be examined in which
systems of type assignment a la Curry one has that the terms that do have
a type are strongly normalizing. This will be the case for A— and A2 but of
course not for Ay and AN (since in the latter systems all terms are typable).
However, there is a variant AN~ of AN such that one even has

M is strongly normalizing < M is typable in AN~

Turing proved that all terms typable in A— are normalizing; this proof
was only first published in Gandy (1980). As was discussed in Section
2, normalization of terms does not imply in general strong normalization.
However, for A— and several other systems one does have strong normal-
ization of typable terms. Methods of proving strong normalization from
(weak) normalization due to Nederpelt (1973) and Gandy (1980) are de-
scribed in Klop (1980).

Also in Tait (1967) it is proved that all terms typable in A— are nor-
malizing. This proof uses the so called method of ‘computable terms’ and
was already presented in the unpublished ‘Stanford Report’ by Howard et
al. [1963]. In fact, using Tait’s method one can also prove strong normal-
ization and applies to other systems as well, in particular to Godel’s T'; see

Troelstra [1973].

62 H.P. Barendregt

Girard (1972) gave an ‘impredicative twist’ to Tait’s method in order to
show normalization for terms typable in (the Church version of) A2 and in
the system Aw to be discussed in Section 5. Girard’s proof was reformulated
in Tait (1975) and we follow the general flavour of that paper.

We start with the proof of SN for A—.

Definition 4.3.1.
1. SN = {M € A | M is strongly normalizing}.
2. Let A, B C A. Define A— B a subset of A by
A—B={FecA|Vae A Fa€ B}.

3. For every o€ Type(A—) a set [o] C A is defined as follows:
[e] = SN, where « is a type variable;

[o—=r] = [o]-I]

Definition 4.3.2.
1. A subset X C SN is called saturated if

(a) Vn > O0VRy,..., R, €SN zRe X,

where z is any term variable;

(b) ¥n > 0VR,..., R, € SNYQ € SN
Plz:=QlRe X = (M.P)QReX.
2. SAT = {X C A | X is saturated}.

Lemma 4.3.3.
1. SN € SAT.

2. A, BeSAT = A—BeSAT.
3. Let {A;}ier be a collection of members of SAT, then ()
4. For all o€ Type(A—) one has [o] € SAT.

il A;€ SAT.

Proof. 1. One has SN C SN and satisfies condition (a) in the definition
of saturation. As to condition (b), suppose

Plz := QIR €SN and Q, R € SN (1)

We claim that also .
(Az.P)QR € SN (2)

Indeed, reductions inside P, @ or the R must terminate since these
terms are SN by assumption (P[z := @] is a subterm of a term in

Lambda Calculi with Types 63

SN, by (1), hence itself SN; but then P is SN); so after finitely many
steps reducing the term in (2) we obtain (Az.P')Q'R’ with P —3 P’
etcetera. Then the contraction of ()\J;.P’)Q’R” gives

P'lz := Q'R (3)

This is a reduct of Pz := Q] R and since this term is SN also (3) and
the term (Az.P)Q are SN.

2. Suppose A, B € SAT. Then by definition z € A for all variables z.

Therefore
FeA—-B = FzeB
= FzxeSN
= F eSN.

So indeed A—B C SN. As to condition 1 of saturation, let ReSN.
We must show for a variable z that xR € A— B. This means

VQe A zRQE B,

which is true since A C SN and B is saturated.
3. Similarly.

4. By induction on the generation of o, using (1) and (2). ®

Definition 4.3.4.

1. A wvaluation in A is a map p:V—A, where V is the set of term vari-
ables.

2. Let p be a valuation in A. Then
[M], =Mlz1 = p(1),..., 20 = p(zn)],

where & = 21, ..., 2z, is the set of free variables in M.

3. Let p be avaluationin A. Then p satisfies M : o, notationp F M : o,
if [M], € [o].

64

H.P. Barendregt

If T is a basis, then p satisfies I', notation p E T, if p F z : ¢ for all
(z:0) €T.

4. A basis I satisfies M : o, notation I' F M : o, if

VolpET = pE M :0].

Proposition 4.3.5 (Soundness).

Proof.
Case 1.

Case 2.

Case 3.

't M:0 == TEM:o.

By induction on the derivation of M : o.

I'F M : o with M = z follows from (z:0) €T.
Then trivially ' F 2 : 0.

' M : o with M = M; M, is a direct consequence of I' - M :
T—oand ' M5 : 7.
Suppose p E T'in order to show p E M1 My : 0. ThenpE My : 7—0
and p F M, : 7, 1.e. [Mi], € [r—0] = [r]—[c] and [M-], € [7].
But then [M;Ms], = [M1],[M-], € [o], i.e. pE M1 M5 : 0.

I'M:o with M =Az.M' and 0 = 0y—05 is a direct conse-
quence of ', z:01 - M’ : 05.
By the IH one has
z:oi EM 0y (1)

Suppose p E T in order to show p E Az. M’ : 01—0y. That is, we
must show

[Az.M'],N € [o5] for all N € [o4].
So suppose that N € [o1]. Then p(x := N)E T,z : 1, and hence
[[M/]]p(x::N) S |IO'2]],

by (1). Since

DeMIN = QaMO7 = p(@IN
s M= pl@).x = N
= [[M/]]p(:c::N)a

it follows from the saturation of [o;] that [Az.M'],N € [o2]. B
||

Theorem 4.3.6 (Strong normalization for A—-Curry). Suppose
I'tFa— M :0. Then M is strongly normalizing.

Lambda Calculi with Types 65

Proof. Suppose I' F M : 0. Then I' E M : o. Define p,(z) = z for all
z. Then p, E T (since z € [7] holds because [7] is saturated). Therefore
poF M : 0, hence M = [M],, €[c]CSN. ® ||

The proof of SN for A— has been given in such a way that a simple
generalization of the method proves the result for A2. This generalization
will be given now.

Definition 4.3.7.

1. A wvaluation in SAT is a map
¢ V—=SAT
where V is the set of type variables.

2. Given a valuation & in SAT one defines for every o€Type(A2) a set
[o]e C A as follows:

[a]e = &(«), where a € V;

lo—7le = [o]e—[7]e;
[Vo.ole = Nxesarlolea=x)

Lemma 4.3.8. Given a valuation £ in SAT and a o in Type(A2), then
[[0']]5 € SAT.

Proof. As for Lemma 4.3.3(4) using also that SAT is closed under arbi-
trary intersections. W [|

Definition 4.3.9.

1. Let p be a valuation in A and £ be a valuation in SAT. Then

pEEM:0 & [M],€[o]e

2. For such p,& one writes

p,EETDT & péEx:oforallzioinl.

3 TEM:0 & Vp,& [p,lFT = péFM:o]

Proposition 4.3.10.

I'tyoM:oc=TEFEM:o.

66

H.P. Barendregt

Proof. As for Proposition 4.3.5 by induction on the derivation of I' = M :
0. There are two new cases corresponding to the V-rules.

Case 4.

Case 5.

' W M : o with ¢ = og[a := 7] is a direct consequence of
' M :Va.og. By the IH one has

T'EM:Va.o,. (1)

Now suppose p,& F T in order to show that p,£ F M : ogla := 7].
By (1) one has

[M], € Vo.oole = () [ool(a=x)-
XeSAT

Hence
[M], € [o0]e(a:=tr1c)-

We are done since
looleca=-1c) = loole == 7],

as can be proved by induction on oo€ Type(A2) (some care is
needed in case og = V3.19).

I'F M : o with 0 =Va.og and a ¢ FV(T) is a direct consequence
of ' F M : 0¢. By the IH one has

LEM:og. (2)

Suppose p,£ E T in order to show p, ¢ F Ya.oqg. Since a ¢ FV(T)
one has for all X€ SAT that also p,£(« := X) E I'. Therefore

[M], € [oo]¢a:=x) for all X € SAT,

by (2), hence
[[M]]p € [[VCY.O’Q]]&,

le. p, 6 EM :Va.op. B

[|
Theorem 4.3.11 (Strong normalization for A\2-Curry).
I'Fye M : 0 = M is strongly normalizing.
Proof. Similar to the proof of Theorem 4.3.6 B [|

Although the proof of SN for A2 follows the same pattern as for A—,
there is an essential difference. The proof of SN(A—) can be formalized in

Lambda Calculi with Types 67

Peano arithmetic. However, as was shown in Girard (1972), the proof of
SN(A2) cannot even be formalized in the rather strong system A of ‘math-
ematical analysis’ (second order arithmetic); see also Girard et al. (1989).
The reason is that SN(A2) implies (within Peano arithmetic) the consis-
tency of As and hence Godel’s second incompleteness theorem applies. An
attempt to formalize the given proof of SN(A2) breaks down at the point
trying to formalize the predicate ‘M € [o]¢’. The problem is that SAT is a
third-order predicate.

The property SN does not hold for the systems Ay and AN. This is ob-
vious, since all lambda terms can be typed in these two systems. However,
there is a restriction of AN that does satisfy SN.

Let AN~ be the system AN without the type constant w. The following
result is an interesting characterization of strongly normalizing terms.

Theorem 4.3.12 (van Bakel; Krivine).

M can be typed in AN~ < M is strongly normalizing.

Proof. See van Bakel (1990), theorem 3.4.11 or Krivine (1990), p. 65. mll

4.4 Decidability of type assignment

For the various systems of type assignment several questions may be asked.
Note that for T' = {z1:01,...,2,:0,} one has

TFM:o & FQQzpor.. Azgion. M) : (01— ... —op—0),
therefore in the following one has taken I' = @. Typical questions are

1. Given M and o, does one have - M : o7
2. Given M, does there exists a o such that - M : o7

3. Given o, does there exists an M such that - M : o7

These three problems are called type checking, typability and inhabitation
respectively and are denoted by M : 0?7, M :7 and 7 : 0.

In this subsection the decidability of these three problems will be ex-
amined for the various systems. The results can be summarized as follows:

68 H.P. Barendregt

Decidability of type checking, typability and inhabitation

M:07 | M:7 7.0
A— yes yes yes
Az 7 77 no
Ap yes yes, always | yes, always
AN no yes, always | 77
A—T | no no yes
Azt no no no
Apt no yes, always | yes, always
A—A | no no yes, always
A2A4 | no no yes, always
ApA | no yes, always | yes, always
ANA | no yes, always | yes, always

Remarks 4.4.1. The system ANT is the same as AN and therefore it is
not mentioned. The two question marks for A2 indicate—to quote Robin
Milner—‘embarrassing open problems’. For partial results concerning A2
and related systems see Pfenning (1988), Giannini and Ronchi (1988), Hen-
glein (1990), and Kfoury et al. (1990). In 4.4.10 it will be shown that for A2
the decidability of type checking implies that of typability. It is generally
believed that both problems are undecidable for A2.

Sometimes a question is trivially decidable, simply because the property
always holds. Then we write ‘yes, always’. For example in AN every term
M has w as type. For this reason it is more interesting to ask whether
terms M are typable in a weaker system AN~. However, by theorem 4.3.12
this question is equivalent to the strong normalization of M and hence
undecidable.

We first will show the decidability of the three questions for A—. This
occupies 4.4.2 - 4.4.13 and in these items T stands for Type(A—) and F for

Fa—-Curry-
Definition 4.4.2.
1. A substitutor is an operation
*: T—=T

such that
*x(o—1) = *(0)—*(T).

2. We write o* for *(c).

3. Usually a substitution * has a finite support, that is, for all but

finitely many type variables « one has o* = « (the support of =

being sup(*) = {a | a* # a}).

Lambda Calculi with Types 69

In that case we write

*(U) = U[al = Of){: y O 2= Oz:;],
where {a1, ..., a,} is the support of x. We also write
*=[ay = af,...,an = al].

Definition 4.4.3.

1. Let o, 7€T. A unifier for o and 7 is a substitutor * such that o* = 7*.

2. The substitutor * is a most general unifier for o and 7 if

(a) o* =71*

(b) o*t =71 = Txg * = *g0 *.

3. Let E={01=m1,...,0, = 7} be a finite set of equations between
types. The equations do not need to be valid. A unifier for F is
a substitutor * such that o] = 7 & --- & ¢}, = 7. In that case
one writes * = E. Similarly one defines the notion of a most general

unifier for .

Examples 4.4.4. The types f—(a—f) and (y—+)—6 have a unifier. For
example x = [1= y—7, § := a—(y—=7)] or ¥ = [f := 7=y, a = e—=¢,
6 := e—e—(y—)]. The unifier * is most general, *; is not.

Definition 4.4.5. o is a variant of 7 if for some *; and *5 one has

*1 and T = o*2.

oc=r
Example 4.4.6. a—f—pf is a variant of y—6—4é but not of a—f—a.

Note that if *; and %5 are both most general unifiers of say ¢ and 7,
then o*! and o*2 are variants of each other and similarly for 7.

The following result due to Robinson (1965) states that unifiers can be
constructed effectively.

Theorem 4.4.7 (Unification theorem).

1. There is a recursive function U having (after coding) as input a pair
of types and as output either a substitutor or fail such that

o and T have a unifier = U(o,T) is a most general unifier

70 H.P. Barendregt

for o and T;

o and T have no unifier = U(o,) = fail.

2. There is (after coding) a recursive function U having as input finite
sets of equations between types and as output either a substitutor or
fail such that

E has a unifier = U(F) is a most general unifier for E;
E has no unifier = U(E) = fail.

Proof. Note that oy—0os = 71— holds iff 07y = 71 and o9 = 7 hold.

1. Define U(c, 7) by the following recursive loop, using case distinction.

Ula,7) = [a:=7], if ad FV(7),
= Id, the identity, if 7= «q,
= fail, else;
U(o1—oq,) = Ula,01—032);
U(oy—0oy, mi—T) = U(UlU(UQ’Tz),TlU(OQ’TQ)) oU(oa, 1),

where this last expression is considered to be fail if one of its parts is.
Let #yqr (0, 7) =‘the number of variables in c—7’ and #_. (o, 7)="the
number of arrows in o—7’. By induction on (#yar(0, 7), #—(0, 7))
ordered lexicographically one can show that U(o, 7) is always defined.
Moreover U satisfies the specification.

2.If E={oy =1m,...,00 = Tn}, then define U(E) = U(o, 1), where

c=01— -—opand T=1— - —7,. A

See Section 7 in Klop’s chapter in this handbook for more on unification.
The following theorem is essentially due to Wand (1987) and simplifies the
proof of the decidability of type checking and typability for A—.

Proposition 4.4.8. For every basis I', term M € A and o € T such that
FV(M) C dom(T") there is a finite set of equations E = E(I', M, o) such
that for all substitutors * one has

x=E([TC,Mo) = TI"FM:o" (1)

Lambda Calculi with Types 71
I"FM:0" = % EETI Mo), (2)

for some %1 such that * and *; have the same

effect on the type variables in I' and o.

Proof. Define E(I', M, o) by induction on the structure of M:

E(Nz,0) = {r=T(@)}

E(T,MN,s) = EI,M,a—c) U E(T',N,a),
where « is a fresh variable;

E(T U{z:a}, M,3) U {a—p =},

where «, 3 are fresh.

E(T, z.M,0o)

By induction on M one can show (using the generation lemma (3.1.8)) that

(1) and (2) hold. m [|

Definition 4.4.9.

1. Let M € A. Then (T, o) is a principal pair (pp) for M if
(HTHM:o.
2)TVFM:o' => +[I*CT & 0" =0].
Here {z1:01,...}* = {z1:07,.. .}

2. Let M € A be closed. Then o is a principal type (pt) for M if
(HWFM:0o
2)FM: 0o = Ix [o*=0'].

Note that if (T, o) is a pp for M, then every variant (I, o) of (T, ¢), in
the obvious sense, is also a pp for M. Conversely if (', o) and (I, o) are
pp’s for M, then (I, ¢') is a variant of (I',). Similarly for closed terms
and pt’s. Moreover, if (', o) is a pp for M, then FV(M) = dom(T').

The following result is independently due to Curry (1969), Hindley

(1969) and Milner (1978). It shows that for A— the problems of type
checking and typability are decidable.

Theorem 4.4.10 (Principal type theorem for A—-Curry).

1. There exists (after coding) a recursive function pp such that one has

M has a type = pp(M)=(T,0), where (I',0) is a pp for M;

72 H.P. Barendregt

M has no type = pp(M) = fail.

2. There exists (after coding) a recursive function pt such that for closed
terms M one has

M has a type = pt(M) = o, where o is a pt for M;
M has no type = pt(M) = fail.

Proof. 1. Let FV(M) = {z1,...,2,} and set T'g = {z1:01, ..., 20 }
and o9 = 3. Note that

M hasatype <& IldJe I'EFM:0o
& dx TgFM: o]
< dx % IZE(FQ,M,O'()).

Define

pp(M) = (I5,05), if U(E(Lo, M, 00)) = *;
= fall, if U(E(Lo, M,00)) = fail.

Then pp(M) satisfies the requirements. Indeed, if M has a type, then
U(E(Tg, M,00)) = is defined and 'y - M : ¢ by (1) in proposition
4.4.8. To show that (T'§, () is a pp, suppose that also T F M : ¢’.
Let T = I | FV(M); write r = I° and ¢’ = 03°. Then also
[5° F M :05°. Hence by (2) in proposition 4.4.8 for some *; (acting
the same as #¢ on Ty, og) one has *; | E(Tg, M,0g). Since * is a
most general unifier (proposition 4.4.7) one has *; = %3 o * for some
*5. Now indeed

(r) =Ty =Ty =T 1’

and

(03) = o3 = 30 = o',

If M has no type, then =3 % x = E(Ty, M, 0¢) hence

U(FQ,M, 0'0) = fail = pp(M)

2. Let M be closed and pp(M) = (I',0). Then I' = () and we can put
pt(M)=0c.1

Lambda Calculi with Types 73
||

Corollary 4.4.11. Type checking and typability for A— are decidable.
Proof. As to type checking, let M and o be given. Then
FM:o < 3*[oc=pt(M)].

This is decidable (as can be seen using an algorithm—pattern matching—
similar to the one in Theorem 4.4.7).

As to the question of typability, let M be given. Then M has a type iff
pt(M) # fail. ®

Theorem 4.4.12. The inhabitation problem for A—, i.e.
IMeA o M:o

is a decidable property of o.

Proof. One has by Corollary 3.2.16 that

o inhabited in A—-Curry <= ¢ inhabited in A—-Church
<= o provable in PROP,

where PROP is the minimal intuitionistic proposition calculus with only
— as connective and o is considered as an element of PROP, see Section
5.4. Using finite Kripke models it can be shown that the last statement is
decidable. Therefore the first statement is decidable too. B [|

Without a proof we mention the following result of Hindley (1969).

Theorem 4.4.13 (Second principal type theorem for A—-Curry).
Every type o € T there exists a basis I' and term M € A such that (', o) is
a pp for M.

Now we consider A2. The situation is as follows. The question whether
type checking and typability are decidable is open. However, one has the
following result by Malecki (1989).

Proposition 4.4.14. In A2 the problem of typability can be reduced to
that of type checking. In particular

{(M :0)|Fxa M : o} is decidable = {M |30 k2 M : o} is decidable.

Proof. One has
oMo o F(Aeyy)M : (a—a).

The implication = is obvious, since F (Azy.y) : (¢c—a—a) for all o. The
implication < follows from Proposition 4.1.18. [|

Theorem 4.4.15. The inhabitation problem for A2 is undecidable.

74 H.P. Barendregt

Proof. As for A— one can show that

o inhabited in A2-Curry <= ¢ inhabited in A2-Church
<= o provable in PROP2,

where PROP2 is the constructive second-order proposition calculus.

Lob (1976) it is proved that this last property is undecidable. B

Proposition 4.4.16. For Ay one has the following:

1. Type checking is decidable.

2. Typability is trivially decidable: every A-term has a type.

3. The inhabitation problem for Ay is trivially decidable: all types are

inhabited.

Proof. 1. See Coppo and Cardone (to appear) who use the same method

as for A— and the fact that T(c) = T(7) is decidable.

2. Let 09 = pa.a—a. Then every M € A has type og, see the example

before 4.1.

3. All types are inhabited by Q, see 4.1.12 (2). ®

Lemma 4.4.17. Let A— be a system of type assignment that satisfies

subject conversion, li.e.
FbFao M:c& M= N = I'kx_N:o.

1. Suppose some closed terms have type a—a«, others not.
Then the problem of type checking is undecidable.

2. Suppose some terms have a type, other terms not.
Then the problem of typability is undecidable.

Proof. 1. If the set {(M,o) | M : ¢} is decidable, then so is

{M |F M : a—a}. But this set is by assumption closed under = and

non-trivial, contradicting Scott’s theorem 2.2.15.

2. Similarly. B

Lambda Calculi with Types 75

Proposition 4.4.18. For AN one has the following:
1. Type checking problem is undecidable.

2. Typability is trivially decidable: all terms have a type.

Proof. 1. Lemma 4.4.17(1) applies by 4.2.7, the fact that F | : a—a
and Exercise 4.1.20.

2. For all M one has M :w. ®

It is not known whether inhabitation in AN is decidable.

Lemma 4.4.19. Let A— be one of the systems a la Curry. Then
I.THy + M:0o & IM'[M g M' &T - M':0].

2. o is inhabited in A=t <& o is inhabited in A—.

Proof. 1. («) Trivial, since M —3 M’ implies M =g M'. (=) By
induction on the derivation of M : . The only interesting case is
when the last applied rule is an application of rule EQ. So let it be

M1 e M1 =M
M:o ’
The induction hypothesis says that for some M{ with My —5 M]
one has T'F y_Mj : o. By the Church-Rosser theorem 2.3.7 M7 and
M have a common reduct, say M’. But then by the subject reduction
theorem one has I' 5 M’ : 0 and we are done.

2. By (1).m

Proposition 4.4.20. For the systems A—" one has the following:
1. Type checking is undecidable.

2. Typability is undecidable for A—%1 and A\2%, but trivially decidable
for At and Ant.

3. The status of the inhabitation problem for A—T is the same as for

A—.

Proof. 1. By definition subject conversion holds for the systems A—7.
In all systems | : a—a. From Lemma 4.4.19(1) and Exercise 4.1.20
it follows that Lemma 4.4.17(1) applies.

2. By Theorems 4.3.6 and 4.3.11 terms without an nf have no type in
A— or A2. Hence by Lemma 4.4.19(1) these terms have no type in

76 H.P. Barendregt

A—% or A2%. Since for these systems there are terms having a type
lemma 4.4.17(2) applies.

In Apt and AN7T all terms have a type.
3. By Lemma 4.4.19(2). m

Lemma 4.4.21. Let M be a term in nf. Then

FacaM:0 = Fyx_ M:o.

Proof. By induction on the given derivation, using that M € A(M). m 1

Proposition 4.4.22. For the systems A — A the situation is as follows:

1. The problem of type checking is undecidable for the systems A—A,
A2A, A and ANA.

2. The problem of typability is undecidable for the system A—A and
A2A but trivially decidable for the systems ApA and ANA (all terms
are typable).

3. The problem of inhabitation is trivially decidable for all four systems
including rule A (all types are inhabited).

Proof. 1. By Lemma 4.4.21 and Exercise 4.1.20 one has I/ K : a—a.
Hence 4.4.17(1) applies.

2. Similarly.
3. The inhabitation problem becomes trivial: in all four systems one has
FQ:o
for all types o. This follows from Example 4.1.3(2) and the facts that

Yl =5 Q and A — A is closed under the rule EQ.
||

The results concerning decidability of type checking, typability and in-
habitation are summarised in the table at the beginning of this subsection.

Lambda Calculi with Types 77

5 Typing a la Church

In this section several systems of typed lambda calculus will be described
in a uniform way. Church versions will be given for the systems A— and A2,
already encountered in the Curry style. Then a collection of eight lambda-
calculi @ la Church is given, the so called A-cube. Two of the cornerstones
of this cube are essentially A— and A2 and another system is among the
family of AUTOMATH languages of de Bruijn (1980). The A-cube forms a
natural fine structure of the calculus of constructions of Coquand and Huet
(1988) and is organized according to the possible ‘dependencies’ between
terms and types. This will be done in 5.1.

The description method of the systems in the A-cube is generalized
in subsection 5.2, obtaining the so called ‘pure type systems’ (PTSs). In
preliminary versions of this chapter PTSs were called ‘generalized type
systems’ (GTSs). Several elementary properties of PTS’s are derived.

In subsection 5.3 it is shown that all terms in the systems of the A-
cube are strongly normalizing. However in 5.5 it turns out that this is not
generally true in PTS’s.

In subsection 5.4 a cube of eight logical systems will be described. Each
logical system L; corresponds to one of the systems A; on the A-cube. One
has for sentences A

l_L,A = HMI"_)\lMZlIA]]

where T' depends on the similarity type of the language of L; and [A] is a
canonical interpretation of A in A;. Moreover, the term M can be found
uniformly from the proof of A in L;. The map [—] is called the propositions-
as-types interpretation. It turns out also that the logical systems can be
described as PTSs and that in this way the propositions-as-type interpre-
tation becomes a very simple forgetful map from the logical cube into the
A-cube.

As an application of the propositions-as-types interpretation one can
represent in a natural way data types in A2. Data types correspond to
inductively defined sets and these can be naturally represented in second-
order predicate logic, one of the systems on the logical cube. Then, by
means of a map from predicate to proposition logic and by the propositions-
as-types interpretation one obtains an interpretation of data types in A2.

5.1 The cube of typed lambda calculi

In this subsection we introduce in a uniform way the eight typed lambda
calculi A—, A2, Aw, Aw, AP, AP2, APw, and APw. (The system APw is
often called AC.) The eight systems form a cube as follows:

78 H.P. Barendregt
Aw APw

A2 AP2

Aw APuw

A— AP

Fig. 2. The A-cube.

where each edge — represents the inclusion relation C. This cube will be
referred to as the A-cube.

The system A— is the simply typed lambda calculus, already encoun-
tered in section 3.2. The system A2 is the polymorphic or second order
typed lambda calculus and is essentially the system F' of Girard (1972);
the system has been introduced independently in Reynolds (1974). The
Curry version of A2 was already introduced in Section 4.1. The system Aw
is essentially the system Fw of Girard (1972). The system AP reasonably
corresponds to one of the systems in the family of AUTOMATH languages,
see de Bruijn (1980). (A more precise formulation of several AUTOMATH
systems can be given as PTSs, see subsection 5.2.) This system AP ap-
pears also under the name LF in Harper et al. (1987). The system AP2
is studied in Longo and Moggi (1988) under the same name. The system
AC = APuw is one of the versions of the calculus of constructions introduced
by Coquand and Huet (1988). The system Aw is related to a system stud-
ied by Renardel de Lavalette (1991). The system APw seems not to have
been studied before. (For Aw and APw read: ‘weak Aw’ and ‘weak APw’
respectively.)

As we have seen in Section 4, the system A— and A2 can be given also
d la Curry. A Curry version of Aw appears in Giannini and Ronchi (1988)
and something similar can probably be done for Aw. On the other hand, no
natural Curry versions of the systems AP, AP2, APw and AC seem possible.

Now first the systems A— and A2 a la Church will be introduced in the
usual way. Also Aw and AP will be defined. Then the A-cube will be defined

Lambda Calculi with Types 79

in a uniform way and two of the systems on it turn out to be equivalent to

A— and A2.

A—-Church

Although this system has been introduced already in subsection 3.2, we will
repeat its definition in a stylistic way, setting the example for the definition
of the other systems.

Definition 5.1.1. The system A—-Church consists of a set of types T =
type(A—), a set of pseudoterms A7, a set of bases, a conversion (and
reduction) relation on A and a type assignment relation .

The sets T and A are defined by an abstract syntax, bases are defined
explicitly, the conversion relation is defined by a contraction rule and F is
defined by a deduction system as follows:

1. Types T=V|T-T,
2. Pseudoterms A =V | ApAg [AVITA;
3. Bases ['={z1:A1,...,2,: AL},

with all z; distinct and all A; € T;
4. Contraction rule (Az:A.M)N—gM[z := NJ;
5. Type assignment ['F M : A is defined as follows.

z:A)eTl
(start-rule) & :
I'kxz:A
'FM:(A—=B) TEFN:A

'+ (MN):B ’

A— | (—-elimination)

I, A+ M:B
L'k (Az:A.M): (A—B)

(—-introduction)

Remarks 5.1.2.

1. In 1 the character V denotes the syntactic category of type variables.
Similarly in 2 the character V' denotes the category of term vari-
ables. In 4 the letter z denotes an arbitrary term variable. In 3 the
Z1,...,&, are distinct term variables. In 4 and 5 the letters A, B
denote arbitrary types and M, N arbitrary pseudoterms. The basis
[, z:A stands for ['U{z:A}, where it is necessary that is a variable
that does not occur in T'.

2. A pseudoterm M is called legal if for some I' and A one has ' - M: A.

80 H.P. Barendregt

Typical examples of type assignments in A— are the following. Let

A/ BET.

F (Aa:A.a) : (A—A);
b:B F (Aa:Ab): (A—DB);
b:A F ((Aa:A.a)b) @ A;
cAb:B F (Aa:Ab)e: B;
Fo(

Aa:AAb:B.a) : (A—B—A).

The system AT

Type and term constants are not officially introduced in this chapter. How-
ever, these are useful to make axiomatic extensions of A— in which certain
terms and types play a special role. We will simulate constants via vari-
ables. For example one may select a type variable 0 and term variables 0, S
and R, for each o in T as constants: one postulates in an initial context
the following.

0 0;
S 0—0;
R, : (0—(0—0—0)—0—0).

Further one extends the definitional equality by adding to the 8-contraction
rule the following contraction rule for R,.

R,MNO — M:
R,MN(Sz) — N(R,MNuz)z.

This extension of A— is called AT or Godel’s theory T of primitive recursive
functionals (‘Goédel’s T7). The type 0 stands for the natural numbers with
element 0 and successor function S; the R, stand for the recursion operator
creating recursive functionals of type 0—o. In spite of the name, more than
just the primitive recursive functions are representable. This is because
recursion is allowed on higher functionals; see e.g. Barendregt (1984),
appendix A.2.1. and Terlouw (1982) for an analysis.

A2-Church

Definition 5.1.3. The system A2-Church is defined as follows:

Lambda Calculi with Types 81

1. Types T=V | T—T | VYVT;
2. Pseudoterms A=V | ApAq | AT | AV TAg [AVAp;
3. Bases ['={z1:A1,...,2,:4,},

with Z distinct and 4 € T;

4. Contraction rules (Aa:A.M)N—sM[a := N]
(Aa.M)A—gM|a := A]

5. Type assignment ' M : A is defined as follows.

z:A) el
(start-rule) &,
'tz A

'-M:(A—B) TFN:A

'+ (MN):B ’

(—-elimination)

laA+-M:B
L'+ (Aa:AM): (A—B)’

A2 (—-introduction)

o 'FM:(Va.A)
(V-elimination) , BeT,
' MB: Ala: = B]
r-M:A
(V-introduction) , a ¢ FV(T).

I'F(Aa.M): (Va.A)

Typical assignments in A2 are the following:

F (Aa:a.a) : (a—a);

F (Aada:a.q) @ (Va.a—a);

F (Aara:a.a)A: (A—A);
b:A F (Aada:a.a)Ab: A;

{of course the following reduction holds:

(Aada:a.a)Ab—(Aa:A.a)b—b; }
F (ABAa:(Vo.a).a((Yo.a)—B)a) : (VB.(Va.a)—B);

{for this last example one has to think twice to see that it is correct; a
simpler term of the same type is the following}

F(AfAa:(Vaa).af) : (V8.(Va.a)—0).

Without a proof we mention that the Church—-Rosser property holds for
reduction on pseudoterms in A2.

82 H.P. Barendregt

Dependency

Types and terms are mutually dependent; there are
terms depending on terms;
terms depending on types;

types depending on terms;
types depending on types.

The first two sorts of dependency we have seen already. Indeed, in A—
we have

F:A—-B M:A = FM:B.

Here FM is a term depending on a term (e.g. on M). For A2 we saw
G :Va.a—a Aatype = GA:A—A

Hence for G = AaAa:a.a one has that GA is a term depending on the type
A.

In A— and A2 one has also function abstraction for the two dependen-
cies. For the two examples above

Am:A.Fm: A—B,

Aa.Go :Va.a—a.

Now we shall define two other systems Aw and AP with types FA (FM
resp) depending on types (respectively terms). We will also have function
abstraction for these dependencies in Aw and AP.

Types depending on types; the system Aw

A natural example of a type depending on another type is a—a that de-
pends on «. In fact it is natural to define f = Aa € T.a—a such that
f(a) = a—a. This will be possible in the system Aw. Another feature of
Aw is that types are generated by the system itself and not in the informal
metalanguage. There is a constant % such that ¢ : % corresponds to o € T.
The informal statement

a,B€T= (a—pF)eT
now becomes the formal
s, Bk (a—f) @ *.

For the f above we then write f = Aa: x .a—a«a. The question arises
where this f lives. Neither on the level of the terms, nor among the types.
Therefore a new category K (of kinds) is introduced

K = * | K—K.

That is K = {*, x—*,x—*—x*,...}. A constant O will be introduced such
that & : O corresponds to k €K. If Fk: 0O and - F : k, then F' is called a

Lambda Calculi with Types 83

constructor of kind k. We will see that F (Aa: * .a—a) : (¥—%), l.e. our f
1s a constructor of kind *—=*. Each element of T will be a constructor of

kind .

Although types and terms of Aw can be kept separate, we will consider
them as subsets of one general set 7 of pseudo expressions. This is a
preparation to 5.1.8, 5.1.9 and 5.1.10 in which it is essential that types and
terms are being mixed.

Definition 5.1.4 (Types and terms of \w).

1. A set of pseudo-expressions 7 is defined as follows
T=V|C|TT|\V:T.T|T-T

where V is an infinite collection of variables and C of constants.

2. Among the constants C' two elements are selected and given the
names * and O. These so called sorts * and O are the main rea-
son to introduce constants.

Because types and terms come from the same set 7, the definition of a
statement is modified accordingly. Bases have to become linearly ordered.
The reason is that in Aw one wants to derive

ax*, ra Foxa;
ax F (Azaz): (a—a)

but not
roa,ax Fooxa;
ra b (Qarx.z): (x—a)

in which o occurs both free and bound.

Definition 5.1.5 (Contexts for Aw).

1. A statement of Aw is of the form M : A with M, A€ T.

2. A context 1s a finite linearly ordered set of statements with distinct
variables as subjects. I'; A, ... range over contexts.

3. <> denotes the empty context. If ' = <=zy:A4q,...,x,:A,> then
D y:B =<z1:Ay, ...,z A0, y:B>.

Definition 5.1.6 (Typing rules for Aw). The notion I' k), M : A is
defined by the following axiom and rules. The letter s ranges over {*,O}.

84 H.P. Barendregt

(axiom) <>F*: 0

'A:s

— v ¢}
zAFz: A

(start-rule)

'FA:B TEHC:s
(weakening rule) ,z¢T;

LeC-A:B

I'rA:s THB:s
' (A—B):s .

(type/kind formation)

'rF:(A—=B) TFa:A
T+ Fa:B ’

(application rule)

Ie:AFb:B TH(A—=B):s
(abstraction rule) ;

I'F (Az:Ab): (A—B)

FT'FA:B THFB :s B:gB/
HA:B '

(conversion rule)

Example 5.1.7.

ax, B Fry (a=f):x
ask, Bk, x:(a—f) Faw T (a—p);
ax, B Fi, (Azi(a—pP).2): ((a—F)—(a—p)).

Write D = AB: % .f— . Then the following hold.

Faw D (x—%).
ax Fy, (Az:Da.z): D(Da).

Types depending on terms; the system AP

An intuitive example of a type depending on a term is A”—B with n a
natural number. In order to formalize the possibility of such ‘dependent
types’ in the system AP, the notion of kind is extended such that if A is
a type and k is a kind, then A—Fk is a kind. In particular A—x is a kind.
Then if f : A—x and a : A, one has fa : . This fa is a term dependent
type. Moreover one has function abstraction for this dependency.

Lambda Calculi with Types 85

Another idea important for a system with dependent types is the for-
mation of cartesian products. Suppose that for each a : A a type B, is
given and that there is an element b, : B,. Then we may want to form the
function

Aa:A.b,

that should have as type the cartesian product
Ia:A.B,

of the B,’s. Once these product types are allowed, the function space type
of A and B can be written as

(A—B) = lla:A.B(= B*, informally),

where a is a variable not occurring in B. This is analogous to the fact that
a product of equal numbers is a power:

provided that b; = b for 1 < 7 < n. So by using products, the type
constructor — can be eliminated.

Definition 5.1.8 (Types and terms of AP).
1. The set of pseudo-expressions of AP, notation, 7 is defined as follows
T=V|C|TT |\V:T.T | OV:T.T

where V is the collection of variables and C that of constants. No
distinction between type- and term-variables is made.

2. Among the constants C' two elements are called * and O.

Definition 5.1.9 (Assignment rules for AP). Statements and contexts
are defined as for Aw (statements are of the form M:A with M, A € T;
contexts are finite linearly ordered statements).

86 H.P. Barendregt

The notion F is defined by the following axiom and rules. Again the letter
s ranges over {x,O}.

(axiom) <>F=x*:0

T'HA:s

(start-rule) R
FzAFz: A

gr;

I'FA:B THC:s
rzzC-A:B ’

(weakening rule)

z¢T,

)

I'FA:x TI''z:AFB:s
(type/kind formation) :
AP Ik (lz:A.B) : s

'+F:(0z:AB) Tha:A

application rule ;
() 'k Fa: B[z = da

Tz:Arb:B TF(Iz:AB):s
I'F(Az:Ab): (lz:A.B)

(abstraction rule) ;
'A:B I'+B':s B=4B
r-A:p8

(conversion rule)

Typical assignments in AP are the following:

Ax F (A—x):0;

Ax, PPA—x a:A F Pa:x
Ax, PA—x, a:A F Pa—x:[0,;
A, P:A—x F (Ma:A.Pa—x) : O;
A, P:A—x F (Aa:Adz:Pa.x): (la:A.(Pa—Pa))

Pragmatics of AP
Systems like AP have been introduced by N.G. de Bruijn (1970), (1980) in

order to represent mathematical theorems and their proofs. The method
is as follows. One assumes there is a set prop of propositions that is closed
under implication. This is done by taking as context I'y defined as

prop:*, Imp:prop—prop—prop.

Write ¢ D ¢ for Imp . In order to express that a proposition is valid
a variable T : prop—=x* is declared and ¢ : prop is defined to be valid if

Lambda Calculi with Types 87

Ty is inhabited, i.e. M : Ty for some M. Now in order to express that
implication has the right properties, one assumes D, and D; such that

Depyp : T(p D Y)—=Tp—Ty.

Dipy : (Te—=Ty)—=T(p D).

So for the representation of implicational proposition logic one wants to
work in context I'prop consisting of I'g followed by

T : prop—*
D. : Ig:proply:prop.T(p D ¥)—=Te—Ty
D; : Hg:propllg:prop.(Te—Ty)—T(e D ¥).

As an example we want to formulate that ¢ D ¢ is valid for all propositions.
The translation as type is T(¢ D ¢) which indeed is inhabited

Lprop Fyp (Dipp(Az:Te.z)) : T(p D).

(Note that since - Ty : * one has F (Az:Tp.z) : (Te—Typ).)

Having formalized many valid statements de Bruijn realized that it was
rather tiresome to carry around the T. He therefore proposed to use * itself
for prop, the constructor — for O and the identity for T. Then for D,
one can use

Az:(p—Y)Ayp.ay

and for D;p¢
Az:(p—).x.

In this way the {—,V} fragment of (manysorted constructive) predicate
logic can be interpreted too. A predicate P on a set (type) A can be
represented as a P:(A—x*) and for a:A one defines Pa to be valid if it
is inhabited. Quantification Yz € A.Pz is translated as Ilz:A.Pz. Now a
formula like

V& € AVy € A.Pey|—[Ve € A.Prx]

can be seen to be valid because its translation is inhabited

Ak, PPA—A—x F (Az:(lle:Ally:A.Pay) e A.zex)
(Maz:Ally: A. Pay]|—[Hz:A. Pza]).

The system AP is given that name because predicate logic can be inter-
preted in it. The method interprets propositions (or formulas) as types
and proofs as inhabiting terms and is the basis of several languages in the
family AUTOMATH designed and implemented by de Bruijn and cowork-
ers for the automatic verification of proofs. Similar projects inspired by

88 H.P. Barendregt

AUTOMATH are described in Constable et al.(1986) (NUPRL), Harper et
al.(1987) (LF) and Coquand and Huet (1988) (calculus of constructions).
The project LF uses the interpretation of formulas using T:(prop—x) like
the original use in AUTOMATH. In Martin-Lof (1984) the proposition-as-
types paradigm is used for formulating results in the foundation of mathe-
matics.

The A-cube

We will now introduce a cube of eight systems of typed lambda calculi.
This so called ‘A-cube’ forms a natural framework in which several known
systems ¢ la Church, including A—, A2, Aw and AP are given in a uniform
way. It provides a finestructure of the calculus of constructions, which is
the strongest system in the cube. The differentiation between the systems
is obtained by controlling the way in which abstractions are allowed.

The systems A— and A2 in the A-cube are not given in their original
version, but in a equivalent variant. Also for some of the other known sys-
tems the versions on the cube are only in essence equivalent to the original
ones. The point is that there are some choices for the precise formulation
of the systems and in the cube these choices are made uniformly.

Definition 5.1.10 (Systems of the A-cube).

1. The systems of the A-cube are based on a set of pseudo-expressions
T defined by the following abstract syntax.

T=VI|C|TT |AV:T.T|UV:T.T

where V and C are infinite collections of variables and constants re-
spectively. No distinction between type- and term-variables is made.

2. On 7 the notions of f-conversion and B-reduction are defined by the
following contraction rule:

(Az:A.B)C—BJlz := C].

3. A statement is of the form A : B with A, B€ 7. A is the subject and
B is the predicate of A : B. A declaration is of the form z:A with
A€T and x a variable. A pseudo-contezt is a finite ordered sequence of
declarations, all with distinct subjects. The empty context is denoted
by <>. ' =< z1:41,...,2,:A, >, then

D z:B=<uz1:A1,...,2,: Ay, 2:B > .

Usually we do not write the <> .

Lambda Calculi with Types 89
4. The rules of type assignment will axiomatize the notion
rA:B

stating that A : B can be derived from the pseudo-context I'; in that
case A and B are called (legal) expressions and I is a (legal) context.

The rules are given in two groups:

(a) the general axiom and rules, valid for all systems of the A-cube;

(b) the specific rules, differentiating between the eight systems; the-
se are parametrized II-introduction rules.

Two constants are selected and are given the names % and 0. These
two constants are called sorts. Let S = {*,0} and s, s1, 5o range over

S.

Systems in the A-cube

1. General axiom and rules.
(axiom) <>F=x*:0

'A:s

— v ¢}
exAkFz: A

(start rule)

'FA:B THC:s
(weakening rule) ,z ¢

zC-A:B

'FF:(Mz:AB) Tha:A
'k Fa: Bz :=d] ’

(application rule)

) Ie:AFb:B TF(Ilz:A.B):s
(abstraction rule) :

I'F(Az:Ab): (Tlz:A.B)

'4:B T'HFB :s B:@B’
F'-A:B '

(conversion rule)

2. The specific rules

'FA:sy, T,2:AF B:s,
't (Ox:A.B) : s9 .

(s1,82) rule

90 H.P. Barendregt

We use A, B,C,a,b,...for abitrary pseudo-terms and z,y, z, ... for
arbitrary variables.

5. The eight systems of the A-cube are defined by taking the general rules
plus a specific subset of the set of rules {(x,*), (x,0), (O, %), (O,0)}.

System Set of specific rules

A— (*, %)

A2 (k%) (O, %)

AP (, %) (x,0)

AP2 (k%) (O,%) (%,0)

Aw (*a *) (Di D)

Aw (k%) (O, %) (0,0

APw (*, %) x0) (0,0)
(*, %) (G,0)

(
(O,%) (x,0)

*
*

The A-cube will usually be drawn in the standard orientation displayed as
follows; the inclusion relations are often left implicit.

Aw AC

A2 AP2

Aw APw

A— AP

Remark 5.1.11. Most of the systems in the A-cube appear elsewhere in
the literature, often in some variant form.

Lambda Calculi with Types

91

System related system(s) | names and references

A— AT simply typed lambda calculus;
Church (1940),
Barendregt (1984), Appendix A,
Hindley and Seldin (1986), Ch 14.

A2 F scond order (typed) lambda calculus;
Girard (1972),
Reynolds (1974).

AP AUT-QE; LF de Bruijn (1970);
Harper et al. (1987).

AP2 Longo and Moggi (1988).

Aw POLYREC Renardel de Lavalette (1991).

Aw Fw Girard (1972).

APw =XC | CC calculus of constructions;
Coquand and Huet (1988).

Remarks 5.1.12.

1. The expression (IMa:*x.(a—a)) in A2 being a cartesian product of
types will also be a type, so (Ila*.(a—«)) : . But since it is

a

product over all possible types «, including the one in statu nascend:
(i.e. (Max.(a—c«)) itself is among the types in *), there is an essential
impredicativity here.

. Note that in A— one has also in some sense terms depending on types
and types depending on types:

Az:A.z is a term depending on the type A,
A—A is a type depending on the type A.

But in A— one has no function abstraction for these dependencies.
Note also that in A— (and even in A2 and Aw) one has no types
depending on terms. The types are given beforehand. The right-
hand side of the cube is essentially more difficult then the left-hand
side because of the mixture of types and terms.

The two versions of A— and A2

Now we have given the definition of the A-cube, we want to explain why
A— and A2 in the cube are essentially the same as the systems with the
same name defined in 5.1.1 and 5.1.3 respectively.

92 H.P. Barendregt

Definition 5.1.13. In the systems of the A-cube we use the following
notation:

A—B = z:A.B, where z is fresh (not in A, B).
Lemma 5.1.14. Consider A— in the A-cube. If I' = A : % in this system,

then A is built up from the set {B | (B : *) € I'} using only — (as defined
in 5.1.13).

Proof. By induction on the generation of . B [|

Notice that the application rule implies the —-elimination rule:

'FF:(A=B)(=llz:A.B) Tta:A
'k (Fa):Blx:=a]=B

bl

since & does not occur in B. It follows that if e.g. in A— in the A-cube one
derives

Ax B, a:A,b:BEM :C : %

then
aA,bBFM:C

is derivable in the system A— as defined in 5.1.1.
Similarly one shows that both variants of A2 are the same by first defin-
ing in the A-cube
Va.A = lla:x. A,

Aa.M = dax*x.M.

Of course the use of the greek letter « is only suggestive; after all, it is a
bound variable and its name is irrelevant.

Some derivable type assignments in the A-cube

We end this subsection by giving some examples of type assignment for
the systems in the A-cube. The examples for A— and A2 given before are
essentially repeated in the new style of the systems.

The reader is invited to carefully study these examples in order to gain
some intuition in the systems of the A-cube. Some of the examples are
followed by a comment {in curly brackets}. In order to understand the
intended meaning for the systems on the right plane in the A-cube (i.e. the
rule pair (*,0) is present), some of the elements of * have to be considered
as sets and some as propositions. The examples show that the systems
in the A-cube are related to logical systems and form a preview of the
propositions-as-type interpretation described in subsection 5.4. Names of

Lambda Calculi with Types 93

variables are chosen freely as either Roman or Greek letters, in order to
follow the intended interpretation. The notation I' = A : B : C' stands for
the conjunction of 'F A: Band ' B : C.

Examples 5.1.15.

1. In A— the following can be derived:

Ax B (TTz:AA) @ %
Ax F (Aa:A.a) : (z:AA);
A, Bx,b:B + (la:Ab): (A—DB),
where (A—B) = (lIz:A.B);
A, b A F ((Aa:A.a)b) @ A;
A, Bk, A b:B F ((Aa:Ab)e) : B;
A, Bx F (Aa:AXb:B.a) : (A—(B—A)) : *.

2. In A2 the following can be derived:

ax F (Aaa.a): (a—a);
F o (Qasxdaia.a) @ (Tax.(a—a)) @ *;
Ax F (Qaxra:ia.a)d (A—A);
A, b:A F o (Qaxdaia.a)Ab : A

of course the following reduction holds:

(Aaxda:a.a)Ab (Aa:A.a)b
b.

Ll

The following two examples show a connection with second-order
proposition logic.

F (AS#Aa:(Hasx*.a).a((Max.a)—B)a) : (115 (Max.a)—F).

{For this last example one has to think twice to see that it is correct;
a simpler term of the same type is the following; write L = (Ila:*.«),
which is the second-order definition of falsum.}

F (Af:*xAa:L.af) : (IIG:x. L—p).

{The type considered as proposition says: ez falso sequitur quodlibet,
i.e. anyting follows from a false statement; the term in this type is its
proof.}

3. In dw the following can be derived

94

H.P. Barendregt
F (Qaskx.a—a): (x—x%) : O
{(Aa*x.c—a) is a constructor mapping types into types};

B F (Aask.a—a)f : *;
Bk B F (Ay:f.2) : Aax.a—a)f

{note that (Ay:8.z) has type S—2 in the given context};

ax, fix—x b f(fa) @ *;
ax b (Afx—x f(fa)) @ (x—*)—x*

{in this way higher-order constructors are formed}.

. In AP the following can be derived:

Ax b (A—%) : O

{if A is a type considered as set, then A—=x is the kind of predicates
on A};
Ak, Pi(A—x*),a:AF Pa:*

{if A is a set, a € A and P is a predicate on A, then Pa is a type
considered as proposition (true if inhabited; false otherwise)};

A, P(A—A—x) F (Ila:A.Paa) : *
{if P is a binary predicate on the set A, then Va € A Paa is a propo-

sition };

Ak, P:A—x*, Q:A—+ F (Ta:A.(Pa—Qa)) : *

{this proposition states that the predicate P considered as a set is
included in the predicate @};

Ak, P:A—xF (lla:A.(Pa—Pa)) : *
{this proposition states the reflexivity of inclusion};
A, P:A—x b (Aa:Adz:Pa.z) : (lla:A.(Pa—Pa)) : *

{the subject in this assignment provides the ‘proof’ of reflexivity of
inclusion};

Ak, PrA—*, Qx F (Ta:A.Pa—Q)—(Ila:A.Pa)—Q) : *

Ak, PrA—x, Q:x,a0:A F (Az:(Tla:A.Pa—Q)Ay:(lla:A. Pa).za,(ya,)) :

Lambda Calculi with Types 95

(Iz:(Ma:A. Pa—Q)y:(lla:A.Pa).Q) =
(Ta:A.Pa—Q)—(Ha:A.Pa)—Q

{this proposition states that the proposition
(Va € A.Pa—Q)—(Va € A.Pa)—Q

is true in non-empty structures A; notice that the lay out explains
the functioning of the A—rule; in this type assignment the subject is
the ‘proof’ of the previous true proposition; note that in the context
the assumption ag:A is needed in this proof.}

5. In dw the following can be derived.
Let a&f = IIy:*.(a—f—~)—7, then
as*, B akf:*
{this is the ‘second-order definition of &’ and is definable already in
A2}
Let AND = Aa:xAfB:x.a&f and K = Aa*xAB:xAz:ady:[.2, then

F AND : (k—*—%),
F K (Haf:x.a—F—a).

{Note that a&f and K can be derived already in A2, but the term
AND cannot}.

ax, fx F (Az:ANDaf.za(Kaf)) : (ANDaf—a) @ *

{the subject is a proof that ANDafS—« is a tautology}.

6. In AP2 {corresponding to second-order predicate logic} the following
can be derived.

A, P:A—=x F (Aa:A.Pa—L1):(A—x)
A, PPA—A—+ + [(Ha:Allb:A.Pab—Pba—1)
—(Ma:A.Paa—1)] : *

{the proposition states that a binary relation that is asymmetric is
irreflexive}

7. In APw the following can be derived.

AxF (AP:A—A—xda:A. Paa) : (A—A—+)—(A—=%)) : O

96 H.P. Barendregt

{this constructor assigns to a binary predicate P on A its ‘diagona-
lization’};

F(AA*AP:A—A—xAa:A.Paa) : (TAIIP:A—A—xIla:A.x) : O
{the same is done uniformly in A}.
8. In APw = AC the following can be derived.
F (AAxAP:A—xAa:A.Pa—1) : (ITA:*.(A—+)—(A—x)) : O

{this constructor assigns to a type A and to a predicate P on A the
negation of P}.

Let ALL = (AA:xAP:A—«.1Ila:A.Pa); then
A, P:A—xt ALL AP :* and (ALL AP) =g (Ila:A.Pa)

{universal quantification done uniformly}.

Exercise 5.1.16.

1. Define = = Aa:*.a— 1. Construct a term M such that in Aw

a:x,B:xbFM: ((a—=F)—=(-f—-a)).

2. Find an expression M such that in AP2
Ak, Pi(A—A—x)
M : [(a:Allb: A. Pab— Pba— 1)—(Ila:A. Paa— 1)] : *.
3. Find a term M such that in AC

A, P:A—x, a:A+ M : (ALL AP—Pa).

5.2 Pure type systems

The method of generating the systems in the A-cube has been generalized
independently by Berardi (1989) and Terlouw (1989). This resulted in the
notion of pure type system (PTS). Many systems of typed lambda calculus
@ la Church can be seen as PTSs. Subtle differences between systems can
be described neatly using the notation for PTSs.

One of the successes of the notion of PTS’s is concerned with logic.
In subsection 5.4 a cube of eight logical systems will be introduced that

Lambda Calculi with Types 97

is in a close correspondence with the systems on the A-cube. This result
is the so called ‘propositions-as-types’ interpretation. It was observed by
Berardi (1989) that the eight logical systems can each be described as a
PTS in such a way that the propositions-as-types interpretation obtains a
canonical simple form.

Another reason for introducing PTSs is that several propositions about
the systems in the A-cube are needed. The general setting of the PTSs
makes it nicer to give the required proofs. Most results in this subsection
are taken form Geuvers and Nederhof (1991) and also serve as a preparation
for the strong normalization proof in Section 5.3.

The pure type systems are based on the set of pseudo-terms 7 for the
A-cube. We repeat the abstract syntax for 7.

T=V|C|TTIA\V:TT |UV:TT

Definition 5.2.1. The specification of a PTS consists of a triple
S = (S, A, R) where

1. S is a subset of (| called the sorts;

2. A is a set of azioms of the form

with e € C and s € S;

3. R is a set of rules of the form

(Sla 52, 53)
with s1,s9,83 €€ S.

It is useful to divide the set V' of variables into disjoint infinite subsets V;
for each sort s€S. So V =U{V; | s € §}. The members of V; are denoted
by ®z,®y,®z,.... Arbitrary variables are often still denoted by z,y,z,... ;
however if necessary one writes x = °x to indicate that x € V;. The first
version of A2 introduced in 5.1.3 can be understood as z,y, z, ... ranging
over Vi and «, 3,7, ... over Vg. For reasons of hygiene it will be useful to
assume that if *1z; and *2ry occur both in a pseudo-term M, then

$1 % $3 = x1 = Za.
If this is not the case, then a simple renaming can establish this.

Definition 5.2.2. The PTS determined by the specification S = (S8, .4, R),
notation AS=XA(S, A, R), is defined as follows. Statements and contexts are

98 H.P. Barendregt

defined as for the A-cube. The notion of type derivation I' Fxg A : B (we
just write I' = A : B) is defined by the following axioms and rules:

AS, A R)
(axioms) <>k ec:s, if (c:s)€A;
'FA:s
(start) _ ife =% ¢T;
x:AFxz: A

'FA:B THC:s
(weakening) , ife =% ¢T;
z:CHA:B

1 I'FA:s; T z:AF B: s " ?
roduct , it (51,582,53) ER;
(b) I'F (IIz:A.B) : s3 (81,82, 53)

'FF:(Mz:AB) Tha:A

application ;
() [+ Fa: Bz = a
Ie:AFb:B TF(Mz:AB):s
(abstraction) :
I'F (Az:Ab) : (Tz:A.B)
. T''HA:B TFRB :s B:@B’
(conversion))

FkA:B

In the above we use the following conventions.
s ranges over 8, the set of sorts;
xz ranges over variables.
The proviso in the conversion rule (B =g B’) is a priori not decidable.
However it can be replaced by the decidable condition

B/—>ﬁBOI'B—>@B/
without changing the set of derivable statements.
Definition 5.2.3.

1. The rule (s1, s2) is an abbreviation for (s1, s2, s2). In the A-cube only
systems with rules of this simpler form are used.

2. The PTS A(S, A, R) is called full if

Lambda Calculi with Types 99

R = {(81,52) | S$1, 89 ES}

Examples 5.2.4.
1. A2 is the PTS determined by:
S = {x0}

A = {x:0}
R = {(*%),(0%)}.

Specifications like this will be given more stylistically as follows.

*’
*

O
O

A2 A
R (*, %), (O, *)

2. AC 1s the full PTS with

S *,0
AC| A *: 0
R (x%),(0,%),(x,0),(0,0)

3. A variant AC’ of AC is the full PTS with

S !« O
ACT| A O, P .0
R 82, i.e. all pairs

4. A— is the PTS determined by

S *,0
A— .A * [
R (*, %)

5. A variant of A—, called A™ in Barendregt (1984) Appendix A, is the
PTS determined by

S
AT A 0:x*
R

100

H.P. Barendregt

The difference with A— is that in A” no type variables are possible
but only has constant types like 0,0—0,0—0—0,

The system A% in which * is the sort of all types, including itself, is
specified by

S *
Ax A * 1k
R (, *)

In subsection 5.5 it will be shown that the system Ax is ‘inconsis-
tent’, in the sense that all types are inhabited. This result is known
as Girard’s paradox. One may think that the result is caused by
the circularity in * : *, however Girard (1972) showed that also the
following system is inconsistent in the same sense, see Section 5.5.

S * O A
AU A «:0,0:A
R (*,*),(l:l,*),(D,D),(A,D),(A,*)

(Geuvers (1990)). The system of higher-order logic in Church (1940)
can be described by the following PTS; see Ssection 5.4 for its use.

S 0, A
AHOL | A «*:0,0: A
R (x, %), (O, %), (0,0)

. (van Benthem Jutting (1990)). So far none of the rules has been of

the form (s1, $2, s3). Several members of the AUTOMATH family, see
van Daalen (1980) and de Bruijn (1980), can be described as PTSs
with such rules. The sort A serves as a ‘parking place’ for certain
terms.

S
AMAUT-68 A
R *), (%, 0, A), (0, %, A)
JO,A), (x, AA) (O, A A)

This system is a strengthening of A— in which there are more pow-
erful contexts.

AMUTQE | 5 (4 4, (+,0), (0, %, A)

(O0,0,A), (x, A, A), (O,A,A)

Lambda Calculi with Types 101

This system corresponds to AP.

APAL),(*,D,A),(?,*,A)

ED O,A), (x,A;A),(O,A,A)

This system is a subsystem of A—. An interesting conjecture of de
Bruijn states that mathematics from before the year 1800 can all be
formalized in APAL.

In subsection 5.4 we will encounter rules of the form (s1, s3, s3) in order
to represent first-order but not higher-order functions.

Properties of arbitrary PTSs

Now we will state and prove some elementary properties of PTSs. In 5.2.5 -
5.2.17 the notions of context, derivability etc. refer to AS = A(S, A, R), an
arbitrary PTS. The results are taken from Geuvers and Nederhof (1991).

Notation 5.2.5.

1. THFA:B:CmeansT'+A:B&T'FB:C.

2. Let A = up:By,...,uy:B, with n > 0 be a pseudocontext. Then
'trAmeansT'Hu:B1 & ... &T' F u,:B,.

Definition 5.2.6. Let I' be a pseudocontext and A be a pseudoterm.

1. T is called legal if AP, Q€ TT F P : Q.

2. Ais called aT-termif IB€ T[T FA:Bor 'k B: A].

3. Ais called a [-type if s € S[T' + A : s].

4. f ' A : s, then A is called a ['-type of sort s.

5. Ais called a T-element if IB€T73se S[TF A: B :s].

6. If - A: B:sthen A is called a ['-element of type B and of sort s.
7. A€ T is called legalif AT, B TFA:BorTF B : Al

Definition 5.2.7. Let I' = z1:4y,...,2,: A, and A = y1:B1, ..., Ym:Bm
be pseudo-contexts.

102 H.P. Barendregt

1. A statement z:A4 is in T, notation (z:A) €T, if # = 2; and A = A;
for some i.

2. T'is part of A, notation I' C A, if every z:A in I is also in A.

3. Let 1 <2< n+ 1. Then the restriction of I to i, notation I' [¢, is
;l‘liAl, ceey l‘i_liAi_l.

4. T is an initial segment of A, notation I' < A, if for some j < m+ 1
one has ' = A [J.

Lemma 5.2.8 (Free variable lemma for PTS’s).
Let I' = z1:A1,...,2,:A, be a legal context, say I' - B : C'. Then the
following hold.

1. The z1,...,x, are all distinct.
2. FV(B),FV(C) C{x1,...,zn}.
3. FV(A;) C{zy,...,2z5-1} for 1 <i<n.

Proof. (1), (2), (3). By induction on the derivation of ' B : C. ® [|

The following lemmas show that legal contexts behave as expected.

Lemma 5.2.9 (Start lemma for PTS’s). Let T' be a legal context.
Then

1. (¢:s) is an axiom = T lFc:s;

2. (x:A)eT = Tha:A

Proof. (1), (2). By assumption I' - B : C for some B and C. The result
follows by induction on the derivation of ' - B : C. & [|

Lemma 5.2.10 (Transitivity lemma for PTS’s). Let [' and A be
contexts of which ' is legal. Then

TFA&AFA:B=TFA:B.

Proof. By induction on the derivation of AF A : B.
We treat two cases:

Case 1. AF A: Bis<>F c:s with ¢ : s an axiom. Then by the start
lemma 5.2.9 (1) we have T' I ¢ : s, since T' is legal. (Note that
trivially I' F <>, so one needs to postulate that T is legal.)

Case 2. AF A: Bis A (Iz:A;.A43) : s3 and is a direct consequence of
AF Ay sy and A 2z:Ar B Ag :se for some (81, 2, s3) ER. It may

Lambda Calculi with Types 103

be assumed that x does not occur in I'. Write I't = I', z:4;. Then
by the induction hypothesis I' - A; : 51,50 't F A, z:4;. Hence

[x:A1F Ay s
and hence by the product rule
't (HIliAl.A2)153

ile. THFA:B.

||
Lemma 5.2.11 (Substitution lemma for PTS’s). Assume
A AFB:C (1)
and
THD:A (2)
Then

I Alz:= D]+ Blz := D] : Clz := D].
Proof. By induction on the derivation of (1). We treat two cases. Write
M* for M[z := D].
Case 1. The last rule used to obtain (1) is the start rule.
Subcase 1.1. A =<>. Then the last step in the derivation of (1) is

'kFA:s
F,;EZA'_IZA’

so in this subcase (B : C') = (z : A). We have to show
FF(z:A)*"=(D:A)
which holds by assumption (2).
Subcase 1.2. A = Ay, y:E and the last step in the derivation of (1) is

oA ATFE:s
F,J;:A,Al,y:El—y:E.

We have to show

104 H.P. Barendregt
[LAL yE* Ry E*,

but this follows directly from the induction hypothesis I', A7
E* s,
Case 2. The last applied rule to obtain (1) is the application rule, i.e.
T,z:A, A F By : (My:C1.Cy) T,2:AAF By : C
[A A F (B1By) : Coly := By .

By the induction hypothesis one has
[A*F By : (Hy:C7.C5) and T,A*F B} : CY

and hence

[, A" (B B;) : (C3ly == B3))

so by the substitution lemma for terms, 2.1.6, one has

F, A* F (Ble)* : (Cz[y = BQ])* |
||

Lemma 5.2.12 (Thinning lemma for PTS’s). Let ' and A be legal
contexts such that I' C A. Then

I'-rA:B=AFA:B.

Proof. By induction on the length of derivation of I' F A : B. We treat
two cases.
Case 1. ' F A : B is the axiom <> I ¢ : s. Then by the start lemma 5.2.9
one has AF ¢ :s.
Case 2. '+ A: Bisan I' F (ITx:A;.45) : s3 and follows from ' - 4; : s
and I',z:A; + As : s5. By the IH one has A F A; : s; and since it may
be assumed that does not occur in A it follows that A, z:A; -z : A i.e.
A,z:A; is legal. But then again by the IH A z:A; F Ay : s and hence
AF (Mz:A1.Az) :s3. 1

[|

The following result analyses how a type assignment I' H A : B can be
obtained, according to whether A is a variable, a constant, an application,
a A-abstraction or a Il-abstraction.

Lambda Calculi with Types 105

Lemma 5.2.13 (Generation lemma for PTS’s).

1. Tkre:C
'tz:C

Is € S [C =5 s & (¢ : s) is an axiom).

Is€SIB=3CIFB:s& («:B)eT

& @ =),

3. THF(Mz:A.B):C = 3J(s1,82,s3)ER[TFA:5 &
Iz:AF B :sy & C =p s3).

4. THQz:Ab):C = 3Fse€SIB[I'F (Iz:A.B):s &
Ie:AFb:B & C=p (Ilz:A.B)].

5. TH(Fa):C = JAB[I'FF:(Ilz:A.B) &

I'ta:A&C =3 Blz :=d]].

=
=

Proof. Consider a derivation of I' A : C in one of the cases. The rules
weakening and conversion do not change the term A. We can follow the
branch of the derivation until the term A is introduced the first time. This
can be done by

e an axiom for 1;
e the start rule for 2

e the product-rule for 3;

the application rule for 4;

e the abstraction-rule for 5.

In each case the conclusion of the axiom or ruleis '+ A : B’ with I C T
and B’ =3 B. The statement of the lemma follows by inspection of the
used axiom or rule and the thinning lemma 5.2.12 . ® | |

The following corollary states that every ['-term is a sort, a [-type or a
I'-element. Note however that the classes of sorts, I'-types and I'-elements
overlap. For example, in A— with context I' = « : % one has that a—a« is
both a I'-type and a I'-element; indeed,

't (Azaz): (a—a) xand I'F (a—a) 0.

Also it follows that subexpressions of legal terms are again legal. Subex-
pressions are defined as usual. (M sub A iff M €Sub(A4), where Sub(A),
the set of subexpressions of A, is defined as follows.

Sub(A) = {A},if A is one of the constants
(including the sorts) or variables;
= {A}U Sub(P)U Sub(Q), if A is of the form
Mz:P.Q, Az:P.Q or PQ.)

106 H.P. Barendregt

Corollary 5.2.14. In every PTSone has the following.

I.TFA:B=>3s[B=sor'F B:5s]

2.THA:(Mz:By.By) = 381,820 - By :s1 & Ty,2: By F By :osa).
3. If A is a I'-term, then A is a sort, a I'-type or a I'-element.

4. If A is legal and B sub A, then B is legal.

Proof. 1. By induction on the derivation of I' H A : B.
2. By (1) and (4) of the generation lemma (notice that (Ilz:B;.Bg) # s).
3. By (1), distinguishing the cases 'F A:C and '+ C : A.

4. Let A be legal. By definition either T F A : Cor ' F C : A, for
some I' and C. If the first case does not hold, then by (1) it follows
that A = s, hence B = A is legal. So suppose I' - A : B. It follows
by induction on the structure of A, using the generation lemma, that
any subterm of A is also legal. B

||

Theorem 5.2.15 (Subject reduction theorem for PTS’s).

Fl—A:B&A—»ﬁA’ = I'FA:B.

Proof. Write T—pI" ff T = 21:41, ..., 2040, T = 21: 4], ... 2,: 4], and
for some 7 one has A;—A; and A; = A for j # i. Consider the statements

r'-A:B&A—3 A = TrHA:B; (%)

TFA:B&T =3I = TI'FA:B. (ii)

These will be proved simultaneously by induction on the generation of
'F A: B. We treat two cases.

Case 1. The last applied rule is the product rule. Then ' F A : B is
'k (ITz:A;.42) : s3 and is a direct consequence of I' - A; @ 53
and T',2:4; F Ay : sg for some rule (si, s2,53). Then (i) and
(ii) follow from the TH (for (i) and (ii), and (ii), respectively).

Case 2. The last applied rule is the application rule. Then ' - A : B
is T F AjAy : By[e := As] and is a direct consequence of
I'F Ay : (Hz:By.By) and T'F Ay : By. The correctness of (ii)

Subcase 2.1.

Subcase 2.2.

Lambda Calculi with Types 107

follows directly from the ITH. As to (i), by Corollary 5.2.14 (1)
it follows that for some sort s

I'F (ITz:B1.Bs) : s,
hence by the generation lemma
'k Bl L8,

I,z:B1 F By : ss.

i, From this it follows with the substitution lemma that

[k Balz := As] : 89 (1)

A= Al A} and A;— A or As— A%, The TH and the applica-
tion rule give

I'F AL AL Byla = Al

Therefore by (1) and the conversion rule
I'F AL AL Bola = As]
whichis ' F A’ : B.
Ay = Az:Ajy . A1p and A’ = Ajs[z := As]. Then we have

Itk (/\;l‘ZAll.A12) . (HIBlBQ) (2)

'k A2 . Bl. (3)
By the generation lemma applied to (2) we get

't A11 . 89 (4)

F,IZAll F A12 : Bé (5)

[,2:Ai B BY 2 osg

HIZBl.BQ = HIZAll.Bé (6)

for some B and rule (sy, s, s3). From (6) and the Church—
Rosser property, we obtain

108 H.P. Barendregt

Bl = A11 and BQ = Bé (7)
By (3), (4) and (7) it follows from the conversion rule

F"Az 1A11,

hence by (5) and the substitution lemma
[F (Ara]z := As]) : (Bsyz = Ag)).

From this (1) and the conversion rule we finally obtain
I'F (Agzfz = Ag)) : (Bafz := A3))

whichisI'F A" : B. m

Corollary 5.2.16. In every PTSone has the following.
1. TFA:B&B—3B] = I'tA:B.
2. If Ais aT-term and A —p A’, then A’ is a T-term.

Proof. 1. T+ A: B, then by Corollary 5.2.14 (1) B=sor '+ B : s,
for some sort s. In the first case also B’ = s and we are done. In
the second case one has, by the subject reduction theorem, 5.2.15,
't B’ : s and hence by the conversion rule I' - A : B’.

2. By 5.2.15and (1). m
| |

The following result is proved in van Benthem Jutting (1990) extending
in a nontrivial way a result of Luo (1990) for a particular type system. The
proof for arbitrary PTSs is somewhat involved and will not be given here.

Lemma 5.2.17 (Condensing lemma for PTS’s). In every PTS one
has the following:

FeA/AFB:C&z¢ A B,C = T[AFB:C.

Here x ¢ A, ... means that z is not free in A etc.

Corollary 5.2.18 (Decidability of type checking and typability for
normalizing PTS’s). Let AS = A(S,.A,R), with S finite, be a PTS that

Lambda Calculi with Types 109

is (weakly or stongly) normalizing. Then the questions of type checking
and typability (in the sense of subsection 4.4) are decidable.

Proof. This is proved in van Benthem Jutting (1990) as a corollary to the
method of lemma 5.2.17, not to the result itself. B [|

On the other hand Meyer (1988) shows that for A+ these questions are not
decidable.
In 5.2.19-5.2.22 we will consider results that hold only in special PTS’s.

Definition 5.2.19. Let AS = A(S,.A,R) be a given PTS.
AS is called singly sorted if

1. (e:81),(c:82) €A = s1 = 89

2. (s1,82,83),(51,82,55) ER = s3 = s5.

Examples 5.2.20.

1. All systems in the A-cube and A and AU as well are singly sorted.
2. The PTS specified by

S * 0, A
A *: 0O, A
R (*, %), (*,0)

is not singly sorted.

Lemma 5.2.21 (Uniqueness of types lemma for singly sorted PTS’s).
Let AS be a PTSthat is singly sorted. Then

'HFA:Bi &T+HA:By, = B =g Bs.
Proof. By induction on the structure of A. We treat two cases. Assume
I'HA:B;fori=1,2.
Case 1. A = ¢, a constant. By the generation lemma it follows that
ds; = B; (¢ : s;) is an axiom

for : = 1,2. By the assumption that AS is singly sorted we can conclude
that s; = sg, hence By = Bs,

110 H.P. Barendregt

Case 2. A =1lz:A; Ay. By the generation lemma it follows that
F"Al :Sl&F,I:AlFAQ:Sz&BlISS

PF A 8] &T,2:A1 - Ay 2 s & By = 55

for some rules (s1,s2,s3) and (s}, s, s5). By the induction hypothesis it
follows that s{ = s1 and s, = sy hence s| = s; and s, = sy. Hence by
the fact that AS is singly sorted we can conclude that s§ = s3. Therefore
B =B.m i

Corollary 5.2.22. Let AS be a singly sorted PTS.

1. Suppose ' A:B and ' H A’ : B'. Then

AIﬁA/ = BIﬁB/.

2. SupposeI' - B:s,B=g B' andT'+ A" : B'. ThenT+ B’ :s.

Proof. 1. If A =5 A’, then by the Church-Rosser theorem A —5 A"
and A’ —g A" for some A”. Hence by the subject reduction theorem
5.2.15

A" :BandTH A" : B

But then by uniqueness of types B =5 B’.

2. By the assumption and Corollary 5.2.14 it follows that I' = B’ : s’ or
B’ = ' for some sort s'.
Case 1. 'F B’ : §'. Since B and B’ have a common reduct B” it follows
by the subject reduction theorem that I' H B” : s and ' H B” : s’. By
uniqueness of types one has s = s’ and hence I' + B’ : s.
Case 2. B’ =s'. Then B —3 ¢, hence by subject reduction I' - ' : s, i.e.
B :s.m [|

Now we introduce a classification of pseudoterms that is useful for the
analysis of legal terms in systems of the A-cube.

Definition 5.2.23. A map § : 7—{0,1,2,3} is defined as follows:

3(s) = §(°z) = arbitary, say 0, if s Z O, *;
f(Az:A.B) = §(0x:A.B) = §(BA) = §(B).
For A € T the value §(A) is called the degree of A.

Lambda Calculi with Types 111

It will be shown for all systems in the A-cube that if ' H A : B, then
#(A) + 1 = §(B). This is a folklore result for AUTOMATH-like systems

and the proof below is due to van Benthem Jutting. First some lemmas.

Lemma 5.2.24. In AC and hence in all systems of the A-cube one has the
following:

1.THO: A
2. T/ (AB) : 0.
3. T (Az:Ab) : O.

Proof. 1. By induction on derivations one shows

I+B:A=B#0O
2. Similarly one shows T'F (AB) : C = C # 0.

We treat the case that the application rule is used last.

'FA:(Ilz:PQ) THB:P
I'F(AB) : Q[z := B](= ()

By 5.2.14 (1) one has I' F (Ilz:P.Q)) : s. hence by the generation
lemma I',z:P F () : s. Therefore by I' F B : P and the substitution
lemma

rFC=Q[z:=8]:s

By (1) it follows that C' # O.

3. If T F (Az:A.b) : O, then by the generation lemma for some B one
has (Ilz:A.B) = O, contradicting the Church-Rosser theorem. B
||

Lemma 5.2.25.
I.Fl_kcA:Diﬂ(A)IQ.
2F|‘)\cAB&ﬁ(A)E{2,3} = B=0

Proof. 1. By induction on derivations.

2. Similarly. We treat two cases (that turn out to be impossible).

Case 1. The abstraction rule is used last:

112 H.P. Barendregt
Iae:AtFb: By TF (Mz:A1.By):s
I'F(Az:Ab) : (Mx:Ay.By)

Since §(b) = §(Ax:A;1.b) € {2,3} one has by the IH that B; = 0.
By the generation lemma it follows that I',z:A; F By : s, which
is impossible by 5.2.24 (1).

Case 2. The conversion rule is used last:
LFA:d T'FB :s B':gB
'+HA:B '

By the IH one has B’ = O. But then B —3 O so by subject
reduction T'F 0O : s. Again this contradicts 5.2.24 (i). ®

||
Lemma 5.2.26. If{(z) = 4(Q). Then §(P[z := Q]) = {(P).
Proof. Induction in the structure of P. ® | |
Definition 5.2.27.
1. A statement A : B is ok if §(4) + 1 = §(B).

2. A statement A : B is hereditarily ok, notation hok, if it is ok and
moreover all substatements y : P (occurring just after a symbol ‘A’
or ‘II’) in A and B are ok.

Proposition 5.2.28. Let I't-,« A: B. Then A: B and all statements in
I’ are hok.

Proof. By induction on the derivation of I' F A : B. We treat four cases.

Case 1. (axiom). The statement in <>k * : O is hok.

Case 2. (start rule). Suppose all statements in I' F A : s are hok.
Then also in T, *z:A F *z: A, since §(°z) = 4(s) — 2 and 4(4) =
8(s) — 1.

Case 3. (application rule). Suppose that the statements in T' - F' :

(IMz:A.B) and T' F a : A are hok. We have to show that
(Fa): (B[z := a]) is hok. This statement is ok since
H(Fa)+ 1= 4(F) + 1 = H(112:A.B) = §(B) = (Bl = a))

by Lemma 5.2.26 and the fact that 2 : A and a : A are ok (so
that §(z) = 4(a)). The statement is also hok since all parts
y : P occur already in T, F, (Ilz:A.B) or a.

Case 4. (conversion rule). Suppose that all statements in I' - A :
B, Tk B’ : s are hok and that B =g B’. If we can show that

Lambda Calculi with Types 113

3(B) = $(B’) it follows that also A : B’ is hok and we are
done. By Lemma 5.2.22 (2) one has '+ B : s.

Subcase 4.1. s = 0. Then §(B) = 2 = §(B’) by Lemma 5.2.25(1)

Subcase 4.2. s = x. Then T' = B : % and hence by Lemma 5.2.25(2) one
has §(B) ¢ {2,3}. Since A : B is ok, we must have §(B) = 1.
Moreover B’ : s = * is ok, hence also §(B') = 1. &

Corollary 5.2.29. T'kyc A: B = §(A)+ 1 =4§(B).
Proposition 5.2.30.

1. Let (Az:A.b)a be legal in AC. Then §(z) = §(a).
2. Let A be legal in AC. Then

A—sB = 4(4)=4(B).

Proof. 1. By Corollary 5.2.14(1) one has T' - (Az:A.b)a : B for some T
and B. Using the generation lemma once it follows that

[F(Az:Ab): (Mz:A".B') and ' Fa: A,

and using it once more that '+ A : s and (Iz:A.B") =5 (Ilz:A'.B’),
for some s and B”. Then A =3 A’, by the Church-Rosser theorem.
Hence by the conversion rule I' - @ : A. Therefore a : A is ok. But
also & : A is ok. Thus it follows that §(z) = §(a).

2. By induction on the generation of A —5 B, using (1) and lemma
5.2.26.m
||

Finally we show that PTS’s extending A2 the type L = (Ila: * .c¢) can
be inhabited only by non normalizing terms. Hence, if one knows that
the system is normalizing—as is the case for e.g. A2 and AC—then this
implies that L is not inhabited. On the other hand if in a PTS the type
1 is inhabited—as is the case for e.g. A*—then not all typable terms are
normalizing.

Proposition 5.2.31. Let AS be a PTS extending A2. Supposetyg M : L.
Then M has no normal form.

114 H.P. Barendregt

Proof. Suppose towards a contradiction that M has a nf N. Then by the
subject reduction theorem 5.2.15 one has Fyg N : L. By the generation
lemma N cannot be constant or a term starting with II, since both kinds
of terms should belong to a sort, but L is not a sort. Moreover N is not
a variable since the context is empty. Suppose N is an application; write
N = N1 Njy...Ng, where Nj is not an application anymore. By a reasoning
as before N; cannot be a variable or a term starting with II. But then
Ny = (Az:A.P); hence N contains the redex (Az:A.P)Na, contradicting the
fact that N is a nf. Therefore N neither can be an application. The only
remaining possibility is that N starts with a A. Then N = Aa: * .B and
since = N : L one has axx & B : a. Again by the generation lemma B
cannot be a constant nor a term starting with II or A. The only remaining
possibility is that B = «C;...Cy. But then 2 = a and k¥ = 0. Hence
a:* F a : a which implies ¢ = *, a contradiction. (The sets V and C are
disjoint.) W [|

5.3 Strong normalization for the A-cube

Recall that a pseudo-term M is called strongly normalizing, notation SN(M),
if there is no infinite reduction starting from M.

Definition 5.3.1. Let AS be a PTS. Then AS is strongly normalizing,
notation

AS E SN, if all legal terms of AS are SN i.e.

I'+A:B= SN(A) & SN(B).

In this subsection it will be proved that all systems in the A-cube satisfy
SN. For this it is sufficient to show AC F SN. This was first proved by
Coquand (1985). We follow a proof due to Geuvers and Nederhof (1991)

which is modular: first it is proved that

Ao ESN = ACESN (1)

and then
Aw FE SN (2)

The proof of (2) is due to Girard (1972) and is a direct generalization
of his proof of A2 E SN as presented in subsection 4.3. Although the proof
is relatively simple, it is ingenious and cannot be carried out in higher-
order arithmetic. On the other hand the proof of (1) can be carried out
in Peano arithmetic. This has as consequence that Aw F SN and AC F SN
are provably equivalent in Peano arithmetic, a fact that was first shown by
Berardi (1989) using proof theoretic methods. The proof of Geuvers and

Lambda Calculi with Types 115

Nederhof uses a translation between AC and Aw preserving reduction. This
translation is inspired by the proof of Harper et al. (1987) showing that

A—FESN = APESN

using a similar translation. Now (1) and (2) will be proved. The proof is
rather technical and the readers may skip it when first reading this chapter.

Proof of A wFE SN = ACE SN

This proof occupies 5.3.2—5.3.14. Two partial maps 7:7—7T and [|:7 =T
will be defined. Then 7 will be extended to contexts and it will be proved
that

Tkac A:B = 7([) bk [A]: 7(B)

and

A—>5AI = HA]] —>£0 [[Al]]
(M —20 N means that M —5 N in at least one reduction step. Then
assuming that Aw F SN one has

I'kxc A: B = SN([[A]])
= SN(4).

as is not difficult to show. This implies that we are done since by Corollary
5.2.14 it follows that also

'ty A:B = SN(B)

In order to fulfill this program, next to 7 and [] another partial map p is
needed.

Definition 5.3.2.

1. Write ;= {M €T | 4(M) = i} and 7; ;= 7; U T;; similarly 7; ; 1 is
defined.

2. Let A€ 7. In AC one uses the following terminology.

Ais a kind & IrreA:0d;
Ais a constructor < 3, BTFA:B:0O;
A is a type & A kE A«
A is an object & dIL,B[TH A: B :«.

Note that types are constructors and that for A legal in AC one has

A is kind & #(A4) =2
A is constructor or type << $(A4) = 1;
A is object & #(A4) =0.

Moreover for legal A one has §(4) =3 iff A =0.

116

H.P. Barendregt

Definition 5.3.3. A map p:75 3—7 is defined as follows:

p(O) = %
pix) =
AMzAB) = p(A)—p(B), if §(4) =2
= 0(B) if 5(4) # 2
p(Ax:A.B) = p(B);
o(BA) = p(B)
It is clear that if §(A) € {2, 3}, then p(A4) is defined and moreover F'V (p(A4))
= J.
Lemma 5.3.4.
1.THcA:O = FAwp(A)ZD.

2.
3.
4.

Let A €T, 3 and §(a) = §(z). Then p(Alx := a]) = p(A).
Let A €T, 3 be legal and A —53 B. Then p(A) = p(B).
Let ' Fye A; 0,1 =1,2. Then

Ay =g Ao = p(Al) = p(Az)

Proof. 1. By induction on the generation of A : 0. We treat two cases.

4.

Case 1. T Fyg A :Ois IV, 2:C Fyc A : O and follows directly from
I"Fyae A:Oand I'" Fye C : s. By the induction hypothesis one has
Faw p(A) : O.

Case 2. T kyc A:OisT Fae (A1A42) @ Ble := Aj] and follows
directly from I' Fac Ay @ (Tz:C.B) and T Fye Az : C. Then either
B = 0O, which is impossible by Lemma 5.2.24(2), or B = z and
As = 0. But also I' Fye O : C is impossible.

. By induction on the structure of A.

. By induction on the relation —, using (2) and Proposition 5.2.30 for

the case A = (Az:D.P)Q and B = Plz := Q).

By (3). m
[|

A special variable 0 with 0 : * will be used in the definition of 7. More-

over,

in order to define the required map from AC to Aw ‘canonical’ con-

stants in types are needed. For this reason a fixed context I'y will be

introduced from which it follows that every type has an inhabitant.

Lambda Calculi with Types 117
Definition 5.3.5.

1. T'g 1s the Aw context
0:,c: L,

where 1 = z:*.2.
2. If T Faw B : %, then ¢P is defined as ¢B.

3. If T Fy, B : 0O, then ¢? is defined inductively as follows; note that
if B # #, then it follows from the generation Lemma 5.2.13 that
B = B;—B5,. Therefore we can define

¢ = 0

Br=B = A\p:B; P2

Lemma 5.3.6. IfT' Fy, B :s, then Ty,T k), ¢? : B.

Proof. If s = x, then ¢? = ¢B and the conclusion clearly holds. If s = O,
then the result follows by induction on B. & [|

Definition 5.3.7.

1. A map 7:71 3 3—7 is defined as follows.

7(0) = 0

9 1

r(Oz:A.B) = Maz:p(A).7(A)—71(B), iff(4)=2;
= Iz:7(A).7(B), if4(A) =1;
= 7(B), else;

T(Az:A.B) = Aw:p(A).7(B), if 4(A) =2;
= 7(B), else;

T(BA) = 7(B), if 4(A4) =0;
= 7(B)T(A), else.

2. The map 7 is extended to pseudo-contexts as follows.
r(*e:A) = v (A); 7(Px:A) = Brip(A), *z:m(A).
Let I' = 21:Aq, ..., 2,: A, be a pseudo-context. Then

7(T) = Lo, m(21:41), ..., T(xn:A4n).

By induction on the structure of A it follows that if A € 77 5 3, then 7(A4)
is defined and moreover *z ¢ F'V(7(A)).

118 H.P. Barendregt

Lemma 5.3.8.

1. Let B€ Ty 53 and §(a) = 4(z). Then

7(Blz :=a]) = 7(B)[z:=7(a)], ifz="%;
= 71(B), ife="x.

2. If A€ Ty 53 is legal and A — B, then 7(A) — 7(B).

Proof. 1. By induction on the structure of B, using Lemma 5.3.4(3).

2. By induction on the generation of A — B. We only treat the case
A = (Az:D.b)a and B = b[z := a]. By the generation lemma it
follows that I' - D : s with s = % or s = 0. In the first case one has
xz ="z and by (1)

r((Az:D.b)a) = 7(b) = 7(b[z := a]) = 7(B).

In the second case one has z = Uz and by (1)

7(A) = (QAzp(D).7(b))r(a)
— 7(b)[z = 7(a)]
= 7(B).n

Lemma 5.3.9. Let ' Fy¢ B:0O or B=0. Then

T'Fac A: B=7(T) Faw 7(4) : p(B).

Proof. By induction on the proof of I' Fy¢c A : B. We treat three cases.

Case 1. 'Fp¢ A: Bis I, z:C k)¢ A : B and follows from I'')¢ A : B and
I'" Fyc C : s by the weakening rule. By the TH one has

(1) Faw 7(A) : p(B) & 7(I') by 7(C) : *.

We must show

(I), 7(z:C) Faw 7(A) : p(B). (1)
If « = *x, then 7(2:C) = 2:7(C) and (1) follows from the IH by
weakening. If 2 = Bz, then (x:C) = Dm:p(C’), *z:7(C) and (1) follows

Case 2.

Case 3.

Lambda Calculi with Types 119

from the TH by weakening twice. (Note that in this case I')¢ C : 0O,
so by Lemma 5.3.4 (1) one has -y, p(C) : 0O.)

I'kxe A: BisT ke (Az:D.b) : (Tz:D.B) and follows from I’ Fy¢
(Ilz:D.B) : s and I',2:D Fye¢ b : B. By the assumption of the
theorem one has s = 0.

Subcase 2.1. §(D) = 2. By the IH it follows among other things that

7(T) Faw [Mz:p(D).7(D)—7(B)] : *

(1), Be:p(D), *x:7(D) Fa, 7(b) : p(B). (2)

We must show

(1) Faw (Az:p(D).7(D)) = (p(D)—p(B)).

Now *z does not occur in p(B) since it is closed, nor in 7(b). There-
fore, by (2) and the substitution lemma, using ¢™®P) in context 'y C
7(T), one has

7(D), “e:p(D) Faw 7(b) : p(B)

and hence

H(1) Faw Qsp(D)r(8) : (Wap(D) p(B)) = p(D)—p(B)
p(lz:D.B),

since p(B) is closed.
Subcase 2.2. (D) = 1. Similarly.

ITFac A:BisThye (z:D.E) : sq
and follows directly from I' Fye D : s; and ', x:D Fy¢ F : ss.

Subcase 3.1. s; = *. The IH states

T(F) l_)\w T(D) N
(L), z:7(D) Faw T(E) @ *.

We have to show
7(T) Faw (Tz:7(D).7(E)) : *;

but this follows immediately from the TH.

120 H.P. Barendregt

Subcase 3.2. s; = . The IH states now

7(T) Faw (D) : %,
7(T),Bz:p(D), *z:7(D) Frp T(E) : *.

We have to show
7(0) b (a:p(D).r(D)=7(E)) : %,

this follows from the IH and the fact that the fresh variable *z does
not occur in 7(E). B

Now the third partial map on pseudo-terms will be defined.

Definition 5.3.10. The map [—]:75,1,2—7 is defined as follows. Remem-
ber that in the context ['g = 0:*, c: L we defined expressions ¢ such that
I'FA:s=1y'Fct: A

M =

2] = ™

[Pzl = "o
[Mz:A.B] = =0 0LAN([B][Be := "]z = 7)), if 4(A) = 2;
= == LAY([B][% =), if 5(4) £ 2
[Az:A.B] = (Az2:0ABz:p(A)Nz:r(A).[B][A], if 4(A) = 2;
= (Az:0Xz:7(A).[BDIAL if 4(A) # 2;
[BA] = [BI7(A)[A], if §(A) = 2.
= [BI[4], if §(A) # 2.

In the above z = *z is fresh.

Proposition 5.3.11.

Fkxc A:B = 7(0) ke [A] : 7(B).

Proof. By induction on the derivation of A : B. We treat two cases.

Case 1. T Fac A: BisT Fye (Tz:D.E) : s5 and follows from I' Fye D : sy
and I',z:D + E : sy. By the IH one has 7(I') Fa, [D] : 0 and
(T, 2:D) by, [E£] : 0. By Lemma 5.3.9 one has 7(T') Fa, 7(D) : *,
hence 7(T) Fay (D) (D).

Lambda Calculi with Types 121
If 51 = %, then & = *z and 7(T,2:D) = 7(T), z:7(D). Therefore by
the substitution lemma

(D) Fay [E][z = ¢"P)] - 0.

Hence by the application rule twice

(L) Faw =0 [D)([E][2 := ¢ P)) : 0.

If s; = O, then z Uz and 7([,z:D)
Therefore by the substitution lemma

7(T),Bz:p(D), *z:7(D).
(D) Faw [E][Fr := Pz = P 2 0.

Hence by the application rule twice
(L) Faw 7O [DNE] P = Pz = " P))) 2 0
In both cases one has
7(T) Fay [Hz:D.E] : 0
Case 2. TFy¢ A: BisT Fy¢ (Az:D.b) : (ITz:D.B) and follows from

I,xz:DbFxeb: B
and

I'Fae (Hz:D.B) : s.

By the generation lemma (and the Church-Rosser theorem) one has
for some sort s;

T'tae D:sy &T,z:Dbye B :s.
By the TH one has

(T, 2:D) by [0] : 7(B)
and

7(T) Faw [D] : 0.
By Lemma 5.3.9 one has

7(T) Faw (D) : %

and

(T, 2:D) by 7(B) : *.
If s1 = *, then « = *x and 7([, 2:D) = 7(T), 2:7(D).

122 H.P. Barendregt

Therefore by two applications of the abstraction rule and one appli-
cation of the product rule one obtains

7(T) Faw ((Az:0Az:7(D).[6][D]) : (7(D)—7(B)).
If s; = O, then a similar argument shows
7(T) Faw (Az:0A"2:p(D)X*2:7(D).[W])[D] : (z:p(D).7(D)—7(B)).
In both cases one has

7(T) Faw [Az:D.b] : 7(Tlz:D.B). A

||
Lemma 5.3.12. Let A.B€T. Then
1. 2 ="z = [A* := B]] = [A]["z := [B]]
2. z =% = [A[%r .= B]] = [A][Fr := 7(B), "z := [B]].
Proof. 1. By induction on the structure of A. We treat one case: A =

[My:D.E. Write Pt = P[z := B]. Now

[My:Dt.E*]

CO—»O—»O[[D+]][[E+]][y = CT(D+)]
(== [D][E]ly := Pz := [BI]
[y:D.E][x := [B]],

by the induction hypothesis, the substitution lemma and the fact that
7(D[*x := B]) = 7(D).

2. Similarly, using the convention about hygiene made in definition
5.2.1.m
||

Lemma 5.3.13. Let A,B€7y,12. Then
A=B = [A]l == [B]

where —» g denotes that the reduction takes at least one step.

Lambda Calculi with Types 123

Proof. By induction on the generation of A—B. We treat only the case
that A—B is
(Az:D.P)Q—P[z = Q).

If # = *z, then
[(Az:D.P)Q] (Az:0xz:7(D).[PDHIPIIX]
zo [P][z:=[Q]]
[Pz :=Q]].

ey

If = Yz, then

(/\z:O)\Dx:p(D)/*x:T(D).[[P]])[[D]]T(Q)[[Q]]
20 [PI[Pe = 7(Q), " = [Q]]
[Ple = Q). m

[(Az:D.P)Q]

ey

Theorem 5.3.14. Aw E SN = AC E SN.

Proof. Suppose Aw E SN. Let M be alegal AC term. By Corollary 5.2.14
it is sufficient to assume T' Fye M : A in order to show SN(M). Consider
a reduction starting with M = M,

M0—>M1—>M2—> v

One has T Fxe M; : A, and therefore T' Fy, [M;] : 7(A) for all 4, by
Proposition 5.3.11. By lemma 5.3.13 one has

[Mo] — 20 [Mi1] =20 - ..
But then [M] is a legal Aw term and hence the sequence is finite. B | |

Corollary 5.3.15 (Berardi). In HA, the system of intuitionistic arith-
metic, one can prove

Aw E SN & MCESN.

Proof. The implication < is trivial. By inspecting the proof of 5.3.14 it
can be verified that everything is formalizable in HA. & [|

This corollary was first proved in Berardi (1989) by proof theoretic meth-
ods. The present proof of Geuvers and Nederhof gives a more direct argu-
ment.

124 H.P. Barendregt

The proof of A\w E SN
occupies 5.3.16 -5.3.32. The result will be proved using the following steps:

1. A map | — |:7o—A will be defined such that

Tk A:B:x= SN(|A]);

2. T'Fy— A:B:x= SN(A);
I'Fa, A: B:0O= SN(4);
[k A:B:x= SN(A);
'k A: B = SN(A)&SN(B).

ook W

Definition 5.3.16. A map | — |:To—A is defined as follows:

|"2| = @

[Az:A.B| = Az.B|, iff(A) =1,
= |B|, else;

|BA| = |B|lA], if§(A4)=0;
= |B|, else;

|lz:A.B| = |B|.

The last clause is not used essentially, since legal terms Ilz:A.B never have
degree 0. Typical examples of | — | are the following.

[Az:a.z| = Az.z;
[Aaxdz:o.z| = .z,
[(Az:a.2)y| = (Az.2)y;
[(AaxAz:a.2)f] = Ae.x.

The following lemma shows what kinds exist in Aw and what kinds and
objects in A—.

Lemma 5.3.17. Let K be the set of pseudo-terms defined by the abstract
syntax K = x | K—K. So K = {*,*—%, x—*—x,...}. Then

1.ThwA:O=>AcK.

2. Tk, B:A:0O0= A, B do not contain any *z.
3Tk A:O0=>A=x*

4. 'y A: %= A is an nf.

Lambda Calculi with Types 125

Proof. By induction on derivations. [|

Lemma 5.3.18. Let A=0or ' Fy, A :0O. Then for all terms B legal
in Aw one has

AI[}B:>AEB.

Proof. First let A =0. Suppose B is legal and A =5 B. By the Church—
Rosser theorem one has B —5 0. Then the last step in this reduction
must be

(/\x:Al.Az)Ag—>@A2 [$ = A3] =0.
Case 1. A; = 2 and Az = 0. Then by 5.2.30 one has §(0) = 4(z), which

is impossible.
Case 2. Ay = 0. Then (Az:A,.00) is legal, hence T' F (Az:4,.00) : C for
some T',C. But then by 5.2.29 one has §(C) = $(Az:A;.0)+1 =4, a
contradiction.

I Fy A:0O then A€ K as defined in 5.3.17 and similarly a con-
tradiction is obtained. (In case 2 one has ' (Az:A4;.4) : (Ilz:A;.0), but
then I'F (Ilz:A4;.00) : s.) W [|

Now it will be proved in 5.3.19 - 5.3.24 that if ' 3, A : B : *, then
SN(]A|). The proof is related to the one for A2—Curry in section 4.3.
Although the proof is not very complicated, it cannot be carried out in
higher-order arithmetic PA“ (because as Girard (1972) shows SN(Aw) im-
plies Con(P A“) and Godels second incompleteness theorem applies).

We work in ZF-set theory. Let U be a large enough set. (If syntax is
coded via arithmetic in the set of natural numbers w, hence the set of type-
free A-terms A is a subset of w, then U = V,,» will do; it is closed under the
operations powerset, function spaces and under syntactic operations. Here
Ve is the usual set-theoretic hierarchy defined by Vo = @, Voy1 = P(Va)
and Vy = UgeaVa; moreover w2 is the ordinal w + w.)

Definition 5.3.19.

1. A valuation is a map p:V—U.

2. Given a valuation p a map [—],:7—U U {U} is defined as follows:
Remember that X—=Y = {FF€ A |YM € X FM €Y }and that SAT =
{X C A | X is saturated}.

[[D]]p = U
[«], = SAT;
HI]]p P(l’)S

126 H.P. Barendregt

[Uz:A.B], = [A],—[BI, if 4(4) = 4(B) =1,
= [BIAY, if 3(A) = #(B) = 2,
= M[Blow=s | F€[Al,}, if4(4)=2,4(B)=1,
= g, else;

[Me:A.B], = A&.[B]jw=e, if 4(A) = 1,4(B) =0,
= M e[Al, [Blo=1 if 4(A) =2,4(B) = 1,
= [B],, if §(A) = 2,4(B) =0,
= O, else;

[BA]l, = [Bl.[A],, if §(A) =4(B) =0,
= [Bl.([A],), if 4(A) = 4(B) = 1,
= [B],, if §(4) = 1,4(B) =0,
= O else

bl

Comment 5.3.20. In the first clauses of the definitions of [Hz:A.B],,
[Az:A.B], and [BA], a syntactic operation (as coded in set theory) is used
(— as defined in 4.3.1.(2) extended to sets, A abstraction and application
as syntactic operations extended to ¥). In the second clauses some set the-
oretic operations are used (function spaces, lambda abstraction, function
application). In the third clause in the definition of [[Iz:A.B], an essential
impredicativity — the ‘Girard trick” — occurs: [Hz:A.B], for a fixed p is
defined in terms of [B], for arbitrary p. The fourth clauses are not used
essentially.

Definition 5.3.21. Let p be a valuation.

e pFA:B & [A]l,€[B],.
e pET & pFa: Aforeach (:4)€T.
e'FA:B & VYplpFET =pEF A:B]

Lemma 5.3.22. Let p be a valuation with pE T'.

1. Assume that A is legal in Aw and §(A) = 0. Then

[AD, = [A][Z := p(Z)] € A.

2. Assume §(z) = f(a). Then

Lambda Calculi with Types 127

[Blz = d]l, = [Bltr:=[a1,1-

3. Let B be legal in Aw. Suppose either §(B) = 0 and f(a) = §(z) = 1
or {(B) =1 and §(a) = §(x) = 0. Then

[Blz := d]l, = [B],
4. Let A, A’ be legal in Aw and §(A) = $(A’) # 0. Then for all p

A= A = [4],=[4],

Proof. 1. By induction on the structure of A.
2. By induction on the structure of B.

3. By induction on the structure of B.

4. Show that if A legal, §(A) # 0 and A —5 A', then [A], = [4'],. &

Proposition 5.3.23.

I'wA:B = TI'EA:B.

Proof. By induction on the derivation of A : B. Since these proofs should
be familiar by now, the details are left to the reader. ® [|

Corollary 5.3.24.

I.Tky A:B:x = SN(JA)]).
2.Tkyxo A:B:x = SN(A) & SN(B).

Proof. For each kind k a canonical element f* € [k], will be defined.

f* = SN
famt = Afe k] f

Assume ' A : B : x. Define p(= p..) by

p(Fx) = f4 if (z:A4) €T
= if z ¢ Dom(T');

128 H.P. Barendregt
p(z) = Tz

Then p F T, because if *z:Aisin I', then I' = A : x hence [A], €[], = SAT
and therefore p(z) = z € [A], by the definition of saturation; if 9z:4 is in
I, then p F Bz : A since p(Uz) = f4 € [4],.

1. By 5.3.21 one has [A], € [B],€SAT and therefore
|AI[Z = p(#)] € [B], C SN

so |A|[Z := p(&)]€SN and hence |A|€SN.

2. By (1) one has |A|eSN. From this it follows that A€SN, since for
legal terms of A— one has

A—gA" = |A|l—p|A].
(This is not true for Aw; for example
(Az:(Aax.a—a)f.x)—p(Az:f—F.2)
but the absolute values are both Az.z.) B

i, From the previous result we will derive that constructors in Aw are
strongly normalizing by interpreting kinds and constructors in Aw as re-
spectively types and elements in A—. The kind * will be translated as a
fixed 0:x. The following examples give the intuition.

valid in Aw translation valid in A—

ax b (AB*.a) : (x—x*) : O 0:x,a:0 F (Ab:0.a) : (0—=0) : *;

as, fi(x—x*)F (fa—fa) x| 0:%,a:0, £:(0—0) F == fa)(fa) : 0;
ax F (IIG:*.f—a) : * 0, a:0 - 0709004 : 0.

Definition 5.3.25. A map ()~ :7; 23—70,1,2 is defined as follows:

@ = %
(*)” = 0
(Fz)” =
(BA)™ = B A", if 4(A) # 0,

else;

Lambda Calculi with Types 129

(Ax:A.B)” = (Az7:A7.B7), if 4(A) #0,4(z) #0,
= BT, else;

(lz:A.B)- = (Oz":A”.B7), if 4(A) = 4(B) =2,
= 700U~ p~, if 4(A) = 4(B) = 1,
= B[z =], if 4(A) = 2,4(B) =1,
= B~ else

For pseudo-contexts one defines the following (remember T'y = {0:,c:L}).
(Pe:A)” = 2:A7;

("z:A)” = <>
(x1:A1,. .. 20 A4,)7 o, (21:A41)7, ..., (zn:An) .

Then one can prove by induction on derivations

FI—,\wAB&tI(A)7éO = I'"ky. A" :B".

Lemma 5.3.26.

1. For §(A) # 0 and f(a) = 4(x) # 0 one has

2. For A legal in Aw with §(A) = 1 one has

A—>@B = A_—>@B_.

Proof. Both by induction on the structure of A. B [|

Proposition 5.3.27.

IFFao A:B:0O = SN(A).

Proof.

'ty A:B:0O0 = I'' Fyo A" :B™ %
= SN(A7)

130 H.P. Barendregt
= SN(4). m

Definition 5.3.28. Let M = (Az:A.B)C be a legal Aw-term.

—_

= (

. M is a 0-redez if §(B) = 0 and §(A) = 1;
2. M is a 2-redexif §(B) = 0 and §(4) = 2;

3. M is an w-redez if §(B) = 1 and §(A4) = 2;

4. A 2-X is the first lambda occurrence in a 2-redex.
The three different kinds of redexes give rise to three different notions of
contraction and reduction and will be denoted by —q, —2 and —, respec-
tively. Note that S-reduction is 0, 2, w-reduction, in the obvious sense. We

will prove that G-reduction of legal Aw-terms is SN by first proving the
same for 2, w-reduction.

Lemma 5.3.29. Let A, B €Ty be legal terms in Aw. Then

1. (A—9B) = (number of 2-As in A)>(number of 2-As in B).
2. (A—,B) = (number of 2-As in A) =(number of 2-As in B).
3. A—2,B = |A|=|B|.

4. A—oB = |A|—s|B|.

Proof. 1. Contracting a 2-redex (Az:Ag.Bg)Cy removes one 2-A in A,
removes Ay and moves around Cj, possibly with duplications. A 2-A
is always part of (Az:A;.B;) with degree 0. A kind or constructor does
not contain objects, in particular no 2-redexes. Therefore removing
Ag, or moving around C does not change the number of 2-X’s and
we have the result.

2. Similarly.
3. If M = (Az:Ag.Bo)Cp in A is a 2-redex, then Cj is a constructor

and |M| = |Bg|. Remark that a constructor in an object M can
occur only as subterm of A; occurring in Ay:A;.B; in M. By the
definition of | — | constructors are removed in |M|. Therefore also

| Bo[z := Cy]| = |Bg|. We can conclude |A] = |B|.

Lambda Calculi with Types 131

If M = (Ax:Ag.Bg)Cp in A is an w-redex, then M and its contractum
M are both constructors. Therefore |A| = |B|, again by the fact
that constructors are eliminated by | —|.

4. If M = (Ax:A¢.Bg)Cy is a 0-redex with contractum M’ = Bylz :=
Co], then |M| = (Az.|Bo|)|Co| and |M'| = |Bglz := Co]| = | Bo|[z ::=
|Co|] as can be proved by induction on the structure of By. Therefore
|M|—g|M'|. More generally |A|—3|B| if A—¢B. 1

||

Lemma 5.3.30. Suppose M is legal in Aw and §(M) = 0. Then M is
strongly normalizing for

1. w-reduction;

2. 2,w-reduction.

Proof. 1. M is not of the form Ilz:A.B. Therefore it follows that either
M = Adx1:Ay - Az ApyBr - - Byn,m > 0.
or

M = dx1:Ay - Az An . (Ay:Co.C1)By -+ - By yn > 0,m > 1.

In the second case §(M) = §(C4). Therefore (Ay:C,.C1)B; is not an
w-redex. So in both cases w-reduction starting with M must take
place within the constructors that are subterms of the A;, B; or Cj,
thus leaving the overall structure of M the same. Since (-reduction
on constructors is SN by 5.3.27 it follows that w-reduction on objects

1s SN.

2. Suppose
Mo—o Mi—2 - --

is an infinite 2, w—reduction. By 5.3.29 (1), (2) it follows that after
some steps we have

Mk—>ka+1_>w t

which is impossible by (1). ®

Corollary 5.3.31. Suppose §(A) = 0 and SN(|A|). Then SN(A).

132 H.P. Barendregt

Proof. An infinite reduction starting with A must by 5.3.30 2 be of the
form
A —a A1—0As —aw As—0As —o0 -
But then by 5.3.29 3,4 we have
|A] = [Ar|—p[Az| = [As[—plAa] = - - -
contradicting SN(|A|). ® ||
Proposition 5.3.32.

I'ky, A: B = SN(A) & SN(B).

Proof. If T k3, A : B : x, then §(A) = 0 by 5.2.28 and SN(]A|) by
5.3.24(1) hence SN(A) by 5.3.31; also I' Fy,, B : * : O and therefore by
5.3.27 one has SN(B). If on the other hand T' k), A : B : O, then SN(A)
by 5.3.27 and SN(B) since B is in nf by 5.3.17 (1). m ||

Theorem 5.3.33 (Strong normalization for the A-cube). For all sys-
tems in the A-cube one has the following:

I.TFA:B = SN(A) & SN(B).
2. z1:Ay, . e AnEBC = Ay, ., Ay, B,C are SN.

Proof. 1. It is sufficient to prove this for the strongest system AC and
hence by 5.3.15 for Aw. This is done in 5.3.32.

2. By induction on derivations, using (1). B

5.4 Representing logics and data-types

In this section eight systems of intuitionistic logic will be introduced that
correspond in some sense to the systems in the A-cube. The systems are
the following; there are four systems of proposition logic and four systems
of many-sorted predicate logic.

PROP proposition logic;

PROP2 second-order proposition logic;
PROPw weakly higher-order proposition logic;
PROPw higher-order proposition logic;

PRED predicate logic;

PRED2 second-order predicate logic;

PREDw weakly higher-order predicate logic;
PREDw higher-order predicate logic.

All these systems are minimal logics in the sense that the only logical
operators are — and V. However, for the second- and higher-order systems

Lambda Calculi with Types 133

the operators —, &,V and 3, as well as Leibniz’s equality, are all defin-
able, see 5.4.17. Weakly higher-order logics have variables for higher-order
propositions or predicates but no quantification over them; a higher-order
proposition has lower order propositions as arguments. Classical versions
of the logics in the upper plane are obtained easily (by adding as axiom
Va.m—a—a). The systems form a cube as shown in the following Figure.

3.
PROPw PREDw

PROP2 PRED?2

PROPw PREDw

PROP PRED

Fig. 3. The logic-cube.

This cube will be referred to as the logic-cube. The orientation of
the logic-cube as drawn is called the standard orientation. Each system
L; on the logic-cube corresponds to the system A; on the A-cube on the
corresponding vertex (both cubes in standard orientation). The edges of
the logic-cube represent inclusions of systems in the same way as on the
A-cube.

A formula A in a logic L; on the logic-cube can be interpreted as a
type [A] in the corresponding A; on the A-cube. The transition A — [A]
is called the propositions-as-types interpretation of de Bruijn (1970) and
Howard (1980), first formulated for extensions of PRED and AP. The
method has been extended by Martin-Lof (1984) who added to AP types
Yx:A.B corresponding to (strong) constructive existence and a constructor
=4 :A—A—x corresponding to equality on a type A. Since Martin-Lof’s
principal objective is to give a constructive foundation of mathematics, he
does not consider the impredicative rules (O,).

The propositions-as-types interpretation satisfies the following sound-
ness result: if A is provable in PRED, then [A] is inhabited in AP. In fact,

134 H.P. Barendregt

an inhabitant of [A] in AP can be found canonically from a proof of A in
PRED; different proofs of A are interpreted as different terms of type [A].
The interpretation has been extended to several other systems, see e.g.
Stenlund (1972), Martin-Lof (1984) and Luo (1990). In Geuvers (1988) it
is verified that for all systems L; on the logic-cube soundness holds with
respect to the corresponding system A; on the A-cube: if A is provable in
L;, then [A] is inhabited in A;. Barendsen (1989) verifies that a proof D
of such A can be canonically translated to [D] being an inhabitant of [A].

After seeing Geuvers (1988), it was realized by Berardi (1988a), (1990)
that the systems in the logic-cube can be considered as PTSs. Doing this,
the propositions-as-types interpretation obtains a simple canonical form.
We will first give a description of PRED in its usual form and then in its
form as a PTS.

The soundness result for the propositions-as-type interpretation raises
the question whether one has also completeness in the sense that if a for-
mula A of a logic L; is such that [A] is inhabited in A;, then A is provable
in L;. For the proposition logics this is trivially true. For PRED complete-
ness with respect to AP is proved in Martin-Lof (1971), Barendsen and
Geuvers (1989) and Berardi (1990) (see also Swaen (1989)). For PREDw
completeness with respect to AC fails, as is shown in Geuvers (1989) and
Berardi (1989).

This subsection ends with a representation of data types in A2. The
method is due to Leivant (1983) and coincides with an algorithm given later
by Bohm and Berarducci (1985) and by Fokkinga (1987). Some results are
stated about the representability of computable functions on data types
represented in A2.

Many sorted predicate logic

Many sorted predicate logic will be introduced in its minimal form: formu-
las are built up from atomic ones using only — and V as logical operators.

Definition 5.4.1.

1. The notion of a many sorted structure will be defined by an example.
The following sequence is a typical many sorted structure

A:<A=BafagaP=Q’C>?

where
A, B are non-empty sets, the sorts of A
f:(A—=(A—A)) and g : A—B are functions;
P C A and Q C A x B are relations;
c € A is a constant.

Lambda Calculi with Types 135

The name ‘sorts’ for A and B is standard terminology; in the context
of PTSs it is better to call these the ‘types’ of A.

2. The signature of Ais (2;(1,1,1),(1,2);(1),(1,2); 1) stating that there
are two sorts; two functions, the first of which has signature (1,1, 1),
i.e. having as input two elements of the first sort and as output an
element of the first sort, the second of which has signature (1,2), i.e.
having an element of the first sort as input and an element of the
second sort as output; etc.

Definition 5.4.2. Given the many sorted structure .4 of 5.4.1 the language
L4 of (minimal) many sorted predicate logic over A is defined as follows.
In fact this language depends only on the signature of A.

1. L4 has the following special symbols.

e A B sort symbols;
o f g function symbols;
e P Q relation symbols;

e ¢ constant symbol.
2. The set of variables of L 4 is

V= {mA | variable} U {mB | variable}.

3. The set of terms of sort A and of sort B, notation Term p and Termp
respectively, are defined inductively as follows:

° J:AETermA, +B

€ Termp;

ceTerm p ;

s€Termp and t€Termp = f(s,t)ETermy;

s€Termp = g(s)€Termp.

4. The set of formulae of L4, notation Form, is defined inductively as
follows:
e s€Termy = P(s)€Form;
o s€Termp ,t€Termp = Q(s,t)EForm;
e pcForm, ¢€Form = (p—y)EForm;
e pckForm = (VmA.go)EForm and (VxB.<p)EForm.

Definition 5.4.3. Let A be a many sorted structure. The (minimal)
many sorted predicate logic over A, notation PRED = PRED 4, is defined

136 H.P. Barendregt

as follows. If A is a set of formulae, then A - ¢ denotes that ¢ is derivable
from the assumptions A. This notion is defined inductively as follows (C
ranges over A and B, and the corresponding C over A, B):

el = Tl
=y I'te = TI'Ey
Ly = T'Fe=y
N Vmc.go, t€Termg = TI'Fypz:=t]
Tk o, JJCQEFV(I‘) = FI—VmC.go,
where [z := t] denotes substitution of ¢ for and F'V is the set of free

variables in a term, formula or collection of formulae. For @ F ¢ one writes
simply F ¢ and one says that ¢ is a theorem.

These rules can be remembered best in the following natural deduction
form.

@
=y P :
v v
o=
,C
Ve tetermg; SO ¢ not free in the assumptions.
ol :=1] VeTe

Some examples of terms, formulae and theorems are the following.
The expressions .z‘A, C,f(:L‘A, c) and f(c,¢) are all in Term 4 ; g(mA) is in
Termp. Moreover

VeAP(E(aB 2 A)), (1)
VeA[P(zA)—P(EzD o)), (2)
VA [P(22) =P (24, ¢))|=VaAP(2A) =P (f(c, ¢)) (3)

are formulae. The formula (3) is even a theorem. A derivation of (3) is as
follows:

Lambda Calculi with Types 137

v APGAL_pRA o vrApLAY|
P(c)—P(f(c, ¢)) P(c)
P(f(c,c))

VoA P(A)—P(f(c, c))
VoA [P(2D) =P (2, c))|=VaAP(22) =P (f(c, ¢))

2

the numbers 1, 2 indicating when a cancellation of an assumption is being
made. A simpler derivation of the same formula is

wrAPAY

P(f(c, c))
Ve ARPCA_PeEA 2 VaAP(A)—P(
VoA [P () =P (E(zD | ¢))| =V AP (™) =P (f(c, c))

1
f(c,c)))

Now we will explain, first somewhat informally, the propositions-as-
types interpretation from PRED into AP. First one needs a context corre-
sponding to the structure A. This is ' 4 defined as follows (later T' 4 will
be defined a bit differently):

a4 = A, B,
P:A—x,Q:A—B—x,
fiA—=A—A ¢ A—DB,

c:A.
For this context one has
Cabc: A (0"
Tab (fee): A
o b Hz:AP(fax) : * (19
Ca b la:A(Pz—P(fzc)) @ * (2"
Ca b (He:A(Pz—P(fxc)))—((Lla:A.Pz)—P(fcc)) : *. (3

We see how the formulae (1)—(3) are translated as types. The inhabi-
tants of * have a somewhat ‘ambivalent’ behaviour: they serve both as sets
(e.g. A:x) and as propositions (e.g. Pz : * for z:4). The fact that formulae

138 H.P. Barendregt

are translated as types is called the propositions-as-types (or also formulae-
as-types) interpretation. The provability of the formula (3) corresponds to
the fact that the type in (3') is inhabited. In fact

T4 b Ap:(Tz:A.(Pe—P(fzc))). Aq:(a:A. Px).pe(gce)

Op:(Mx:A.(Pz—P(fzc))) q:(Ilz:A.Px).P(fec).

A somewhat simpler inhabitant of the type in (3'), corresponding to the
second proof of the formula (3) is

Ap:(z:A.(Pex—P(fzc))).Aq:(Mx:A.Px).q(fec).

In fact, one has the following result that we state at this moment informally
(and in fact not completely correct).

Theorem 5.4.4 (Soundness of the propositions-as-types interpre-
tation). Let A be a many sorted structure and let ¢ be a formula of L 4.
Suppose

FprED ¢ with derivation D;

then
Labap [D]:] %,

where [D] and [¢] are canonical translations of respectively ¢ and D.

Now it will be shown that up to ‘isomorphism’ PRED can be viewed
as a PTS. This PTS will be called APRED. The map ¢ — [p] can be
factorized as the composition of an isomorphism PRED —APRED and a
canonical forgetful homomorphism APRED —AP.

Definition 5.4.5 (Berardi (1988a)). PRED considered as a PTS, no-
tation APRED, is determined by the following specification:

5,*p,*f,|:]3,ljp
SO0, H0 OP

(P, +P), (5, +F), (x*,00P),
(*5,*5,*f),(*5,*f,*f)

*
*

S
A
R

Some explanations are called for. The sort *° is for sets (the ‘sorts’ of
the many sorted logic). The sort P is for propositions (the formulae of the
logic will become elements of). The sort */ is for first-order functions
between the sets in *°. The sort 0° contains *° and the sort OO contains
*P. (There is no O/, otherwise it would be allowed to have free variables

for function spaces.)
The rule (#7,+7) allows the formation of implication of two formulae:

Lambda Calculi with Types 139

it Pl E (p—1p) = (Haip.) « #P.
The rule (*°, #7) allows quantification over sets:
At ol F (Ve) = (lz:Ap) 4.
The rule (+*,07) allows the formation of first-order predicates:
A F (A—+P) = (Max:A+P) - OF;
hence
Ax* PA—+P x:AF Pr .+,

i.e. P is a predicate over the set A.

The rule (x*, %%, #/) allows the formation of a function space between
the basic sets in *° :

A B:x® - (A—=B) : +/;

the rule (#*, %/ /) allows the formation of curried functions of several
arguments in the basic sets:

A F (A=(A—=A)) +).

This makes it possible to have for example g:A—B and f:(A—(A—A)) in
a context.

Now it will be shown formally that APRED is able to simulate the
logic PRED. Terms, formulae and derivations of PRED are translated into
terms of A PRED. Terms become elements, formulae become types and a
derivation of a formula ¢ becomes an element of the type corresponding to

®.

Definition 5.4.6. Let A be asin 5.4.1. The canonical context correspond-
ing to A, notation I' 4, is defined by

4= A B,
P:(A—+P), Q:(A—B—xP),
f:(A—=(A—A)),9:(A—DB),
c:A.

Given a term t € L4, the canonical translation of ¢, notation [¢], and the
canonical context for ¢, notation I';, are inductively defined as follows:

140 H.P. Barendregt

f(s,s") | flIslls'] | Ts UTs

g(s) gls] T,

Given a a formula ¢ in L4, the canonical translation of ¢, notation
[¢], and the canonical context for ¢, notation I'y, are inductively defined
as follows:

P [] L'y

P(t) | P[] r,

Q(s,t) | Q[s]l rur,

p1—p | [er]—lp2] | Ty, ULy,

vzC .y Ma:C.[¢] Iy —{z:C}

Lemma 5.4.7.

1. teTermg = I'g,I'ikaprep [t]: C.

2. peForm = T4, Ty FapreDp [¢] : #F.

Proof. By an easy induction. & [|

In order to define the canonical translation of derivations, it is useful
to introduce some notation. The following definition is a reformulation of
5.4.3, now giving formal notations for derivations.

Lambda Calculi with Types 141

Definition 5.4.8. In PRED the notion ‘D is a derivation showing A+ ¢,
notation D : (A F ¢), is defined as follows.

peEA = P,
Dy (AF =), Dy (A) = (
D:(Apbd) = (Ie.D): (AF p—);
D (AI—VxC.go),tETermC =]
D:(Al—go),xcgéFV(A) =

Here C is A or B, P stands for ‘projection’, I stands for introduction
and has a binding effect on ¢ and GzC stands for ‘generalization’ (over)

C

and has a binding effect on z™.

Definition 5.4.9.

1. Let A ={¢1,...,n} C Form. Then the canonical translation of A,
notation I'a, is the context defined by

FA = F‘Pl - "Urvnarth:[[sol]]: o ':l‘wn3[[$0n]]-

2. For D : (A F ¢) in PRED the canonical translation of D, notation
[D], and the canonical context for D, notation I'p, are inductively
defined as follows:

D [D] I'p

Py Zo Y

DiDy | [Di][D5] I'p, Ulp,
Ip.Dy | Ayl .[D] | Tp, — {zy:[e]}
Dt [D]It] I'purly
GzC D | Az:C[D] I'p— {:C}

The following result is valid for the structure 4 as given in 5.4.1.

Lemma 5.4.10.

D: (A FPRED 3’0) = L4, TaUl, Ul'p FyprED [D] : [¢].

142 H.P. Barendregt

Proof. By induction on the derivation in PRED. B [|

Barendsen (1989) observed that in spite of Lemma5.4.10 one has in general
for e.g. a sentence ¢ (i.e. FV(p) = @)

FpreED ¢ # JA[LabaprED A : [#]]

The point is that in ordinary (minimal, intuitionistic or classical) logic it
is always assumed that the universes (the sorts A, B,...) of the structure
A are supposed to be non-empty. For example

(Ve (Pe—Q))— (V2™ . P2)—Q)

is provable in PRED, but only valid in structures with A # @. In so-
called free logic one allows also structures with empty domains. This logic
has been axiomatized by Peremans (1949) and Mostowski (1951). The
system APRED is flexible enough to cover also this free logic. The following
extended context I‘j explicitly states that the domains in question are not
empty.

Definition 5.4.11. Given a many sorted structure A as in 5.4.1, the ez-
tended contert, notation Fj, is defined by Fj =T4,a:A,b:B.

Not only there is a sound interpretation of PRED into APRED, there is
also a converse. In order to prove this completeness the following lemma,
due to Fujita and Tonino, is needed.

Lemma 5.4.12. Suppose I' Fy\prgp A : B : #F. Then there is a many
sorted structure A, a set of formulae A C Ly4,a formula ¢ € L4 and a
derivation D such that

F=T4, TaUTl,UTp,
A=[D], B =[]
D : AFpRED ¢
Proof. See Fujita and Tonino (1991). m [|

Corollary 5.4.13.

1. Let ¢ be a formula and A be a set of formulae of L 4. Then
D:AFprep ¢ © [a,TaUTl, UTp Fyprep [D] : [¢]-

2. Let AU {p} be a set of sentences of L 4. Then

Lambda Calculi with Types 143

Atprep ¢ & 3IM[TH,Ta Fyprep M : [¢]]-
3. Let ¢ be a sentence of L 4. Then

Fprep ¢ < IM[TH Faprep M : [¢]].

Proof. 1. By 5.4.10 and 5.4.12 and the fact that [—] is injective on
derivations and formulae.

2. If the members of A and ¢ are without free variables, then
D:(Atprep ¢) © Tu,TaUTlp Faprep [D]: [¢]-

A statement in I'p is of the form z : C'. Since I‘j{ Fa:Ab: Bone
has

Atprep ¢ & 3D[D:(AFpreDp)]
& 3D[T4,TaUTp Fyprep [D] : [#]]
< AM[IE,Ta FapreD M : [#]].

(For the last (=) take M = [D][#,y := a,b]; for (<) use Lemma
5.4.12.)

3. By (2), taking A=o. 1
| |

Now that it has been established that PRED and APRED are ‘isomor-
phic’, the propositions-as-types interpretation from PRED to AP can be
factorized in two simple steps: from PRED to APRED via the isomorphism
and from APRED to AP via a canonical forgetful map.

Definition 5.4.14 (Propositions-as-types interpretation).

1. Define the forgetful map | — |: term(APRED)—term(AP) by deleting

all superscripts in * and O, so:
%5
*p
*f
DS
0P

111711

OO0 * * *

E.g. [Azf 2| = Az, Write |T] = (x1:| A1, ..) for T = (z1:44,...).

2. Let A be a signature and let ¢, ¢, A and D be respectively a term, a
formula, a set of formulae and a derivation in PRED formulated in
L. Write

144 H.P. Barendregt

[t = |It;
el = Ilell;
(D] = |[D1;
[A] = [TXTal

Corollary 5.4.15 (Soundness for the propositions-as-types inter-
pretation).

1. T '_APRED A:B = |F| '_AP |A| . |B|,

2. For sentences A and ¢ in L A one has

D:Atprep ¢ = [AlF,p M :[y], for some M.

Proof. 1. By a trivial induction on derivations in APRED.

2. By 5.4.13(2) and 1. m
| |

Now that we have seen the equivalence between PRED and APRED,
the other systems on the logic cube will be described directly as a PTS
and not as a more traditional logical system. In this way we obtain the so
called L-cube isomorphic to the logic-cube.

Definition 5.4.16.

1. The systems APROP, APROP2, APROPw and APROPw are the
PTSs specified as follows:

S «P OP
APROP| A *P o OP
R (+F, +P)

APROP2 = APROP + (00, +7).

S «P OP
APROP2 A *P . [P
R (P, *P), (OP, %)

APROPw = APROP + (O, 7).

Lambda Calculi with Types 145

S «P [P
APROPw | A P . OP
R (P, +F), (OP, P)

APROPw = APROP + (0P, +*) + (O0F, 7).

«P [P
*P . [P

S
APROPw| A
R (P, *P), (0P +P), (OP,00F)

2. The systems APRED, APRED2, APREDw and APREDw are the
PTS’s specified as follows.

S «P 5wl OP,0O°

A P % . 0°

R (P, #P), (*°, #F)
(*3,*5,*f),(*5,*f,*f),(*S,Dp)

APRED

APRED2 = APRED + (07, +).

S P 5+l OP 0O°

A # OP 5 . 0O°

R (P, %P), (°, +P), (OP, %)
(*3,*3,*f),(*3,*f,*f),(*S,Dp)

APRED?2

APREDw = APRED + (O0F, 7).

S «P x5+l OP O°
A 0P 5. 0°
APREDw R (0, 47, (5 4)

(*5,*3,*f),(*3,*f,*f),(*5,ljp),(Dp,Dp)

APREDw = APRED + (0P,) + (OF , O0P).

S «P x5+l OP O°
A WP O
APREDw oo (0 apy, (5, 42, (TP, #7)

(*S,*S,*f),(*3,*f,*f),(*5,ljp),(Dp,Dp)

The eight systems form a cube as shown in the following figure 4.

146 H.P. Barendregt
APROPw APREDw

APROP2 APRED2

APROPw APREDw

APROP APRED

Fig. 4. The L-cube.

Since this description of the logical systems as PTSs is more uniform
than the original one, we will considere only this L-cube, rather than the
isomorphic one in fig. 3. In particular, fig. 4 displays the standard orien-
tation of the L-cube and each system L; (ranging over APROP, APRED
etc.) corresponds to a unique system A; on the similar vertex in the A-cube
(in standard orientation).

Now it will be shown how in the upper plane of the L-cube the logical
operators =, &,V and 3 and also an equality predicate =p are definable.
The relation =, is called Leibniz’ equality.

Definition 5.4.17 (Second-order definability of the logical opera-
tions).

1. For A, B:xP define

1L = (Ig:AP.5);
-4 = (A—=1)
A&B = Iy (A—=B—7v)—7;

AV B My (A—y)—(B—y)—7.

2. For A:+P and S:*°* define

J2:S.A = My:AP (Mz:S.(A—7))—7.

Lambda Calculi with Types 147
3. For S:x* and x,y:S define

(x =p y) = NP:S—+P . Pz—Py.

Note that the definition of & and V make sense for systems extending
APROP2 and 3 and =g for systems extending APRED2. It is a good
exercise to verify that the usual logical rules for &,V,3 and =g are valid
in the appropriate systems.

Example 5.4.18. We show how a part of first order Heyting Arithmetic
(HA) can be done in APRED. That is, we give a context I' 4, ['a such that
I' 4 fixes the language of HA and I'a fixes a part of the axioms of HA. Take
T'4 to be

N *°

0 N,

S N—N,

+ N—N—N,
= N—=N— P .

Take I'a to be

tr : llz,y,z . Nex=y—y=2z—x =z,
sy : lz,y:N.z=y—y=u=z,

re : lz:N.z =z,

a; : Hz,y:N.Sz=Sy—z=y,

ay : Mz:N.z+0==z,

az : Iaz,y:N.z+Sy=S(x+y).

Note that we do not have a4 : [Ilz:N. Sz # 0] and a5 : [Hz:N. ¢ # 0 —
Jy:N.z = Sy], because the logic is minimal (We can’t define — and 3 in
first order logic.) Also we don’t have an induction scheme for the natural
numbers, which requires infinitely many axioms or one second order axiom
(ag : MMP:N— P PO — (Ilz:N.Pz — P(Sz)) — lz:N.Pz). One says that
HA is not finitely first order axiomatizable. Finally, the atomic equality
in APRED is very weak, e.g. it doesn’t satisfy the substitution property:
if ¢(x) and = y hold, then ¢(y) holds. In second order predicate logic
(APRED2) HA can be axiomatized by adding ag and further a4 and a5 using
the definable = and 3. Also the atomic = can be replaced by the (definable)
Leibniz equality on N, which does satisfy the substitution property.

Example 5.4.19. The structure of commutative torsion groups is not
finitely nor infinitely first order axiomatizable. (This example is taken

148 H.P. Barendregt

from Barwise (1977).) The manysorted structure of a commutative torsion
group is (A, =, *,0) and it has as axioms:

Ve,y,z (xxy)*z = z*x(yxz),
Ve zx0 = =z,
Ve Jy zxy = 0,
Ve,y exy = yx*uz,
Ve In>1 ne = 0,

where we write

ne for gx- %z

—
n
If one tries to write the last formula in a first order form we get the follow-
ing.
Ve (z=0VvV2z=0V--")

So we obtain an ‘infinitary’ formula, which, can be shown to be not first
order, by some use of the compactness theorem. A second order statement
(as type) that expresses that the group has torsion is

Va:AVP:A—x.[Pe—(Vy:A.Py—P(x * y))— P0].

Theorem 5.4.20 (Soundness of the propositions-as-types interpre-
tation). Let L; be a system on the L-cube and let A; be the corresponding
system on the A-cube. The forgetful map | . | that erases all superscripts
in the x’s and O’s satisfies the following

Tk, A:B:s = |[|Fa, |A]l:|B|:|s]

Proof. By a trivial induction on the derivation in L;. B [|

As was remarked before, completeness for the propositions-as-types in-
terpretation holds for PRED and AP, but not for PREDw and AC.

Theorem 5.4.21 (Berardi (1989); Geuvers (1989)). Consider the
similarity type of the structure A = (A), i.e . there is one set without any
relations. Then there is in the signature of A a sentence ¢ of PREDw such
that

YPREDw ¥
but for some M one has

Laby o M :[p].
Proof. (Berardi) Define
EXT = 1Ip,p":+ [(p < p')—1Q:+" —+ (Qp—Qp')]
¢ = EXT — ‘A does not have exactly two elements’

Obviously /preEDw - Claim: interpreted in AC one has

Lambda Calculi with Types 149

EXT — “f A is non-empty, then A is a type-free A-model’.
The reason is that if a:A, then
F(Az:(A—A).a): (A—=A)—A)
and always
F(Ay:AAz:Az) : (A—(A—A)),
therefore ‘A — (A—A)’ and since ‘A = A’ (i.e. there is a bijection from A
to A), it follows by EXT that ‘4 = (A—A)’, i.e.A is a type-free A-model’.

By the claim A cannot have two elements, since only the trivial A-model
is finite. W [|

Proof. (Geuvers) Consider in APREDw the context T’ and type B defined
as follows:

=A% cA
B = HQ:(*pH*p)Hq:*p.(Q(HIZA.Q)HHQI:*I’,Q(q’—u])).

Then B considered as formula is not derivable in APREDw, but its
translation |B| in AC' is inhabited, i.e.

1. [T| Fa¢ C :|B|, for some C.
2. T ¥aprED. C : B, for all C.
As to 1, it is sufficient to construct a Cy such that
Ak, e A, Qu(x—x), gx F Co (Q(Ia:A.g)—T¢".Q(g'—q)).

Now note that
Q(Ilz:A.q) = Q(A—q)
and the type

[Q(Iz:A.q)—3¢" *.Q(¢'—q)] =
= Q(A—q)—[HasxIlg"*.(Q(¢ —q¢)—a)—a]

is inhabited by
Ay (Q(A—q)) Aax Af: (1" #.(Q(¢' —q)—a)). fAy.
As to 2, if T FyprEDw C : B, then also
A e A QP —+P), gk r(Q(Ha:Aq)), o 1Tl :+P . Q(¢' —q)—)
FCQqrat: «

By considering the possible forms of the normal form of CQgqrat it can
be shown that this is impossible. R

The counterexample of Geuvers is shorter (and hence easier to formal-
ize) than that of Berardi, but it is less intuitive.

150 H.P. Barendregt

As is well-known, logical deductions are subject to reduction, see e.g.
Prawitz (1965) or Stenlund (1972). For example in PRED one has

and

If the deductions are represented in APRED), then these reductions be-
come ordinary fS-reductions:

Lambda Calculi with Types 151

[(Ze.D1)D2] = (Aze:[e].[Di])[D:2]—5

[Dillzy := [D:]] = [D1[Py := Do]l;
[(GzC. D))= (Ae:C.[D])[t]—s

[D][z := [t]] = [D[z :=t]].

In fact the best way to define the notion of reduction for a logical system
on the L-cube is to consider that system as a P'TS subject to 8-reductions.

Now it follows that reductions in all systems of the L-cube are strongly
normalizing.

Corollary 5.4.22. Deductions in a system on the L-cube are strongly
normalizing.

Proof. The propositions-as-types map
| |:L-cube —A-cube

preserves reduction; moreover the systems on the A-cube are strongly nor-
malizing. B
The following example again shows the flexibility of the notion of PTS.

Example 5.4.23 (Geuvers (1990)). The system of higher-order logic
in Church (1940) can be described by the following PTS:

S * 0, A
AHOL| A «:0,0:A
R (*, %), (O, %), (0,0)

That is AHOL is Aw plus O : A. The sort O represents the universe
of domains and the sort * represents the universe of formulae. The sort
A and the rule O : A allow us to make declarations A : O in the context.
The system AHOL consists of a higher-order term language given by the
sorts * : O : A and the rule (0,0) (notice the similarity with A—) with a
higher-order logic on top of it, given by the rules (*,*) and (O,).

A sound interpretation of APREDw in AHOL is determined by the map
given by

* = %
** — O
= O
or — O
0 — A

152 H.P. Barendregt

Geuvers (1990) proves that AHOL is isomorphic with the following ex-
tended version of APREDw,

S b4, 0P,00F°
A OO
R (P, *P), (*°, P, (OF, *P)

(%), (0P, **), (%*,07), (OP, OP)

APREDw!

where isomorphic means that there are mappings F' : (APREDw!) —
(MHOL) and G : (AHOL)— (APREDw!) such that Go F' =1d and Fo G =
Id. (Here the systems (AHOL) and (APREDw!) are identified with the set
of derivable sequents in these systems.) This shows that even completeness
holds for the interpretation above.

Representing data types in \2

In this subsection it will be shown that data types can be represented in
A2. This result of Leivant (1983), (1989) will be presented in a modified
form due to Barendsen (1989).

Definition 5.4.24.

1. A data structure is a many sorted structure with no given relations.
A sort in a data structure is called a data set.

2. A data system is the signature of a data structure. A sort in a data
system is called a data type.

Data systems will often be specified as shown in the following example.

e Sorts
A'B
e Functions
f:A—B
g:B—A—A
e Constants
cEA.

In a picture:

Lambda Calculi with Types 153

Examples 5.4.25. Two data systems are chosen as typical examples.

1. The data system for the natural numbers Nat is specified as follows:

e Sorts
N;
e Functions
S:N—N;
e Constants
0eN.
2. The dat asystem of lists over a sort A, notation List 5 , is specified

as follows:

e Sorts

A Ly;

e Functions
Cons : A—=TL g —Ly;

o Constants
nil € LA'

Definition 5.4.26.

1. A sort in a data system is called a parameter sort if there is no in-
going arrow into that sort and also no constant for that sort.

2. A data system is called parameter-free if it does not have a parameter

sort.

The data system Nat is parameter-free. The data system List o has
the sort A as a parameter sort.

154

H.P. Barendregt

Definition 5.4.27. Let D be a data system. The language Lp corre-
sponding to D is defined in 5.4.2

1.

The (open) termmodel of D, notation 7 (D), consists of the terms
(containing free variables) of Lp together with the obvious maps given
by the function symbols. That is, for every sort C of

D the corresponding set C' consists of the collection of the terms in Lp
of sort C; corresponding to a function symbol f : C;—C, a function

f : C1—C5 is defined by

A constant ¢ of sort C is interpreted as itself; indeed one has also

ceC.

. Similarly one defines the closed termmodel of D, notation 7°(D), as

the substructure of sets of 7 (D) given by the closed terms.

For example the closed term model of Nat consists of the set

0,50, SS0, . ..

with the successor function and the constant 0; this type structure is an
isomorphic copy of

({0,1,2,..},S,0).

T (List p) consists of the finite lists of variables of type A.

Definition 5.4.28. Given a data system D with

Write

A,,... A, parameter sorts;
Bi,...,B,, other sorts;
f1 . A1—>B1—>B2 (say)

c; By (say)
I'p = Aipx,... Ay,
Bi=, ..., By,

f:A1—>Bl = Bz,

C1 ZBl,

Lambda Calculi with Types 155

For every term t € Lp define a A2-term ¢~ and context I'; as follows.

E [t~ | T |

;rC z z:C

£ty 1, | Sy -ty | Ty, U---U Ty
c

10

n

Lemma 5.4.29. For a term t € Lp of type C one has

FD,Ft l_)\Q t~ . C.

Proof. By induction on the structure of t. [|

Given a data system D, then there is a trivial way of representing 7 (D)
into A2 (or even into A—) by mapping ¢ onto t~. Take for example the
data system Nat. Then I'nye = NVix, SIN—N,0:N and every term Sko
can be represented as

I'Nat © (SF0): N.
However, for this representation it is not possible to find, for example, a
term Plus such that, say,
Plus(S0)(S0) =5 SSO.

The reason is that S is nothing but a variable and one cannot separate a
compound S0 or S50 into its parts to see that they represent the numbers
one and two. Therefore we want a better form of representation.

Definition 5.4.30. Let D be a data system as in definition 5.4.28.

1. Write Ap=A =, ..., A 1 *.

—n

2. A A2-representation of D consists of the following.

e Types By,..., B, such that

m

ApFE By :*,...,B,, 1 *.

m

e Terms il,...,gl,...such that

156 H.P. Barendregt
Ap il :A1_>§1_>§2§

Apt ¢ By

e (Given a A2-representation of D there is for each term ¢ of Lp a
A2-term t and context A; defined as follows.

R PR |
JJC z z:.C
£t 4, | [l 1, | AU UA,,
c c)

e The A2-representation of D is called free if moreover for all terms
t,s in Lp of the same type one has

t=ps & 1

S.

Notation 5.4.31. Let I' = z1:4,,...,2,:A, be a context. Then

MM = depAy--deg Ay M,
nr.M = Mzi:Ay---Ux,:A,. M,
MII' = Mz, ---x,.

Theorem 5.4.32 (Representation of data types in A2; Leivant
(1983), Bohm-Berarducci (1985), Fokkinga (1987)). Let D be a
datasystem. Then there is a free representation of D in A2.

Proof. Let D be given as in definition 5.4.28. Write
O’D = Bll*,...,BmZ*,

fi: Ay—=B1—By,

C1 ZBl,

We want a representation such that for terms ¢ in Lp of a non-parameter
type
1Op =5 t~[x1 ;= 210p] - - - [x, 1= 2,Op], (1)

Lambda Calculi with Types 157

where z1, ..., x, are free variables with non parameter types in ¢; for terms
t of a parameter type one has

t=1t". (2)

Then for terms of the same non-parameter type one has

t=ps = tOp=3s0p
= 17 =5s™"
= 7 =g s”
= 7 =s"
= t=s

where * denotes the substitutor [#1 := 210p] - - - [z, := 2,07p]. For terms
of the same parameter type the implication holds also. Now (2) is trivial,
since a term t of a parameter type A is necessarily a variable and hence
t= ;L‘A, so t~ =z =t. In order to fulfill (1) define

ﬁi = H@D.Bi
¢ = MOp.c
il = /\a1:Al)\bl:§1Ab2:§2/\®p.fal(b1®p)(b2®p).

Then by induction on the structure of ¢ one can derive (1). Induction step:

fit1t5t30p = [11,1300

s fi111(t20p)(t309p)

g [ITTE”
(fltltgtg)N*. |]

Now it will be shown that for a term ¢ € Lp the representation t in A2
given by theorem 5.4.32 can be seen as the canonical translation of a proof
that ¢ satisfies ‘the second order definition of the set of elements of the free
structure generated by D’.

Definition 5.4.33.

1. The map §: T—{0,1,2,3} x {s,p} for AC is modified as follows for
pseudoterms of APRED2. Let 7 range over {s, p}.

$(0%) 3t which is a notation for (3,1);
ﬂ(*l) = 2

158

1) =
1"2) =

Oi;

H.P. Barendregt

3(MMz:A.B) = §(Ax:A.B) = §(BA) = §(B).

2. A map []: APRED2 into APROP?2 is defined as follows.

=

[+]

[P2]
[2]
[Az:A.B]
[MMz:A.B]
[BA]

[:A]

[x1:A41, ..., 2n:An]

[B]

Al=]:[A].[B]

[B]

H[=]:[A].[B]

[B]

[B][A]

()

[]:[A]

[z1:A44], - ., [zn:An]-

3. A map | |: \PROP2—)2 is defined as follows.

Finally put

= = O
¥ = %
0% = O
=
|lz:A.B| = Mjz|:|A|.|B];
|[Az:A.B| = Alz|:|A].|B|;
|BA[= |B||A].

le:Al = [z[:|A];

if 44 = 1%,
else;
if 44 = 17,
else;
if 44 = 17,
else.

if g2 € {0°, 1),

else.

Lambda Calculi with Types 159
|z1:A1, .. 20 An] = JzAd], .. |2 Anl

4. A map []: APRED2—A2 is defined by [A] = |[A].

Proposition 5.4.34.

L. I'FyprED2 A: B = [IlFyprop2 [4] : [B]
2. T l_)\PROP2 A:B = |F| |—)\2 |A| : |B|

3. T '_APREDQ A:B = [F] Faa [A] : [B]

Proof. 1. By induction on derivations using
[Pz := QI = [P][I=] := [@]).

2. Similarly, using *'z ¢ FV([P]).

3. By (1) and (2). m
| |

Now the alternative construction of ¢ for ¢ € Lp can be given. The method
is due to Leivant (1983). Let D be a datasystem with parameter sorts.
To fix the ideas, let D = List . Write I'p = A:**, L4:%*, nil:Ly, cons :
A—La—Ly4. For the parameter type A a predicate P4:(A—x*P) is declared.
For List o the predicate

PEa = Az:(L4).T0Q:(La—+P).
[Q nil—[Mla:Ally:(L4). PAa—Qy—Q(cons ay)| —Q~]

says of an element z:L4 that z belongs to the set of lists built up from
elements of A satisfying the predicate P4.

Now if t € Lp is of type List , then intuitively ¢~ : L4 satisfies pLa,
Indeed, one has for such ¢

Ip, [y Ft~: Ly and I'p, Ty F dy; - (PE4t™). (1)

for some d; constructed as follows. Let C range over A and List o with
the corresponding C being A or L4.

160 H.P. Barendregt

t t~ Iy d,
Y x z:C,a,:(P%2) | ay
nil nil () AQ:(La—+P)Ap:(Q nil)

Aq:(Ma:Ally: L 4.
[PAa—Qy—Q(consay)]).p

constity | constytsy | Ty, Ty, AQ:(La—+P)Ap:(Q nil)
Ag:(Ma:Ally: L 4.
[PAa—Qy—Q(cons ay)]).
g7ty di, (di, Qpg)

By induction on the structure of ¢ one verifies (1). By Proposition 5.4.34
it follows that

[Lp, Li] F [di] : [(PEE)). (2)
Write
=[P4,
L, = [PM]=1Q%*Q—(A-Q—Q)—Q,
[

dnil] = AQ*x Ap:QAq:(A—Q—Q).p,
Aa: ANz L, AQ:* Ap:QAq:(A—Q—Q).qax.

cons

Notice that this is the same A2-representation of List o as given in theorem
5.4.32 and that t =5 [dy].

In this way many data types can be represented in A2.

Examples 5.4.35.

1. Lists.

To be explicit, a list (a1, as) € L4 and cons are represented as follows.

L, = (IIL:*x.L—(A—L—L)—1L);
(a1,89) = (ALxAnil:LAcons:A—L—L.cons ai(cons agnil)));

cons = da:Adz:(OL:xL—(A—L—L)—L)

Lambda Calculi with Types 161

AL:#Anil:LAcons:A—L—L.cons (z L nil cons);

Moreover

Ak ar:A aAF (ay,a,):L,.

2. Booleans.
Sorts
Bool
Constants
true, false€Bool

are represented in A2 as follows.

Bool = lax*x.a—a—a,
true = daxdradya.x,
false = daxdz.ady:a.y.
3. Pairs.
Sorts
A{, Ay, B
Functions
pP:A1—A9—B.

Representation in A2

o
|

o (A1 —Az—a)—a,
Ar: A1 Ay Asdacxdz (A —As—a).zay.

I3
[

Applying the map | | : terms(A2)—A defined in 3.2.14 the usual repre-
sentations of Booleans and pairing in the type-free A-calculus is obtained.
The same applies to the A2 representation of the data type Nat giving the
type-free Church numerals.

Now that data types can be represented faithfully in A2, the question
arises which functions on these can be represented by A-terms. Since all
terms have an nf, not all recursive functions can be represented in A2, see

e.g. Barendregt (1990), thm. 4.2.15.

Definition 5.4.36. Let D be a data structure freely represented inA2 as
usual. Consider in the closed term model 7°(D) a function f:C—C", where

162 H.P. Barendregt

C and C' are non-parameter sorts, is called A2-definable if there is a term

i such that

[p ki f (C—CH & ft =p ftforallte Termc.

Definition 5.4.37. Let a data system D be given. A Herbrand-Gédel
system, formulated in APRED2, is given by

1. I'p

2. I'y,,. . 1., a finite set of function declarations of the form fi:By,.. .,
fn:B, with I'p F B/

3. Tuzy,... az.,, & finite set of axiom declarations of the form a;:ax4,. . .,
Um GZym with each az; of the form fj(s1,....,sp) =1 7 with the
$1,...,8p,r terms in Lp of the correct type (see 5.4.17(4) for the def-
inition of =) .

For such a Herbrand—Godel system we write

HG = FD’Ff" 'z

In order to emphasize the functions one may write HG = HG(f). The
principal function symbol is the last f,,.

Example 5.4.38. The following is a Herbrand-Godel system (Note that
the principal function symbol f2 specifies the function Az € Nat.z + z).

HGy= N:*,0:N,S:(N—N),
fliN—>N—>N,f22N—>N1
ap:(lle:N.fr20 = z),
az:(frz(Sy) =L S(frzy)),
az:(fox =1 frex).

Definition 5.4.39. Let A be a data structure having no parameter sorts.
Let f : C—C" be a given external function on 7 (D) (similar definitions can
be given for functions of more arguments). Let HG be a Herbrand-Gaédel
system.

1. HG computes f <& HG = HG(f1,..., fn) and for all t€Term¢ one
has for some p

HG FypreD2 P (fat =1 f(1)).

Lambda Calculi with Types 163

2. Suppose HG(f1, ..., fa) computes f. Then f is called provably type-
correct (in APRED2) if for some B one has

HG FypreDs B : [2:C.[PCa—PC (f,2)]]

Note that the notion ‘provably type correct’ is a so-called intensional prop-
erty: it depends on how the f is given to us as f,,. Now the questions about
A2-definability can be answered in a satisfactory way. This result is due to
Leivant (1983). It generalizes a result due to Girard (1972) characterizing
the A2-definable functions on Nat as those that are provably total.

Theorem 5.4.40. Let D be a parameter-free data structure.
1. The basic functions in D are A2-definable
2. A function f:C—C" is recursive iff f is HG computable.

3. A function f:C—C" is A2-definable iff f is HG-computable and prov-
ably type correct in APRED?2.

Proof. 1. This was shown in theorem 5.4.32.
2. See Mendelson (1987).
3. See Leivant (1983), (1989). m

5.5 Pure type systems not satisfying normalization

In this subsection some pure type systems will be considered in which there
are terms of type L = Ila:x.ce. As a consequence there are typable terms
without a normal form.

In subsection 5.2 we encountered the system Ax which can be seen as a
simplification of AC by identifying * and O. It has as peculiarity that * : %
and its PTS specification is quite simple.

Definition 5.5.1. The system A is the PTS determined as follows:

x| A * 1ok
R

Since all constructions possible in AC can be done also in Ax by collaps-
ing O to #, it seems an interesting simplification. However, the system Ax

164 H.P. Barendregt

turns out to be ‘inconsistent’ in the sense that every type is inhabited, thus
making the propositions-as-types interpretation meaningless. Nevertheless,
the system Ax is meaningful on the level of conversion of terms. In fact
there is a nontrivial model of A, the so-called closure model due to Scott
(1976), see also e.g. Barendregt and Rezus (1983). For a discussion on the
computational relevance of A, see Coquand (1986) and Howe (1987).

The ‘inconsistency’ following from *:* was first proved by Girard (1972).
He also showed that the circularity of *:x is not necessary to derive the
paradox. For this purpose he introduced the following pure type system
AU. Remember its definition.

Definition 5.5.2. The system AU is the PTS defined as follows:

S * O A
AU A «:0,0:A
R (*,*),(D,*),(D,D),(A,D),(A,*)

So AU 1is an extension of Aw. The next theorem is the main result in this
subsection. The proof occupies this whole subsection.

Theorem 5.5.3 (Girard’s paradox). In AU the type L is inhabited, i.e.
F M: L1, for some M.

Proof. See 5.5.26. 1 [|

Corollary 5.5.4.

1. In AU all types are inhabited.
2. In AU there are typable terms that have no normal form.

3. Results (1) and (2) also hold for A« in place of AU .

Proof. 1. Let M:L be provable in AU. Then
axt Ma:a

and it follows that every type of sort * in AU is inhabited. Types of
sort [0 or A are always inhabited; e.g. [I#:A.x by Az:A. L.
2. By proposition 5.2.31

3. By applying the contraction f(x) = f(O) = f(A) = * mapping AU
onto Ax. W

Lambda Calculi with Types 165
||

The proof of Girard’s paradox will be given in five steps. Use is made of

ideas in Coquand (1985), Howe (1987) and Geuvers (1988).

1. Jumping out of a structure.

2. A paradox in naive set theory.

3. Formalizing.

4. An universal notation system in AU.

5. The paradox in AU.

Step 1. Jumping out of a structure

Usually the method of diagonalization provides a constructive way to ‘jump
out’ of a structure. Hence if we make the (tacit) assumption that everything
should be in our structure, then we obtain a contradiction, the paradox.
Well known is the Russell paradox obtained by diagonalization. Define the
naive set

R={a|aé¢a}

Then
Vala € R — a ¢ a,

in particular

RER— RER,

which is a contradiction. A positive way of rephrasing this result is saying
that R does not belong to the universe of sets from which we take the a;
thus we are able to jump out of a system. This is the essence of diagonal-
ization first presented in Cantor’s theorem. The method of diagonalization
yields also undecidable problems and sentences with respect to some given
formal system (i.e. neither provable nor unprovable). (If the main thesis
in Hofstadter (1979) turns out to be correct it may even be the underlying
principle of self-consciousness.)

The following paradox is in its set theoretic form, due to Mirimanoff
(1917). We present a game theoretic version by Zwicker (1987). Consider
games for two players. Such a game is called finite if any run of the game
cannot go on forever. For example noughts and crosses is finite. Chess is
not finite (a game may go on forever, this in spite of the rule that there is
a draw if the same position has appeared on the board three times; that
rule is only optional). Hypergame is the following game: player I chooses a
finite game; player II does the first move in the chosen game; player I does
the second move in that game; etc. Claim: hypergame is finite. Indeed,

166 H.P. Barendregt

after player I has chosen a finite game, only finitely many moves can be
made within that game. Now consider the following run of hypergame.

Player I: hypergame
Player II: hypergame
Player I: hypergame

Therefore hypergame is not a finite game and we have our paradox.
This paradox can be formulated also as a positive result.

Proposition 5.5.5 (Informal). Let A be a set and let R be a binary
relation on A. Define for a € A

SNra < there is no infinite sequence ag,as, ... € A such that
...... Ray RagRa.

Then in A we have

—3bVYa [SNra < aRb].

Proof. Suppose towards a contradiction that for some b

Va[SNgra < aRb]. (1)
Then
Va[aRb—SNgal]. (2)
This implies
SNgb,

because if there is an infinite sequence under b
...RayRagRb
then there is also one under ag(Rb), contradicting (2). But then by (1)
bRb
Hence ... RbRbRb and this means =SN gb. Contradiction. R [|

By taking for A the universe of all sets and for R the relation €, one
obtains Mirimanoff’s paradox. By taking for A the collection of all ordinal
numbers and for R again €, one obtains the Burali-Forti paradox.

The construction in 5.5.5 is an alternative way of ‘jumping out of a
system’. This method and the diagonalization inherent in Cantor’s theorem

Lambda Calculi with Types 167

can be seen as limit cases of the following generalized construction. This
observation is due to Quine (1963), p.36.

Proposition 5.5.6. Let A be a set and let R be a binary relation on A.
Forn =1,2,...,00 define

Cpa < Fag,...,a, € Alag = a & Vi < n a;41Ra; & a, = a].
B, ={a€e A|-Cpa}.

{The set B, consists of those a € A not on an ‘n-cycle’t. Then in A one
has

—3bVa[Bpa < aRb].

Proof. Exercise. B [|

By taking n = 1 one obtains the usual diagonalization method of Can-
tor. By taking n = oo one obtains the result 5.5.5. Taking n = 2 gives
the solution to the puzzle ‘the exclusive club’ of Smullyan (1985), p.21. (A
person is a member of this club if and only if he does not shave anyone who
shaves him. Show that there is no person that has shaved every member
of the exclusive club and no one else.)

Step 2. The paradoz in naive set theory

Now we will define a (naive) set 7" with a binary relation < on it such that
VaeT [SNca < a<b], M

for some b € T. Together with Proposition 5.5.5 this gives the paradox.
The particular choice of 7" and < is such that the auxiliary lemmas needed
can be formalized in AU.

Definition 5.5.7.

1. T={(A,R) | Ais aset and R is a binary transitive relation on A}
For (A, R),(A",R") €T and f:A—A’ write

(A R)<; (A R) & VabeAaRb — f(a)R f(b)];
f is bounded & Jda'e AVae A f(a)R'd;
(AR)<; (A,R) < (AR) < (A’ R") & f is bounded.

2. Define the binary relation < on 7' by
(A, R)< (A, R) & 3f:(A=AN(A4,R) <5 (A", R")].
3. Let W ={(A4,R)eT | SN<(A,R)}.

We will see that b = (W, <)€T satisfies (1) above. (For notational simplicity
we write for the restriction of < to W also < .)

168 H.P. Barendregt

Definition 5.5.8. For (A, R) €T and a € A write
1. A, ={be€ A | bRa};
2. R, is the restriction of R to A,.

Lemma 5.5.9. Let (A,R) €T and a,b€ A. Then
1. (A4, Ry) < (A, R);
2. aRb — (A4, Rq) < (Ap, Rp);
3. aRb — SNgb — SNga;
4. [Va€ ASNpa] — SN (A, R).
Proof. 1,2. By using the map f = Az:A,.z. For (2) the transitivity of

R is needed to ensure that f has codomain A;. In both cases f is

bounded by a.

3. Suppose aRb. If there is an infinite R-chain under a, i.e. ...a1 Ra,Ra,
then there is also one under b; indeed ...a;Ra,RaRb. Therefore
SNgb imlpies SNgra.

4. Suppose there is an infinite <-chain under (A4, R):
.. .(Al, Rl) < (Ao,Ro) < (A, R)

iFrom the figure 5 it can be seen that using the bounding elements
in (A, Ry) for the map f,:Apy1—An (projected via the fsinto A)
there is an infinite R-chain, below an element of A.

This contradicts the assumption Ya € A SNgr(a). B

Proposition 5.5.10.
V(A,R)€T[SN<«(4,R) <= (A, R) < (W,<)].

Proof. It suffices to show that for (4, R) €T
L. SN<(AaR) - (AaR) < (W: <);
2. SN.(W, <).

For then (4, R) < (W,<) — SN<(A, R) by Lemma 5.5.9 (3).
Asto 1, suppose SN< (A, R). Let a€ A and define f(a) = (A4, Ry), with
R, defined in 5.5.8. By 5.5.9 (1) one has f(a) < (A, R); by assumption and
5.5.9(3) applied to (T, <) it follows that SN (f(a)) and hence f(a) € W.
Therefore f:A—W. Moreover, f:(A, R) < (W, <) by Lemma 5.5.9 (1), (2).
As to 2, note that by definition V(A4,R) € W SN<(A, R). Hence by
Lemma 5.5.9 (4) one has SN (W, <). ® [|

Lambda Calculi with Types 169

Fig. 5.

Step 3. Formalizing

In this step several notions and lemmas from steps 1 and 2 will be for-
malized. This could be done inside the systems of the cube (in fact inside
AP2). However, since we want the eventual contradiction to occur inside
AU, a system that is chosen with as few axioms as seems possible, the for-
malization will be done in AU directly. From now on the notions of context
and F refer to AU. Use will be made freely of logical notions (e.g. we write
Va:A instead of Tla:A).

The first task is to define the notion SNgi without referring to the
concept of infinity.

Definition 5.5.11.

1. T'g 1s the context
A0, Ri(A—A—x).

2. Write in context I'g
chaing p= AP:(A—*).Va:A[Pa—3b:A[Pb & bRa]]
SNa r= Aa:AVP:(A—+)[chaing g P — —Pa).

Intuitively, chaing rP states that P:A—x is a predicate on (i.e. subset of)
A such that for every element a in P there is an element b in P with bRa.
Moreover SN4 ra states that a:A4 is not in a subset P C A that is a chain.

Lemma 5.5.12. In AU one can show

1. Tg Fchaing g : ((A—*)—x).

170 H.P. Barendregt
2. FO - SNAJDL N (A—>*)

Proof. Immediate. B [|
Proposition 5.5.13. In context I'y the type

—3b:AVa:A[SNa ra — aRb]
is in AU inhabited.

Proof. With a little effort the proof of Proposition 5.5.5 can be formalized
in APRED2. Then one can apply the map f:APRED2—AU determined by

FO) = % f(°) = f(+)) = f(OF) = 0, (O°) = A.im

We now need a relativization of Proposition 5.5.13.
Definition 5.5.14.
1. In context I'g write
closeda r = AQ:(A—x*).Va, b:A [Qa—bRa—Qb].
{closeds r@ says: ‘if a is in) and b is R-below a, then b isin Q’.}
2. In context I'g, Q:A—x*, write
Va:A9.B = Va:A[Qa— B]
Ja:A®.B = Ja: A[Qa& B).
{This is relativizing to a predicate @Q.}
Corollary 5.5.15. In context 'y, QQ:A—x* the type
closeda rQ—3b:A%Va:A? [SN4 ga < aRb|
is inhabited in AU.
Proof. The proof of Proposition 5.5.5 formalized in PRED2 can be rela-
tivized and that proof becomes, after applying the contraction f the re-

quired inhabitant. B [|

So far we have formalized the results in Step 1. There are several
problems for the formalization of the naive paradox in Step 2 into AU. The

Lambda Calculi with Types 171

main one is that in AU a ‘subset’ of a type does not form a type again. For
example it is not clear how to form A,(C A) as a type. This problem is
solved by considering instead of a structure (A4, Rq) the structure (4, R?)
with

bR < bRc & bRa.

In order to formalize Lemma 5.5.9 the definition of < has to be adjusted.
Let the domain of R be the (naive) subset

Dompg = {a:A | 3b:A aRb}.

In the new definition of < it is required that the monotonic map involved
is bounded, but only on the domain of R.

A second problem is that 7" and W are not types and that it is not clear
how to realize (W, <)€T. This problem will be solved by constructing in AU
a ‘universal’ kind U such that all pairs (A, R) can be ‘faithfully’ embedded
into U.

Definition 5.5.16. In AU define two predicates <~ , < of type
[Mo:OMr:(a—a—)a":O0r (o' =o' =) f:(a—a') 4]
as follows. We write
(4, R) < (A", R") for <~ ARA'R'f
and similarly for < .
1. (A,R) < (AR < Va,b:A[aRb— (fa)R'(fb)].
2.
(A R)<; (ALR) & (AR <; (A, R)&
Ja": A’ [Domp.a’'&
Va:A [Domga—(fa)R'a']],
where Domga stands for 3b:A.aRb.
3. Write for the appropriate A, R and A’, R’
(A,R) <~ (A,R) & 3f:A—=A" (A R) <7 (A", R")

and similarly for <.

The notion SN¢ is not a particular instance of the notion SN4 r. This is
because the ‘set’

{(A R) | A, R:A—A—x}

on which < is supposed to act does not form a type. Therefore SN, has
to be defined separately.

172 H.P. Barendregt

Definition 5.5.17.
1. chaine = AP:(lle:O0.(a—a—*)—x).
[Vap:OVry (a3 —ay—*).
[Payri—3ag:03rg:(ag—as—*)
[Pagra&(as,ra) < (a1,71)]
]
.

2. SN.= dae:Odr:(a—a—+) VP:[Io):0O.(a/ —a' —*)—x].
[chaing P——(Par)].

3. Trans Trans = Aa:0Ar:(a—a—x*).Va, b, c:a.[arb—bre—arc].
4. In context I'g, a:A define
R* = Ab,c:A.[bRc&bRa].

Proposition 5.5.18. Let A:0, R:{(A—A—x),a:A, b:A and assume
TransAR;

that is, work in context z :TransAR. Then the following types are inhab-
ited.

1. Dompa — (A, R*) < (A, R).
2. aRb — (A, R%) < (A, RY).
3. aRb — SNAJDLb - SNAVRCL.
4. (Va:A.SN4 ra) — SN<AR.
Proof. 1. Assume Dompga. Define f = Az:A.z. Then (4,R*) <}

(A, R). Moreover a in Dompg bounds fz = z for z in Dom(ga).
Indeed, R"y — xRa. Therefore (4, R?) <; (4, R).

2. Assume Trans AR and aRb. Again define f = Az:A.z. Then
(A, R*) <7 (A, R");

indeed, zR% — xRy & xRaRb — zR%y by the transitivity of R.
Also a is in Domgby and again bounds fz = z for z in Dom(ga,.

3. Assume aRb and SN4 gb. Let chaing gP and assume towards a
contradiction Pa. Define P’ = Az:A.[Px V « =r b]. Then also
chaing pP’ and P’b, contradicting SN rb.

4. (—) Assume (Va:A. SN4 ga). Let chainc P and assume towards a
contradiction PAR. Then for some A’ and R’ one has PA'R’' and
(A", R") < (A, R), and therefore for some a:A one has

Lambda Calculi with Types 173

Domga & 3f:(A'—A)[(4,R) <; (4 R)
& Yy:A'[Dompy — (fy)Ra]] (1)
Define
P' = JAz:ADompgz & [Fa:O3r:(a—a—x).

Par & 3f:(a—A4) [(o,7) <} (4, R)
& Vy:a [Dom, y—(fy)Rx]]].

Then also chaing rP’. By (1) one has P’a, contradicting SN4 ra.

(<) Assume SN, AR. Let a:A and suppose towards a contradiction
that chaing g P and Pa. Define

P’ = da:0Mr:(a—a—x).[30:A.Pb & (A, R") < (a,7)].

Then chaineP’; by (2), and P'AR, by (1) and (2), contradicting
SN.AR. m
| |

Step 4. A universal notation system in AU

In this step the second problem mentioned in Step 3 will be solved. Terms
U and i will be constructed such that i faithfully embeds a pair (4, R)
with A:n and R:(A—A—x) into U. Such a pair (U, 1) is called a uni-
versal notation system for orderings and plays the role of the naive set

T={(AR)| RA—A—x}.
Proposition 5.5.19. There are terms U and 1 such that in AU
1. -U: 0O
2. Fi: [HeO.(e—a—*)—=U]J.
3. The type {‘faithfulness of the map i’}
Vo:OVr:(a—a—*)Vao' :OVr':
(o) —a'—x)[iar =L ia'v'—(a',7) <™ (o, "))

is inhabited.

Proof. Define

H = HeO[(a—a—x*)—x;

174 H.P. Barendregt
U = H-—x

3

i = Aa:OMr:(a—a—*) h:H. har.
Then clearly one has in AU
H:0O,U:0and i: [Me:0.(a—a—x)—(H—x*)].
So we have 1 and 2. As to 3, we must show that in context
a:0, r(a—a—x), a":0, 7" (o' —a' —%)

the type
iar = ia'r'—(a,r) < (', 7")

1s inhabited. Now

iar =g ia’r’

Ah:H har = Ah:H.ha'r'

har =, ha'r’, for all h:H,

[(or,7) <7 (o, 7)) =L [(',7") <7 (o, 7)],

Ll

by taking h = A8:0Xs:(8—F—x*).(8,s) <~ (¢, 7).
Since the right-hand side of the last equation is inhabited it follows that

(a,7) <™ (a',7").

Step 5 The paradoz in AU

Using U in i of Step 4 we now can formalize the informal paradox derived
in step 2.

Definition 5.5.20.

1. On U define the binary relation <; as follows. For u,u’:U let
u<;u' = JoOIr(a—a—x)Jo:0F":(a'—a'—x).
[u=r (lar)&u = 1a'7)&
Trans ar & Trans o'r’ &
SN<(a,r) &
SN(e, ") & (a,7) < (e, 7).

2. On U define the (unary) predicate I as follows. For w:U let

Lambda Calculi with Types 175

Iu = Jo:OFr:(a—a—x).
[u=r (iar) & Trans ar & SN (a,r)].

Note that closedyy . I.
1

3. The element u : U is defined by u =iU <.

Lemma 5.5.21. In context .0, r:(a—a—x*), o0, r":(o/ —a’—x) the fol-
lowing types are inhabited.

L (iar) <5 (ia'r") — (a,r) < (o, 7).

2. SN¢(A, R) — SNy _ (iAR).
B 1

Proof. 1. Suppose (iar) <; (ia'r’). Then there are 3, s, 3',s" of appro-
priate type such that

iar =1 ifs & id'r’ = 1F's" & (B,5) < (F,).
By the faithfulness of 1 and the symmetry of =, it follows that
(a,r) <7 (B,5) < (B',5) <7 (o, 7)

hence
(a,7) < (o, 7).

2. Suppose SN< (A, R). If chainyy @, then define
1
Par = Q(iar).

Then chaing P. Since SN< (A, R) we have " PAR. But then ~Q(1AR).
So we proved

chaing _.Q — -Q(iAR),
i

ie. SNy ., (iAR). m
1

Corollary 5.5.22. The type
VuU.SNy . u
i

is inhabited.

176 H.P. Barendregt

Proof. Let u:U and suppose towards a contradiction

chainyg ., P & Pu.
1

Then
U (v <Guk Pu').

Now
u' <; u—Ta:0Fr:(a—a—*)[u = (iar) & SN (a,r)].

Hence by (2) of the lemma
SNU,<i(iO”) =r SNU,<iu'

But then, again using chainyy _, P, it follows that =(Pu). Contradiction. B
<1
||

Lemma 5.5.23. Let A:00, R:(A—A—x) and assume TransAR. Then the
following type is inhabited

SN (A, R)—Va:A.SN (A, RY).

Proof. Applying 5.5.18(4) one has

SN<(A,R) — Vb:A.SNa grb,
— Vb:ANVa:A.SNy (ra)b, see below,
— VYa:A.SN.(A, R%).

The implication SNAbeHSNAy(Ra)b is proved as follows. Let SN grb
and assume towards a contradiction that chaing (g«yP and Pb. Then also
chaing r P, contradicting SN 4 gb. ® [|

Lemma 5.5.24.

1. Let a0 and r:a—a—+* and assume Transar & SN («,r). Then
there are a™:00 and rt:at—at—x such that

Trans atrt & SN (o™, rt) & (a,7) < (aT,rT).

bl

2. VU:UIEIU+:U1U < vt

Lambda Calculi with Types 177

Proof. 1. The construction is the one for representing data structures
in Section 5.4. Define

o’ = 16:0.8—(a—B)—4,
F = Az:adf:0Mc0:fAf:(a—0).fz,
o0 = AS:0Xco:fAf:(a—f).00;
then oo:a®:0 and F':(a—a®). Intuitively a® = a U {0} and F' is the

canonical imbedding. Indeed, F is injective and co is not in the range
of F'. In fact, in the given context one has

(Aa:adb:adp:(Fa =1 FbAQ:(a—x*).p(Az:a®.zxLQ))
(Va,b:a.(Fa =r Fb—a = b);

(Aa:adp:(Fa =1 0).p(Az:a®.2x L(Aa:a.T))(Ab:L.D))

(Va:a.Fa #1 o0);
here T'= 1 —1 stands for ‘true’ and has (Ab:L.b) as inhabiting
proof. Define r°:a°—a°®—* as the canonical extension of r to at
making co larger than the elements of a:

r’ = dz:a® Ay’ [Ba:aFbarab & o = Fa & y=r Fb]V
[Fa:a.x =f Fa & y =1).
Then Trans a®r°&SNc(a®,r°) and (o, 7) <z (a°,r°) with
bounding element co. This co is not yet in Dom,+; but one has

(o, 7) <por (°°,r°°) with bounding element F'oo and therefore one
can take at = a°° and rt = r°°.

2. If v = iar, then take vt =iatrt. m

Proposition 5.5.25. The following type is inhabited:

EIu:UIV'U:UI[SNU .V = v<ul
1

Proof. For u one can take u = (iU <;). In view of Corollary5.5.22 it is
sufficient to show for v:U that {the following types are inhabited}:

1. Tu

bl

178 H.P. Barendregt

2. Iv—v <5 u.
As to 1, we know from Corollary 5.5.22
VuU SNy ..u
S

—SNU <;), by Proposition 5.5.18(4),
—I(iU <;), since clearly Trans U <;,
—Tu.

As to 2, assume Iv. Then v =p (iar) for some pair «, r with Transar &
SN (a,r).
Define
f = (Aaa.(iar?)) : (a—U).
Then for all a:a with Dom,a one has
fa = (iar®) <5 (iar) = v,

{by 5.5.18(1) one has («, %) < (@, r); use Lemma 5.5.23 and the definition
of <;} and similarly for all a, b:a

arb — (a,r%) < (a,r?),
—iar? <5 iar?, SN (a,7%) & SN (e, %) since SN (a, 1),
— fa <5 fb.

Therefore (a,r) <} (U, <j); f on Dom, is bounded by v. Since v <; vt

one has Dom<iv. Therefore (a,r) <; (U, <;) and hence v =g (iar) <;

(iU<j)=u.m [|

Theorem 5.5.26 (Girard’s paradox). The type L is inhabited in AU
and hence in Ax.

Proof. Note that Proposition 5.5.25 is in contradiction with Corollary
5.5.15, since T is closed in U, <;. This shows that L is inhabited in AU, so
a fortiori in Ax. W [|

In Coquand (1989b) another term inhabiting L is constructed. This
proof can be carried out in the system AU~ which is the PTS defined as
follows:

S JO,A
AU-| A 0,0:A

O:
R (x,), (O, %), (O0,0),(A,0O)

*
*

The proof is based on a category theoretic derivation of a contradiction
due to Reynolds (1984). Note that AU~ = AHOL+(A,O).

In the presence of so-called strong Ys a simpler formalization of the set
theoretic paradox 5.5.10 can be formalized, see e.g. Coquand (1986) or
Jacobs (1989).

Lambda Calculi with Types 179

Fully formalized proof of Girard’s paradoz

As a final souvenir we now show the reader the full term inhabiting L.
The term was presented to us by Leen Helmink who constructed it on an
interactive proof development system based on AUTOMATH for arbitrary
PTSs. The treatment on his system found an error in an earlier version
of this subsection. This kind of use has always been the aim of de Bruijn,
who conceived AUTOMATH as a proof checker.

Following the series of intermediate lemmasin this subsection, it became
pragmatic to deal with definitions as follows. If we need an expression like

=X — X——— (1)

where X is defined as M of type A, then we do not fill in the (possibly
large) term M for X, but write

(AX:A.———X — X———)M. (2)

This in order to keep expresions manageable. This definition mechanism
is also used extensively in functional programming languages like ML.
Helmink (1991) shows that if all definitions given as (-redexes are con-
tracted, then the length of the term is multiplied by a factor 72 (so that
the term will occupy 215 pages, that is more than this chapter).

Due to the presence of depending types, expressions like (2) are not
always legal in a PTS, even if (1) is. {For example working in AU we often
needed the expression a—x* for the type of predicates on «. We want to
define

Pred =jof Ao:O.a—*,

and use it as follows:
[APred:(0—0).[AR:(Pred) .. J(Az:a. L)———](Aa:O.a—%). (3)

This is illegal for two reasons. First of all O—0 is not allowed in AU. Sec-
ondly, the subterm [AR:(Pred «) .. J(Az:a.Ll) is ill formed, since (Az:a. L)
is ‘not yet’ of type (Pred «).} These phenomena were taken into account
by de Bruijn and in the AUTOMATH languages expressions like (3) are
allowed. The term that follows is for these reasons only legal in a liberal
version of AU.

Glancing over the next pages, the attentive reader that has worked
through the proofs in this subsection may experience a free association of
the whirling details.

180 H.P. Barendregt

Lambda Calculi with Types 181

182 H.P. Barendregt

Lambda Calculi with Types 183

184 H.P. Barendregt

References

VAN BAKEL, S.J.

[1991] Complete restrictions of the intersection type discipline. Theoretical

Computer Science 102, 135-163.
BARENDREGT, H.P.

[1984] The lambda calculus: its syntar and semantics, revised edition,
Studies in Logic and the Foundations of Mathematics,
North-Holland.

[1990] Functional programming and lambda calculus, in: VAN LEEUWEN
(1990) vol. 11, 321-364.

[1991] Introduction to generalised type systems, to appear in J. Functional
Programming.

BARENDREGT, H.P., M. CoPPO and M. DEZANI-CIANCAGLINI

[1983] A filter lambda model and the completeness of type assignment, J.

Symbolic Logic 48 (4), 931-940.
BARENDREGT, H.P. and K. HEMERIK

[1990] Types in lambda calculi and programming languages, in: Furopean
Symposium on Programming, ed. N. Jones, Lecture Notes in
Computer Science 432, Springer, 1-36.

BARENDREGT, H.P. and W.J.M. DEKKERS

[199-] Typed lambda calculi, to appear.

BARENDREGT, H.P. and A. REzUs

[1983] Semantics of classical AUTOMATH and related systems,

Information and Control 59, 127-147.

BARENDSEN, E.

[1989] Representation of logic, data types and recursive functions in typed
lambda calculi, Master’s Thesis, Dept. Computer Science, Catholic
University, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands.

BARENDSEN, E. and J.H. GEUVERS

[1989] Conservativity of AP over PRED, ms. Dept. Computer Science,
University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The
Netherlands.

VAN BENTHEM JUTTING, L.S.
[1989] Personal communication.
[199-] Typing in pure type systems, to appear in Information and

Computation
BERARDI, S.
[1988] Towards a mathematical analysis of the Coquand-Huet calculus of

constructions and the other systems in Barendregt’s cube, Dept.
Computer Science, Carnegie-Mellon University and Dipartimento
Matematica, Universita di Torino.

[1988a] Personal communication.

[1989] Personal communication.

[1990] Type dependence and constructive mathematics, Ph.D. thesis,
Dipartimento Matematica, Universita di Torino.

Lambda Calculi with Types 185

BonM, C. and A. BERARDUCCI
[1985] Automatic synthesis of typed A-programs on term algebras, Theor.
Comput. Sci. 39, 135-154.

DE Brunn, N.G.
[1970] The mathematical language AUTOMATH, its usage and some of its
extensions, in: Symposium on automatic demonstration (IRIA,
Versailles 1968), Lecture Notes in Mathematics 125, Springer, 29-61.
[1980] A survey of the AUTOMATH project, in: HINDLEY and SELDIN
(1980), 580-606.

CARDELLI, L. and P. WEGNER
[1985] On understanding types, data abstraction and polymorphism, ACM
Comp. Surveys 17-4.

CHURCH, A.
[1932/33]) A set of postulates for the foundation of logic, Annals of
Mathematics (2) 33, 346-366 and 34, 839-864.
[1940] A formulation of the simple theory of types, J. Symbolic Logic 5,
56-68.
[1941] The calculi of lambda conversion, Princeton University Press.

Coprpro, M.
[1985] A completeness theorem for recursively defined types, in:
Proceedings of the 12th Int. Coll. on Automata and Programming,
Lecture Notes in Computer Science 432, Springer, 120—129

Coprpo, M. and F. CARDONE
[1991] Type inference with recursive types: syntax and semantics,
Information and Computation 92 (1), 48-80.

Coprprpo, M., M. DEzZANI-CIANCAGLINI, G. LONGO and F. HONSELL
[1984] Extended type structures and filter lambda models, in: Logic
Colloquium 82, eds. G. Lolli, G. Longo and A. Marcja, Studies in
Logic and the Foundations of Mathematics, North Holland, 241-262.

Coprpo, M., M. DEZANI-CIANCAGLINI and B. VENNERI
[1981] Functional characters of solvable terms, Zeitschrift f. Mathematische
Logik u. Grundlagen der Mathematik 27, 45-58.

Coprprpo, M., M. DEZANI-CIANCAGLINI and M. ZAcCcCHI
[1987] Type Theories, normal forms and Do lambda models, Information
and Computation 72, 85-116.

CoqQuanD, TH.

[1985] Une théorie des constructions, These de troisieme cycle, Université
Paris VII.

[1986] An analysis of Girard’s paradox, in: Proceedings of the First
Symposium of Logic in Computer Science, IEEE, 227-236.

[1989] Metamathematical investigation of a calculus of constructions, in:
ODIFREDDI (1990), 91-122.

[1989] Reynolds paradox with the Type : Type axiom, in: The calculus of
constructions, Documentation and users’s guide, version 4.10,
Rapports Techniques 110, INRIA, B.P. 105, 78153 Le Chesnay
Cedex, France, 4 unnumbered pages at the end of the report.

186 H.P. Barendregt

CoqQuanD, TH. and G. HUET
[1988] The calculus of constructions, Information and Computation 76,

95-120.
Curry, H.B.
[1934] Functionality in combinatory logic, Proc. Nat. Acad. Science USA
20, 584-590.
[1969] Modified basic functionality in combinatory logic, Dialectica 23,
83-92.

Curry, H.B. and R. FEYs
[1958] Combinatory Logic, Vol. I, Studies in Logic and the Foundations of
Mathematics, North Holland.

Curry, H.B., J.R. HINDLEY and J.P. SELDIN
[1972] Combinatory Logic, Vol. 11, Studies in Logic and the Foundations of
Mathematics, North Holland.

VAN DaarLeEN, D.T.
[1980] The language theory of AUTOMATH, Ph.D. thesis, Technical
University Eindhoven, The Netherlands.

VAN DALEN, D.
[1983] Logic and structure, 2nd edition, Springer.

Davis, M.
[1958] Computability and unsolvability, McGraw-Hill.

DEzZANI-CIANCAGLINI, M. and I. MARGARIA
[1987] Polymorphic types, fixed-point combinators and continuous lambda
models, in: IFIP Conference on Formal Description of Programming

Concepts 111, Ed. M. Wirsing, North-Holland, 425-450.

FircH, F.B.
[1952] Symbolic logic, an introduction, Ronald Press, New York.
[1974] FElements of combinatory logic, Yale University Press, New Heaven.

FokkiNnGA, M.M.
[1987] Programming languages concepts - the lambda calculus approach,
in: Fssays on concepts, formalism, and tools, eds. P.R.J. Asveld and
A. Nijholt, CWI tracts 42, Box 4079, 1009 AB Amsterdam, The
Netherlands, 129-162.

Fuarra, K. and TonNiNo, H.
[1991] Logical systems are generalised type systems, ms. Technical
University Delft, Faculty of Mathematics and Informatics,
Julianalaan 132, 2628 BL Delft, The Netherlands.

GaNDY, R.O.
[1980] Proofs of strong normalisation, in: HINDLEY and SELDIN (1980),
457-478.

Lambda Calculi with Types 187

GEUVERS, J.H.

[1988] The interpretation of logics in type systems, Master thesis, Dept.
Computer Science, Catholic University, Toernooiveld 1, 6525 ED
Nijmegen, The Netherlands.

[1989] Theory of constructions is not conservative over higher order logic,
ms. Dept. Computer Science, Catholic University, Toernooiveld 1,
6525 ED Nijmegen, The Netherlands.

[1990] Type systems for higher order logic, ms. Dept. Computer Science,
Catholic University, Toernooiveld 1, 6525 ED Nijmegen, The
Netherlands.

GEUVERS, H. and M.J. NEDERHOF
[1991] A modular proof of strong normalisation for the calculus of
constructions, J. Functional Programming, 1 (2), 155-189.

GIANNINI, P. and S. RoNcHI DELLA Roca
[1988] Characterisation of typings in polymorphic type discipline, in:
Proceedings of the Third Symposium of Logic in Computer Science,
IEEE, 61-70.

GIRARD, J.-Y.
[1972] Interprétation foctionelle et élimination des coupures dans
Uarithmétique d’ordre supérieur, Ph.D. thesis, Université Paris VII.

GIRARD, J.-Y., Y. LAFONT and P. TAYLOR
[1989] Proofs and types, Tracts in Theoretical Computer Science 7,
Cambridge University Press.
HARrPER, R., F. HONSELL and G. PLOTKIN
[1987] A framework for defining logics, in: Proceedings Second Symposium
of Logic in Computer Science (Ithaca, N.Y.), IEEE, Washington
DC, 194-204.

HeLMmINK, L.
[1991] Girard’s paradox in AU, ms. Philips Research Laboratories, Box
80.000, 5600 JA Eindhoven, The Netherlands.

HENGLEIN, F.

[1990] A lower bound for full polymorphic type inference: Girard-Reynolds
typability is DEXPTIME-hard, Report RUU-CS-90-14, Dept.
Computer Science, Utrecht University, The Netherlands.

HinDLEY, J.R.

[1969] The principal typescheme of an object in combinatory logic, in:
Trans. Amer. Math. Soc. 146, 29-60.

[1983] The simple semantics for Coppo-Dezani-Sallé types, in:
International Symposium on Programming, Eds. M. Dezani-
Ciancaglini and H. Montanari, Lecture Notes in Computer Science
137, Springer, Berlin, 212-226.

HinpLEY, J.R. and SELDIN, J.P.

[1980] To H.B. Curry: Essays on combinatory logic, lambda calculus and
formalism, Academic Press.

[1986] Introduction to Combinators and A-calculus, London Mathematical

Society Student Texts 1, Cambridge University Press.

188 H.P. Barendregt

HOFSTADTER, D.
[1979] Gddel Escher Bach: an eternal golden braid, Harvester Press.

Howarp, W.A.
[1980] The formulae-as-types notion of construction, in: HINDLEY and
SELDIN (1980), 479-490.

Howarp, W. A., G. KrEISEL, R. J. PARIKH and W. W. Tarr
[1963] Stanford Report, unpublished notes.

Howe, D.
[1987] The computational behaviour of Girard’s paradox, in: Proceedings of
the Second Symposium of Logic in Computer Science (Ithaca, N.Y.),
IEEE, 205-214.

Jacoss, B.P.F.
[1989] The inconsistency of higher order extensions of Martin-Lof’s type
theory, J. Philosophical Logic 18, 399-422.
[1991] Categorical type theory, Ph.D. thesis, Dept. Computer Science,
Catholic University, Toernooiveld 1, 6525 ED Nijmegen, The
Netherlands.

JacoBs, B.P.F., [. MARGERIA and M. ZACCHI
[199-] Filter models with polymorphic types, to appear in Theoretical
Computer Science.

Kroury, A.J., J. TIURYN and P. URzyczyN
[1990] ML typability is DEXPTIME-complete, in: CAAP 90, ed.
A. Arnold, in: Lecture Notes in Computer Science 431, Springer,
206-220.

KLEENE, S.C.
[1936] A-definability and recursiveness, Duke Math. J. 2, 340-353.

KLEENE, S.C. and J.B. ROSSER
[1935] The inconsistency of certain formal logics, Annals Math. (2) 36,
630-636.

Krop, J.-W.
[1980] Combinatory reduction systems, Ph.D. thesis, Utrecht University;
CWI Tract, Box 4079, 1009 AB Amsterdam, The Netherlands.

Kriving, J. L.
[1990] Lambda-calcul, types et modéles, Masson, Paris.

LaMBEK, J. and P.J. ScotTT
[1986] Introduction to higher order categorical logic, Cambridge Studies in
Advanced Mathematics, Cambridge University Press, Cambridge.

LAucHLi, H.
[1970] An abstract notion of realizability for which intuitionistic predicate
calculus is complete, in: Intuitionism and Proof Theory, eds.
A. Kino et al., Studies in Logic and the Foundations of
Mathematics, North-Holland, 227-234.

LEEUWEN, J. VAN
[1990] Handbook of Theoretical Computer Science, Elsevier/MIT Press.

Lambda Calculi with Types 189

LE1vanT, D.

[1983] Reasoning about functional programs and complexity classes
associated with type disciplines, 24th IEEFE symposium on
foundations of computer science, 460-469.

[1990] Contracting proofs to programs, in: ODIFREDDI (1990), 279-327

LoB, M.

[1976] Embedding first order predicate logic in fragments of intuitionistic

logic, J. Symbolic Logic 41 (4), 705-718.
LoNGo, G. and E. MogGar

[1988] Constructive natural deduction and its modest interpretation, Report

CMU-CS-88-131, Carnegie Mellon University, Pittsburgh, USA.
Luo, Z.

[1990] An eztended calculus of constructions, Ph.D. thesis, University of
Edinburgh.

MAcCQUEEN, D., G.D. PLOTKIN and R. SETHI

[1984] An ideal model for recursive polymorphic types, in: 11th ACM
Symposium on Principles of Programming Languages, ACM,
165-174.

MALECKI, S.
[1989] Private communication.
MARTIN-LOF, P.

[1971] A construction of the provable wellorderings of the theory of species,
ms. Mathematical Institute, University of Stockholm, Sweden, 14 pp.

[1984] Intuitionistic type theory, Bibliopolis, Napoli.

MENDELSON, E.

[1987] Introduction to mathematical logic, third edition, Wadsworth and

Brooks/Cole.
MENDLER, N.P.

[1987] Inductive types and type constraints in second-order lambda
calculus, in: Proceedings of the Second Symposium of Logic in
Computer Science (Ithaca, N.Y.), IEEE, 30-36.

MEYER, A.R.
[1988] Personal communication.
MILNER, R.

[1978] A theory of type polymorphism in programming, J. Computer and
Systems Sciences 17, 348-375.

[1984] A proposal for standard ML, in: Proceedings of the ACM Symposium
on LISP and Functional Programming (Austin), 184-197.

MitcHELL, J.C.

[1984] Type inference and type containment, in: Proc. Internat. Symp. on
Semantics of Data Types, ed. G. Kahn, Lecture Notes in Computer
Science 173, Springer, 257-277.

[1988] Polymorphic type inference and containment, Inform. and Comput.
76 (2,3), 211-249.

[1990] Type systems for programming languages, in: VAN LEEUWEN
(1990), 365-458.

190 H.P. Barendregt

MIRIMANOFF, D.
[1917] Les antinomies de Russell et de Burali-Forti et le probléme
fondamental de la théorie des ensembles, L’ Fnseignement
Mathématique 19, 37-52

MosTowski, A.
[1951] On the rules of proof in the pure functional calculus of first order, J.
Symbolic Logic 16, 107-111.

NEDERPELT, R.P.
[1973] Strong normalization in a typed lambda calculus with lambda
structured types, Ph.D. thesis, Eindhoven Technological University,
The Netherlands.

NERODE, A. and P. ODIFREDDI
[199-] Lambda calculi and constructive logics, to appear.

ODIFREDDI, P.
[1990] Logic in Computer Science, Academic Press, New York.

PavLovié, D.
[1990] Predicates and fibrations, Ph.D. Thesis, Department of
mathematics, University of Utrecht, Budapestlaan 6, 3508 TA
Utrecht, The Netherlands.

PEREMANS, W.
[1949] Een opmerking over intuitionistische logica, Report ZW-16, CWI,
Box 4079, 1009 AB Amsterdam, The Netherlands.

PFENNING, F.
[1988] Partial polymorphic type inference and higher order unification, in:
Proc. ACM Conference on LISP and Functional Programming,
153-163.

Prawirz, D.
[1965] Natural deduction: a proof-theoretical study, Almqvist and Wiksell,
Stockholm.

QUINE, W. V. O.
[1963] Set theory and its logics, Cambridge, Massachussets.

RENARDEL DE LAVALETTE, G.R.
[199-] Strictness analysis via abstract interpretation for recursively defined
types, to appear in: Information and Computation.

REyNoLDs, J.C.

[1974] Towards a theory of type structure, in: Mathematical Foundations of
Software Development, eds. Ehring et al.; Lecture Notes in
Computer Science 19, Springer, 408— 425.

[1984] Polymorphism is not settheoretic, in: Semantics of data types,
Lecture Notes in Computer Science 173, Springer, Berlin, 145-156.

[1985] Three approaches to type theory, in: Lecture Notes in Computer
Science 185, Springer, Berlin, 145-146.

RoBiNsoN, J.A.
[1965] A machine oriented logic based on the resolution principle, J. ACM.
12 (1), 23-41.

Lambda Calculi with Types 191

SCHONFINKEL, M.
[1924] Uber die Bausteinen der mathematische Logik, Math. Ann. 92,
305-316.

SCHWICHTENBERG, H.

[1977] Proof theory: applications of cut-elimination, in: Handbook of
Mathematical Logic, ed. J. Barwise, North-Holland, 867-895.

SMULLYAN, R.
[1985] To mock a mockingbird, Knopf, New York.

ScorT, D.S.
[1976] Data types as lattices, SIAM J. Comput. 5, 522-587.

STENLUND, S.
[1972] Combinators, A-terms and proof theory, D. Reidel, Dordrecht.

SWAEN, M.D.G.
[1989] Weak and strong sum-elimination in intuitionistic type theory,
Ph.D. thesis, University of Amsterdam.

Tair, W.W.
[1967] Intensional interpretation of functionals of finite type I, J. Symbolic
Logic 32, 198-212.
[1975] A realizability interpretation of the theory of species, in: Logic
Colloquium (Boston), ed. R. Parikh, Lecture Notes in Mathematics
453, Springer, 240-251.

TeRLOUW, J.
[1982] On definition trees of ordinal recursive functionals: reduction of the
recursion orders by means of type level raising, J. Symbolic Logic 47
(2), 395-402.
[1989] Een nadere bewijstheoretische analyse van GSTT’s, ms. Dept.
Computer Science, University of Nijmegen, Toernooiveld 1, 6525 ED
Nijmegen, The Netherlands.

TROELSTRA, A.S.
[1973] Metamathematical investigations of intuitionistic arithmetic and
analysis, Lecture Notes in Mathematics 344, Springer.

TurING, A.M.
[1937] Computability and A-definability, J. Symbolic Logic 2, 153-163.

DE VRIJER, R.
[1975] Big trees in a A-calculus with A-expressions as types, in: A-Calculus
and Computer Science Theory, ed. C. Bohm, Lecture Notes in
Computer Science 37, Springer, 252271

WabpsworTH, C.P.
[1971] Semantics and pragmatics of lambda calculus, Ph.D. thesis, Oxford
University.

‘WanND, M.
[1987] A simple algorithm and proof for type inference, Fund. Informaticae
X, 115-122.

192 H.P. Barendregt

WHITEHEAD, A.N. and B. RUSSELL
[1910] Principia mathematica, Cambridge University Press.
ZWICKER, W.

[1987] Playing games with games: the hypergame paradox, in: Amer. Math.
Monthly, 507-514.

