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We discuss in particular the global dimension of connected algebras
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2 ULRICH KRAHMER

1. INTRODUCTION

A first version of this text arose when I wanted to learn how to show
that the algebra of quantum matrices (see Example 5 below) has finite
global dimension. By browsing papers by Manin, by Smith and by Van
den Bergh I found out that one way is to apply the following theorem
which is well-known to experts:

Theorem 1. Let A = @,., Ai be a Noetherian graded algebra over a
field k = Ay. Then we have

gl.dim(A) = pd(k) = sup{i | Ext,(k, k) # 0} = sup{i | Tor:*(k, k) # 0}.

This was not at all obvious to me, and I decided to collect together for
my own benefit everything needed to understand both statement and
proof of this theorem. A workout of this material forms now Sections 2
and 3 of the present note which hopefully make Theorem 1 and its
surrounding theory of minimal resolutions accessible for anyone who
knows some basic ring theory and homological algebra.

One year later I had the pleasure to attend some lectures on cyclic
homology by J.-L. Loday in Warsaw in which he also mentioned Koszul
algebras, a class of algebras as in Theorem 1 with particularly good
homological properties. When I replaced him in one lecture I decided
to speak about their Hochschild homology, and all this fitted well to
what I had written up about Theorem 1. So I added Section 4 where
I explain some of the standard characterisations of Koszulness:

Theorem 2. For A as in Theorem 1, the following are equivalent:

(1) A is a Koszul algebra.

(2) Both A and its Yoneda algebra Ext(k, k) are generated in de-
gree 1.

(3) A is quadratic and its Koszul dual A' is Koszul.

(4) The canonical map A' — Exta(k, k) is an isomorphism.

(5) The Koszul complex K(A, k) is acyclic.

(6) The Koszul complex K(A°, A) is acyclic.

Finally I added Section 5 where I sketch without proofs the interplay
of Koszulness with Poincaré-Birkhoff-Witt bases.

I would like to thank Brad Shelton and Paul Smith for prompt and
detailed answers to questions that I asked while working on the first
half of this text (parts of it are just an elaboration of these answers).
Similarly, I thank Jean-Louis Loday and Christian Voigt for our dis-
cussions on the material of the second half and for several comments
about a draft of these notes. Finally, Matthew Tucker-Simmons has
pointed out some typos that I have corrected now.
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2. PRELIMINARIES AND TERMINOLOGY

2.1. Vector spaces. Throughout, k denotes a field and essentially all
appearing mathematical objects have an underlying structure of a Z-

graded k-vector space
V=V

i€z

The existence of a grading will sometimes be stressed by writing V,
instead of just V. The elements of V; are called homogeneous of
degree 1. Usually we tacitly assume by linear decomposition that we
deal with homogeneous elements e.g. when defining linear maps. Then
we write |v| = ¢ when v € V;.

A graded vector space V' is said to be locally finite-dimensional
if dim;V; < oo for all i and connected if V; = 0 for i < 0 and V;, = k.

We define

Hom(V. W) := {p € Homy(V,W) | (Vi) € Wi}
and
(1) Hom, (V, W) := @5 Homy (V, W) C Homy,(V, W).
JEZ
A morphism of graded vector spaces is an element of Hom{ (V, W), and

we denote the resulting category by k-Mod. The full subcategory of
locally finite-dimensional connected vector spaces is denoted by Conn.

Example 1. The graded dual of V =@, , V; is
V* = Hom, (V, k) = @D Vi € V* = Homy(V, k).

€L

If V is infinite-dimensional, then V* has strictly greater dimension
than V. But we have V* ~ V in k-Mod as long as V' is locally finite-
dimensional. Hence * defines an internal duality functor on Conn.

2.2. Tensor products. An unadorned ® denotes a tensor product of
k-vector spaces. For V. W € k-Mod we consider V' ® W as an object
of k-Mod with grading defined by

VeWw), = V,.eWw,

r4+s=1

that is, |[v ® w| = |v| + |w|, and we denote the tensor product then
by V@W. While this is not so important on objects, there will be a
real difference on morphisms: for the tensor product of linear maps
between graded vector spaces we adopt Koszul’s sign convention

(p2v)(vaw) = (=1)"p(v)y(w),
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where the degree || of ¢ is j if 1 € Hom),(V,W). A more abstract
way to deal with all this is to work in suitable braided monoidal cate-
gories such as graded vector spaces with Hom as morphisms and with a
braiding that introduces signs according to Koszul’s convention. Then
the dual of V @ W should be W* ® V* and the signs would come in
through the braiding which is used to identify this with V* @ W*. But
I finally decided that I want to avoid this abstraction to keep the pre-
liminary section shorter than the main text, and there will be [4] where
this material is going to be presented.

Example 2. There are isomorphisms (V@W)* ~ V*QW=* for any
V.,W € Conn, but when identifying ¢®¢ € V*QW?* with a linear
functional on V@W we will take into account the sign convention.

2.3. Algebras. By “algebra” we mean “unital associative algebra
over k7, and in fact an algebra in Conn if not explicitly stated oth-
erwise. That is, an algebra is a connected vector space A = @, 4,
Ay = k, with a product for which A;4; C A;;;. The symbol A, will
denote the augmentation ideal @, ,A;. We usually also assume
that all algebras are left and right Noetherian.

Example 3. An algebra that we will use in several constructions is the
tensor algebra of a vector space V', that is, the graded vector space
T(V) = @50 V', V& := k, with product defined by concatenation
of elementary tensors. This is connected and locally finite-dimensional
if dim;V < oo, but it is not Noetherian.

2.4. Quadratic algebras. For us, the most important examples of
algebras are quadratic algebras, that is, algebras defined in terms
of a finite number of generators satisfying homogeneous quadratic re-
lations. In other words, a quadratic algebra is a quotient of a tensor
algebra T'(V') of a finite-dimensional vector space V' by the two-sided
ideal generated in T'(V') by a vector subspace R C V ® V. Any basis
of V defines a (minimal) set of generators of A and R encodes the re-
lations between them. We denote the corresponding quadratic algebra
by A(V, R).

Example 4. The algebra k[z1, ..., x,] of polynomials in n indetermi-
nates with coefficients in k is quadratic with

V = k" =span,{xy,..., 2.}
and
R=span{z; @z, —z;@x; | i,j=1,...,n}.
Changing the sign in the relations to

R =span{z; ® z; +z; @ x; | i,j =1,...,n}
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yields the exterior algebra AV'.

Example 5. [6] A genuine noncommutative examples are the quan-
tum plane which has two generators z, y fulfilling zy = qyx for some
nonzero parameter g € k, so here we have

V = k* = span,{z,y}
and
R = span{z ® y — qy ® z}.
A slightly more complicated one are the quantum matrices which
have generators a, b, ¢, d with relations
ab = qba, ac = qca, ad—da = (qg—q *)bc, be = cb, bd = qdb, cd = qdc.
Both these algebras are Noetherian (use [7] Theorem 1.2.9).

Example 6. The algebra with two generators x,y having relations
2% = yx = 0 is right, but not left Noetherian.

2.5. Modules. By A-module we mean left A-module with 1 € A act-
ing as identity, and their category (with A-linear maps as morphisms) is
denoted by A-Mod. We will deal almost exclusively with finitely gen-
erated modules whose category is denoted by A-mod. The category of
(finitely generated) graded modules

M=EM;, AM,C My,
JEL
is denoted by A-Mod (A-mod). As for vector spaces, morphisms are
understood to preserve the degree, that is, we consider Hom% (M, N )

and not Hom 4 (M, N) in the notation analogous to (1). Note that any
M € A-mod is bounded below, M = .., M; for some s.

Jjzs

Example 7. The canonical augmentationc: A — A/A, ~ k gives
k the structure of a left and a right module over A. The module & is
called the trivial module. It is the only simple object in A-mod.

2.6. Complexes. A (chain) complex of vector spaces (analogously
of A-modules) is a pair (C,d) where C' € k-Mod and d € Hom,(C, C)
satisfies dod = 0. A complex is exact or acyclic if its homology

H(C) :=kerd/imd € k-Mod

vanishes. Often we write d; for the component C; — C;_; of d and the
whole complex as a sequence

diyo dit1 d; di—1
= Cip1 —=C;——Ciog —— -+
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With slight ambiguity we also speak of an acylic complex when C; = 0
for i < 0 and H;(C) = 0 for i > 0, because then one can simply add
C_1:= Hy(C) = Cy/imd; to C to obtain an honestly acyclic complex.

Cochain complexes are a variation of chain complexes in which
we have d € Hom, '(C,C) (degree —1 rather than +1). Usually the
grading is then written upstairs, C* = @, C". From the theoretical
point of view there is no need to introduce them, since any cochain
complex can be turned into a chain complex by setting C; := C~°.
However, it is handy to use both variants.

2.7. Derived functors. A module P € A-Mod is projective if for
any epimorphism M — N in A-Mod the induced morphism

Homy (P, M) — Homu (P, N)

is also surjective. If (P, ¢) is an exact complex in A-Mod with P; = 0
for i < —2 and P, projective for ¢ > 0, then the truncated complex

2 1

= R 0

is called a projective resolutionof P_; € A-Mod. Any M € A-Mod
admits such resolutions which might differ in their lengths

U(P) == sup{i | P, # 0},

but are all related by algebraic analogues of homotopies. The projec-
tive dimension of M is

pd(M) := inf{l(P) | P is a projective resolution of M}.

Thus pd(M) = 0 if and only if M is projective, and in some sense pd
measures the nonprojectivity of M.

If one applies the functor Hom4(-, N), N € A-Mod, to a projec-
tive resolution P, of M, then the cohomology of the resulting cochain
complex Hom 4 (P,, N) of abelian groups is (as a consequence of the ho-
motopy equivalence of resolutions) independent of the chosen one, and
it equals Ext% (M, N) = @,-, Ext, (M, N). These Ext-groups measure
the failure of Homy(-, N) to be exact: one has

Ext% (M, N) = Homy (M, N),
and
Exty(M,N) =0, i<0Q0,
and if
0> M — My — M;—0
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is a short exact sequence of modules, then there is a long exact sequence

- —— Ext’y (M3, N) — Ext’(My, N) — Ext'y(M;, N) )

<_> Ext’ (M3, N) — Ext’/(M,, N) — Ext’ (M;, N)

From this one deduces that

pd(M) = sup{d | 3N € A-Mod : Ext% (M, N) # 0}.

)

If instead of Homa(-, N) one applies L ®4 - (L a right module) to
P,, then the homology of L ®4 P, is Tori(L, M) which analogously
measures the nonexactness of L ® 4 -. In fact, the resolution needs to
be only by flat modules in this case, that is, for any monomorphism
L — N of right modules the induced morphism L ®4 P — N ®4 P
must be again injective. Any projective module is flat, and for finitely
generated modules over Noetherian rings the converse holds as well.

Note: When talking about projectiveness, flatness, Tor, Ext etc. one
must specify precisely which category one is working in. A graded
module M € A-mod can be considered in A-mod, A-Mod, A-mod
or in A-Mod, and a priori this might make a difference. However,
Noetherianity ensures that nothing will go wrong in our applications
so that we suppress this question whenever possible.

2.8. Spectral sequences. Let (C,,d) be a chain complex (say of vec-
tor spaces, C,, = 0 for n < 0 and d(C,) C C,,_1). Then a filtration of
C,, that is, a filtration

...CF,C,CF,,C,C...CC,

of each C,, with d(F,C,,) C F,C,,_1, gives rise to a spectral sequence.
This is a standard yet somewhat advanced topic, so I give at least some
more explanation (see e.g. [10] for a relatively compact presentation).
The spectral sequence consists of filtered complexes (E",d") (its
“pages’) each of which is the homology of the previous one,

Er+1 — [_[(EW“)7

and these approximate in some sense the homology H (C') of the original
complex. Usually, one applies a reshuffling of gradings as in (7) below
and uses two indices p,q on each page: p is the filtration degree and
n = p + ¢ is the homological degree that is lowered by the differential.
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The sequence starts with the graded complex associated to the fil-
tered one:

qu 1= FpCpiq(A)/ Fp1Cpiq(A),
and d° : EO — EO _, is the map induced by d. Then one puts

E;q = HerQ(E;So)'

Thus classes in E;q are represented by elements ¢ € F,Cp,, that satisfy
de € F,-1Cpq-1. More generally, classes in EJ are represented by
elements in

Zpy ={c € FyCpiq | dc € F, 1 Cpyg 1},

and d": B — EJ . .. takes into account more and more parts of d
that were cut off When passing from C to E°. If B" is the image of d”,
then one has

B°cB'cB*c...c...cz’cz'cZz", E~Z7/B".
Intuitively, the E" thus approach the limat

E>:= ([ 2"/ B"
reN reN
of the spectral sequence. The precise statement is this: the filtration of
C, yields a filtration of H(C'), and in good cases the spectral sequence
converges in the sense that

Eﬁg = FpHp+q(C)/pral+q(C>7

that is, £ is the graded vector space associated to the filtered H(C).
In particular, @p +q=n Epy is then isomorphic to H, (C) as vector space.

In very good cases, the spectral sequence even stabilises for fixed
p+ q at some term, Ef = Ert! = ... = E> (with r depending on
p+ q). For example, this is the case if the filtration is bounded, i.e. if

prinCn - 0, praan - Cn

for suitable p™® < pm@* And in extremely good but in fact not rare
cases, spectral sequences stabilise independently of p and ¢ on EZ.
Assume for example that E;q = 0 for all g except one, say gg. Then of
course also Ezq = 0 for ¢ # qo. The differentials d" : £}, — £}, .. 4
are therefore all zero, so B2, = E>.

For cochain complexes we will use the convention that filtrations are
decreasing, FPC" D FPT'C™ - via F,C,, := F~P?C~" one obtains then
filtered chain complexes as before. The same recipe is used to translate
spectral sequences to {EF?,d,.}.
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3. THE GLOBAL DIMENSION OF CONNECTED ALGEBRAS

3.1. Graded projective modules. Our first main topic will be the
theory of shortest possible (“minimal”) resolutions of graded modules.
We start with some auxiliary results, showing in particular that in the
graded case flat and projective just means free. All of this relies on the
following version of Nakayama’s lemma:

Proposition 1. For M € A-mod we have
M=0 & k®sM=M/AM=0.
Proof. M =@ .., M; gives ALM C @, ,M; C M unless M =0. O

Example 8. This might be not true for M € A-Mod: Consider for
example the polynomial ring A = k[z| and take as M the Laurent
polynomials k[z, z~!] with the multiplication of polynomials as action.
Then k ®4 M = 0, since for all A € k,m € M we have

AQam=AQ@azz 'm= @42 'm=0.

j>s j>s

Proposition 2. For every M € A-mod there exists V € k-mod and
an epimorphism ¢ : AQV — M in A-mod such that the induced
morphism V = k® ,AQV — k® ,M in k-mod is an isomorphism.

Proof. As graded k-vector space, M can be written as V & A, M for
some complement V' of A, M, and then we have an epimorphism

p: AQV — AV C M, a®x — ax.
Now Nakayama applied to M/AV gives M = AV. O
Proposition 3. M € A-mod is a free module iff Tors' (k, M) = 0.
Proof. Proposition 2 yields a short exact sequence

0 —kerp > ARV - M — 0.

By the definition of Tor this leads after tensoring over A with k£ to an
exact sequence

o= Tor (B, M) k@ kerp 5 k@, AQV = k@s M — 0

with all the other Tor’s coming in on the left. If Tor{'(k, M) = 0, then
this becomes a short exact sequence telling that £ ® 4 ker ¢ is the kernel
of the map k® 4 ARV =V — k®4 M. But by Proposition 2 this is an
isomorphism having trivial kernel. Proposition 1 then gives ker ¢ = 0,
so  itself is an iso, and A ® V' is free. The other direction is clear by

the definition of Tor. O
Corollary 1. For M € A-mod, the following are equivalent:
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(1) M is flat.
(2) M is projective.
(3) M is free.

Here we should clarify in which category we are in: M € A-mod is
free in A-mod if it is of the form ARV ~ A" for a graded k-vector
space V of finite-dimension n. Thus if we write A™ as row vectors, then
(1,0,...,0) can be of arbitrary degree s; € Z, (0,1,0,...,0) can be of
degree s, and so on. Of course M is then also free in A-Mod, A-mod
and A-Mod. As the proofs show, the equivalences in the above corol-
lary hold for M € A-mod independently of the category we are consid-
ering it in (but the corollary might be wrong for general M € A-Mod).
The point is that passing from ® to ® means just forgetting the grad-
ing, and this carries over to derived functors.

The same holds for Hom’s:

Proposition 4. For M, N € A-mod we have
Hom 4(M, N) = Homy (M, N).

Proof. Fix homogeneous generators ey, ..., e, € M. If o € Homy (M, N),
then p(e;) € @jzr N; for some finite 7;, s;. Hence we have

¢ € @D How! (M, N) C Hom, (M, N),
j=s

where r := max;{|e;| — r;} and s := min;{|e;| — s;}. O

In slightly more fancy language: we have an isomorphism of bi-
functors Hom 4 (-, -) ~ Homu(-,-) on A-mod, and therefore we also do
not have to distinguish between their derived functors Ext,(-,-) and
Exta(-,-) as long as we work in A-mod.

3.2. Minimal resolutions. By Corollary 1 any projective resolution
in A-mod is free, so there are b; € N with P, = A% in (2). A morphism
Abi — Abi-1 ig given by multiplication of a row vector from the right
by some b; X b;_j-matrix T; € My, «p,_, (A) with entries in A, so the full
information about the resolution is encoded in these matrices.

Definition 1. A resolution is minimal if T; € My, p, ,(Ay) for alli.
The most natural resolutions one constructs have this property:

Proposition 5. If A is Noetherian, then any M € A-mod admits a
minimal projective resolution in A-mod.
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Proof. Given M, construct an epimorphism ¢ : A% — M as in Propo-
sition 2. By Noetherianity, ker g is again an object in A-mod, so we
can construct an epimorphism ¢, : A — ker ¢y C A% and so on. In
this way we obtain a resolution. Since the maps ; tensored with k
are isomorphisms (this is part of Proposition 2), their kernels belong
to AZ Hence the resolution is minimal. O

Now comes the big clue to everything: given a minimal resolution
Pt = AN A (0

of M € A-mod one already knows Ext 4 (M, k) and Tor®(k, M): min-
imality means nothing but the fact that the boundary maps of the
complexes

Hom, (P™™ k) = 0 — Homu(A™, k) — Homu (A" k) — ...
and
k@aPMt = 5 k@ A" - k@, A% =0

are all zero! Hence the (co)homology of the complexes is equal to the
complexes themselves. Furthermore, we have

Hom (A% k) ~ k@4 A ~ kP
as k-vector spaces, so that we deduce
(3) Ext’y (M, k) ~ Tor (k, M) ~ k".

This tells us several things. First of all, minimal resolutions are more
or less unique:

Proposition 6. The ranks b; occuring in a minimal resolution are
uniquely determined by M. In particular, the length of a minimal res-
olution is unique.

In particular, by is the minimal number of generators of M. For
example, a minimal resolution of k has to start with P = A with
e: A= kasp: P — k.

More crucially, we now can justify terminology “minimal resolution”:

Proposition 7. One has ((P™™) = pd(M).

Proof. A minimal resolution is in particular a projective resolution in
A-Mod, so pd(M) < d. But if there would be a resolution of length less
than d, then we could use it to compute Ext% (M, k) = Tory (k, M) = 0
in contradiction to (3).
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For general rings there is no notion of minimal projective resolution.
However, there are other types of rings (e.g. commutative local rings)
with similar theories of minimal resolutions. Furthermore, there is for
arbitrary rings a theory of minimal injective resolutions based on the
concept of injective hulls, see e.g. [10].

As an obvious consequence of Proposition 7 we have:

Corollary 2. For M € A-mod we have
pd(M) = sup{i | Ext’,(M, k) # 0} = sup{i | Tor(k, M) # 0}.

Let us now reflect on the case M = k. So far we worked entirely with
left modules, but of course all we did can be done with right modules
as well. Now TorA(L, M) can be computed either using a projective
resolution of M to which we apply L ® 4 - or by a projective resolution
of L to which we apply - ®4 M (and take homology). In combination
with the above results this gives:

Corollary 3. The projective dimensions of k as left and as right mod-
ule coincide.

So there is a minimal resolution of the right module &k of length
pd(k). Using this to compute Tor?(k, M) we get from Corollary 2 the
final result of this paragraph:

Proposition 8. For all M € A-mod we have pd(M) < pd(k).

Example 9. We construct a minimal resolution of k for the quantum
plane from Example 5. First we set P := A.

The kernel of the augmentation € : A — k is generated as left A-
module by the generators x,y of A, so we put P™® := A? and

p1: A2 = A, (f.9)— fz+gy.

Now we need to determine the kernel of ¢;. It is immediate that
e;; := x'y’ form a vector space basis of A, and we have

Z )‘ZJeU7 Z ,u'rse'rs
= Z /\qu 624_13 + Z Hrs€rs+1

= Z X ™+ pogy™ + Z Nic1iq 7 + pij—1)eis.

i>0 i>0,j>0

From this one deduces that ker ¢, is spanned over k£ by the elements

(—qeiji1,q i) = eij(—qy,x), 1,7 >0,
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that is, generated as A-module by (—qy, z). Hence by = 1 with

SOQZA_>A27 fH(_quafx)
Using e.g. grading arguments one easily checks that A has no zero
divisors, so ker 3 = 0 and the resolution ends here. In other words, we
have pd(k) = 2. The combinatorics behind this resolution will be the
heart of the notion of Koszul algebra that we will study in Section 4.

3.3. Ungraded modules. Obviously, any graded algebra is also fil-
tered by
FiA =P A, (FjA)(FA) C Fi A
i<j
As banal as this is, it becomes interesting when passing to modules:
let M € A-mod be arbitrary and choose generators eq, ..., e, € M,

M = Ae; + ...+ Ae,.
Then we can turn M into a filtered module:
F}M = {a161 + ...+ ane, | a; € FjA}, (FJA>(FkM) C Fj+kM.

In general, the graded module M = @, F;M/F;_1 M associated to a
filtered module over a filtered ring A is a module over the associated
graded ring A = @j F;A/F;_1A, but in our case the latter is just
A itself. In [7], Section 7.6 one can find a detailed discussion how
filtered resolutions of filtered modules over filtered rings are related to
graded resolutions of the associated graded modules over the associated
graded rings. The main result is Theorem 7.6.17 therein: A graded
free resolution of an associated graded module can always be lifted
to a projective resolution of the original module. Given any M €
A-mod the minimal resolution of the associated graded module thus

lifts to a projective resolution of M of the same length, and we arrive
at (cf. Corollary 7.6.18 ibidem):

Proposition 9. For any M € A-mod we have pd(M) < pd(k).
In other words: No module, graded or not, is less projective than k.

3.4. Global dimension. The global dimension of A is
gl.dim(A) := sup{pd(M) | M € A-mod}
= sup{d | IM, N € A-mod : Ext (M, N) # 0}.
We are not entirely precise here: usually gl.dim(A) is defined taking
into account as well not finitely generated modules. It turns out that

it is sufficient to consider pd(A/I) for left ideals, but in the resolutions
modules still might be infinitely generated. Anyhow, for Noetherian
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rings this problem disappears. Furthermore, there might be in general
a difference between left and right modules. But we are again on the
safe side in the Noetherian case, where we can replace Ext’s by Tor’s
which implies that left and right global dimension coincide.

Theorem 1 is now a direct consequence of Proposition 9. Many
theorems in ring theory require finite global dimension as a technical
condition which is often difficult to check. For Noetherian A € Conn
we now know an algorithm solving this problem: construct a minimal
resolution of k, and its length will be the number we are looking for.
But still this construction might be tedious for concretely given A. In
the remainder of this text we now discuss Koszul algebras, a class of
algebras for which also this problem admits an efficient and elegant
general solution.

4. KOSZUL ALGEBRAS

4.1. Definition. Throughout, we let A be an algebra (locally finite-
dimensional and connected) and P™" be a minimal resolution of k €
A-mod determined by matrices T;.

Definition 2. A is Koszul if the entries of the T; all belong to A;.

One calls the resolution in this case l#near. Note that this property
is independent of the choice of minimal resolution.

Example 10. The quantum plane is Koszul, since the matrices in the
minimal resolution of k (see Example 9) were

Ty = (—qy,z), Ti= (;) .

The Koszul condition singles out a class of in many respects well-
behaved connected algebras. We do neither want to speak about the
history nor about the vast literature on Koszul algebras (let us only
mention [5, 6, 9] and the recent monograph [8]), and we warn that
there are more general notions of Koszul algebras which might be not
connected or might be only filtered.

4.2. The internal grading of Ext’(k, k). Proposition 4 leads to the
decomposition of Hom4 (M, N) into graded components, and this also
induces a decomposition

Extly(k, k) = @D Ext (k. k).
JEZ

Koszulness can be reformulated in terms of this internal grading:
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Proposition 10. We have Extilj(k:, k) =0 for j <1i, and A is Koszul
if and only if Ext (k, k) = 0 also for j > i, that is, if we have

Exta(k, k) @Ext

>0

Proof. Use a minimal resolution P™" to compute Ext 4(k, k). The grad-
ing of P™" = Ab is fixed in such a way that ¢; : A% — A¥-1 is of
degree zero. The generator 1 € A = P has degree 0, and the ; are
given by matrices with entries in A. Thus the generators of Pmin are
of degree > i. Hence Hom’,(P™™ k) = 0 for j < i (k is nonzero only
in degree 0). The second part is now also obvious. O

4.3. Koszul algebras are quadratic. Here is another observation
that follows by inspection of a minimal resolution of k:

Proposition 11. Any Koszul algebra is a quadratic algebra.

Proof. Consider the first three terms of a minimal resolution of k:
. s P2rmn Abg Pmm Ab1 Pmm A 0.

Since ¢y is given by T) € My, «1(A1), Ay = kere is generated as A-
module by A;. Hence A is generated as an algebra by A; (and b; =
dimA;). Considering im o = ker o1 in the light of Proposition 10 one
similarly sees that the relations between a minimal set of generators (a
vector space basis of A;) are quadratic. O

But not any quadratic algebra is Koszul, going on with the consider-
ations as in the preceding proof in higher degrees + > 2 leads to further
restrictions.

4.4. The Koszul dual A'. A new actor enters the scene: for a qua-
dratic algebra A = A(V, R) we define a new quadratic algebra A' to be
A(V*, R*), where

L={reV' eV ~(VeV) |r(R) =0}
Obviously, we have (A')' ~ A so the following definition makes sense:

Definition 3. One calls A' the Koszul dual of A.

Example 11. Let A be the quantum plane from Example 5. Here
V = k? and dimyR = 1. Hence dimR*+ = 3. If {Z,9} C V* is the
basis dual to the one given by the generators z,y € V with xy—qyx = 0,
then a basis for R+ is given by

(24,107,209 +q¢ g1}
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That is, A' has generators Z,{ with relations

P =9"=0, iy=—q gt

Thus it is a quantised exterior algebra. This is easily generalised to
more generators. In particular, the Koszul dual of k[zy, ..., z,] is the
exterior algebra in n generators.

We will elaborate in a moment a close relation between A' and
Koszulness of A. But for this we have to recall some prerequisites,
so we now make an excursion about the bar resolution of k£ € A-mod
and the Yoneda product on Ext(k, k).

4.5. The Yoneda algebra Ext4(k, k). The Yoneda product is defined
between Ext-groups over general rings, but for algebras over fields the
presentation can be simplified using canonical resolutions. Throughout,
A € Conn denotes an algebra.

Proposition 12. Consider CP* := A@A%i as graded A-modules via
multiplication in A. Then b’ : CP™ — CP2 given by
ao@ .. .@ai — aoal@aQ@ A @ai — ao@alag@ R @ai
(4) —|—a0@a1@a2a3@ e @ai — ...
+(—1)i_1a0@ N @ai_lai

turns CP™ into a graded free resolution of k =: C"4r.

Proof. CP™ is free since k is a field. It is obvious that b’ o b’ = 0 and
that b’ respects the total grading. Finally, b'(a¢® ... ®a;) = 0 implies

b/(l@(&o — E(CL(]))@. . @al) = a(]@. . .@ai,
and clearly we have CP* /im b’ ~ k. O
Definition 4. C?* is the normalised bar resolution of k € A-mod.

“Normalised’ refers to the fact that we kicked out & C A in all
middle tensor components (search the literature for key words like sim-
plicial modules, (co)monads or (co)triples if you want to understand
the abstract theory behind this resolution).

Forget for a moment graded modules and consider Ext4(k, k) as
the cohomology of the cochain complex Homa(CP*, k). Under the
isomorphism of vector spaces

C" = (AY)* — Homu(CP™, k), ¢ e® ¢,
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the coboundary of Hom 4 (CP®, k)becomes d : C* — C*! given by
d)a1®...0a) = —plaaa®az® ... R a;)
(5) +p(a; ® aza3 ® ... ®a;) —
+(=1)"p(a; @ ... ® a;_1a;).
This map satisfies
dlp@y)=dpe ¢+ (-)¥pody, pelyed,
where
(6) C™ 3 pRY:a1®...®a; — e(1®...Q0a) V(a1 ®. .. .®ayj),

o (C*,d) is a differential graded algebra. As a consequence,

[Pl @ [¢] == [p @ ¢]

gives a well-defined product of cohomology classes. Hence we have:

Proposition 13. The concatenation of cocycles yields a product
«: Extly(k, k) ® Ext/,(k, k) — Ext%” (k, k)

called the Yoneda or cup product. This product turns Ext4(k, k)
into a connected algebra called the Yoneda algebra of A.

Now we take into account gradings. The internal grading

(Cr™); = P A ®... 04

jo+---t3i=37
J1sedi21

of CP™ gives rise to the internal grading of Ext’(k,k) discussed in
Section 4.2. On C" it gives a decomposition as a direct product

C'= (A7) = (DA = [, (AT, = D Ap@...04;,
7=>0 720 Jit- +J.L>1

and d respects this decomposition: d(C*) € C* where C* := (A%')1.
However, we know from the discussion after Proposition 4 that we
can safely replace the product by a direct sum here: we have Exta(k, k) =

Ext ,(k, k), so we could consider from the beginning Hom ,(CP* k),
and then we arrive through our identifications at C* := P >0 [k NaNo
knowing that this inclusion of complexes is a quasi-isomorphism

(becomes an isomorphism after passing to cohomology).

Proposition 14. One has Ext?(k, k) « Ext’y(k, k) C Ext'y"7 " (k, k).
This is clear by construction.

Corollary 4. ;. Ext’ (k, k) is a subalgebra of the Yoneda algebra.
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4.6. A' C Exta(k, k) and Koszulness. We return to our main road:

Proposition 15. If A is a quadratic algebra, then we have
P Exti(k, k) ~ A'
i>0
and this equals the subalgebra of Ext(k, k) generated by Exty(k, k).

Proof. Since we assume A to be locally finite-dimensional, we have

CY = (AT = (P Ajy @ @A) = P 4 0. .04

J1+---+ii= J1+--+3i=3
J1seee JiZl J15--di21

In particular,
i—1
O~ @(Ai)éaj—l ® A; ® (As{)@@i—j—l, O ~ (As{)@)i, Ol —
j=1
Hence d(C%) = 0 and Ext’;(k, k) is simply the quotient of C* by the
image of the incoming map d : C*71* — C% As an algebra, C* is
obviously generated by C, so this implies that @, Ext's(k, k) is gen-
erated as an algebra by Ext!(k, k). Considering the first terms
ExtY (k, k) = A ~ k,
Extl!(k, k) = A3,
Exty(k, k) = (A] ® A7)/d(43),
we obtain the identification with A'. Finally, we have Ext!(k, k) =
Ext!! (k, k) since A; generates A (see the proof of Proposition 11). [

Proposition 10 can now be reformulated as follows:

Corollary 5. A quadratic algebra A is Koszul iff Ext(k, k) ~ A"

14 b

Here “~" means “isomorphic as graded algebras”. In particular,
Theorem 1 implies for Koszul algebras:

Corollary 6. A Koszul algebra A has finite global dimension if and
only if its Koszul dual A' is finite-dimensional as k-vector space.

Note that we fudged a bit on the signs: if we stick to the Koszul sign
convention, then the product in (6) should carry a sign (—1)/¥lla2--8al
when taking into account the grading, we should rather work with
e = (—=1)"p ® ¢ for ¢ € C¥ and ¢ € C™. This ruins the signs
in our differential graded algebra condition, but in fact it will later be
useful to reshuffle the gradings a bit anyway: if we define

(7) B,:= @ ¢,

j—i=n
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then (B.,d) is again a differential graded algebra with respect to ®,
but now |d| = +1. The new grading allows us to formulate things in
a totally new way. For example, Propositions 10 and 15 become an
acyclicity statement:

Corollary 7. Hy(B) ~ A", and A is Koszul < H,(B) =0 for n > 0.

This directly leads to our last big topic which gave Koszul algebras
their name.

4.7. The Koszul complex K(A, k). Now we describe the abstract
construction of the minimal resolution of k£ that we promised in the
end of Section 3. We will introduce for any quadratic algebra A a
small complex K (A, k) of A-modules with Hy(K (A, k)) ~ k which
is acyclic if and only if A is Koszul. It is an analogue of the Koszul
complexes used so heavily in local algebra (see e.g. [1]), and was one
of Priddy’s main motivations for introducing Koszul algebras [9]. As a
vector space, its degree n part is defined as

Ko(A k) = A® (A

The differential dx can be introduced as follows: consider A as right A-
module via multiplication and (A')* as right A'-module via (pb)(c) :=
o(bc). Here b € A' acts on ¢ € (A)* and b € (A)* is evaluated on
c € (A")*. These actions turn K,(A, k) into a right A® A'-module, and
dg is given by the action of d := ). x; ® 2;, where {x;}, {Z;} are dual
bases of V = A; and V* = A}, respectively:

di : Kp(A k) —» Ky 1(AJk), a® ¢ — Zaxi ® PI;.

Note that d and hence di are independent of the chosen basis of V.
Proposition 16. One has d*> = 0 and hence dg o dg = 0.

Proof. One way to see this clearly is to identify
(AAA)R (A A) ~ VeV eVeV*
~ (VeV)e((VeV)
~ Endg(V®V)
and
(Ay®A) ~ (VeV)/Re (VeV)* /Rt
(VeV)/Re R
~ Homg (R, (V®V)/R).

12
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This leads to a commutative diagram

(A0 A @ (A A) End, (V@ V)

3 im

(Ay ® Ab) Homy (R, (V ®V)/R)

where y is the multiplication map of A® A' and m is the canonical map
that restricts ¢ € End,(V ® V) to R and composes with the canonical
projection to (V ® V)/R. Then d ® d corresponds to to idygy, but
clearly m(idygy) = 0. O

Definition 5. One calls (K.(A, k),dx) the Koszul complex of A.

Example 12. For the quantum plane, K (A, k) is the minimal resolu-
tion of k that we constructed by bare hands in Example 9.

We now relate the Koszul complex to the bar resolution. We apply to
CP the same reshuffling of gradings as in the pasage from C* to B, in
(7) and denote the resulting cochain complex by (Bg,,,b’). The really

bar?
new step is to introduce a filtration on (B, b’) using the grading of
the zeroth tensor component,

FpBgar = @ A]O®®AJ1

Go+--Hij=itn
i20,51,..,4;21,d02P

Consider the resulting spectral sequence EP?. The filtration comes
from a grading, so the passage from By, to Ey reduces to yet another
reshuffling of degrees:

Et = @ Ap®A; ®---®A; = A, ® By,

J1+---tii=itq
i20,51,--,9;>1

where B, is asin (7). In the differential dy the zeroth term apa1 ®. . .®aq;
of b’ gets cut away since it shifts the degree in A, up at least by
one (a; € Ay). Hence dy is precisely idy ® d where d is dual to the
differential (5) of B,. So we have

EM = A, ® HY(B").

If A is quadratic, then we know from Corollary 7 that Hy(B) can
be identified with A') so H°(B*) is by what they call the universal
coefficient theorem (A')*. Therefore, the differential d, : ¥ — EP*'
of the spectral sequence turns

B~ A, ® (A"
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into a cochain complex. It is given by the zeroth term aga; ® ... ®a; of
b’ that got lost in dg, but d; still strips off every contribution in which
the degree in A is raised by more than one. A moment of reflection
will tell you that this means that d; is precisely dg, the differential of
the Koszul complex K (A, k).

Thus (E$°,d,) is essentially (K,(A,k),dx), only the grading is cho-
sen differently (the same game throughout...). However, we have:

Proposition 17. (E$° d,) is acyclic iff (Ko.(A, k),dx) is acyclic.

Indeed, H(E$°) ~ Hy(K (A, k)) ~ k is concentrated in degree 0 with
respect to both the degree in A and the one in (A')*. Note that similarly
By, is like CP* acyclic since the homology of CP*" is concentrated in
degree 0 with respect to both the homological and the internal grading
7 and 7. From all this we now conclude the main result of this section:

Proposition 18. K(A, k) is acyclic if and only if A is Koszul.

Proof. It A is Koszul, then B, and hence B} are acyclic by Corollary 7.
Thus EY? = 0 for ¢ # 0, and as explained at the end of Section 2.8
the spectral sequence stabilises at Fy. Therefore E° is acyclic becuase

[ ) 3 .
By, is so:

H'(E) = E;° = @ EY' = @ E% ~ H"(Bpar) = 0 for n > 0.
pt+q=n pt+g=n

If conversely K (A, k) is acyclic, then it is a minimal resolution which we
can use to compute Ext4(k, k) ~ A, so A is Koszul by Corollary 5. [

4.8. The Koszul complex K(A¢ A). Finally we add some results
from [11] about the Hochschild homology of a Koszul algebra. The role
of A will be played by its enveloping algebra A° .= A ® A°?, where
A°? is the opposite algebra (same vector space, opoosite product
a-op b := ba). Thus left A°°-modules are right A-modules and vice
versa, and A°modules are A-bimodules (with symmetric action of k).
Similarly, the module £ € A-mod becomes replaced by A € A°-mod
on which A¢ acts by multiplication,

(a®b)c:=ach, a®be A° ce A.

The Hochschild homology of A is HH,(A) := Tori (A, A) and is
important in many contexts. I do not want to spend time on motivation
here, see e.g. [3]. To compute it, we need a projective resolution of A as

A¢-module, and such a resolution can be obtained as a slight variation
of K(A,k): define free A°-modules

(A%, A) = A® (A ® A,
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where the action of A€ is given by multiplication in the first and third
tensor components. Let the differential dx of K(A, k) act on the first
two tensor components and define an analogous second differential d*
which acts on the second and third component, but from the other side:

A a@eeba® ) dip® b

These two differentials obviously commute, so their weighted sum
d¥ = dg + (=1)"d" : K, (A% A) = K,_1(A°, A)
turns K (A°, A) into a complex, and one easily checks that
Hy(K (A% A)) ~ A.
Proposition 19. A is Koszul if and only if K(A®, A) is acyclic.

Proof. Assume A is Koszul. When applying - ®4 k to K(A® A) one
obtains K (A, k) which is acyclic. Using the Kiinneth formula in com-
bination with the Nakayama lemma (Proposition 1) one now shows
inductively that for all n > 1

H,(K(A%A) @4k ~ H,(K,(A°A) @1 k) ~ H,(K(A,e)) =0
= H,(K(A% A))=0.
Conversely, K(A¢ A) consists of free A-modules and K, (A¢, A) = 0

for n < 0. Hence it is split exact if it is acylic, that is, it admits a
contracting homotopy

h:K,(A%A) = K, (A% A), dioh+hodk =id.

Applying the functor - ® 4 k yields a contracting homotopy of K (A, k),
so this is acyclic and A is Koszul. O

Thus if A is Koszul, then Hq(A ®4c K(A¢ A)) ~ HH,(A). Note
that as a vector space, we have A ® 4. K, (A%, A) ~ K, (A, k), and the
differential d = id ® d¥ looks like d¥ only that both dg and d¥ now
act on the same tensor components.

Using a resolution analogous to the bar resolution one usually defines
HH,(A) in terms of an explicit chain complex which is CP* but with
the differential

b:iag®...0a; = @a1Ras®...Qa; —a R ajaz R ... R a;
+ag® a1 K a3 ...0a; — ...
+(-D"ay® ... ®a;_1a;
+(=1'aia0 ® ... ® a;_
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Van den Bergh has points out in [11], Proposition 3.3, that the quasi-
isomorphism between the small complex A ® 4 K(A¢, A) and (CP* b)
is simply the restriction of the canonical inclusion

ARV® 5 AR AY, V =A;

to A®(A')*, where (A')* is embedded into @, V®' using the dual of the
surjective multiplication map €0, (V*)®" = @,(A})®" +— A'. In this way
one can easily translate cycles from the small complex to the standard
one which is needed e.g. when one wants to go on and compute the
cyclic homology of A.

Let us remark two further consequences of Proposition 19: first,
the roles of A and A°P become completely symmetric in K (A¢, A).
Therefore, we have:

Corollary 8. A is Koszul if and only if AP is Koszul.

Now consider the dual (K (A,k))* of the Koszul complex. By the
universal coefficient theorem, this is again acyclic when A is Koszul.
But observe that this is just K(A', k) with a change from left to right
actions (the differential is d¥ rather than dg). In other words, we have
(K(A, k)" ~ K((A")°, k) as chain complexes. In combination with
the previous corollary we obtain:

Corollary 9. A quadratic algebra A is Koszul iff A' is Koszul.

Example 13. We compute the Hochschild homology of the quantum
plane. Since dim A, = dimA} = 1, dimA} = 2, the complex we have to
consider is

0+A—A? 5 A0,

and if I computed everything correctly, the two nontrivial differentials
are given by

a— (ya — qay, —qra + ax), (a,b) — xa —ax + yb — by,

where z,y are the generators of A. Using the vector space basis e;; =
x'y? one now easily proves that the following classes form a vector space
basis of the homology:

[(=", 0), [(0,9")], [+'], [y’'], 4,5 =0
as long as ¢ is not a root of unity. The identification with cycles in the
standard complex (CP* b) is given by the identity in degree 0 and in
degree 1 by
(a,b) »a®@x+b®y.
For ¢ = 1 the differential of our complex is zero and we recover the
theorem of Hochschild, Kostant and Rosenberg that the Hochschild
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homology of the coordinate ring of a smooth affine algebraic variety
(and k[z,y] is the coordinate ring of the plane k* which is as smooth
as one can only be) can be identified with algebraic differential forms
on that variety. The identification is given in our case by

a— adx Ady, (b, c) — bdzx + cdy

in degrees 2 and 1 and by the identity in degree 0, where dz, dy are the
usual differentials of the coordinates x,y as in differential geometry.
The fact that HHs(A) = 0 in the quantum case is the beginning of
a long story about a “dimension drop” that can be observed in the
Hochschild homology of quantised Poisson varieties and can be cured
by studying Hochschild homology with noncanonical coefficients.

5. PostLubpiuM: PBW ALGEBRAS

The presentation of A' in terms of generators and relations often
enables one to check dim;A' < oo easily. In this way, Theorem 1
becomes a valuable tool for showing that gl.dimA < oo provided that
one can prove Koszulness of A. One helpful criterion for that is the
existence of Poincaré-Birkhoff-Witt type vector space bases of A. Due
to limitation in space and time we sketch this only without proofs, see
e.g. [8] or the original reference [9] for the details.

Suppose A = A(V, R) is a quadratic algebra. We fix a vector space
basis {x1,...,2,} of V and write the relations as

Tx; = Z ciiters, (4,7) €S,
S53(r,5)<(4,5)

where < denotes lexicographical ordering and S C S; x Si, S1 =
{1,...,n}, is the set of those (7, ) for which the class of z; ® z; in
(V®V)/R is not in the span of the classes of 2, @z, with (r, s) < (i, 7).
Define further Sy = () and for ¢ > 2

Si = {(]1,,]1) S Si ‘ (jmajm+1> c S,m = 1,...,7; — 1}
and consider finally the monomials
(8) {zj, @y, € Ai| G, -, Ji) € Si}-
Note that these monomials always span A; as a vector space.

Definition 6. One calls (8) the PBW generators of A, and A is called
a PBW algebra if they are linearly independent and hence altogether
form a k-linear basis.

The big theorem is:
Theorem 3. A PBW algebra is Koszul.
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See e.g. [8], Theorem 4.3.1 for a proof.

Example 14. Consider the quantum plane (Example 5). Here S; =
{1,2} and S = S, = {(1,1),(1,2),(2,2)}. More generally, S; consists
of tuples of the form (1,...,1,2,...,2), and the corresponding PBW
monomials are e;; = z'y’ used already in Example 9. They form a
vector space basis, so Theorem 3 gives a confirmation of our direct
proof that the quantum plane is Koszul.
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