
AN INTRODUCTION TO DELIGNE-LUSZTIG THEORY

TERUYOSHI YOSHIDA

Abstract. We give an informal introduction to the theory of Deligne-Lusztig which
gives all the irreducible representations of reductive groups over finite fields [DL],
with an emphasis on the geometry of the Deligne-Lusztig variety. Disclaimer: by
no means complete! Comments welcome / use at your own risk!
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1. Introduction

The aim of this paper is to give an informal introduction to the theory of Deligne-
Lusztig [DL], which laid an important foundation to the representation theory of re-
ductive groups over finite fields. Their method succeeded to give all the irreducible
representations of the reductive groups over finite fields inside virtual representations
obtained from the compact support `-adic étale cohomology of certain smooth algebraic
varieties (which are affine in most cases) over the algebraic closure of the finite field.
This theory is a striking application of the `-adic étale cohomology theory of varieties
over finite fields, which was developed by Grothendieck and his co-workers, and gives a
prototype of the linkage between the algebraic geometry and the representation theory.

For example, if we take a look at the character table of GL2(Fp) for a prime p, we
see three kinds of irreducible representations (other than the one-dimensional char-
acters which factor through the determinant det : GL2(Fp) → F×p ) ; principal series
representations I(χ1, χ2) which is obtained by inducing a pair of characters χ1, χ2 of
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F×p regarded as a character of the split torus of diagonal matrices
{( ∗ 0

0 ∗
)}

via the

Borel subgroup of upper-triangular matrices
{( ∗ ∗

0 ∗
)}

, and the Steinberg or special

representations Sp (and its twists Spχ by one-dimensional characters χ ◦ det) which is
obtained from the action of GL2(Fp) on the Fp-rational points P1(Fp) of the projective
line, and the cuspidal or discrete series representations Θ(χ) corresponding to the char-
acter χ of the non-split torus isomorphic to F×

p2 . This was known from the old days,
but the construction of the cuspidal representations remained somewhat mysterious,
until Drinfeld realized that these are obtained from the first `-adic cohomology group of
the affine curve (XY p−XpY )p−1 = 1, on which the groups GL2(Fp) and the non-split
torus act, and the actions commute with each other to give the correspondence of the
representations of two groups on the cohomology group. The Deligne-Lusztig theory
generalizes this fact to the vast general setting of the general reductive groups over
finite fields.

Let G be a reductive group defined over a finite field Fq, and F : G → G be the
q-th power Frobenius morphism. The fixed point set GF is a finite group consisting
of all the Fq-rational points, and we are interested in the representation theory of
GF . The conjecture of MacDonald in the 1960’s generalizes the above observation
for GL2, and states that there should be a well-defined correspondence between the
irreducible representations of GF and the pairs (T, θ) where T is an F -stable maximal
torus and θ is a character of TF in general position (see Def. 3.11), which generalizes
the usual “parabolic induction” in the case where TF is contained in a Borel subgroup
BF . In particular, the representation should be cuspidal when the corresponding T
modulo the center of G is anisotropic over Fq. This conjecture was solved affirmatively
by the Deligne-Lusztig theory, which constructs a virtual representation Rθ

T of GF

corresponding to (T, θ), inside the `-adic compact support cohomology groups of a
certain smooth variety. The characters of these representations can be computed via
Lefschetz fixed point formula for the `-adic cohomology, which in turn is used to prove
the various properties that the representations Rθ

T have.

Here we summarize some of the main theorems of this theory :

Theorem 1.1. For each F -stable maximal torus T and a character θ of TF , there
is a virtual representation Rθ

T in the Grothendieck group R(GF ) of GF , satisfying the
following :

(i) (Cor. 7.7 of [DL]) Every irreducible representation ρ of GF occurs in some Rθ
T ,

i.e. 〈ρ,Rθ
T 〉 6= 0 where 〈, 〉 is the natural inner product on R(GF ).

(ii) (Cor. 6.3 of [DL]) If (T, θ) and (T ′, θ′) are not geometrically conjugate (Def.
3.7), no irreducible representation of GF occurs in both Rθ

T and Rθ′
T ′.

(iii) (Th. 6.8 of [DL]) If (T, θ) is in general position (Def. 3.11), one of ±Rθ
T is an

irreducible representation of GF .
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This paper is organized as follows. In section 2, we give a fairly detailed description
of the construction of Deligne-Lusztig variety and the virtual representations Rθ

T of
GF , and try to show that the idea of construction can be naturally understood in
terms of the rational structure of the flag variety of G. In sections 3 and 4 we try
to give a sketch of proofs of the main theorems and some important further result.
The emphasis is on the geometric ideas concerning Deligne-Lusztig variety, and all the
detailed computations of the characters are omitted.

Also, there is an excellent summary of this theory in J.-P. Serre’s Bourbaki Seminar
talk [Serre].

Acknowledgements. This article was written in December 2002 as a minor thesis
during the graduate program at Harvard University. The author would like to thank
his adviser Richard Taylor for many invaluable discussions and his constant encourage-
ments.

Notations. Throughout this paper, K denotes an algebraically closed field of char-
acteristic p, p > 0 a prime number. G is a reductive algebraic group (always connected
and smooth) over K, defined over some finite field Fq, q a power of p. Namely G/K
is obtained by the base extension from an algebraic group G0 over Fq. We identify G
with the set of its K-rational points, which should not cause any confusion.

For any scheme X over K which is defined over Fq, F denotes the Frobenius endo-
morphism F : X → X. For any endomorphism T of the X, GT denotes the fixed point
subscheme of the scheme X, for example GF = G0(Fq) is the finite group consisting of
the Fq-rational points of G. ` is a prime different from p and Q` is an algebraic closure
of Q`, the field of `-adic numbers. Z` = lim←−

n

Z/`n is the ring of `-adic integers. We use

freely the terminology of the schemes and the `-adic cohomology of schemes developed
in [SGA]. For any scheme X over K, H i(X) (resp. H i

c(X)) denotes the usual (resp.
compact support) `-adic cohomology groups H i(X,Q`) (resp. H i

c(X,Q`)).

For any finite group H, R(H) denotes the Grothendieck group of the finite dimen-
sional representation of H over Q`. The characters of H takes values in the maximal
cyclotomic field Q(ζ∞) =

⋃
nQ(ζn) ⊂ Q`, which has a well defined “complex conju-

gate” automorphism defined by ζn 7→ ζ−1
n for any n, denoted by x 7→ x. Therefore a

natural inner product on R(H)⊗Q is defined as ;

〈f, f ′〉H =
1
|H|

∑

x∈H

f(x)f ′(x)

where f, f ′ are the characters which are identified with the elements ofR(H). Note that
f(x) = f(x−1). The set of the irreducible representations of H gives an orthonormal
basis of R(H)⊗Q with respect to this inner product.

Return to the reductive group G/K. For a maximal torus T and a Borel subgroup B
containing T , the Weyl group of (T,B) is W = N(T )/T where N(T ) is the normalizer
{x ∈ G | xT = Tx} of T . Any other pair (T ′, B′) is a conjugate of (T,B), which is the
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image of (T,B) by ad g : x 7→ gxg−1 for some g ∈ G, and ad g gives the isomorphism
between the Weyl groups W,W ′. Therefore we can speak of the canonical maximal
torus T and the canonical Weyl group W, provided with the isomorphism T→ T and
W→ W for any pair (T,B), which are compatible with the isomorphisms ad g between
anyy pairs (T, B). W is a Coxeter group generated by the elements s1, . . . , sn of order
2, and the length function is denoted by w 7→ l(w). w ∈ W can be expressed in the
form w = si1 . . . sik for k = l(w) (reduced expression).

2. The construction of the Deligne-Lusztig variety

2.1. The variety Xw. Let X = XG be the flag variety of G, i.e. set of all Borel
subgroups of G which is a smooth projective variety; G acts on X from the left by
conjugation. When we refer to a Borel subgroup B as a point x ∈ X, we denote this
left action by x 7→ gx. When we fix a Borel subgroup B, the stabilizer of B ∈ X for
this action is B itself, which gives the isomorphism G/B 3 g 7→ gBg−1 ∈ X.

Recall the Bruhat decompostion of X ×X into the orbits of G ; the set of orbits are
identified with the Weyl group W of G, and we denote by Ow the orbit corresponding
to w ∈W ;

X ×X =
∐

w∈W
Ow, Ow = G · (B, w̃Bw̃−1)

Here w̃ ∈ N(T ) is the representative for w ∈ W ∼= N(T )/T , and Ow does not depend
on the choice of the fixed Borel subgroup B. We say that two Borel subgroups B′, B′′
are in relative position w if (B′, B′′) ∈ Ow.

Definition 2.1. For any w ∈ W, Xw is the locally closed subscheme of X consisting
of all Borel subgroups B′ of G such that B′ and F (B′) are in relative position w, i.e.
for any fixed Borel subgroup B there exists g ∈ G such that B′ = gBg−1, F (B′) =
(gw̃)B(gw̃)−1.

As the first projection (B, F (B)) 7−→ B of the graph of Frobenius onto X is an
isomorphism, Xw can be defined as the (transverse) intersection of Ow with the graph
of the Frobenius map in X×X. The orbit Ow being smooth of dimension dimX+l(w),
Xw is smooth and purely of dimension l(w). We get a partition X =

∐
w∈WXw. By

definition, each Xw is stable under the action of GF .

Example 2.2. Xe is a zero dimensional variety, namely the set of all F -stable Borel
subgroups. As they are all GF -conjugate, Xe

∼= GF /BF for any F -stable Borel sub-
group B.

2.2. The variety Yw. Now choose a maximal torus T and a Borel subgroup B con-
taining T , and denote the unipotent radical by U with B = TU . Then the quotient
Y = G/U has a natural left action of G, and is a right T -torsor (right principal homo-
geneous space of T ) over X = G/B, where the fiber of x ∈ X of the left G-equivariant
covering Y → X is

Y (x) = {g ∈ G | ge = x}/U
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where e ∈ X is the point corresponding to B, and the left action of G on X is the
conjugation as usual, i.e. ge corresponds to gBg−1. Note that the set {g ∈ G | ge = x}
is a right B-torsor, and Y (x) is a right T -torsor as it should be.

Now for any w ∈ W, choose a lifting w̃ ∈ N(T ) of w, and let x, y ∈ X be any pair
which is in relative position w, i.e. there exists g ∈ G such that x = ge, y = gw̃e (cf.
Def. 2.1). The set A(x, y) = {g ∈ G | ge = x, gw̃e = y} is a torsor under the action
of B ∩ w̃Bw̃−1 = T (U ∩ w̃Uw̃−1), therefore A(x, y) surjects to Y (x) by the natural
projection mod U . Therefore we can define a map :

·w̃ : Y (x) 3 g 7−→ gw̃ ∈ Y (y)

by choosing the representative g inside A(x, y), as the class gw̃ of gw̃ mod U depends
only on the class of g.

Now assume that T, B are F -stable. Note that the identifications of T and N(T )/T
with T and W are compatible with F , and as for any g ∈ Y (x) we have F (g)e =
F (ge) = F (x), we have a map F : Y (x) → Y (F (x)). The subspace Yw̃ of Y is defined
as :

Yw̃ = {g ∈ Y | F (g) = g · w̃}
Yw̃ is stable under the action of GF . As the image x = ge of g ∈ Yw̃ under the projection
Y → X satisfies F (x) = F (ge) = gw̃e = gw̃e, x and F (x) are in relative position w,
i.e. x ∈ Xw. Therefore this variety is a GF -equivariant covering of Xw.

As the fiber of x ∈ Xw for the projection Yw̃ → Xw is :

Yw̃(x) = {g ∈ Y (x) | F (g) = g · w̃}
and for g ∈ Yw̃(x), gt for t ∈ T lies in Yw̃(x) if and only if t satisfies F (gt) = gt · w̃, i.e.
F (g)F (t) = (g · w̃)(w̃−1tw̃) = (g · w̃)(ad w−1(t)), the structure group of the covering is

TF
w = {t ∈ T | F (t) = adw−1(t)}

which is the fixed set of the Frobenius of Tw, which is defined as the torus T provided
with the rational structure for which the Frobenius is adw ◦ F . We denote this GF -
equivariant TF

w-torsor by π : Yw̃ → Xw. Also we can show that this GF -equivariant
TF

w-torsor is independent of the choice of the lifting w̃ ∈ N(T ) of w ∈ W, because if
we had w̃′ = w̃t, g 7→ gt′ with t′ ∈ T satisfying t = F (t′)(adw−1(t′))−1 would give an
GF -equivariant isomorphism Yw̃ → Yw̃′ of TF

w-torsors over Xw.

Definition 2.3. For any w ∈ W, we denote the above GF -equivariant TF
w-torsor by

π : Yw → Xw.

The above construction is independent of the choice of the fixed F -stable (T,B) (up
to isomorphism), as they are all GF -conjugate.

2.3. The representations Rθ
w. The groups GF and TF

w act on the variety Yw, there-
fore these two groups act on the compact support cohomology groups H∗

c (Yw) =
H∗

c (Yw,Q`). And as these actions commute with each other, if for each character
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θ ∈ Hom(TF
w ,Q×` ) of TF

w , we denote by H∗
c (Yw)θ the subspace of H∗

c (Yw) where TF
w acts

by θ, H∗
c (Yw)θ is a representation of GF .

Definition 2.4. For any w ∈ W and any character θ of TF
w , we denote by Rθ

w the
alternating sum virtual representation

∑
i(−1)iH i

c(Yw)θ of GF inside the Grothendieck
group R(GF ).

Omitting ` from the notation is justified by the fact that for any variety X and an
automorphism σ of X, the alternating sum of the trace of the endomorphism σ∗ on the
graded vector space H∗

c (X) is an integer independent of ` (Prop. 3.3 of [DL]).

Also, if we decompose the direct image sheaf π∗Q` on Xw according to the action of
TF

w , we get the decomposition :
π∗Q` =

⊕

θ

Fθ

into the smooth Q`-sheaf Fθ of rank one, where Fθ is the subsheaf of π∗Q` where TF
w

acts by θ, and the decompostion of the cohomology groups :

H∗
c (Yw) = H∗

c (Yw,Q`) = H∗
c (Xw, π∗Q`) =

⊕

θ

H∗
c (Xw,Fθ)

and in particular H∗
c (Yw)θ = H∗

c (Xw,Fθ).

Example 2.5. For θ = 1, R1
w =

∑
i(−1)iH i

c(Xw).

Example 2.6. For w = e, π : Ye → Xe is no other than the projection GF /UF →
GF /BF , and Rθ

e is the representation of GF on the space of functions f : GF → Q`

satisfying f(gtu) = θ(t)−1f(g), on which GF acts by (g·f)(x) = f(g−1x). This coincides
with the usual definition of the induced representation induced from the characters θ
of TF which is contained in BF , the rational points of the F -stable Borel subgroup B.

2.4. An alternative description : XT⊂B, YT⊂B, Rθ
T⊂B. Now we would want to

represent the above representations in terms of the characters of the F -fixed sets of
actual F -stable maximal tori, rather than the characters of TF

w . For this, we introduce
more concrete descriptions of the variety Xw, Yw and the representations Rθ

w.

First we give concrete models of the varieties Xw, Yw. In this subsection, we denote
the fixed F -stable maximal torus, the fixed F -stable Borel subgroup and its unipotent
radical by T ∗, B∗ and U∗.

We observe that for any g ∈ G, x = ge lies in Xw if and only if gB∗g−1 and
F (gB∗g−1) = F (g)B∗F (g)−1 are in the relative position w, i.e. F (g)B∗F (g)−1 =
(gw̃)B∗(gw̃)−1 or g−1F (g) ∈ w̃B∗. Here the set {g ∈ G | x = ge, F (x) = gw̃e} is
a B∗ ∩ w̃B∗w̃−1-torsor :

Xw = {g ∈ G | g−1F (g) ∈ w̃B∗}/(B∗ ∩ w̃B∗w̃−1)

Here B∗ ∩ w̃B∗w̃−1 = T ∗(U∗ ∩ w̃U∗w̃−1), and we normalize g−1F (g) ∈ w̃B∗ to
g−1F (g) ∈ w̃U∗ by changing g to gt where t ∈ T ∗. Then for g ∈ {g ∈ G | g−1F (g) ∈
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w̃U∗}, gt for t ∈ T ∗ would be in the same set if and only if

(gt)−1F (gt) = t−1(g−1F (g)w̃−1)(w̃F (t)w̃−1) ∈ w̃U∗w̃−1,

and as T ∗ = w̃T ∗w̃−1 commutes with w̃U∗w̃−1, this is equivalent to t−1(w̃F (t)w̃−1) = 1,
i.e. t ∈ TF

w . Therefore this set is the TF
w(U∗ ∩ w̃U∗w̃−1)-torsor:

Xw = {g ∈ G | g−1F (g) ∈ w̃U∗}/TF
w(U∗ ∩ w̃U∗w̃−1)

Now if we trace back the definition of Yw, a point of Yw is defined by a point x ∈ Xw, i.e.
a Borel subgroup B, and g ∈ G such that ge = x, gw̃e = F (x), gw̃ = F (g) mod U∗.
Therefore we conclude that :

Yw = {g ∈ G | g−1F (g) ∈ w̃U∗}/(U∗ ∩ w̃U∗w̃−1)

Now we would like to change the coordinate to give another model isomorphic to the
above Yw → Xw, which would be a GF -equivariatnt TF -torsor for a particular F -stable
maximal torus T instead of TF

w-torsor.

Definition 2.7. Let T be a F -stable maximal torus and B be a Borel subgroup con-
taining T , with unipotent radical U . Define XT⊂B by :

XT⊂B = {g ∈ G | g−1F (g) ∈ F (B)}/(B ∩ F (B))

= {g ∈ G | g−1F (g) ∈ F (U)}/TF (U ∩ F (U))

and YT⊂B by YT⊂B = {g ∈ G | g−1F (g) ∈ F (U)}/(U ∩ F (U)).

Proposition 2.8. For (T, B) as above, let w be the relative position of B and F (B).
We can choose h ∈ G such that h(T ∗, B∗)h−1 = (T, B), so that the map g 7→ gh−1 gives
an isomorphism from the GF -equivariant TF

w-torsor Yw → Xw to the GF -equivariant
TF -torsor YT⊂B → XT⊂B.

Definition 2.9. For a character θ : TF → Q`, we denote by Rθ
T⊂B the alternating sum

virtual representation
∑

i(−1)iH i
c(YT⊂B)θ of GF in the Grothendieck group R(GF ).

For the h in Prop. 2.8, we have Rθ
T⊂B = Rθ◦ad w

w .

3. Main theorems

3.1. Independence of Rθ
T⊂B on B and the character formula. The virtual rep-

resentation Rθ
T⊂B which we defined in the last section turns out to be independent of

the choice of B. To prove this, we must analyze the representation using the traces of
the elements of GF .

The proof starts from the case θ = 1 case :

Proposition 3.1. (Prop. 1.6, Cor. 1.14 of [DL]) The virtual representation R1
T⊂B =

R1
w ∈ R(GF ) depends only on the F -conjugacy class of the relative position w of B and

F (B), which in turn depends only on the GF -conjugacy class of the maximal tori T .
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The proof of the first part depends on the rather detailed investigation of the geom-
etry of the variety Xw, which is described using the partition and fibration according
to the reduced expression of w. The second part is a lemma in the theory of algebraic
groups. This proposition proves the next general theorem when θ = 1 :

Theorem 3.2. (Cor. 4.3 of [DL]) Rθ
T⊂B is independent of the choice of a Borel subgroup

B containing T .

The general case follows from the following character formula, which is in turn proved
using the θ = 1 case :

Proposition 3.3. If x = su is the Jordan decomposition of x ∈ GF , then :

Tr(x,Rθ
T⊂B) =

1
|Z0(s)F |

∑

s∈GF , gTg−1⊂Z0(s)

QgTg−1,Z0(s)(u) ad g(θ)(s)

where Q is defined below.

Definition 3.4. For any reductive group G and a F -stable maximal torus T of G,
the character of R1

T⊂B (which doesn’t depend on B by Prop. 3.1) on the unipotent
elements u of GF is called the Green function and denoted by QT,G(u).

The above character formula comes from the calculation of the trace of x = su on
H∗

c (YT⊂B)θ, where the next fixed point formula plays a vital role :

Proposition 3.5. Let X be a variety over K, and let σ : X → X be an automorphism
of finite order. If we decompose σ as σ = su where s, u are powers of σ of orders
respectively prime to p and a power of p, we have :

Tr(σ∗, H∗
c (X)) = Tr(u∗,H∗

c (Xs))

where Xs is the fixed point set of s, and the traces are the alternating sums of the
traces on each cohomology group, namely Tr(f, V ∗) =

∑
i(−1)iTr(f, V ∗) for any endo-

morphism f on a graded vector space V .

This is a purely algebro-geometric lemma which is proved in the section 3 of [DL]
by a standard [SGA]-type argument. Now if we apply this fixed point formula to our
GF -equivariant TF -torsor YT⊂B → XT⊂B, we can write the trace Tr(g∗, H∗

c (YT⊂B)θ) of
g = su in terms of the character θ and the trace Tr(u∗,H∗

c (Xs)) of u on the cohomology
of the fixed point set Xs

T⊂B. By carefully working out the fixed point set in this case,
we obtain the above character formula.

Definition 3.6. We denote the virtual representation Rθ
T⊂B simply by Rθ

T .

Note that the isomorphism between the (virtual) representations in the cohomology
is proved, but the varieties XT⊂B, YT⊂B and XT⊂B′ , YT⊂B′ might not be isomorphic.
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3.2. Disjointness theorem.

Definition 3.7. Let T, T ′ be two F -stable maximal tori of G, and θ, θ′ be characters of
TF , T ′F . The pairs (T, θ), (T ′, θ′) are said to be geometrically conjugate when the pairs
(T, θ◦N), (T ′, θ′◦N) where N is the norm from TF n

to TF (resp. T ′F n
to T ′F ) are GF n

-
conjugate for some integer n. Here the norm N for T is the map

∑n−1
i=0 F i : TF n → TF .

Theorem 3.8. (Cor. 6.3 of [DL]) If (T, θ) and (T ′, θ′) are not geometrically conjugate,
〈Rθ

T , Rθ′
T ′〉 = 0.

This theorem is the direct consequence of the following geomteric fact :

Proposition 3.9. If θ−1 is not geometrically conjugate to θ′, then :

[H∗
c (YT⊂B)⊗H∗

c (YT ′⊂B′)]G
F

= 0

By Künneth formula, we are reduced to show that H∗
c (YT⊂B×YT ′⊂B′)GF

θ,θ′ = 0, where
the subscript θ,θ′ denotes the part where TF × T ′F acts by θ ⊗ θ′. If we introduce the
varieties

ST⊂B = {g ∈ G | g−1F (g) ⊂ F (U)}, ST ′⊂B′ = {g′ ∈ G | g′−1F (g′) ⊂ F (U ′)}
where U,U ′ is the corresponding unipotent radicals, the cohomology of YT⊂B × YT ′⊂B′

is just the shift of the cohomology of the covering space ST⊂B×ST ′⊂B′ , as the former is
the free quotient of the latter by the unipotent group (U ∩F (U))× (U ′ ∩F (U ′)). Now
the GF -invariant part of the cohomology of ST⊂B × ST ′⊂B′ is the cohomology of the
quotient ST⊂B×ST ′⊂B′/GF , and this quotient is shown to be isomorphic to the variety
S = {(x, x′, y) ∈ F (U)× F (U ′)×G | xF (y) = yx′}. This variety has a finite partition
(stratification) into the locally closed subschemes S =

∐
w∈W (T,T ′) Sw indexed by the

set W (T, T ′) = T\N(T, T ′) = N(T, T ′)/T ′ where N(T, T ′) = {g ∈ G | Tg = gT ′},
corresponding to the Bruhat cells. Therefore we are reduced to proving H∗

c (Sw)θ,θ′ = 0,
and in order to show this, we extend the action of TF × T ′F to an action of a closed
subgroup :

Hw = {(t, t′) ∈ T × T ′ | t′F (t′)−1 = F (w̃)−1tF (t)−1F (w̃)}
of T × T ′, where w̃ ∈ N(T, T ′) is a representative of w. Now as a connected algebraic
group cannot act on the cohomology of a variety non-trivially (a simple homotopy
argument), in order to have H∗

c (Sw)θ,θ′ 6= 0, θ⊗ θ′ must be trivial on H0
w ∩ (TF × T ′F )

where H0
w is the connected component of Hw, and this would show that θ′−1 = θ ◦

adF (w), i.e. θ−1, θ′ is geometrically conjugate.

By combining this theorem with the character formula Prop. 3.3, we can actually
determine the intertwining numbers between Rθ

T , Rθ′
T ′ when θ, θ′ are geometrically con-

jugate as follows :

Proposition 3.10. In general, 〈Rθ
T , Rθ′

T ′〉GF = |{w ∈ W (T, T ′)F | adw(θ′) = θ}|.

This proposition gives a criterion for the irreducibility of Rθ
T :
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Definition 3.11. The character θ of TF is called in general position if it is not fixed
by any non-trivial element of (N(T )/T )F .

Corollary 3.12. If θ is in general position, on of ±Rθ
T is an irreducible representation

of GF .

To determine the sign, we have to compute some of the characters on the semisimple
elements of GF .

3.3. Calculation on semisimple elements. Recall that the Steinberg representa-
tion StG is the irreducible representation of G occuring in the induced representation
IndGF

BF (1) = R1
T where (T, B) is F -stable. The character of this representation vanishes

outside the semisimple elements :

StG(g) =

{
(−1)σ(G)−σ(Z0(g))StZ0(g)(e) (g ∈ GF is semisimple)
0 (g ∈ GF is not semisimple)

where σ(G) denotes the Fq-rank of G for any reductive group G.

Now consider Rθ
T for general (T, θ). By the disjointness theorem Th. 3.8 we have

〈Rθ
T , StG〉 = 0 if θ 6= 1, and by working out the character formula from this fact we

find the following equalities :

Proposition 3.13. (Th. 7.1, Prop. 7.3 of [DL]) Let σT = σ(G)− σ(T ).

(i) QT,G(e)StG(e) = (−1)σT |GF |/|TF |.
(ii) (−1)σT Rθ

T ⊗ StG = IndGF

T F (θ).
(iii) For any semisimple s ∈ GF , we have :

∑

T3s

(−1)σT
∑

θ

θ(s)−1Rθ
T (g) =

{
StG(s)|Z(s)F | (g ∈ GF is conjugate to s)
0 (otherwise)

where θ runs through all the characters of TF .

As a corollary of Prop. 3.13 (ii), we can determine the sign occurring in Cor. 3.12 :

Theorem 3.14. (Prop. 7.4 of [DL]) If θ is in general position, (−1)σ(G)−σ(T )Rθ
T is

irreducible.

As a corollary of Prop. 3.13 (iii), we have for any ρ ∈ R(GF ) :

dim ρ = ρ(e) =
1

StG(e)

∑

T

(−1)σT
∑

θ

〈ρ,Rθ
T 〉

where T runs through the set of all the F -stable maximal tori, and θ runs through
all the characters of TF . This gives :
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Theorem 3.15. (Cor. 7.7 of [DL]) Any irreducible representation ρ of GF occurs in a
Rθ

T for some (T, θ), i.e. 〈ρ,Rθ
T 〉 6= 0.

Also we remark that applying Prop. 3.13 (iii) to s = e gives the following decompo-
sition of the regular representation IndGF

e (1) of GF :

IndGF

e (1) =
1

StG(e)

∑

(T,θ)

(−1)σT Rθ
T

where (T, θ) runs through the set of all pairs consisting of the F -stable maximal torus
T of G and a character θ of TF .

4. Further results

4.1. Induced and cuspidal representations. Here we want to examine when the
(virtual) representations Rθ

T of GF are induced from the group of rational points PF

of a F -stable proper parabolic subgroup P , and when they are cuspidal.

Let P be a F -stable parabolic subgroup P of G, and T a F -stable maximal torus T
of P and U the unipotent radical of P . The quotient group L = P/U is a connected
reductive algebraic group with the action of F , which is isomorphic to the Levi subgroup
of P . If we denote the natural projection by π : P → L, it induces an isomorphism
T ∼= π(T ), and therefore TF ∼= π(T )F . This allows us to identify the character θ of
TF with a corresponding character of π(T )F , and we denote by Rθ

T,P the image of the
virtual representation Rθ

π(T ) of LF under the canonical embedding R(LF ) ⊂ R(PF ).

Then, as one naturally expects, we have :

Proposition 4.1. (Prop. 8.2 of [DL]) Rθ
T = IndGF

P F (Rθ
T,P ).

This is shown by the partition of the Deligne-Lusztig variety as follows. Let us
choose a Borel subgroup B which satisfies T ⊂ B ⊂ P , and let P denote the set of all
parabolic subgroups P ′ of G which are GF -conjugate to P (which implies that they are
all F -stable). Then we have a partition :

YT⊂B =
∐

P ′∈P
YP ′

where we put :

YP ′ = {g ∈ G | g−1F (g) = F (U), gPg−1 = P ′}/(U ∩ F (U))

Then by choosing h ∈ GF such that hPh−1 = P ′, whe get an isomorphism :

YP ′ 3 g 7−→ π(h−1g) ∈ Yπ(T )⊂π(B)

Therefore we have an isomorphism of GF -modules :

H∗
c (YT⊂B) ∼= IndGF

P F

(
H∗

c (Yπ(T )⊂π(B))
)

which is also compatible with the action of TF , which proves the proposition.
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Proposition 4.2. (Th. 8.3 of [DL]) If an F -stable maximal torus T is not contained
in any F -stable proper parabolic subgroup of G and θ is a character of TF in general
position, the irreducible representation (−1)σT Rθ

T of GF is cuspidal.

To show this proposition, we want 〈Rθ
T , IndGF

UF (1)〉 = 0. This follows from the dis-
jointness theorem and the decomposition of the virtual representation IndGF

UF (1) into
Rθ

T ’s with T contained in proper F -stable parabolic subgroups P , which is readily ob-
tained by observing that IndGF

UF (1) = IndGF

P F (IndP F

UF (1)) and writing IndP F

UF (1) in terms
of the regular representation of LF where L = P/U .

4.2. Vanishing theorems. By constructing a natural compactification of the vari-
ety XT⊂B, we can actually determine exactly where the irreducible representations
(−1)σT Rθ

T (for θ in general position) appear inside the cohomology H∗
c (YT⊂B), namely

they only appear in the l(w)-th cohomology H
l(w)
c (YT⊂B) where w is the relative posi-

tion of B and F (B).

In this subsection we use the notations Xw, Yw of the subsections 2.1 – 2.3. The
main result is :

Theorem 4.3. (Cor. 9.9 of [DL]) If Xw is affine and the character θ of TF
w is in general

position, we have H i
c(Yw)θ = 0 for i 6= l(w).

First we remark that the condition that Xw is affine is always satisfied for classical
groups, and is satisfied in general as soon as q is sufficiently large (Th. 9.7 of [DL]).

Now this theorem is deduced from the following proposition :

Proposition 4.4. (Th. 9.8 of [DL]) For a character θ of TF
w in general position,

H∗
c (Yw)θ

∼= H∗(Yw), or equivalently H∗
c (Xw,Fθ) ∼= H∗(Xw,Fθ).

First we describe how to deduce Th. 4.3 from Prop. 4.4. As we know that H i(Xw,Fθ) =
0 for i > dimXw = l(w) when Xw is affine ([SGA] 4-XIV). To show that H i(Xw,Fθ) =
0 for i < l(w), observe that by Poincaré duality H i(Xw,Fθ) is the dual of H2l(w)−i(Xw,Fθ−1)
up to twist as Fθ−1 is the dual sheaf of Fθ, hence vanishes for 2l(w) − i > l(w), i.e.
i < l(w).

To prove Th. 4.3, it is enough to construct a compactification j : Xw → Xw of
Xw, and show that j∗Fθ = j!Fθ and Rkj∗Fθ = 0 for every k > 0, as then we have
H∗

c (Xw,Fθ) = H∗(Xw, j!Fθ) ∼= H∗(Xw,Fθ) by the degeneration of the Leray spectral
sequence for j.

First we give the construction of a compactification as follows.

Definition 4.5. Let w = s1 · · · sn, n = l(w) be a reduced expression of w ∈ W.
We define Ow = O(s1, . . . , sn) (depends on the reduced expression) as the space of
sequences (B0, . . . , Bn) of Borel subgroups of G, where Bi−1 and Bi are in relative
position si or e for every 1 ≤ i ≤ n.
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We have a sequence of natural maps :

Ow = O(s1, . . . , sn) → O(s1, . . . , sn−1) → · · · → O(s1) → X

where each map is a P1-bundle, therefore Ow is proper. For each i, we have a natural
section of the above map given by :

O(s1, . . . , si−1) 3 (B0, . . . , Bi−1) 7−→ (B0, . . . , Bi−1, Bi−1) ∈ O(s1, . . . , si)

The inverse image of this section under Ow → O(s1, . . . , si) is a divisor Di of Ow

consisting of all sequences (B0, . . . , Bn) with Bi−1 = Bi, and the union D =
⋃

i Di,
consisting of all sequences (B0, . . . , Bn) where Bi−1 = Bi for at least one i, is a divisor
of Ow with normal crossings. As B0, Bn are in relative position w outside D, and we
obtain a natural isomorphism Ow −D 3 (B0, . . . , Bn) 7−→ (B0, Bn) ∈ Ow to see that
Ow is a compactification of Ow.

Definition 4.6. We define Xw (depends on the reduced expression but we suppress
the notation) as the space of sequences (B0, . . . , Bn) where Bn = F (B0) and Bi−1 and
Bi in relative position si or e for every 1 ≤ i ≤ n.

Xw is a subvariety of Ow, namely the inverse image of the graph of Frobenius map
under the map Ow 3 (B0, . . . , Bn) 7−→ (B0, Bn) ∈ X × X, and it is shown to be
a compactification of Xw with a divisor with normal crossings D =

⋃
i Di, where

Di = Di ∩Xw (Lemma 9.11 of [DL]).

Now the proof of j∗Fθ = j!Fθ and Rkj∗Fθ = 0 for k > 0 is accomplished by analyzing
the ramification of the smooth sheaf Fθ along Di, which is equivalent to the ramification
of the covering Yw → Xw at the infinity Di. As the structure group TF

w of this covering
is of order prime to p, the ramification is tame, and it turn out to be ramifying in the
same way as the pull back of the Lang covering F − 1 : T → T under a coroot of T
depending on i. From this description, we deduce that when θ is in general position,
Fθ would ramify along every Di and gives Rkj∗Fθ|Di

= 0 for every k ≥ 0, as desired.
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