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Abstract 

This thesis presents a framework to study the interaction between attention and learning. 

The framework proposes that learning processes act on an attentionally-filtered representation of 

the environment and that the attention filter is dynamically modulated by the outcomes of 

ongoing learning. These assumptions were tested in a series of experiments in which participants 

performed a multi-dimensional decision-making task with probabilistic rewards. Choice behavior 

was analyzed using computational models. Some of these models incorporated information about 

participants’ focus of attention, which was decoded on each trial by combining eye-tracking with 

pattern classification of functional magnetic resonance imaging (fMRI) data. Model-based 

analysis of behavior provided preliminary evidence that attention helps determine what we learn 

about, but we also learn what to attend to. 
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Chapter 1 

Introduction: Making sense of a complex world 

We live in an incredibly stimulating environment. Every waking moment, our senses are 

bombarded by a plethora of sights, sounds and smells that constantly compete for our attention. 

Yet, at any instant, only a fraction of the available sensory information is behaviorally relevant. 

Given our limited cognitive capacity, processing all available information would be 

computationally expensive, if not humanly impossible (Lavie, 2005; Lennie, 2003). Furthermore, 

interference from irrelevant information is potentially distracting and could bias us towards 

inappropriate responses (MacLeod, 1991; Owen et al., 1993). To behave adaptively in this 

complex world, we need to filter out behaviorally irrelevant information and selectively attend to 

aspects of the environment that matter most.   

The importance of selective attention in regulating cognitive processes is well established 

(Miller & Cohen, 2001). Individuals build an internal representation of the world that encodes, 

among other things, information about what is currently task-relevant. When confronted with 

rich sensory information and competing response possibilities, selective attention facilitates the 

selection of the appropriate response by filtering the information available in the environment 

and directing cognitive resources towards the processing of task-relevant information (Desimone 

& Duncan, 1995; Knudsen, 2007). In a complex multi-dimensional world, however, it may not 

always be immediately evident what is relevant and what is distraction. One has to build a 

representation of the world by learning contingencies between different stimuli and outcomes 

through trial-and-error. This learning interacts with selective attention mechanisms, and is 

modulated by ongoing feedback from the environment (Wilson & Niv, 2011). While much is 
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known about the operations of selective attention when there is a clear internal representation of 

what is relevant, less work has been done to investigate how selective attention mechanisms 

interact with learning processes to build this internal representation in the first place.  

In this thesis, I present a theoretical framework that integrates existing theories of 

attention and learning. The proposed framework is motivated by the perspective that attention 

and learning are intricately related – attention determines what we learn about, but we also learn 

what to attend to. Specifically, I make the claim that learning processes act on an attentionally-

filtered representation of the environment. This representation of the world is not static, but is 

updated according to outcomes of ongoing decisions. As the model of the world changes, the 

attention filter is dynamically adjusted to direct cognitive processes towards what is currently 

deemed task-relevant. In other words, learning is constrained by attention, but attention is also 

modulated by the outcomes of learning. With experience, individuals learn what to attend to via 

the recurrent loop between attention and learning mechanisms. I refer to this process as attention 

learning. The goal of this thesis is to chart out the mechanisms involved in attention learning.  

With that goal in mind, I begin by reviewing the two parallel threads of research that 

motivate the current work. I start with a discussion of learning, focusing on two different 

frameworks that have influenced research in the field – Bayesian learning and reinforcement 

learning. The computational principles described here lay the groundwork for building the 

learning component in the attention learning framework. Following which, I review the literature 

on the psychological and neural basis of attention. In particular, I address how attention 

processes relate to existing models of learning and decision-making. Finally, I review several 

studies that have begun to investigate the interaction between learning and attention processes. 
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posterior likelihood prior 

1.1. Learning 
 
1.1.1. Bayesian Learning 

 
The Bayesian framework has been applied to explain various findings in psychology and 

neuroscience (for a review, see O’Reilly et al., 2012). Bayesian inference is a form of inductive 

reasoning in that it involves making rational inferences based on observed information. In this 

thesis, I am concerned with the application of Bayesian approaches to learning. From a Bayesian 

perspective, learning is formalized as the updating of existing beliefs given new observations. To 

be clear, I take beliefs to mean hypotheses about the world. For example, one might hold the 

belief that it rains frequently in London. One can then update this belief when confronted with 

data that either supports or contradicts the belief (e.g., a day in London with or without rain). 

In a Bayesian framework, beliefs are represented as probability density functions (PDFs). 

Encoding beliefs as probability distributions rather than single values is advantageous, because it 

allows Bayesian systems to capture the observer’s uncertainty about a particular hypothesis. 

Formally, given new data, a belief can be optimally updated according to Bayes’ theorem, which 

computes the posterior probability of the hypothesis given the observation and the prior belief 

p(belief | sensory input) α p(sensory input | belief) × p(belief) (Equation 1.1) 

 
For example, consider the case of a person predicting if it would rain on a particular day in 

London. The person has two pieces of information: 1) he observes dark clouds in the sky, and 

knows from experience that dark clouds are often observed on rainy days (i.e. the likelihood of 

the observation given the belief, or p(sensory input | belief)). 2) He also knows that it often rains 

in London (i.e. the prior, or p(belief)). Bayes theorem provides a statistically correct means of 

combining these two pieces of information to arrive at the probability that it will rain on that day 

(i.e. the posterior, or p(belief | sensory input)).  
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 The beliefs represented by a Bayesian system are not static. Instead, they can be 

optimally updated based on experience. Let us consider again the previous example. Consider 

the case where this individual experienced dark cloudy skies with no rain for a month-long stay 

in London. From a rational perspective, it would make sense to update the belief that it often 

rains in London. A Bayesian system would do this optimally, according to Bayes theorem 

(Equation 1.1). The posterior distribution is not merely a prediction about whether it would rain, 

but can also be used as the new prior of whether it usually rains. This new prior can then be 

updated using another new observation. In other words, a Bayesian system performs sequential 

learning by integrating multiple observations over time and updating beliefs accordingly. With 

an increasing number of observations, the Bayesian system arrives at an increasingly accurate 

estimate of the belief. 

 In summary, the Bayesian approach provides a normative framework of learning. 

Bayesian systems are normative in the sense that they provide a statistically correct means to 

optimally combine different pieces of information. This allows the learning agent to arrive at 

beliefs about the world that are statistically correct given observed data. 

1.1.2. Reinforcement Learning 

 Reinforcement learning (RL) provides an alternative framework to study and understand 

learning. RL methods were first developed within the operations research and artificial learning 

communities, but have since been applied to study human and animal learning (Balleine, Daw & 

O’Doherty, 2008). In the RL framework, learning is characterized as the process by which a 

decision-maker updates the values of choices based on reward or punishment received (Sutton & 

Barto, 1998). Similar to Bayesian systems, RL models formalize the learning process in precise 

mathematical terms.  
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 In particular, RL models are concerned with learning the optimal policy that maximizes 

reward in a given task. Here, a policy refers to a mapping of possible states to possible actions. 

In other words, a policy determines what actions the agent will take in a given state. States can 

be thought of as different configurations of stimuli that describe the environment while actions 

are the different decisions the agent can make in a given state. Given a particular action in a 

particular state, the agent receives a reward with a certain probability. The action will also move 

the agent (possibly stochastically) from one state of the world to another. The reward received at 

each state is drawn from a distribution defined by the reward function, while the probability of 

moving from one state to another is defined by the transition function. The goal of the agent is to 

take a sequence of actions that maximizes the overall, long-term reward received in the task. The 

agent does this by learning an estimate of the value function, or the expected net long-term 

reward associated with each state or state-action pair. Policies, reward functions, transition 

functions and value functions are components shared by all RL models. RL models primarily 

differ on assumptions about how the value function is learned. 

 One influential RL model is the temporal-difference (TD) model proposed by Sutton and 

Barto (1990; 1998). The TD model is an extension of the Rescorla-Wagner model of Pavlovian 

conditioning (Rescorla & Wagner, 1972) that allows an agent to learn about long-term values. 

Like the Rescorla-Wagner model, the TD model builds on the assumption that learning happens 

when there is a discrepancy between what was expected and what actually happened. In 

particular, learning in the TD model is driven by a “surprise signal”, or prediction error, that 

quantifies the difference between the expected value of a state and the observed value of a state 

at a given a time point. Importantly, the value of a state takes into account both immediate 

rewards as well as potential future rewards. The expected value of future rewards is determined 
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(Equation 1.2) 
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�t+1 = rt+1 + �V (St+1)� V (St)

V
new

(S
t

) = V
old

(S
t

) + ⌘�
t+1

by the expected value of the next observed state, scaled by a discount factor. The discount factor 

captures the notion that later rewards are worth less than earlier ones. Thus, the prediction error 

is calculated as follows: 

 
 

 where δt+1 is the prediction error at time t+1, rt+1 is the reward received, γ is the discount factor, 

V(St+1) is the expected value of the next observed state and V(St) is the expected value of the 

previous state. The prediction error is then used to update the expected value of the current state 

according to the following equation: 

 

where η is a learning rate parameter that determines how much the expected value of the current 

state is updated on each trial. In a given task, it is assumed that the agent has the opportunity to 

repeatedly sample the reward probabilities and transition probabilities associated with the 

different states. Each time the agent is in a particular state, it can incrementally update its 

expectations about that state based on the observed outcome. With sufficient experience (and 

suitable setting of learning rates), the estimate of an expectation eventually converges to its true 

value.  

 In summary, RL provides an alternative framework within which to analyze and study 

learning. A RL agent learns from trial and error to associate environment states with expected 

values that take into account predictions of long-term future consequences. Given these expected 

values, the agent can then formulate an optimal policy aimed at maximizing rewards and 

minimizing punishments. 

 



Running Head: SELECTIVE ATTENTION AND LEARNING 
	
  

13 

1.1.3. Learning in Animals and Humans 

 Thus far, I have discussed learning in abstract mathematical terms. The Bayesian and RL 

frameworks provide normative computational principles for solving the learning problem, but 

can they be applied to learning in animals and humans? Furthermore, is there evidence that the 

underlying computations are implemented in the brain? In this section, I review the literature on 

the behavioral and neural correlates of learning, and discuss how they might relate to Bayesian 

and RL computations. 

Reinforcement Learning and the Reward Prediction Error Hypothesis of Dopamine 

In recent years, the study of learning has been heavily influenced by findings and theories 

concerning the computational role of neuromodulators such as dopamine, acetylcholine and 

serotonin (Daw & Doya, 2006; Doya, 2008). In particular, the dopaminergic system has 

generated much interest among researchers. While early theories had posited that dopamine 

encodes a reward signal (Ettenberg, 1989; Wise et al., 1978; Wise, 1982), later results were 

inconsistent with this original hypothesis. In one pioneering study, Schultz and colleagues (1993) 

conducted single-cell recordings of dopamine neurons in monkeys performing a spatial delayed 

response task. They showed that dopamine firing to primary rewards transferred to a reward-

predicting cue over the course of learning. The authors interpret their results as suggesting that 

dopamine neurons were not responding to rewards per se, but were instead sensitive to the first 

available cue that predicted reward. Prior to learning, the first predictor of reward would be the 

delivery of reward. However, after the monkey learned the association between cue and reward, 

it could predict the delivery of reward based on the appearance of the cue. Hence, if dopamine 

encodes the expectation of reward rather than reward itself, dopamine neurons would respond at 

the onset of the reward-predicting cue and not during delivery of reward. 
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 It was not long before researchers recognized the strong resemblance between dopamine 

firing patterns and learning signals in RL models (Montague et al., 1995; 1996; Schultz et al., 

1997). According to the TD model, prediction errors are generated when actual outcomes deviate 

from expected outcomes. Prior to learning, the largest prediction error would be generated at 

time of the unexpected reward. However, if the agent can fully predict the reward based on an 

external cue, a prediction error would no longer be generated at the time of reward. This is 

reminiscent of the dopamine firing patterns reviewed earlier. Such similarities have prompted 

researchers to propose the reward prediction error hypothesis of dopamine, which suggests that 

dopamine encodes a learning signal akin to the prediction error term (Montague et al., 1996). 

Much evidence has since accumulated in favor of this hypothesis. Several studies have shown 

that the magnitude of the dopaminergic response to the reward-predicting cue scales with the 

reward probability associated with the cue, as would be predicted by a TD model (Fiorillo et al. 

2003; Morris et al. 2004). Furthermore, when dopamine responses were analyzed at the trial-by-

trial level, firing patterns on each trial coincided with the prediction error computed by a TD 

model (Bayer & Glimcher, 2005). 

 Supporting evidence has also emerged in the literature on human learning. Due to the 

invasiveness of single-cell recordings, researchers have primarily relied on functional magnetic 

resonance imaging (fMRI) to probe neural processes associated with reinforcement learning in 

the human brain. fMRI measures a blood-oxygen-level-dependent (BOLD) signal, which is 

thought to be a correlate of neural activity. Prediction errors computed by TD models have been 

found to correlate with the BOLD signal in dorsal and ventral striatal areas (McClure et al., 

2003; O’Doherty et al., 2003). The striatum receives strong projections from midbrain dopamine 

neurons and it is reasonable to speculate that BOLD activity in the striatum might reflect 
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dopaminergic activity. As the neural mechanisms underlying the BOLD signal remain debated, 

the fMRI studies are, at best, indirect evidence for the reward prediction error hypothesis of 

dopamine. It should be noted, however, that RL models not only predict neural activity, but also 

human choice behavior, providing additional support for the use of RL as a framework to study 

human learning and decision-making (Niv, 2009).  

Bayesian Computations in Brain and Behavior 

 In general, the Bayesian framework has been more often applied to study decision-

making rather than learning per se. Bayesian models are commonly used to account for both 

behavior and patterns of neural activity associated with making choices between different 

options (Beck et al., 2008; Yang & Shadlen, 2007). Less is known about how Bayesian systems 

might be involved in learning the values associated with the choices or the sequence of actions 

that maximize long term rewards. That said, there is evidence that under certain conditions, 

learning can be better described by Bayesian models than by other theories. For example, 

Behrens and colleagues (2007) demonstrated that a Bayesian learner predicted choice behavior 

better than various RL models in a task environment with changing levels of volatility. Volatility 

was operationalized as the likelihood that reward contingencies in the task would change over 

time. The Bayesian learner was able to keep track of the levels of volatility in the environment 

and adaptively modulate the rate at which estimates of reward probability change. This was 

similar to the strategy employed by the human participants, who weighed information received 

during volatile conditions more than information received during stable conditions. Furthermore, 

the authors found that activity in the anterior cingulate cortex (ACC) correlated with the levels of 

volatility computed by the Bayesian learner, suggesting that the brain might perform 

computations consistent with a Bayesian approach.  
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1.1.4. The Curse of Dimensionality 

 The evidence thus far indicates that existing behavioral and neural data fit nicely with 

normative computational principles. Without a doubt, the convergence of mathematically precise 

computational principles with experimental data has revolutionized the study of learning by 

providing researchers with a framework to infer the underlying mechanisms and computations 

from behavioral or neural data. However, it should be noted that most learning experiments have 

been conducted under simplistic laboratory controlled settings where only a few salient cues are 

associated with particular reward probabilities. While Bayesian learning and RL can account for 

learning under such controlled conditions, they do less well in explaining learning in complex 

multidimensional situations reminiscent of real-world situations.   

 It is a well-known problem in operations research and machine learning that the number 

of states of a task increases exponentially with increasing number of dimensions on which these 

states are defined. Bellman (1957) referred to this as the curse of dimensionality. A fully 

Bayesian learning model would maintain a probability distribution for each feature in each 

dimension. The computational resources required to store and update these representations would 

increase combinatorially with number of dimensions. As such, it may become computationally 

intractable to perform the necessary calculations in a high-dimensional space (Mathys et al., 

2011). RL models also do not fare well in high-dimensional environments. RL algorithms assign 

values to states (or state-action pairs). As the number of possible states increases, the amount of 

experience required to arrive at an approximately correct value of each state also increases. 

Given this limitation, RL models would be highly inefficient in our multi-dimensional world.  

 Despite the limitations of these computational models, both animals and humans are able 

solve complicated learning problems given limited experience. As such, it is apparent that 
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current computational models have grossly underestimated the learning capabilities of biological 

agents. One proposed solution has been to combine Bayesian and RL approaches. Specifically, a 

Bayesian system is thought to learn the task structure (i.e. the space of possible states) that will 

be acted upon by RL processes (Gershman, Niv & Cohen, 2010; Jacobs & Kruschke, 2010; 

Wunderlich et al. 2011). Such Bayesian-RL hybrids have been shown to lead to the optimal 

solution given a reasonable number of trials. While some studies have demonstrated that 

Bayesian-RL hybrids predict behavioral data better than fully RL or fully Bayesian models 

(Gershman et al., 2010; Wunderlich et al. 2011), a recent study suggests that participants’ 

behavior can be better explained by a simpler strategy of serial hypothesis testing via selective 

attention to each feature in the dimension space (Wilson & Niv, 2012). Employing selective 

attention as a strategy to navigate the complex multidimensional world may represent a trade-off 

between optimal learning and computational demands. This perspective is consistent with 

contemporary theories of attention as a cognitive control mechanism that facilitates information 

processing by filtering behaviorally relevant information from behaviorally irrelevant 

information (Miller & Cohen, 2001). It is on that note that I turn to the second part of my 

literature review. 
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1.2. Attention 
 The functional role of attention in regulating cognitive processes has been known since 

the dawn of experimental psychology (James, 1890). Since then, much work has been done to 

uncover the psychological and neural underpinnings of attention. Notable findings include 

evidence of our limited attention capacity (Lavie & Tsal, 1994; Rees et al., 1997), that attention 

modulates behavioral (Posner, 1980; Treisman & Gelade, 1980) and neuronal (Moran & 

Desimone, 1985; McAdams & Maunsell, 1999) responses, and that attention mechanisms are 

modulated by both top-down and bottom-up processes (Cheal & Lyon, 1991; Kastner et al., 

1998). In this section, I review the relevant literature on the psychological and neural basis of 

attention, with an emphasis on different models of attention. These models provide the necessary 

theoretical framework within which we can interpret existing findings. I also focus my 

discussion on the visual domain, as much more is known about visual selective attention relative 

to attention in other modalities. 

1.2.1. Mechanisms of Attentional Selection 

Attention allows for the selection of behaviorally relevant information while filtering out 

behaviorally irrelevant information. One central theme in attention research is to chart out the 

different levels of processing at which selection occurs. Attention researchers have identified 

four main types of attentional selection: space-based attentional selection (Kastner et al. 1998; 

McAdams & Maunsell, 1999; Moran & Desimone, 1985), feature-based attentional selection 

(Treue & Martinez-Trujillo, 1999; Maunsell & Treue, 2006), object-based attentional selection 

(Duncan, 1984; O’Craven et al., 1999) and object category-based attentional selection (Peelen et 

al., 2009; Seidl et al., 2012). Different experimental paradigms engage different types of 
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attentional selection. For example, space-based attentional selection is often studied using spatial 

cueing paradigms while feature-based attentional selection is studied with feature-based search.  

Regardless of the level at which attentional selection is operating, there are several 

commonalities in its modulatory effects on neural activity. Firstly, attention enhances the 

neuronal response in brain regions selective for the attended information (e.g., a feature, object, 

object category or location in space). Secondly, attention suppresses the neuronal response to 

unattended information.  In addition, attention has been shown to increase baseline neural 

activity of neurons with receptive fields within the attended location, even in the absence of 

visual stimulation  (Kastner et al., 1999; Luck et al., 1997). However, experiments by McMains 

and colleagues (2007) suggest that the attentional modulation of baseline activity might be 

specific to spatial attention, as attending to a particular feature did not increase the baseline 

activity of feature-selective neurons. Their results indicate that there might be inherent 

differences between the mechanisms underlying different levels of attentional selection. 

 It should be noted that while different levels of attentional selection are often studied 

separately, the distinctions between them are not necessarily behaviorally relevant. One can 

easily imagine the case where an observer attends to a particular feature of a specific object from 

a certain category located at a particular location in space. In real life, these attentional selection 

mechanisms often operate in parallel to modulate information processing.  

1.2.2. A Biased Competition Account of Attention 

 According to the biased competition model proposed by Desimone and Duncan (1995), 

the modulatory effects of attention can be best understood in the context of competitive 

interactions between multiple stimuli in the visual field. The model assumes that processing 

capacity of visual information is limited and that different objects in the visual field compete 
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with one another for neuronal representation. Attention operates by biasing competition in favor 

of relevant stimuli. The bias is driven by both bottom-up processes such as attention to salient 

stimulus properties (Reynolds & Desimone 2001; Kastner & Beck, 2005), and top-down 

cognitive processes such as directed attention (Kastner et al., 1998, Reynolds et al., 1999). While 

the biased competition model was first proposed as a theory of spatial attention, it has since been 

expanded to include other forms of attentional selection (Desimone, 1998). 

 Much evidence has accumulated in favor of the biased competition model. Both monkey 

electrophysiology and human fMRI studies find that neuronal response to a stimulus is 

suppressed by the presence of nearby distractors (Reynolds et al., 1999; Kastner et al., 1998; 

Kastner & Beck, 2005). This suppression has been interpreted as the result of competitive 

interactions between different objects. Attention processes resolve this competition by biasing 

processing resources in favor of attended stimuli. When attention is directed towards a stimulus, 

it counteracts the suppression induced by nearby distractors. The neuronal response to the 

stimulus is as strong as when the stimulus is presented alone. Interestingly, attention has no 

effect on neural activity when the stimulus is presented without distractors. That is, the response 

to a stimulus presented alone is not different when attention is directed towards it than when 

attention is directed away from it. Such results argue against earlier theories that viewed 

attention as a mental spotlight that enhances the processing of stimuli within the spotlight. 

Instead, it is consistent with the view that attention acts on competitive interactions and that 

modulatory effects would only be observed in the presence of competition. 

1.2.3. Attention as Cognitive Control 

 Miller and Cohen (2001) incorporated a similar biased competition framework into their 

model of cognitive control. This work was highly important and influential because it bridged 



Running Head: SELECTIVE ATTENTION AND LEARNING 
	
  

21 

attention, which had until then been primarily studied as a perceptual process, with executive 

function. According to the model, the prefrontal cortex (PFC) is an important source of the top-

down biasing signals driving attention mechanisms. In particular, the PFC actively maintains a 

representation of what is currently task relevant. This representation is maintained as a sustained 

pattern of neural activity that guides activity flow along task-relevant pathways in other parts of 

the brain. In the context of visual attention, PFC activity biases competition in favor of task-

relevant visual input. Within this framework, attention is a cognitive control mechanism that 

adaptively modulates information processing based on current task demands. 

 This model is supported by the wealth of evidence implicating the PFC in encoding and 

actively maintaining internal representations. Depending on the task, these representations could 

be attentional templates, perceptual categories, or abstract behavioral rules (Duncan, 2001; 

Freedman et al., 2001; Miller et al., 2002; Wallis et al., 2001; Woolgar et al., 2011). When an 

animal or person performs a task, the PFC exhibits persistent activity specific to the task 

demands (Brass & von Cramon, 2004; Curtis & D’Esposito, 2003). This persistent activity then 

directs attention towards task-relevant information (Miller & Cohen, 2001). It should be noted 

that the PFC does not work in isolation in modulating cognitive control. Instead, it interacts with 

posterior parietal regions to allocate top-down attentional resources (Brass & von Cramon, 2004; 

Corbetta, 1998; Fassbender et al., 2006). In particular, it has been argued that since the PFC 

represents information in abstract terms, the information has to be transformed into a reference 

frame suitable for space-specific or response-specific bias signals. The posterior parietal cortex 

(PPC) is thought to be involved in such transformations (Anderson & Buneo, 2002). 
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1.2.4. Fundamental Components of Attention 

 Recently, Eric Knudsen (2007) proposed a conceptual framework of attention that draws 

heavily from the earlier models of Desimone & Duncan (1995) and Miller & Cohen (2001). The 

goal of this conceptual framework was to present a way of thinking about attention that 

facilitates the analysis of attention in terms of the underlying neurobiological mechanisms. 

Knudsen’s framework is useful in two ways. Firstly, it breaks down attention into fundamental 

components, or distinct functional processes that make unique and essential contributions to 

attention. By identifying the key functional components of attention, we can study attention in 

terms of basic neural mechanisms that might be shared with other cognitive processes. Secondly, 

it frames the control of attention in the context of a recurrent loop between different component 

processes. According to this perspective, attention is not controlled by a one-off signal from a 

mental switch, but is continuously modulated by the processing of incoming information. 

  The framework proposes that four processes are fundamental to attention: bottom-up 

salience filters, competitive selection, working memory and top-down sensitivity control. 

Salience filters automatically enhance responses to stimuli with salient properties. For example, 

stimuli that “pop-out” from the visual scene because they are distinct from the surrounding 

context, or because they appear infrequently, are more likely to be attended to. Sensory 

information about the world passes through the salience filters and competes for access to 

cognitive resources. This competition is further biased by the agent’s internal representation of 

the world, which among other things, encodes what is currently task relevant. Information that 

wins the competitive selection process then gains access to working memory. Here, working 

memory is analogous to the PFC’s active maintenance of information as proposed by Miller and 

Cohen (2001), and is responsible for directing top-down biasing signals to further enhance the 
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sensitivity of representations currently held in working memory. In other words, sensory 

information competes for representation in working memory. The information with the greatest 

signal strength controls working memory and also directs top-down bias signals that modulate 

the signal strength of ascending representations. As such, the voluntary control of attention can 

be thought of as a recurrent loop involving working memory, top-down sensitivity control and 

competitive selection. The idea of a recurrent loop is an important one, because it allows for 

feedback processes to act on each of the components. Interestingly, Knudsen did not incorporate 

learning processes in his framework of attention. However, evidence suggests that attention 

biases are modulated by learning and feedback (Duncan, 2001; Gottlieb, 2011). This interaction 

between attention and learning mechanisms is the focus of the final part of my literature review. 
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1.3. Learning to Selectively Attend 
 
 In the previous sections, I have reviewed learning and attention as independents lines of 

research. However, the two cognitive processes are intricately related and often operate in 

tandem in any given behavioral task. In this section, I discuss the relationship between learning 

and attention. 

1.3.1. Cognitive Processes are Guided by Internal Representations 

 As reviewed earlier, the real world is incredibly complex and multidimensional. Learning 

on all possible dimensions is potentially intractable. For learning to be efficient, we should only 

learn on the dimensions of the environment that are currently relevant. Selective attention has 

been proposed as the mechanism by which learning is constrained (Gershman et al. 2010, Wilson 

& Niv, 2011). By attending to the relevant dimensions, only relevant information will gain 

access to working memory (Knudsen, 2007; Miller & Cohen, 2001). As working memory is 

responsible for the evaluation and manipulation of information, attending to the relevant 

information would constrain learning to representations that are currently active. 

An accurate model of the task environment is crucial to the coordination between 

learning and attention. The agent needs to first know what aspects of the environment are 

important before it can direct cognitive resources towards the relevant information. In other 

words, the agent needs to build an internal representation of the world to guide its cognitive 

processes. While much is known about how learning and attention operate on this representation, 

less is known about how this representation is learned in the first place. Moreover, in real life 

situations, where the environment is constantly changing, what is relevant right now might not be 

relevant later. As such, it would be adaptive to be able to update one’s internal representation 

based on ongoing feedback. 
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1.3.2. Structure Learning  

 As briefly outlined earlier (see section 1.1.4.), structure learning by a Bayesian system 

has been proposed as one of the mechanisms involved in building and updating a representation 

of the world. Specifically, a Bayesian system can compute a probability distribution about what 

is currently relevant based on observed data. Attention and learning are then focused only on the 

relevant aspects of the environment. In a related line of work, several investigators have applied 

a Bayesian framework to explain attentional selection (Dayan, Kakade & Montague, 2000; 

Dayan, Yu & Cohen, 2009; Gershman et al., 2010). In particular, Dayan and colleagues (2000) 

demonstrated that selective attention to particular stimuli can arise naturally from statistical 

inference of the association between stimuli and reward. Gershman and colleagues (2010) 

developed a similar model to explain attention to dimensions. The important point here is that 

Bayesian learning provides a method to compute a statistical correct representation of the world 

that allows for optimal allocation of attention.  

1.3.3. Serial Hypothesis Testing  
 
 Recently, Wilson and Niv (2011) demonstrated that human choice behavior on a 

multidimensional decision-making task was better described by a suboptimal strategy based on 

serial hypothesis testing of the relevance of each feature of the environment rather than by the 

normative strategy based on Bayesian inference over all features at once. They formalized this 

serial hypothesis testing strategy as a selective attention model that assumed participants 

attended to each feature in turn and tested if the feature predicted reward. When sufficient 

evidence accumulated indicating that the feature did not predict reward, the model switchded its 

focus of attention randomly to another feature. The authors interpreted their results to suggest 

that while Bayesian inference is optimal, it might be too computationally demanding for the 
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brain. Instead, participants rely on an alternative strategy that is computationally efficient but 

statically suboptimal.  

Wilson and Niv acknowledged that there are many other possible variants of the selective 

attention model that might better predict participants’ choice behavior. In particular, they 

commented that participants are unlikely to randomly select the next focus of attention, as had 

been assumed by their current model. As such, it would make sense to extend the existing model 

by incorporating a decision rule to determine the next focus of attention. 

1.3.4. Value-Driven Attention 

  One possible strategy is to preferentially allocate attention to stimuli with high learned 

value (i.e., stimuli that have acquired value by association with rewards). There is accumulating 

behavioral and neural evidence suggesting that animals and humans do indeed direct attention to 

stimuli that have been reliably paired with rewards (Anderson, Laurent & Yantis, 2011a; 2011b; 

Hickey et al. 2010; Peck et al., 2009; for a review see Gottlieb, 2012). For example, Anderson 

and colleagues (2011a) demonstrated that visual search for a target is slowed by the presence of a 

non-salient, task-irrelevant distractor item that has been previously associated with monetary 

reward in a separate training session. In a follow-up experiment, they showed that a distractor 

associated with a larger reward slowed visual search more than an equally salient distractor 

associated with a smaller reward (Anderson et al., 2011b). Their results suggest that attention is 

biased towards stimuli that have acquired value via associative learning. Furthermore, the 

magnitude of attention bias scales with the learned value of the stimulus. 

While little is known about the neural basis of value-driven selective attention in humans, 

Peck et al. (2009) provided neural evidence of related mechanisms in the monkey brain. In their 

task, monkeys were trained to saccade to a target in response to a visual cue. Each trial began 
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with 50% prior probability of reward. However, the visual cue signaled with certainty whether 

the trial will end with a reward or no reward. To progress to the next trial, monkeys had to 

saccade to a target that appeared after the disappearance of the visual cue. The target was located 

randomly either at the same or opposite location of the cue. To maximize reward in this task, 

monkeys had to saccade to the target as quickly as possible regardless of the type of cue. 

However, the authors found that behavioral performance was facilitated when the target 

appeared on the same side as a cue associated with reward, but impaired when the target 

appeared on the opposite side. Importantly, opposite results were observed when visual cue was 

associated with no reward. As the facilitation and interference effects were spatially specific, 

they were likely to be brought about by a spatial attentional bias rather than global changes in 

arousal or motivation. The authors interpreted their results as suggesting that attention is 

automatically biased towards stimuli that have been associated with rewards. They also found 

that the attentional effects correlated with sustained activity in the lateral interparietal area (LIP), 

an area commonly implicated in attention control. In her review of the experiment, Gottlieb 

(2012) speculated that the value-driven orienting of attention might arise through modulation of 

LIP activity by dopamine prediction error signals. 

1.3.5. A Proposed Framework for Attention Learning 

 This thesis aims to present a theoretical framework for thinking about the relationship 

between attention and learning that integrates the threads of research reviewed thus far. The 

proposed attention learning framework builds on the findings of Wilson & Niv (2011), but 

incorporates a value-driven component to attention allocation. In this section, I lay out the two 

main assumptions of the framework and describe testable predictions that follow from these 

assumptions.  
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Firstly, the framework assumes that learning mechanisms act on an attentionally-filtered 

representation of the world (Assumption 1). Attention facilitates learning by biasing processing 

resources towards relevant information. Assumption 1 would predict that a choice model 

incorporating participants’ focus of attention would account for learning behavior better than a 

choice model that does not incorporate participants’ focus of attention (Prediction 1). 

Importantly, participants can attend to one or more dimensions at the same time. The model 

assumes that this attentional focus is dynamically adjusted according to the outcomes of ongoing 

decisions (Assumption 2). Specifically, attention is preferentially allocated to stimuli that 

consistently predict reward and diverted away from stimuli that do not consistently predict 

reward. Assumption 2 would predict that the attended stimuli would also be stimuli with high 

learned value (Prediction 2). 

In the following chapters, I present the results from a series of new experiments that 

tested these predictions. In these experiments, participants played a multi-dimensional 

probabilistic decision-making task where only one dimension was relevant for predicting reward. 

Their behavior was then analyzed using computational models. Each model made different 

assumptions about participants’ strategy in solving the task. Based on how well each model fits 

behavioral data, I made inferences about how learning processes might interact with attention 

processes to guide adaptive behavior. 
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Chapter 2 

General Methods 

 In this chapter, I describe the general experimental design and computational models 

common to all three experiments reported in this thesis. The current approach builds heavily on 

the earlier work of Gershman et al. (2010) and Wilson & Niv (2011). As was the case in those 

studies, participants performed a multidimensional decision-making task with probabilistic 

rewards. The behavioral data were then analyzed using different computational models that make 

different qualitative assumptions about behavior. Testing the quantitative predictions of the 

models against actual behavioral data provided an empirical measure of how well each 

qualitative assumption described participants’ behavior.  

2.1. The Faces/Houses/Tools (FHT) Task 
 
 The Faces/Houses/Tools (FHT) Task used in the current series of experiments was first 

developed by DeWoskin (2011). It is a variant of the task used in Gershman et al. (2010) and 

Wilson & Niv (2011), which was in turn based on the Wisconsin Card Sorting Task (Milner, 

1963). The task uses compound stimuli, each defined along three dimensions (Figure 2.1). Here, 

dimensions are operationalized as object categories – faces, houses and tools. Each stimulus 

contains an exemplar from each of the three categories, vertically arranged into a column. The 

exemplars can be thought of as features of the dimensions. On each trial, the stimuli were 

generated by randomly assigning a feature on each dimension to each stimulus. That is, on every 

trial, each stimulus was a random combination of a face, a house and a tool. Faces, houses and 

tools were chosen as the dimensions for two reasons. Firstly, these are well-learned categories 

and participants would intuitively group the individual features along the object categories when 
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presented with the stimuli (Mahon & Caramazza, 2009; Martin, 2007). Secondly, these 

categories are represented in partially distinct brain areas such that attention to the object 

categories can be decoded by applying pattern-classification algorithms to neuroimaging data 

(Norman et al., 2006; Peelen et al., 2009; see Experiment 2). 

On each trial, participants were presented with three stimuli. They were tasked to choose 

one of the stimuli and were rewarded based on their choice. The trials were organized into games 

of 25 trials. In any one game, only one of the dimensions was relevant to determining reward and 

only one feature in that dimension was considered the “target” feature and was associated with a 

high probability of reward. If participants chose the column containing the most rewarding 

feature in the relevant dimension, they would receive a reward (1 point) with 0.75 probability 

and no reward (0 points) with 0.25 probability. If they chose a column that did not contain the 

most rewarding feature, they would receive a reward with 0.25 probability and no reward with 

0.75 probability. Probabilistic rewards were used to better emulate real-world learning where 

outcomes are rarely deterministic. Probabilistic rewards also prolonged the learning process and 

afforded more power for detailed computational analyses on the dynamics of learning. 

To maximize reward received, participants had to figure out the most rewarding feature 

in the relevant dimension and choose the column containing that feature as many times as 

possible. Participants were not told which feature was the target feature and had to figure it out 

through trial-and-error over the course of a game.  
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Figure 2.1. An example trial of the FHT task. Participants were presented with three 
options, each containing a face, a house and a tool. They had 1.5s to choose one of the 
three columns. Following which, the outcome was displayed for 0.5s. This was followed 
by 0.5s of ITI before the next trial begins. 
 
 

2.2. Trial-by-Trial Modeling of Behavior 

 The attention learning framework proposes that the interaction between learning and 

attention is highly dynamic, and is modulated on a trial-by-trial basis in response to feedback. 

As such, trial-averaging or block-averaging methods commonly used to study attention would be 

ill-suited for the current set of studies as they do not keep track of the response and outcome 

histories from trial to trial. Instead, a more fine-grained approach is necessary to chart out the 

dynamic relationship between attention and learning. One such approach is to use computational 

models. In recent years, computational models have been used to analyze both behavioral and 

neural data (for a review and detailed tutorial of the approach see Daw, 2009). The appeal of 

computational models lies in their ability to formalize qualitative assumptions as quantitative 

hypotheses that make predictions about behavior on each trial based on the choices and outcomes 
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on preceding trials. This allows experimenters to investigate how the specific history of events 

influences current behavior. In addition, computational models can be used to generate hidden 

variables that underlie the mechanisms being studied. For example, computational models have 

been used to track value estimates and prediction errors, which are in turn used as regressors to 

search for corresponding neural correlates (Kable & Glimscher, 2009; Niv, 2009). Given these 

properties, computational models are well-suited for the current set of analyses.  

2.2.1. Notation  

For clarity, I preface my description of the different models by defining the notation used 

in this thesis. The relevant dimension (faces, houses or tools) on trial t is denoted by d ∈ {1, 2, 

3}. The target feature on that dimension (i.e., the specific face, house or tool) is denoted by f ∈ 

{1, 2, 3}. The three stimuli presented on trial t are denoted by the matrix st = [st(1), st(2), st-

(3)], where each st is a vector that stores the features of the corresponding stimulus. For 

example, st(1) = [2, 1, 3] implies that stimulus 1 on trial t contains the 2nd face, 1st house and 

3rd tool. The participant’s choice is denoted by ct where ct ∈ {1, 2, 3} while the reward received 

is rt where rt ∈ {1, 0}. c1:t and r1:t denote the set of choices and rewards from trial 1 to trial t. 

For compactness, we define D1:t = (c1:t, r1:t) as the past history of choices and rewards up to 

trial t. The reward probability of the most rewarding feature is ρh while the reward probability of 

other features is ρl. 
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2.2.2 Bayesian Model 

Given choices and outcomes from all previous trials, the Bayesian model computes the 

posterior probability distribution over the identity of relevant dimension and target feature (i.e., 

p(d, f | D1:t)). Using this posterior probability distribution, the model then computes the 

expected reward of each stimulus (Gershman et al., 2010). The expected reward of each stimulus 

can be taken as the expected value associated with that stimulus. Since reward is either 1 or 0, 

the value of a stimulus is equivalent to its reward probability given past choices and outcomes. If 

the agent had explicit knowledge about the identity of the most rewarding feature and the 

relevant dimension, the computation of value would be straightforward: The value of a stimulus i 

would be given by  

 

 

 

However, as the identity of d and f are unknown, the model has to marginalize out 

uncertainty over d and f. Hence, the value of stimulus i is given by: 

 

In other words, the value of a stimulus is the expectation of reward weighted by the probability 

that each dimension-feature pair is the most rewarding one, summed over all dimensions and 

features for that stimulus. 

On each trial, the model makes a choice and receives reward feedback on that choice. 

This feedback is then used to update the probability distribution over all dimensions and features: 

p(rt+1|D1:t, st+1(i)) =
X

d

X

f

p(rt+1|d, f, st+1(i))p(d, f |D1:t) (Equation 2.2) 

(Equation 2.3) p(d, f |D1:t+1) / p(rt+1|d, f, ct+1)p(d, f |D1:t)

(Equation 2.1) 
st+1(i) if               contains    in  	
  ⇢h f d

⇢l otherwise	
  
p(rt+1|d, f, st+1(i))



Running Head: SELECTIVE ATTENTION AND LEARNING 
	
  

34 

  

where the likelihood p(rt+1 | d, f, ct+1) equals to ρh if a reward was received and ct+1 contained  

f in d, 1-ρh if a reward was not received and ct+1 contained f in d, ρl if a reward was received 

and ct+1 did not contain f in d, 1-ρl if a reward was not received and ct+1 did not contain f in d. 

The new posterior distribution, p(d, f | D1:t+1), is then normalized and used as the prior 

distribution in computing values for the next trial (Equation 2.2). 

 The Bayesian model is a model of optimal learning. On every trial, it gains information 

about all dimension-feature pairs and computes a statistically correct value estimate to guide 

action.  

2.2.3 Function Approximation Model (Uniform Weighting) 

This model treats each compound stimulus as a weighted sum of its features. In this 

instantiation of the model, each feature is weighted uniformly. Essentially, the model generalizes 

across different possible configurations of stimuli and stores a weight for each dimension-feature 

pair. The value of choosing a stimulus is then the average of its feature weights. 

 

 
 
where wt is the weight matrix and wt(d, st(ct)) is the weight of the feature on dimension d of the 

chosen stimulus. On each trial, wt is updated using the TD learning rule 

 

 
 
 
 

wt+1(d, st(ct)) = wt(d, st(ct)) +
1

3
⌘�t+1

(Equation 2.5) 

(Equation 2.6) 

(Equation 2.4) Vt(ct) =
1

3

3X

d=1

wt(d, st(ct))

�t+1 = rt+1 � Vt(ct)
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In particular, the prediction error, δt+1, is distributed equally across the three features of the 

chosen stimulus. In other words, the function approximation (FA) model assumes that 

participants weight each dimension equally and learn on all dimensions of the chosen stimulus. 

Unlike the Bayesian model, the FA model does not maintain a posterior distribution over the 

different features. Instead, it keeps track of a point estimate of the weights associated with each 

feature. 

2.2.4. Function Approximation Model with Decay 

This model computes stimulus value (Equation 2.4) and updates feature weights 

(Equations 2.5 and 2.6) using the same equations as the FA model just described. To avoid 

confusion with the FA model, I refer to this model as the Decay model. It is a decay model in the 

sense that weights of unchosen features are “decayed” to zero at a particular rate:	
  	
  

	
  
	
  
	
  

where c’t refers to the unchosen stimuli and ηk is a free parameter that determines the rate of 

decay. The higher the value of ηk, the faster the decay. If a feature is consistently not chosen, the 

weight associated with the feature eventually decays to zero. The decay can be thought of as 

gradual forgetting of the weights of unchosen features over the course of a game. It also allows 

the model to effectively behave as a selective attention model. The assumption here is that 

participants attend only to the chosen stimulus and not the unchosen stimuli. In addition, 

participants might attend to a specific feature and make choices based on the attended feature. If 

participants choose the same feature over the course of a few trials, the weight associated with 

that feature would increase while all other weights are decayed. As each stimulus is defined on 

three dimensions, features from the other two dimensions would be randomly combined with the 

wt+1(d, st(c
0
t)) = (1� ⌘k)wt(d, st(c

0
t)) (Equation 2.7) 
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attended feature. However, as the combinations of features are random, features on the non-

attended dimension would not be chosen reliably, and the weights associated with them would 

not increase significantly. In the case where participants are attending to only one feature at a 

time, the Decay model behaves similarly as the serial hypothesis testing model proposed by 

Wilson & Niv (2011). However, unlike the serial hypothesis testing model, the Decay model 

allows participants to focus on more than one feature at the same time. For example, there might 

be trials in which two features (on different dimensions) are consistently paired together for 

several trials. It is possible that participants are attending to both features and testing two 

hypotheses simultaneously. If the two features are chosen together, the decay model can emulate 

such diffused attention.  

2.2.5. Choice Probabilities 

The computational models were applied to generate predictions of participants’ choice 

behavior on each trial. Specifically, choice probabilities were computed according to the 

commonly used softmax action selection rule: 

 

 

where π(c) is the probability of choosing choice c in the current trial, Vt(c) is the value of this 

stimulus configuration in the current trial, a represents each action that could be taken in the 

current trial (i.e., each available stimulus configuration on that trial). β is an inverse-temperature 

parameter that determines the balance between “exploration” and “exploitation”. When β is 

high, the agent is more likely to exploit known information and choose the option with the 

highest value. When β is low, the agent will explore less-valued options more frequently. 

(Equation 2.8) ⇡t(c) =
e�Vt(c)

P
a e

�Vt(a)
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According to the softmax rule, choice probabilities are weighted as a function of their expected 

value. The higher the value of a choice, the more likely it will be chosen. Including β as a free 

parameter then allows for a degree of stochasticity in participants’ choice behavior. 

2.2.6. Model Comparison 

Each of the models makes different assumptions about participants’ behavior (Figure 

2.2). The Bayesian model assumes optimal learning and uses Bayes’ Theorem to compute a 

statistically correct probability distribution of the identity of the most rewarding dimension-

feature pair over all features and dimensions. It also assumes the most diffused focus of attention 

in that all available information is used to update the PDFs. The FA model is less optimal than 

the Bayesian model. Instead of maintaining and updating probability distributions, it learns 

weights associated with each feature. These weights are point estimates that do not take 

uncertainty into account. As such, the FA model does not make optimal use of available 

information. The FA model also assumes a stronger focus of attention. Instead of learning on all 

dimensions and features, the FA model only learns from the chosen features. The Decay model is 

the least optimal model of the three. Since the target feature does not change within a game, the 

optimal estimate of value should take into account all past outcomes. The Decay model, 

however, “forgets” information associated with unchosen features over the course of the game. 

In addition, the Decay model assumes the strongest attention focus. As described earlier, the 

weight decay allows the Decay model to emulate a selective attention model. If participants 

consistently attend and choose the same features, those features will have the strongest weights 

and would dictate choice. 
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Figure 2.2.  Different models make different assumptions about attention and learning.  
 

These different assumptions can be thought of as hypotheses about the attention and 

learning processes giving rise to the behavioral data. Importantly, the hypotheses can be tested 

against one another by comparing how well the models explain empirical data. Several metrics 

have been proposed for the purpose of model comparison (see Daw, 2009 for a discussion of the 

merits and pitfalls of each). In this thesis, I evaluated model fits using the Bayesian Information 

Criterion (BIC; Schwarz, 1978), which approximates the posterior probability of a model given 

behavioral data. Specifically, I first optimized the model parameters by minimizing the log 

posterior of the data using the Matlab function fmincon. The best fitting parameters were then 

used to compute the BIC approximation to the Bayesian evidence Em for each model: 

 
 
 
where p(D|M,  𝜃M) is the probability of data D given model M and optimal parameters 𝜃M, 

while m and N refers to the number of free parameters and data points respectively. The BIC 

approximation accounts for the number of free parameters with a penalty term (second term of 

Equation 2.9). To provide a more intuitive measure of model evidence, I divided the total 

Bayesian evidence of each model by the number of trials for which a participant provided a 

(Equation 2.9) 
Em ⇡ log(p(D|M, ✓̂M )� m

2
log N
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response, and exponentiated it to yield a corrected average likelihood per trial. The corrected 

average likelihood per trial varies between 0 and 1, and can be interpreted as the average 

likelihood of each choice given a particular model. Hence, an average likelihood per trial of 1/3 

would indicate that the model is at chance at predicting choices, and that the data provides no 

support for the model.  

 For convenience, the list of free parameters for each model, along with accompany priors 

and constraints, are summarized in Table 2.1. 

 

Model	
   Parameter	
   Prior	
   Constraints	
  
Bayesian	
  
	
  	
  

β	
  
	
  	
  

Gamma(2,3)	
  
	
  	
  

0	
  ≤	
  β	
  ≤	
  ∞	
  
	
  	
  

FA	
   β	
   Gamma(2,3)	
   0	
  ≤	
  β	
  ≤	
  ∞	
  
	
  	
   η	
   none	
   0	
  ≤	
  η	
  ≤	
  2*	
  
	
  	
   	
  	
   	
  	
   	
  	
  
Decay	
   β	
   Gamma(2,3)	
   0	
  ≤	
  β	
  ≤	
  ∞	
  
	
  	
   η	
   none	
   0	
  ≤	
  η	
  ≤	
  2*	
  
	
  	
   ηk	
   none	
   0	
  ≤	
  ηk	
  ≤	
  1	
  

 
Table 2.1. List of parameters with accompanying priors and constraints used in the 
model-based analysis. * In the function approximation models, value was computed as 
the average of three feature weights (Equation 2.4) and the prediction error was 
distributed evenly across three different features (Equation 2.5). Following this 
formulation, learning rate η	
  is 9 times larger than that of conventional reinforcement 
learning update functions. Hence, learning rate η	
  was allowed to vary from 0 to 2, rather 
than the conventional 0 to 1, so that value estimates would be on the same scale as 
reward. 
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2.3. Overview of Current Series of Experiments 

In this thesis, I ran a series of experiments aimed at testing the assumptions of the 

attention learning framework. Experiment 1 investigated participants’ learning strategies by 

applying computational models to analyze choice behavior in a multidimensional decision-

making task (Chapter 3). In Experiment 2, I combined fMRI and eye-tracking methods to 

develop a technique for decoding the focus of attention at a trial-by-trial level (Chapter 4). I then 

applied this decoding technique in Experiment 3 to investigate the trial-by-trial dynamics of the 

interaction between learning and attention (Chapter 5). 
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Chapter 3  

Experiment 1: Modeling Behavior in the FHT Task 

  In Experiment 1, I tested the three models on behavioral data from participants 

performing the FHT task. Following Gershman et al. (2010) and Wilson & Niv (2011), I 

hypothesize that participants do not attend to all dimensions of the stimuli when they learn and 

make choices. Given that working memory constraints limit the maximum amount of cognitive 

resources one has available for the processing and storage of information, the maintenance of 

previously processed information would become increasingly difficult as new information is 

encountered (Baddeley, 2003). As such, I also hypothesize that individuals would gradually 

forget information of features they have not been attending to. Hence, I predict that the Decay 

model would account for behavioral data better than the FA and Bayesian models. 

3.1. Methods 

Participants 

Eighteen participants were recruited from the Princeton community (4 male, 15 female, 

ages 18-30, mean age = 20.8). All participants reported normal or corrected-to-normal vision. 

The study was approximately 60 minutes in length. Participants received $12 in compensation 

for their time. Participants also received a cash bonus (up to $6) depending on their performance 

on the task. Informed consent was obtained from each participant at the start of the session. The 

study was approved by the Princeton University Institutional Review Board. 
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Materials 

Stimuli consisted of black and white cartoon images of faces, houses and tools (Figure 

2.1). Stimuli were presented using Psychtoolbox (Kleiner, Brainard & Pelli, 2007) in Matlab. 

Participants responded using a keyboard connected to the presentation computer.  

Procedures 

Participants were first provided with instructions that explained the basic design of the 

task. They were shown the stimulus display of an example trial. The display consisted of three 

columns of images, each containing a face, a house and a tool. The vertical ordering of image 

categories changed from game to game. Participants were told that they had to select one of the 

three columns and that they would be rewarded based on their choice. They were informed that 

in any one game, only one category of images (faces, houses or tools) would be relevant to 

predicting reward and only one image in that category is associated with a high probability of 

reward. Participants were told that they should try to get as much reward possible and that they 

would receive a cash bonus based on their performance.  

On each trial, participants had 1.5 seconds to choose a stimulus before the trial was 

aborted. If participants failed to choose a stimulus after 1.5 seconds, the stimuli were removed 

from screen and a “Too Slow” message was delivered on the center of the screen for 0.5 seconds. 

If a stimulus was selected, the two unselected stimuli disappeared from the screen and the 

outcome (“You win 1 point” or “Sorry, 0 points”) was displayed on the top and on the bottom of 

the chosen stimulus for 0.5 seconds. Following which, there was a 0.5 seconds inter-trial-interval 

before the next trial began (Figure 2.1). At the end of each game, participants were told the 

number of points they won in that game. 
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Participants first played three instructed games in which they were told the relevant 

object category. These instructed games were included for participants to familiarize themselves 

with the structure of the game. Following which, the experiment began. The experiment ended 

after participants played 56 games (1400 trials). 

Statistical Analyses 

All statistical tests were carried out in MATLAB. Unless otherwise stated, t-tests were 

two-tailed paired sample t-tests, with alpha = 0.05. 

3.2. Analysis and Results 

Behavioral Performance 

Task performance was evaluated by calculating the percentage of correct choices as a 

function of the number of trials in a game. This was then averaged across games and subjects to 

generate the learning curve in Figure 3.1. To be clear, correct choices were defined as choices 

where participants chose the column containing the most rewarding feature. Chance performance 

was defined as 33% (1 in 3 chance of choosing the correct column). More detailed analyses 

indicated that performance on the first 3 trials was not significantly different from chance (t(17) 

=  0.86, p = 0.40) while performance on the last 3 trials was significantly better than chance 

(t(17) =  21.38, p < 0.001), demonstrating that participants were able to solve the task over the 

course of a game. 

Model-Based Analysis 

Behavioral data were analyzed using the three models described in section 2.2 .(i.e., the 

Bayesian model, the FA model and the Decay model). The models were fit for each subject 

separately and the best-fitting values for each parameter were used for subsequent analyses. 

Table 3.1 summarizes the mean best-fit values for each free parameter in the different models.  
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Figure 3.1. Performance on the FHT task as a function of number of trials after the start 
of the game. Performance was averaged across games and subjects (solid black line). 
Shaded area indicates S.E.M. Dashed line indicates chance level (33%) 

 

Model	
   Parameter	
   Mean	
  (±SEM)	
  
Bayesian	
  
	
  	
  

β	
  
	
  	
  

4.07	
  ±	
  0.18	
  

	
  FA	
   β	
   23.75	
  ±	
  2.66	
  
	
  	
   η	
   0.21	
  ±	
  0.019	
  
	
  	
   	
  	
  

	
  Decay	
   β	
   11.79	
  ±	
  0.63	
  
	
  	
   η	
   1.01	
  ±	
  0.04	
  
	
  	
   ηk	
   0.55	
  ±	
  0.025	
  

 

Table 3.1. Summary of best-fit estimates of model parameters (Mean and SEM) 

 
Figure 3.2. shows the average likelihood per trial of each model. All models performed 

better than chance (Bayesian model: t(17) = 11.4, p < 0.001; FA model: t(17) = 15.9, p < 0.001; 

Decay model: t(17) = 19.4, p < 0.001). The Decay model provided the best fit to behavioral data 

with an average likelihood per trial of 0.57 (SEM = 0.012). The Bayesian model performed the 

worst, with an average likelihood per trial of 0.41 (SEM = 0.007). Average likelihood per trial of 
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the FA model was in between at 0.50 (SEM = 0.010). A paired t-test indicated that the Decay 

model performed significantly better than both the Bayesian model (t(17) =  13.89, p < 0.001) 

and the FA model (t(17) =  21.7, p < 0.001). The FA model also performed significantly better 

than the Bayesian model (t(17) =  8.89, p < 0.05). 

 

 
Figure 3.2. Corrected average likelihood per trial of each model. All models performed 
significantly better than chance. The Decay model performed significantly better than the 
FA model and the Bayesian Model (p < 0.001). The FA model performed significantly 
better than the Bayesian Model (p < 0.05). ** p < 0.001)  

 
 
3.3. Discussion 
 
 In this experiment, participants performed a multi-dimensional decision-making task with 

probabilistic rewards. In any given game, only one dimension was relevant in determining 

reward and only one feature (the target feature) was associated with a high reward probability. 

Participants had to figure out the target feature in the relevant dimension through trial-and-error 

feedback. The learning curve indicates that participants were able to solve the task. Over the 

**	
  
**	
  

**	
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course of a game, they were able to figure out the target feature and choose it consistently to 

obtain maximum reward.  

To study the strategy participants used to solve the task, I compared the fits of three 

different models to participants’ trial-by-trial behavior. The Bayesian model performed worst in 

accounting for participants’ choices, suggesting that participants did not employ an optimal 

Bayesian strategy that learns on all features and dimensions at the same time. This is consistent 

with the results of other experiments using similar paradigms (Gershman et al., 2010; Wilson & 

Niv, 2011). Between the remaining two models, the Decay model accounted for participants’ 

behavior better than the FA model. Both of these models update the weights of chosen features 

based on reward feedback. The key difference between the Decay model and the FA model is 

that the Decay model decays the weights of unchosen features at a certain rate every trial. There 

are two possible reasons why decaying unchosen weights would allow the Decay model to 

perform better than the FA model. Firstly, participants might be using working memory to 

maintain a representation of all the feature weights. As working memory capacity is limited, 

information about earlier trials might be forgotten as participants progress through a game. This 

forgetting is captured by the Decay model but not by the FA model. Secondly, participants might 

be employing selective attention in solving the task. That is, participants might be learning and 

making their decisions based on only a subset of features at each point in time. The weight decay 

allows the Decay model to approximate a selective attention model because only features being 

attended to and consistently chosen can acquire a significant weight. Choice behavior is then 

dominated by features that have been consistently attended to.  

The results of Experiment 1 suggest that participants utilize a suboptimal strategy of 

learning only about chosen features and that they gradually forget the weights of unchosen 
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features. They also provide preliminary evidence that participants selectively attend to a subset 

of features to make choices and learn from outcomes. However, because there was no measure of 

participants’ focus of attention in the experiment, it would be hasty to conclude that participants 

employ selective attention to solve this task. In the next experiment, I develop and test a method 

of decoding attention that can be used to directly study the effects of attention on learning at the 

trial-by-trial level. 
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Chapter 4  

Experiment 2: Decoding the Focus of Attention 

One central challenge in studying attention-related processes is that attention is a hidden 

psychological process that is difficult to measure concretely. In a multidimensional decision-

making task like the FHT task, where each option is defined by multiple features, it is not 

possible to directly infer participants’ focus of attention from choice data alone. In other words, 

because participants choose a compound stimulus consisting of face, a house and a tool on each 

trial, it is not possible to know whether they are choosing the stimulus because of the face, the 

house, the tool, or some combination of these features. This is particularly problematic if we are 

interested in studying trial-to-trial changes in the focus of attention. The Decay model 

circumvents this problem by implicitly tracking the sequence of choices, which can help make 

inferences about attention. That is, because the model preserves the weights of chosen features 

while decaying those of unchosen features, we can read out participants’ focus of attention from 

the feature weights. However, the Decay model can at best provide an indirect measure of 

attention. To better study the dynamic interaction between learning and attention, a more precise 

method is needed. In Experiment 2, I designed and tested a novel technique that decodes the 

focus of attention at the trial-by-trial level by combining eye-tracking with fMRI methods.  

Eye-tracking involves measuring participants’ point of gaze. The method has been used 

to localize attention in various experimental paradigms (Grant & Spivey, 2003; Rehder & 

Hoffman, 2005). The assumption here is that the point of gaze reflects the focus of attention. As 

such, eye fixations to a particular location in space can be interpreted as attention to that spatial 

location. This assumption is supported by a wealth of evidence suggesting that eye movements 
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and attention processes are tightly linked (Deubel & Schneider, 1996; Kowler et al., 1995). As 

the stimulus dimensions are spatially separated in the FHT task, eye fixations to the different 

dimensions can be measured and taken as a proxy measure of attention to those dimensions. 

 Attention, however, can operate covertly in the absence of overt motor behavior (Juan, 

Shorter-Jacobi & Schall, 2004; Posner, 1980). Eye-tracking captures only overt attention and 

does not provide a measure of covert attention. To measure covert attention, I turned to pattern 

classification of fMRI data (Norman et al., 2006). The approach was motivated by findings 

indicating that different object categories are represented in the brain by partially distinct 

patterns of neural activity (Mahon & Caramazza, 2009; Martin, 2007). A pattern classifier can 

then be trained to decode the object category being processed given a particular pattern of 

activity (Haxby et al., 2001). As attention biases processing in favor of attended stimuli, the 

pattern of neural activity would also reflect the focus of attention (Peelen et al., 2009; Peelen & 

Kastner, 2011).  

 In this experiment, to verify and test the utility of both measures of attention, participants 

performed a variant of the FHT task in which the relevant dimension was revealed to them at the 

start of each game. Assuming that participants are rational and optimal, they would attend only 

to the relevant dimension throughout the game. Participants performed the task in an MRI 

scanner while their brain activity was recorded and their eye movements were tracked. A linear 

support vector machine (SVM) was used to decode participants’ focus of attention from fMRI 

data. The output of the SVM on each trial was then combined with eye-tracking measures to 

obtain a final prediction of the focus attention. The accuracy of the technique was evaluated by 

comparing the predictions with participants’ focus of attention as determined by the instructions 

in each game. 
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4.1. Methods  

Participants 

Five participants were recruited from the Princeton community (3 males, 2 females, ages 

18-20, mean age = 19). All participants were right-handed and reported normal or corrected-to-

normal vision. The study was approximately 120 minutes in length. Participants received $40 in 

compensation for their time. They also received a cash bonus (up to $6) based on performance. 

Informed consent was obtained from each participant at the start of the session. The study was 

approved by the Princeton University Institutional Review Board. 

Materials 

Stimuli consisted of grey-scaled photographs of famous faces (Albert Einstein, Abraham 

Lincoln, George Clooney), famous landmarks (Big Ben, Notre Dame, Taj Mahal) and common 

tools (hammer, screwdriver, spanner) (Figure 4.2). This change was implemented following 

results from a pilot study indicating that the SVM was better at classifying neural activity evoked 

by this set of stimuli than that evoked by cartoon images of faces, houses and tools (results not 

shown).  

Procedures 

Participants performed three different tasks that were run within the same scanning 

session: (1) one-back detection task (henceforward, 1BDT) (2) three-dimensional one-back 

detection task (3D1B) and (3) instructed FHT task (iFHT). Participants were provided with 

instructions and practiced each task before the start of the scanning session.  

One-back detection task (1BDT). On each trial, participants were presented with three 

images from one object category. In any one game, the same three images from the same object 

category were used. Participants’ task was to respond with a button press when the order of three 
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images on the current trial matches that from the previous trial (Figure 4.1). The order of images 

was pseudorandomized such that there was a 1/3 probability that the order on each trial was the 

same as that on the previous trial. The images were presented for 1.4s during which participants 

could make their response with a button press. Following which, the outcome of the trial was 

presented for 0.5s. Correct hits (responding when a response was required) were rewarded with a 

gain of 3 points while misses (failing to respond when they should) and false alarms (responding 

when a response was not required) were punished with a loss of 3 points. Correct rejections did 

not incur a reward. Each trial was followed by a 0.1s ITI. Participants performed 2 runs of the 

one-back detection task, each containing 21 games of 10 trials each (210 trials per run). One 

third of the games were Face games that showed images of Einstein, Lincoln and Clooney in 

different orders. One third of the games were Landmark games that showed images of Big Ben, 

Taj Mahal and Notre Dame in different orders. The remaining one third of the games were Tool 

games that showed images of a hammer, a screwdriver and a spanner in different orders. Within 

each run, the game types were presented in counterbalanced order using a Latin square design to 

minimize possible order effects.  

Three dimensional one-back detection task (3D1B). On each trial, participants were 

presented with all 9 images from the 3 object categories. However, only one of the categories 

was behaviorally relevant. Participants were instructed regarding the relevant category, and told 

to attend only to this category and ignore the other two categories. They were instructed to 

perform the one-back detection task on the relevant category (Figure 4.2). The relevant category 

changed every few trials, always in an instructed way. Each game consisted of 45 trials and each 

category was relevant 5 times in a game. A change in the relevant category was signaled by a red 

rectangle around the new relevant category. The order of relevant categories was 
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counterbalanced using a Latin square design to minimize possible order effects. On each trial, the 

stimulus display would be presented for 1.4 seconds, during which participants can make their 

response. Following which, the outcome of the trial was presented for 0.5s. Outcomes were 

determined as in the one-back detection task. Each trial was followed by a variable ITI (2-6s, 

Mean = 3.51s). Participants performed 2 runs of the three dimensional one-back detection task, 

each consisting of 3 games (135 trials per run). 

 

 

 
Figure 4.1. Three example trials of the one-back detection task (1BDT). The order of 
faces on trial 3 is the same as the order of faces on trial 2. Participant responds correctly 
and is rewarded with three points. 
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Figure 4.2. Three example trials of three dimensional one-back detection task (3D1B). 
On trial 1, the relevant category is landmarks. On trial 2, the order of landmarks is the 
same as that on trial 1. Participant responds correctly and is rewarded with three points. 
On trial 3, the relevant category is changed to tools, as indicated by the red rectangle. 
Participant should now play the one-back detection task on tools, and as such not respond 
even if the order of the landmarks is the same as that on the previous trial. 
 

Instructed FHT task (iFHT). This was a variant of the FHT task in which participants 

were told the relevant dimension at the start of each game. To maximize reward, participants had 

to figure out the most rewarding feature in that dimension over the course of the game. On each 

trial, participants had 1.5 seconds to choose a stimulus before the trial was aborted. Outcome was 

determined as in the original FHT task, and was displayed for 0.5 seconds. Each trial was 

followed by a variable ITI (2-6s, Mean = 3.51s). At the end of each game, participants were 

asked to indicate the correct dimension of that game. This was to ensure that participants 

understood the instructions and were attending to the correct dimension. Data were excluded for 

games in which participants answered this question incorrectly. Participants performed two runs 

of the iFHT task. Each run consisted of 18 games of 10 trials each (180 trials per run). In one-
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third of the games, face was the relevant dimension, in another one-third, landmark was the 

relevant dimension and in the remaining one-third, tool was the relevant dimension. The 

different game types were presented in counterbalanced order using a Latin square design to 

minimize possible order effects. 

Eye-tracking methods. Eye-tracking data were acquired using the iView X MRI-LR 

system (SMI Sensomotoric Instruments) with a sampling rate of 60 Hz.  The system output files 

were then analyzed using in-house MATLAB code. Data from before 200ms after each stimulus 

offset were discarded to account for saccade latency. 

 fMRI methods. Imaging data were collected using a 3-Tesla MRI scanner (Siemens 

Skyra; Siemens). At the start of each session, a high-resolution T1-weighted structural image of 

the participant’s brain was obtained (magnetization-prepared rapid acquisition gradient echo 

sequence; TR = 2300 ms; TE = 3.1 ms; flip angle = 9°; voxel size = 1 × 1 × 1 mm3). Participants 

performed 6 functional runs in the following order: 1 run of 1BDT, 2 runs of iFHT, 2 runs of 

3D1B and 1 run of 1BDT. Stimulus onset on each trial was time-locked to the start of a TR. For 

all functional runs, 34 transverse slices were acquired in interleaved order (echo planar sequence, 

TR = 2000 ms; TE = 30 ms; flip angle = 71°; voxel size = 3 × 3 × 3 mm3). Slices were tilted at 

30° to the AC-PC line to minimize distortion and signal loss in orbitofrontal cortex and the 

medial temporal lobes. Image volumes were preprocessed using FEAT v.5.98 that is available as 

part of the FMRIB software library (FMRIB, Oxford, UK).  Volumes were motion corrected 

using FSL’s MCFLIRT with the first volume of the first run as the reference volume. The 

optimization uses trilinear interpolation. Each functional scan was also linearly detrended and 

transformed into z-scores using the PyMVPA software package (Hanke et al., 2009).  
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Linear SVMs with a fixed regularization parameter of C = 1 were trained on data from 

either the 1BDT or 3D1B task to distinguish between the three different object categories given 

patterns of neural activity. Analysis was restricted to voxels in a ventral visual stream mask 

consisting of the bilateral occipital lobe and ventral temporal cortex (Figure 4.3). The mask was 

created in MNI space and transformed into each participant’s native space using FSL’s FLIRT 

implementation. Classification was implemented within PyMVPA using the LIBSVM software. 

 

Figure 4.3. Ventral visual stream mask (orange) overlaid on brain template in MNI space. From 
left, coronal, sagittal, and axial slices. 
 

4.2. Analysis and Results 

 Predicting Attention using Eye-Tracking. A rectangular area of interest (AOI) was 

defined around each object category (Figure 4.4). The proportion of eye-fixations within an AOI 

between 200ms after stimulus onset to outcome offset was taken as a measure of attention to the 

corresponding category. The object category with the highest proportion of fixations was taken 

as the prediction of the focus of attention on that trial. When the predictions were compared to 

participant’s actual focus of attention in iFHT games, mean accuracy was 73.4% and 

significantly above chance (t(4) =  3.6, p < 0.05) (Figure 4.5).  
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Figure 4.4. Areas of interest (shaded area) for each object category. 

 

Predicting Attention from fMRI Data. When the SVM was trained on data from the 

1BDT, mean accuracy in predicting the focus of attention in the iFHT was 65.7% and 

significantly better than chance (t(4) = 6.3, p < 0.05) while accuracy in predicting the focus of 

attention in the 3D1B task was 72.6% on average and also significantly better than chance (t(4) = 

5.6, p = 0.005). When the SVM was trained on data from the 3D1B task, mean accuracy in 

predicting the focus of attention in the iFHT task was 81.3%, which was significantly better than 

chance (t(4) = 10.5, p < 0.001) (Figure 4.5). The difference in accuracy when the SVM was 

trained on the 3D1B and when the SVM was trained on the 1BDT was marginally significant 

(t(4) = 2.3, p = 0.08).  In contrast, the SVM trained on the 3D1B task was not significantly 

different than that from eye-tracking (t(4) = 1.2, p = 0.29),  

Composite Measure of Attention. To obtain a composite measure of attention, the 

proportion of eye-fixations to a category on each trial was multiplied by the corresponding 

output from the classifier. The classifier was trained on the 3D1B task. This choice was 

motivated by two factors. Firstly, there was a marginally significant increase in classifier 

performance when training on data from the 3D1B task as compared to the 1BDT. Secondly, the 
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3D1B task was more similar to the actual FHT task in that all three object categories were 

presented to the participant on each trial and the focus of attention could switch every few trials. 

The combined measure of attention was normalized to a value that ranged from 0 to 1. The 

object category with the highest value was taken as the prediction of the participants’ focus of 

attention on that trial. The mean accuracy of the combined measure was 89.4% and was 

significantly better than chance (t(4) = 15.4, p < 0.001). This accuracy was higher than that 

obtained from eye-tracking or pattern-classification alone, but the differences were not 

statistically significant (compared to eye-tracking: t(4) = 1.99, p = 0.11; compared to pattern 

classification: t(4) = 1.8, p = 0.14). 

 

	
    
Figure 4.5. Decoding accuracies of different methods. ET: Eye-tracking; fMRI: Pattern 
classifier trained on data from 3D1B task; ET+fMRI: Composite measure of attention 
combining ET and fMRI. All accuracies were significantly above chance (dashed line) 
but not significantly different from one another.  *p < 0.05; ** p < 0.001) 
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4.3. Discussion 

 The aim of this experiment was to develop and test a technique that decodes the trial-by-

trial focus of attention in the FHT task. Participants played a variant of the FHT task in which 

they were told the relevant dimension at the start of each game. Assuming that participants 

attended only to the relevant dimension throughout the game, this provided the ground truth 

needed to evaluate the accuracy of different decoding methods. Both eye-tracking and pattern 

classification of fMRI data were highly accurate in predicting participants’ focus of attention. 

Surprisingly, the pattern classifier trained on data from 3D1B task performed better than the 

pattern classifier trained on the 1BDT. In the 3D1B task, participants were shown all 9 images 

from all three categories. In contrast, participants were presented with one object category at a 

time in the 1BDT. One would expect the 1BDT to provide “cleaner” training data to the 

classifier and thus lead to high classification accuracies. However, one possible reason why 

training on data from the 1BDT would lead to lower classification accuracies is that the 1BDT 

was organized into games in which the same object category was shown for 10 consecutive 

trials. This would result in strong temporal autocorrelations between training patterns for the 

same object category. As such, noise would be strongly correlated between training patterns and 

would hurt classification performance (Pereira, Mitchell & Botvinick, 2009). In contrast, the 

focus of attention switched every few trials of the 3D1B task and the training patterns were 

spread further apart. Hence, even though the 3D1B task had fewer trials overall, it provided a 

better set of training data than the 1BDT. 

 One might worry that accuracy in decoding the focus of attention in the iFHT task would 

not translate to accuracy in decoding the focus of attention in the regular FHT task. This is 

particularly so since the iFHT task was organized into games of 10 consecutive trials in which 
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participants attended to the same object category. In contrast, the focus of attention might change 

every few trials in the regular FHT task as participants cannot be sure of the relevant category on 

each game. This might be problematic for the decoding of attention by pattern classification of 

fMRI data due to the temporal smoothing caused by the hemodynamic lag. Specifically, the 

BOLD signal associated with one category on a particular trial might be modulated by the signal 

associated with other categories on previous trials, thus confusing the classifier.  To test the 

temporal resolution of our decoding methods, I trained a classifier on data from the 1BDT and 

tested it on data from the 3D1B task. The 3D1B task is similar to the regular FHT task in that the 

focus of attention switches every few trials. Accuracy in predicting attention during the 3D1B 

task was high at 72.6%, suggesting that the method is able to decode the focus of attention with 

reasonable temporal resolution. 

 I then combined the eye-tracking results with the pattern classification results to obtain a 

composite measure of attention. The composite measure predicted the focus of attention better 

than eye-tracking or pattern classification alone, but the differences were not statistically 

significant. Given that there were only 5 participants and that the difference was trending 

towards significance, more data should be collected before conclusions are drawn about 

performance difference between the composite measure and its individual components. 

Nevertheless, it can be argued that there is value in using the composite measure as a predictor of 

attention. In the current experiment, participants were always instructed regarding the relevant 

category to attend to. The optimum strategy would be to fixate only on the relevant category. As 

such, both overt and covert attention would be directed towards the same category. However, in 

the regular FHT task, participants do not know what category is relevant. In that case, there 

might be a stronger incentive to rely on covert processes to attend to multiple categories at the 
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same time. Since the composite measure of attention performs better (or at least as well) as the 

individual measures alone, I used it in Experiment 3 to track the focus of attention as participants 

played the regular FHT task. 
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Chapter 5 

Experiment 3: Attention Processes in the FHT Task 

The aim of this experiment was to investigate if participants employ selective attention to 

solve the FHT task, and to characterize how attention processes are affected by choice behavior 

and reward feedback. In Experiment 2, I developed and tested a technique for decoding the trial-

by-trial focus of attention in a variant of the FHT task. Experiment 2 demonstrated that by 

combining eye-tracking with pattern classification of fMRI data, a relatively accurate measure of 

attention can be computed. I now apply this technique to decode the focus of attention in the 

regular FHT task.  

Participants’ choice behavior was modeled using the FA model and the Decay model. 

The Bayesian model was excluded since Experiment 1 had demonstrated that it was a poor 

model of choice behavior. I also built modified versions of the FA model and the Decay model 

that incorporated an explicit selective attention component in determine choice and learning. 

If participants used selective attention to learn and make decisions, models with a selective 

attention component would predict choice behavior better than models without a selective 

attention component. I was also interested in modeling how the focus of attention was 

modulated. Based on accumulating evidence suggesting that attention is drawn to stimuli that 

have acquired high value (Anderson, Laurent & Yantis, 2011a; 2011b; Hickey et al. 2010; Peck 

et al., 2009), I predicted that attention would be directed to features that are associated with high 

value. 
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5.1 Methods 

Participants 

Eight participants were recruited from the Princeton community (3 males, 5 females, ages 

18-20, mean age = 18.9). All participants were right-handed and reported normal or corrected-to-

normal vision. The study was approximately 120 minutes in length. Participants received $40 in 

compensation for their time. They also received a cash bonus (up to $6) based on performance. 

Informed consent was obtained from each participant at the start of the session. The study was 

approved by the Princeton University Institutional Review Board. Data from one participant was 

discarded because the participant fell asleep during the experiment. 

Materials 

Experiment 3 used the same stimuli as Experiment 2 (Figure 4.2).  

Procedures 

Participants performed four runs of the FHT task and two runs of the 3D1B task, in that 

order, within a single scanning session. Prior to the experimental runs, a structural image of the 

participant’s brain was obtained. During this structural scan, participants played seven practice 

games. The first four practice games were “fast” games with ITIs of 0.5 seconds while the 

remaining three practice games were “slow” games with variable ITIs between 2-6 seconds 

(Mean = 3.5s). The “fast” games were included to facilitate the learning of the reward structure 

of the game. During experimental runs, participants only played “slow” games. Each run of the 

FHT task consisted of 6 games of 25 trials each (150 trials per run). Aside from including 

variable ITIs and using real photographs instead of cartoon images, the task was identical to the 

one used in Experiment 1. Each run of the 3D1B task consisted of 3 games of 45 trials each (135 

trials per run). The 3D1B task was identical to the one used in Experiment 2.  
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Data Acquisition and Pre-processing. Eye-tracking data and fMRI data were acquired 

and pre-processed using the same procedure as Experiment 2, except that functional volumes 

were collected with a 10% gap to allow for better coverage of the whole brain. Eye-tracking data 

were not acquired for one participant due to technical failure.  

Modifications to Models. The FA model and Decay model were modified by 

incorporating a selective attention component to value computation and update. In particular, 

stimulus value was calculated as a weighted average of the feature weights using dimensional 

attention as weights for each feature (Figure 5.1):  

 
 
 
where φd is the composite measure of attention to dimension d computed by normalizing the 

product of the proportion of eye fixations to d and the corresponding output of pattern classifier.  

 
Figure 5.1. Value computation in selective attention models. The leftmost column shows the 
attentional focus to each object category (yellow – tools; green – faces; blue – landmarks). 
Feature weights are shown on top of the corresponding feature. Value of stimulus is calculated as 
the average weight of the individual features weighted by attentional focus to the corresponding 
category. For example, the value of the leftmost stimulus (stimulus 1) is calculated by adding the 
product of the attentional focus to Tools and the weight of the screwdriver, the product of the 
attentional focus to Faces and the weight of Einstein, and the product of the attentional focus to 
Landmarks and the weight of Big Ben. 

(Equation 5.1) Vt(ct) =
3X

d=1

wt(d, st(ct))�d
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The weight updates of the chosen feature were also scaled by φd: 

 
 

5.2 Analysis and Results 

 Behavioral Performance 

Figure 5.2 shows the average learning curve for all participants. Average performance on 

the first 3 trials was not significantly different from chance (t(6) =  0.47, p = 0.66) while average 

performance on the last 3 trials was significantly better than chance (t(6) =  7.1, p < 0.001), 

demonstrating that participants were able to solve the task. 

 
Figure 5.2. Performance on the FHT task as a function of number of trials after the start 
of the game. Performance was averaged across games and subjects (solid black line). 
Shaded area indicates S.E.M. Dashed line indicates chance level (33%). 

 
Validation of Eye-Tracking Performance 

 Participants were cued to attend to specific object categories during the 3D1B task. As 

such, a measure of eye-tracking accuracy can be obtained by comparing the attentional focus 

predicted from the eye-tracking results with the categories participants were instructed to attend. 

wt+1(d, st(ct)) = wt(d, st(ct)) + �d⌘�t+1 (Equation 5.2) 
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The average accuracy of the eye-tracking predictions was 83%, which was significantly above 

chance (t(5) = 5.3, p < 0.001). 

Leave-One-Out Cross Validation of Classifier Performance 

To obtain a measure of classifier performance, I first ran a leave-one-out cross-validation 

analysis on the data from the 3D1B runs. As there were two 3D1B runs, cross-validation 

involved two iterations.  On the first iteration, one of the runs was used as the training set while 

the other was used as the testing set. On the second iteration, the training and testing sets were 

swapped. Classification accuracies for the two iterations were averaged for each participant. The 

average classification accuracy across participants was 84.3%, which was significantly above 

chance (t(6) =  43, p < 0.001). 

Model-based Analysis of Choice Behavior 

Participants’ choice behavior was first fitted using the FA model and the Decay model. 

Both models predicted choices significantly better than chance (FA: t(6) = 6.3, p < 0.001; Decay: 

t(6) = 11.3, p < 0.001). The Decay model predicted choices significantly better than the FA 

model (t(6) = 9.1, p < 0.001). Participants’ choice behavior was then fitted with the selective 

attention version of the models (FA_SA and Decay_SA). Both models also predicted choice 

significantly better than chance (FA_SA: t(6) = 6.3, p < 0.001; Decay_SA: t(6) = 8.9, p < 0.001). 

The FA_SA model predicted choice behavior better than the FA model, but the difference was 

not significant (t(6) =  1.2, p = 0.27). The Decay_SA model predicted choice behavior worse 

than the Decay model (t(6) = 2.6, p = 0.042). The mean best-fit values for each parameter are 

summarized in Table 5.1. Model-based results are summarized in Figure 5.3.  

 A post-hoc analysis comparing the fits of FA model and the FA_SA model at the 

individual participant level revealed individual differences in which model was favored for each 
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participant (Figure 5.4). For the majority of the participants (5 out of 7), the FA_SA model 

explained the data significantly better than the FA model.  

Model	
   Parameter	
   Mean	
  (±SEM)	
  
FA	
   β	
   21.3	
  ±	
  3.38	
  
	
  	
   η	
   0.27	
  ±	
  0.08	
  

	
  	
   	
  	
   	
  
FA_SA	
   β	
   15.6	
  ±	
  2.91	
  
	
  	
   η	
   0.18	
  ±	
  0.02	
  
	
  	
   	
  	
   	
  
Decay	
   β	
   12.48	
  ±	
  1.42	
  
	
  	
   η	
   1.02	
  ±	
  0.12	
  
	
  	
   ηk	
   0.57	
  ±	
  0.09	
  
	
   	
   	
  
Decay_SA	
   β	
   14.9	
  ±	
  1.73	
  
	
   η	
   0.21	
  ±	
  0.03	
  
	
   ηk	
   0.49	
  ±	
  0.09	
  
	
   	
   	
  

 

Table 5.1. Summary of best-fit estimates of model parameters (Mean and SEM) 

 
Figure 5.3. Corrected average likelihood per trial of each model averaged across all 
participants. All models performed significantly better than chance. Performance between 
FA and FA_SA models did not differ significantly. The Decay model performed 
significantly better than the Decay_FA model. *p < 0.05, **p < 0.001 
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Figure 5.4. Within-participant comparison of average likelihood per trial for FA and 
FA_SA models. Points above the diagonal are favored by the FA_SA model. The orange 
dashed line indicates the confidence interval outside of which one model is more likely 
than the other with p < 0.001. 

 

Decay Model as a Selective Attention Model 

 To test the claim that the Decay Model behaves as a selective attention model, I 

compared the trial-by-trial feature weights generated by the Decay model (with best-fitting 

parameters) to the composite measure of attention. The results indicate that on 58% (SEM = 

0.03) of the trials, the dimension with the strongest attention focus was also the dimension with 

the feature of the highest weight. This proportion was significantly above chance (t(6) = 8.6, p < 

0.001). Trials on which there was more than one feature with the highest weight were excluded 

from this analysis. 

Value and Attention 

In a separate analysis, trial-by-trial feature weights were computed using the FA model 

with the best-fitting parameters. To investigate the relationship between learned value and 

attention, I compared the feature weights on each trial to the composite measure of attention. 
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Results indicate that on 55% (SEM = 0.04) of the trials, the dimension with the strongest 

attention focus was also the dimension with the feature of the highest weight. This proportion 

was significantly above chance (t(6) = 5.6, p < 0.05).  As in the analysis with the Decay model, 

trials on which there was more than one feature with the highest weight were excluded. 

5.3. Discussion 

 Experiment 3 explored the interaction between attention and learning. Specifically, I 

applied the technique developed in Experiment 2 to decode the trial-by-trial focus of attention as 

participants performed the FHT task. This focus of attention was incorporated into computational 

models of behavior to investigate the role of attention in guiding choice and learning. If 

participants employed selective attention during choice-selection and learning, and if my 

decoding of their selective attention was accurate, models that incorporate a selective attention 

component should predict behavior better than those that do not. Furthermore, if correctly 

decoded, attention should be directed towards features that have acquired high value. The current 

results provide mixed support for these hypotheses. 

 The learning curve indicated that participants were able to solve the task in the MRI 

scanner. Model-based analysis of behavioral data indicated that the Decay model accounted for 

behavior better than the FA model, replicating the findings of Experiment 1. To study the role of 

attention, the models were then modified to include a selective attention component (FA_SA and 

Decay_SA models). Specifically, the modified models assumed that value computation and 

update is weighted by attentional focus. The attentional focus was computed by combining eye-

tracking results with pattern classification of fMRI data as described in Experiment 2. 

 Numerically, the FA model with selective attention (FA_SA) predicted choice behavior 

better than the regular FA model, but the difference was not significant. Gershman et al. (2010) 
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had earlier demonstrated that there might be individual differences in strategies. These 

differences can be masked when model fits are averaged across participants. As such, I ran a 

within-subject analysis that tested the FA_SA model against the FA model for each participant. 

The analysis revealed individual differences in which model best fit the data. For the majority of 

participants, the FA_SA model accounted for behavior significantly better than the FA model. 

However, for one participant, the FA model accounted for behavior significantly better than the 

FA_SA model. Given this small sample size, the experiment is underpowered to make 

conclusive remarks about the extent to which each model is preferred in the general population. 

Nevertheless, my results do suggest that a reasonable number of participants use selective 

attention when making choices and learning. 

 Model comparison between the Decay model and the Decay_SA model was more 

conclusive. The Decay model provided a significantly better account of behavioral data than the 

Decay_SA model for all participants. This was a surprising result, as it seemed to suggest that 

participants did not employ selective attention in solving the task. However, such a conclusion 

would be premature. As described earlier, the Decay model implicitly implements an attentional 

focus by tracking the sequence of choices. Thus, adding the composite measure to the Decay 

model might have impaired model performance by assuming an overly narrow focus of attention. 

In addition, it is possible that multiplying eye-tracking results with the outputs of the SVM 

classifier is not the right way to combine the two measures. Another important factor is that the 

model assumes that attention is constant throughout the whole trial. However, it has been 

suggested that attention during choice and attention during learning are dissociable (Gottlieb, 

2012). While attention during choice tends to be preferentially directed towards valuable stimuli, 

attention during learning tends to be preferentially directed towards stimuli with uncertain value, 
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with the goal of reducing that uncertainty. As such, participants may be attending to one 

dimension when they make a choice and attending to another dimension when they receive 

reward feedback. The Decay_SA model conflates both types of attention, which might have hurt 

its performance in predicting choice behavior. 

 To directly test the claim that the Decay model emulates a selective attention model, I 

compared the feature weights generated from the Decay model to the focus of attention predicted 

by the composite measure of attention. Indeed, the dimension of the highest-weight feature was, 

on most trials, the same dimension that the composite measure of attention predicted participants 

were most attending to. This result suggests that the feature weights of the Decay model tracked 

participants’ focus of attention. Interestingly, the same result was observed when the analysis 

was repeated with feature weights computed using the FA model, even though it did not include 

a selective attention component. One explanation is that attention was preferentially directed 

towards features that had been consistently associated with reward. This explanation would be 

consistent with previous work (Anderson, Laurent & Yantis, 2011a; 2011b; Hickey et al. 2010; 

Peck et al., 2009) and with the hypothesis that attention is modulated by learned outcomes. From 

an evolutionary perspective, such an attentional bias would be advantageous as stimuli that are 

predictive of reward tend also to be the stimuli that are relevant to behavior.  

Due to the intricate relationship between attention and learning (i.e. attention determines 

what we learn about, but we also learn what to attend to), it is difficult to deconfound the 

influence of attention process on learning from the influence of learning processes on attention 

with the current experimental design. Nevertheless, I hope the current results have provided 

evidence that attention and learning work together. Other experimental paradigms are needed to 

characterize their individual roles. 
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Chapter 6 

General Discussion 

This thesis opened with the premise that the incredible complexity of the real world 

presents serious computational challenges for learning processes. Selective attention has been 

proposed as a mechanism that facilitates learning by constraining the amount of information 

processed at any given time (Gershman et al., 2010; Wilson & Niv, 2011). Existing theories of 

learning, however, have largely ignored or simplified the role of attention. Similarly, existing 

theories of attention have rarely considered the influence of learning mechanisms on attention 

processes. In this thesis, I attempted to integrate these two largely independent bodies of research 

by presenting an attention-learning framework describing how attention and learning processes 

work hand in hand to facilitate adaptive behavior. I then conducted a series of experiments aimed 

at testing the assumptions of the framework. In Experiment 1, I conducted model-based analysis 

of participants’ choice behavior to investigate their strategy in solving a multi-dimensional 

probabilistic decision-making task. The results showed that participants adopted strategies 

favoring computational efficiency over optimality. In Experiment 2, I developed and tested a 

technique for decoding participants’ focus of attention in the same task at the trial level. In 

Experiment 3, I applied this decoding method to study how attention interacts with learning. In 

the subsequent sections of this chapter, I briefly recapitulate the ideas behind the attention 

learning framework and describe how the current results fit within the framework. Finally, I 

summarize the main lessons learnt from this work and chart out future directions. 
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6.1 The Attention-Learning framework 

 The central idea behind the attention-learning framework can be summarized as follows: 

attention determines what we learn about, but we also need to learn what to attend to. This idea 

can be broken down into two straightforward assumptions – 1) learning mechanisms act on an 

attentionally-filtered representation of the world and 2) the attention filter is dynamically 

adjusted according to the outcomes of ongoing decisions. Both assumptions have found support 

in previous empirical work. I will now discuss how the current findings are consistent with or 

deviate from previous work.  

Learning acts on an attentionally-filtered representation of the world 

 Bayesian inference provides a statistically correct strategy to integrate information across 

dimensions and across time. If participants are optimal, they ought to rely on a Bayesian strategy 

to learn and make choices. However, a fully Bayesian approach is likely to be computationally 

intractable, especially in light of limited cognitive capacity (Daw & Courville, 2008; Kruschke, 

2006). Instead, selective attention is thought to be necessary to reduce the number of dimensions 

to learn about. While this reduces computational demand, it does so at the expense of statistical 

correctness. By applying computational models to behavioral data, both Gershman et al. (2010) 

and Wilson & Niv (2011) demonstrated that participants do indeed trade statistical optimality for 

computational efficiency when solving a multi-dimensional probabilistic decision-making task. 

The results of Experiment 1 replicated this finding. The Bayesian model provided the worst fit to 

behavioral data, suggesting that participants do not employ a Bayesian strategy in solving the 

task. Instead, participants’ behavior was best described by function approximation models, which 

assume that participants incrementally update weights of chosen features (as opposed to 

maintaining and simultaneously updating a probability distribution over all features on each 
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trial). The model that best described participants’ behavior was a variant of the function 

approximation model that also decays weights on unchosen features. Since the reward 

probability of each feature does not change during a game, the optimal estimate of the reward 

probability should take into account all past outcomes. However, this may not be possible given 

memory constraints. To work within these constraints, participants might have to forget older 

information. As such, the decay is another way in which participants favor computational 

efficiency over optimality. 

 As discussed earlier, the decay rule also implements an implicit selective attention 

component to the model. If participants are attending and choosing the same feature for multiple 

trials, that feature would acquire a high weight while the other weights decay to zero. Hence, 

choice would be determined by the feature that is being attended to. To test this hypothesis, I 

developed a method to decode attention by combining eye-tracking with pattern classification of 

fMRI data (Experiment 2). I then used this method to decode the trial-by-trial focus of attention 

while participants played the FHT task (Experiment 3). I found that on most trials, the decoded 

focus of attention was on the feature with the highest weight as computed by the Decay model, 

suggesting that the Decay model was implicitly tracking participants’ focus of attention, which 

might then account for the Decay model’s superior performance in predicting choice behavior 

relative to the regular FA model. As a more direct test that participants were employing selective 

attention in their strategies, I incorporated a selective attention component to the FA model, 

which in its original form assumed that participants attended equally to all dimensions. The FA 

model with selective attention predicted choice better for the majority of the participants than the 

regular FA model, providing direct evidence that, at least for some participants, selective 

attention is an important part of their strategy in solving the task. 
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 The above results provide preliminary evidence that learning processes do not act on all 

aspects of the environment. Instead, selective attention filters the information that is processed. 

While this is suboptimal, it is computationally efficient and might be a preferable strategy given 

limited cognitive capacity. 

Attention is dynamically modulated according to the outcomes of decisions 

In the previous section, I discussed how attention facilitates learning by constraining the 

information to learn about. However, how does one decide what or where to attend to? As there 

was an explicit measure of attentional focus in Experiment 3, it was possible to test the factors 

that influence the focus of attention. In particular, I hypothesized that attention is preferentially 

directed towards stimuli that have been associated with rewards. In our models, reward 

association is captured by the weights of each feature. As such, I investigated if the focus of 

attention is related to the feature weights. The FA model was used in this analysis, as it does not 

make a priori assumptions about selective attention. Specifically, I counted the proportion of 

trials on which attention is directed towards the dimension with feature of the highest weight. 

This proportion was significantly above chance, suggesting that attention was indeed 

preferentially directed towards features that have been frequently associated with reward. This 

result suggests that the focus of attention is modulated by reward feedback. However, more 

detailed analysis needs to be conducted to investigate the dynamics of this modulation. 
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6.2 Lessons Learnt 

Efficiency-Optimality Trade Off 

 There is a trade-off between computational efficiency and statistical optimality. In the 

current series of experiments, I showed that participants tended to favor computational efficiency 

over statistical optimality. The statistically optimal strategy might prove too computationally 

demanding for our cognitive resources. This is especially so in our rich and multidimensional 

world. Recognizing this trade off can help explain why people are sometimes suboptimal in their 

choices.  

An intricate relationship between learning and attention 

 The current results suggest that there is an intricate relationship between learning and 

attention. Attention determines what we learn about, but we also learn what to attend to. 

However, the specific nature of this relationship remains to be explored. This calls for an 

integrated approach that brings together existing methods in the study of attention and learning. 

As more researchers recognize the importance of this relationship, we can hope to see a more 

concerted effort in charting out the mechanisms by which learning and attention interact in the 

near future.    

A promising experimental approach 

Perhaps the most significant contribution of this thesis is the development of an 

experimental approach that is suited to study the interaction between attention and learning. A 

multidimensional decision-making task like the FHT task creates a simplified task environment 

which nevertheless mimics the cluttered multidimensional state of the real world. As is the case 

in the real world, only a subset of the dimensions is relevant for the task at hand. We can then 

analyze participants’ strategies in solving this task and make specific inferences about how 
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people deal with multidimensional information in the real world. The FHT task is particularly 

appealing because it operationalizes dimensions as spatially separated object categories. As such, 

the focus of attention can be decoded using eye-tracking and pattern classification of fMRI data. 

In Experiment 2, I showed that this is a viable method of tracking attention on a trial-by-trial 

basis. This focus of attention can then be used as input to different computational models that are 

applied to explain participants’ behavior. The models can also make predictions about how 

attention is modulated by ongoing choices. Importantly, these computational models operate at 

the trial-by-trial level, and would have sufficient temporal resolution to investigate how attention 

and learning interact on each trial. While this approach is still in its infancy, it holds much 

promise in charting out the mechanisms underlying the interactions between attention and 

learning.  

6.3. The Way Forward 

Collecting More Data 

Both Experiment 2 and 3 suffer from small sample sizes. Perhaps the most immediate 

course of action moving forward would be to collect data from more participants for those 

experiments. It would be especially interesting to investigate if there is indeed a split between the 

strategies employed by participants such that the behavior of some participants are better 

described by a model with selective attention (FA model) while that of others are better 

described by a model without selective attention (FA_SA model). 

Refining the Computational Models of Choice Behavior 

The models can be refined to better match participants’ behavior. One promising 

approach is to investigate different methods of combining the eye-tracking results with pattern 

classifier outputs to obtain the composite measure of attention. For example, instead of taking the 
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normalized product of the two, it might make sense to take a weighted average. Each measure 

can be weighted by its relative accuracy in predicting attention during the 3D1B task. This would 

allow the composite measure to capture individual differences in how much each participant 

relies on covert vs. overt attention processes. Another possible modification is to allow for the 

dissociation between attention during choice and attention during learning. While the temporal 

resolution of fMRI might not allow for such a distinction, eye-tracking might provide us with a 

measure precise enough to differentiate between the two.  

Building a Computational Model of Attention Modulation 

 To better study the dynamics of attention modulation, it would be helpful to build a 

computational model of how attentional focus changes at a trial-by-trial level given feature 

weights. It would be particularly interesting to see if a switch in the focus of attention can be 

predicted by changes in feature weights. Such a result would provide stronger evidence that 

attentional focus is modulated by the outcomes of ongoing learning. 

Searching for the Neural Correlates of the Interaction between Learning and Attention 

Given a satisfactory model of behavior, we can proceed to search for the neural correlates 

of the interaction between learning and attention. Specifically, the model can be used to generate 

hidden variables that track the dynamics of internal attention or learning processes. Regressing 

these variables against neural data would then reveal the brain areas that take part in computing 

or signaling these quantities. Some interesting internal variables include the prediction-error term 

posited by reinforcement learning algorithms or the broadness of attentional focus. It would be 

particularly interesting to investigate how the neural structures traditionally implicated in 

learning interact with the fronto-parietal attention network. As I have fMRI data of participants 

performing the FHT task, I would be able to run this analysis in the near future. 
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