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Abstract

Shared counters are concurrent objects which provide a fetch-and-
increment operation on a distributed system and can be used to imple-
ment a variety of data structures, such as barriers, pools, stacks, and

priority queues. Diffracting trees are novel data structures that pro-
vide ineffective, high throughput and low contention, shared counter

construction. Under high loads, their performance has been shown to
surpass all known counter implementations. Unfortunately, Diffract-
ing trees of differing depths are optimal forlimited load ranges, and

a deep tree that performs well under high load performs rather poorly
when the load is very low.

Toovercome this drawback, reintroduce the Reactive Diffract-
irrg Tree, a novel Diffracting tree construction which can grow and
shrink as necessary to better handle the changing access patterns and
memory layout oftbe machine on which itrrms. Itprovides true seal-
ability and locality by dynamically “morphing” itself all the way from
a simple queue-lock based counter under low load, through a range of
increasingly deeper/shallower Diffracting trees as the load varies.

Empirical evidence, collected on a 32-node Alewife cache-
coherent multiprocessor and the Proteus distributed shared-memory
simulator, shows that the reactive diffracting tree provides throughput
within a constant factor of optimal depth Diffracting trees at all load
levels. It also proves to be an effective competitor with known random-
ized load balancing algorithms in producerlconsumer applications.

1 Introduction

Coordination problems on multiprocessor systems have received much

attention recently. Shared counters in particular are an important area
of study because the fetch-and-increment operation is a primitive that
has wide applications in concurrent algorithm design, Since good
hardware support is not readily available, there have been a variety of
software solutions presented for this problem.
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1.1 Background

Simple solutions often involve a counter protected by a mutual exclu-
sion using test-and-set locks with exponential backoff (see Agarwal,
Anderson, and Graunke [2, 3, 10]) or queue-locks (see Anderson or

Mellor-Crummey and Scott [3, 13]). These algorithms are popular
because they provide short latencies in low load situations. However,

they can not hope to obtain good throughput under high loads due to
the bottleneck inherent in mutual exclusion,

Algorithms that offer greater utilization of parallelism under high
loads are the combining trees of Yew, Tzeng, and Lawrie [19] and

Goodman, Vernon, and Woest [9], the counting networks of Asp-
nes, Herlihy, and Shavit [4], and the Diffracting trees of Shavit and

Zemach [18, 17]. These methods are highly distributed and lower the
contention on individual memory locations, allowing for better perfor-
mance at high loads.

Of the distributed methods, Diffracting trees [18] have proven
the most efficient in terms of latency, throughput, and robustness in the
face of load fluctuations [18, 17]. Diffracting trees are constructed from

simple one-input two-output computing elements called balarrcers [4]
that are connected to one another by wires to form a balanced binary
tree. Requests arrive at the root balancer of the tree and are evenly
.dvided by the balancers as they trickle down to the leaves. The tree of

bahrrcers can thus quickly distribute requests to a collection of lock-
based counters at the leaves, which in turn hand out indexes without
duplication or omission. For any given load, there is a Diffracting tree

of a certain depth that will provide optimal performance, However, a
deep tree has unwanted costs for lower loads due to its higher latencies.

One set of experiments we conducted revealed that in a low load
situation, the throughput over a fixed period of time for a queue-
lock based counter was 652 operations while the tree delivered 46

operations, With the same period of time but with a high load, the
queue-lock counter went down to 595 operations, while the Diffracting

tree rose to 5010 operations. A factor of 10 difference separates each
of these sets of numbers.

1.2 Goals

It was proven in a recent paper by Shavit, Upfal, and Zemach [17],
that the range in which a Diffracting tree of a given depth can provide
optimal performance is rather limited. Our goal is thus to make the
Diffracting tree structure dynamic, so it can react to the current load and
assume the optimal size, guaranteeing the best possible performance
over the complete range of loads in the system.
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Lim and Agarwal recently came up with an innovative reactive
mutual exclusion algoridrm [11, 12] that switches between a test-
test-and-set lock by Rudolph [14], a queue lock, and a combining

tree. They report that the algorithm performed well from the low to
mid-load ranges, as the combining tree took over for the queue lock.
Unfortunately, their approach relies on the sequential nature of mutual-

exclusion, where one processor at a time has unique access, to allow
processors to “agree” to switch among algorithms. It will thus not
work for highly distributed counter structures like Diffracting trees
which may be concurrently traversed by multiple processors. (Never-
theless, Lim and Agarwal’s methods have given us valuable insights to
reactive policy making.)

1.3 Reactive Diffracting Trees

This paper introduces the Reactive Diffracting Tree (RDT), a novel
Diffracting tree construction that allows changes on-the-fly to assume

near-optimal size and shape for a given request load. It is thus the most
effective and scalable software counter implementation known to date.

Two main insights were necessary in order to provide a reactive

construction of a highly distributed data structure such as a Diffracting
tree.

●

s

Localize decision making - grow and shrink the tree at its leaves
instead of trying to switch among trees.

Allow inconsistent views - let individual processors run opti-

mistically based on possibly inconsistent views while keeping
global behavior consistent.

Localized decision making spares processors from continuously

deciding on the overall structure of the shared counter, which is what
the Lim-Agarwal algorithm requires. A major drawback with global
decision making is that processors can get delayed while they wait for
a change to occur. Our new algorithm is based on a way of distributing
changes among local countershmcfes of the tree, so that the number of
processors directly delayed drops significantly, and when other proces-
sors arrive in the changed part of the structure, the decision has been
made and they can quickly adapt.

By allowing processes to maintain inconsistent views we are able
to minimize the need for expensive access to shared variables. Instead
of forcing a processes to maintain a coherent global state, we opt for
an optimistic approach. We let each processor mn based on a view
of the global structure which is locally cached. Though processors’
views may be inconsistent, we have developed an algorithm that guar-

antees that processes will eventually detect inconsistency and repeat
the necessary parts of their traversal so that the tree as a whole acts in
a coherent fashion. We can thus exploit the performance benefits of
caching. Our algorithm can use cache-coherence (implicit or explicitl )
to keep local copies of shared state, modifying these states infrequently
in high load situations and more frequently in the low load ones.

1Wehaveimplementeda version ofour algorithm thw has its own speciatid coherence

cnde m atlow execution on machines that do not provide cache-coherence

We evaluated RDT performance on the MIT Alewife machine of
Agarwal et. al [1]. However, since the largest Alewife machine only
has 32 nodes, we extended our experiments up to the 256 processor
range using the Proteus Parallel Hardware Simulator of Brewer, Del-
larocas, Colbrook, and Weihl [5, 6]. As we show, Proteus simulates
Alewife well, giving results that are comparable when normalized.

We compared the RDT to simple queue-locks and optimal Diffract-
ing trees of various depths and observed substantially improved scala-
bility. For example, in the same benchmark described earlier, the RDT
under low load provided 243 operations and under high load provided
3932 operations. In general our results show that the RDT performs
within a constant factor of optimal Diffracting trees at afl load levels,
and is thus the most scalable counter implementation available to date.
We believe that our ongoing efforts at tuning of the reactive policy will
allow us to reduce this factor further.

Interestingly enough, on the MIT Alewife machine we observed

that the RDT outperforms all regular Diffracting Trees. As we explain
in the sequel, this is due to its ability to assume an irregularly-shaped
tree structure, taking advantage of locality. We also show that the RDT

performs effectively in Producer/Consumer applications.

In summary, we believe that the truly scalable counter offered by
RDT will prove to be an effective tool for the design of future data struc-
tures and algorithms for multi-scale computing. We are currently busy
tuning the afgorithm and extending our approach to other data structures
such as elimination trees [16, 8]. Code for all algorithms presented in
this paper can be found at http:lltheory, Ics.mit.ed@giolcode. html.
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Figure 1: A Diffracting tree

A Diffracting tree [18] consists of balarrcers that are connected to
one another by wires in the form of a balanced binary tree, and local
counters attached to the final output wires of the tree. A balancer
continually splits the number of requests on its input wire onto its two
output wires. A local counter increments based on its depth into the
tree. Figure 1 shows a Diffracting tree of size 8. A processor starts
at the root node and balances until it reaches a leaf counter, obtains a
value, and exits.
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2.1 Balancers

A simple implementation of a balancer would be a memory location
with a lock that toggles between the values O and 1. A token locks

the location, gets the value, stores the inverse value, and exits on the

assigned wire bit. However, the lock reduces this problem to the
same as that of a lock-based counter, and does nothing to reduce the

bottleneck. Shavit and Zemach present a much better implementation
of a balancer [18], which exploits large numbers of requests by having

a prism array on which processors can meet and “pair off” onto the

two output wires, using the toggle-lock bit only as a last resort. (Our
implementation actually uses an advanced version of a Diffracting
balancer presented in [17]).

2.2 Irregular Diffracting Trees

E
0481216...
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1357911 ...

Figure 2: An Irregular Diffracting Tree

In this kind of tree, we relax the restriction that the tree must be bal-

anced. We only require that balancers have two children and counters
are only at leaves. Figure 2 shows how one would set the counter’s
increment and initial values to make it count properly.

3 Reactive Diffracting ‘llees

The irregular diffracting tree moves us towards our goal of making a
flexible stmcture. It would be expensive to change an entire tree to
a different size. However, by allowing irregular diffracting trees, we
can make Ioeal changes that would expectedly be replicated through-
out the tree, assuming that loads on subtrees of the same depth are
similar. However, if locality dictated that certain ends of the tree were
slower than other ends of the tree because of the memory layout of the

data structure, then it would be optimal to make the tree irregular to
maximize performance on that given memory layout.

We now introduce the additional state and algorithms necessary

for a Diffracting tree to be reactive.

3.1 State and Versioning Information

Once we let the tree size change, a processor needs to be able to
distinguish what state a node is presently in. We do this by adding
a state variable. This state variable initially only takes three values,
Counter, Balancer, or Off. If a processor visits an Off node, then

it would know that the tree has changed, so it would go back up the
tree until it finds a node it can successfully visit. We start with an
arbitrary-sized tree, assign an initial configuration of balancers and
counters from the root and leave the rest of the tree Off. The designer
can decide whether a real leaf of this tree can have an allocation call to

expand or if there is a static limit to the tree. We add a Counter..Li m it
state for the case where the tree shrinks, which will be explained later
on.

Checking the state variable could be potentially expensive. If the
state variable in the root of the tree continually changed, all proces-
sors accessing it would be consistently delayed, bringing performance

down. However, a sensible scaling policy would keep the tree larger
than a base counter under high loads, which would keep the root state
value unchanged. In doing so, processors can utilize cache-coherence
to keep accesses to the top level state variables relatively inexpensive.
This keeps global agreement inexpensive.

The state variable, along with an appropriate folding and unfolding
mechanism provides distinctness and does not attempt to keep the
different parts of the tree in balance. To provide a good balance, a
versioning scheme must also be added. More precisely, the goal is to
prevent a number from being handed out beyond the current number of
requests, to keep the counter in line with more traditional lock-based
counters. The key change needed is that once a balancer becomes a
counter, all requests that have passed through that balancer and have not
been satisfied have become delinquent. These delinquent processors
need to come back to the node and access it again. The way to do this
is to install a versioning scheme. When a balancer becomes a counter,
the two children need to increase their version numbers, so that if a
processor arrives at a node with a distinct version number2 from that
which its parent foretold, it would return to the parent and revisit, to

get updated. Each processor caches the versioning numbers throughout
its traversal of the tree, and if at any point it finds a differing version
number, it traverses back up the tree until it finds agreeing version
numbers, which in the worst case is the Root node whose version never
changes.3 But, for simplicity, it is kept separate here.

3.2 Folding and UnFolding

We now describe how the changes in the tree work. The operation

occurs locally at the bottom of the tree, ~ofdirrg two sibling counters
into their parent balancer, becoming a new counter, or unfolding a

counter into a balancer with two counter children.

3.2.1 Folding

A processor, upon deciding that a balancer and its children counters
need to be folded will attempt to obtain locks for all three nodes. If
it is successful, then it tests whether the 3 nodes are still in the proper

states to be folded.

2TechnicaJly, tkse version numbers are unbounded integers, but they are tmunded

by the vatues of the counters, so any implementation which handled the overtlow of the

counters could handle this as well.

3This versioning scheme can be folded into the state variable in an implementation, to

reduce sire and complexity, since versioning redly is sdditionat state.
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Then, (he two child counters’ values are compared. The values
these counters hand out are somewhat related. They share between
them all the values their parent would have handed out, alternating
between them. Imagine enumerating a list of numbers that their parent
would hand out if it was a counter. The ideal situation in folding is

that the (WOcounters’ values are adjacent on the list. Now, the value
contained in the counter’s register is the next value to be handed out.
If they are adjacent, the parent counter can be set to next hand out
the lower of the two numbers, the states are changed (the children
are turned Off), and the parent is ready to start counting. This is
demonstrated by the first picture in Figure 3.

Figure 3: Two cases of Folding, Parent node at Level 1

Now, there are cases where the two counters’ values are not ad-

jacent on this list. This is the case where some reasoning is required.
We take the maximum of the two values, find its position on the list,

and move down one notch. This next-lower value on the list is the

limit value, and it is the value assigned to the parent counter. Now, this
limir value would normally be handed out by the smaller counter, since
adjacent elements on the parent’s list are handed out by the different
counters. We make the smaller counter a Counter-Lim iL which acts
just like a Counter, except it has a limit assigned to it of the limit
value. If the smaller counter’s vafue reaches the limit value, it turns
Off and hands out no more values. The larger counter is immediately

turned Off. It is clear that this scheme avoids any over-counting, and
the second picture in Figure 3 gives an example.

3.2.2 Unfolding

Unfolding is a bit easier to understand, but has its own challenges.
The same 3 locks are set, the states are checked (we can only unfold a
Counter with two Off children.), and then we do the obvious settings.
The current counter value can be set to one of the child counters. The
next value is then set to the other child counter. Now, the problem
here is that we want the balancing to occur so that the extra request

always goes to the smaller child counter vahre, We do this by setting
the balancer’s toggle bit in the direction of the child with the smaller
value. The two different cases are shown in Ftgure 4.

Figure 4:. Two cases of Unfolding, Parent node at Level 1

4 Folding and Unfolding Policy

Most of our policy exploration was focused on studying the contention
at a counter lock. We felt that this was a good estimate for the overall
load of the tree. If the lock was always empty when a processor arrived
at the counter, then that counter should be folded into its parent. If the
lock was always overloaded, then the counter should be unfolded. We
found that observing the time it took to access the counter was a good
measure. Queue locks have the nice property that the times measured

are stable under consistent contention levels, unlike the oscillating
times a spin lock would provide.

We then designed our policy around setting thresholds for these

times. Passing below a folding threshold or taking longer than the
unfolding threshold was a good indication that the local area should
change. However, the data structure should not change based on the
opinion of one processor. Our final policy is a variant of Lim’s policy
in his reactive data structure [11]. It uses a string of consecutive times
to allow a change to occur. The minimum number of consecutive times
was a constant that was decided upon by experimentation.

5 Experimental Results

We evaluated a Reactive Diffracting Tree by running a collection of

benchmmks on both amultiprocessor machine and a simulator. The
MIT Aknvi~emachined evelopedb yAgarwalet. al. [l]was the target
machine for this implementation. However, the largest machine rmly
has 32 nodes. We then ran the same experiments on the Proteus4

simulator, developed by Brewer et. al. [6], where we were able to
extend our results to 256 processes. We ran correlation benchmarks
to show that the results were comparable, and present those results
in Appendix A. Our benchmarks inchrde index-distribution, reaction
time to spikes in load levels, and producer/consumer runs, all of which
demonstrate the advantages (and disadvantages) of the RDT structure.

4 “emion 3,M, dated February18, 1993
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5.1 Experimental Environments

The MIT Alewife machine consists of a multiprocessor with cache-
coherent distributed shared memory. Each node consists of a Spar-
cle processor, an FPU, 64KB of cache memory, a 4MB portion
of globally-addressable memory, the Caltech MRC network router,
and the Alewife Communications and Memory Management Unit
(CMMU). The CMMU implements a cache-coherent globally-shared
address space with the LimitLESS cache-coherence protocol [7]. The
primitive that Alewife provides as a read-modify-write operation is

full/empty birs. Every memory location has a fulUempty bit associated
with it. This allows for mutual exclusion, since operations are pro-

vided which allow a processor to atomically set the bit full if empty

and vice-versa.

Proteus multiplexes parallel threads on a single CPU to simulate

the Alewife environment. Each thread has its own complete virtual

environment, and Proteus records how much time each thread spends
in its various components. In order to improve performance, Proteus
does not completely simulate the hardware. Instead, local operations

are run uninterrupted on the simulating machine, and this is timed in
addition to the globally visible operations to derive the correct local
time. This limits its ability to accurately simulate the cache-coherence
policy.

5.2 Index Distribution Benchmark

lrrdex-disrr-ibudorr is the simple algorithm of making a request and
waiting some time before the request is repeated. In this case, the
amount of time between requests is randomly chosen between O and
work, a constant that determines the amount of contention present.
irork = O represents the familiar counting benchmark, providing the
highest possible contention for the number of processors given. A
higher value, usually work = 1000 is chosen to better distribute the
requests over time, providing a lower-contention environment. We
ran this benchmark for a fixed amount of time on the Alewife machine
(107 cycles), varying the number of processors and the value of work.
We also ran this benchmark on the Proteus simulator (105 cycles),
and correlated the results. Since there are usually startup costs, the

algorithms are run for some fixed time before the timing begins. This
brings into question the fact that the RDT will grow and shrink if the
load does not meet well with its initial conditions. Since a separate
experiment is conducted to test the changes of the RDT, a substantial
startup period will be allowed before timing begins to allow the RDT
to best match the input load.

We mainly collected throughput data. The throughput is the total
number of get-next. index ( ) operations that returned in the time al-
lowed, We also examined latency, the average amount of time between

the call to getmext.index ( ) and its return, but these numbers are
clearly related and one can be calculated from another.

The algorithms we ran were the Reactive Diffracting Tree, Diffract-
ing Trees of widths 2, 4, and 8 (and on Proteus, 16 and 32), and a
queue-lock based counter. This queue-lock consists of a linked list of
processors pointing towards their successors, waiting for their prede-

5Throughout rhis PWI, each processor onl y runs oneprocess

cessors to wake them up once they are done with the lock. There is
a tail pointer which directs new processors to the end of the queue.

This code was implemented using atomic register-to-memory-swap
and compare-and-swap operations.

5.2.1 AlewifeResults

We have the first published performance results for Diffracting Trees

on the Alewife machine. For the Reactive Diffracting Tree, we set
the number of consecutive timings before a change to be 80, a good
experimental number that limited the number of oscillations. Our
experiments also determined that the best fold and unfold threshold
times were 150 and 800 cycles. Figure 5 shows throughputs for a
queue-lock based counter, Diffracting trees of depth 1, 2, and 3, and

the RDT. The most interesting result is that the RDT surpasses all of
the Diffracting trees shown for a brief range. This is due to its ability
to expand only where needed, supplying irregularly sized trees which
perform better in this range.

ThrcughPti Al-l.. !nC4k.0
Gowo ,
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Figure 5: Alewife Throughputs of Diffracting Trees, Queue-Lock
Based Counter, and RDT

Since the Reactive Diffracting Tree should represent optimal
Diffracting trees at each of their optimal points, we have constructed

a composite graph of the Diffracting tree and queue-lock counter
throughputs, with the highest throughput from any Diffracting tree
or queue-lock counter at a given load level chosen for the graph. We
also construct a worst-case composite graph for comparison, We show

the optimal composite, RDT, and worst-case composite for the Alewife
in Figure 6 under high contention. The throughput and latency of the
RDT appear to stay within a factor of the optimal composite through-

out its performance, and stays well ahead of the worst-case composite
which levels off. The average factor between the throughput of the

RDT and the optimal composite is 1.27.

5.2.2 ProteusResults

We turn to the Proteus simulator, which simulates Alewife’s hardware,

although it does not fully implement Alewife’s LimitLESS [7] cache-
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Figure 6: Alewife Throughputs of Optimal Composite, RDT, and
Worst-Case Composite

coherence policy. Appendix A shows our experiment which correlates
the results from Alewife with the results from Proteus.

We now show our Proteus results, running up to 256 processes
and adding Diffracting Trees of depths 4 and 5. Figure 7 shows the
throughptm and Iatencies of Diffracting Trees of depth O (queue-lock
based counter) through 5.

64 .--.-.’”

32 1
24 8 32 W 128 256

Pr=&a

Figure 7: Throughputs of Diffracting Trees and Queue Lock on Proteus

The Proteus environment is different enough to require a change in
some of the constants. The difference in timing mechanisms forced us
to move the fold threshold up to 200 cycles. However, the queue-locks
had more stable waiting times, enabling us to bring the consecutive
timings threshold down to 25.

We show the comparison between the optimal composite, RDT,

and the worst-case composite in Figure 9 for high contention (WOr k =
O) and Figure 10 for low contention cases (work = 1000). The

results showed that Proteus charged more for the overhead required in
computing the changes, but this seems to be a constant factor that is
machine-dependent. This could be attributed to the cache-coherence

Q5___l
2 4 8 32 W 128 256

R&s.rs

Figure 8: Latencies of Diffracting Trees and Queue Lock on Proteus

differences between the two architectures. For the high contention
case, the average factor between the RDT and the optimal composite
was 1.56, and in the low contention case, the average factor was 1.41.

In both cases, the worst-case composite leveled off quickly and couldn’t
even be calculated after 128 nodes due to inability of proteus to handle
such contention.
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Figure 9: Throughputs of Optimal Composite, RDT, and Worst-Case

Composite on Proteus under High Contention

5.3 Large Contention Change Benchmark

We measured the response of a RDT to a sudden spike in contention

levels, measuring the average latency of the RDT in fixed width inter-
vrds before and after the change occurred, graphing the change in the

average latency over time. Here, the system constant for the number
of consecutive timings was set at 10 to better handle sudden changes.

We ran the index-distribution benchmark with 32 participating

processes for a fixed amount of time and work = O, to allow the tree to
best fit the load. The tree sized to a depth 3 tree. We then started timing
for four time intervals of 25,000 cycles, and allowed an increase in the
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Figure 10: Throughputs of Optimal Composite, RDT, and Worst-Case
Composite on Proteus under Low Contention

number of processors to 256, timing for 400,000 additional cycles. The
tree grew to depth 5. Figure 11 shows the plot of these measurements.
As you can see, it takes about 100,000 cycles for the curve to level off,
which given an eventual average latency of 4,000 cycles, indicates that
it took about 25 equivalent passes through the tree to expand 2 levels,
which is what would be expected with the consecutive timings constant

set at 10. The throughput before the change occurred was around 340
operations per 25,000 cycles. At the top of the spike, the throughput

goes up to around 440 operations, and as the latency drops off, the
throughput rises quickly to 1500 operations and remains steady.
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Figure 11: Average latency of RDT over time in response to sudden
surge

The plot also contains Diffracting Trees of depth 3 and 5 with their
average latency at 256 processors, which are what the RDT emulates
before and after the change. Here is a good example of the tradeoff
that a developer must consider in choosing to use the RDT. Imagine
that the developer initially used the Diffracting tree of depth 3. The
triangle on the left formed by the RDT and the depth 3 Diffracting
Tree represents the spike in latency that the algorithm must necessarily

absorb In order to change, and is a loss to the developer. However, the

quadrilateral-like shape formed between the RDT and the Diffracting
Tree of depth 3 to the right of the triangle is the region that a developer
gains in using the RDT. Of course, the developer could choose to use
the depth 5 tree all along, but the RDT outperforms this tree in the

lower load case, which may usually be the common case.

5.4 Producer/Consumer Benchmarks

Job pools are shared data stmctures that store a changing set of jobs
tfratneed to beperformed byprocessors inthe system. Any processor
can enqueue (produce) a new job into the pool or dequeue (consume) a
job in order to perform it, The shared counter implementation of a job
pool consists oftwoshared counters and an array. Toenqueueajob, a
processor requests a value from the producer counter and places the job
at that location in the array. Todequeue a job, a processor requests a
value from the consumer counter and goes to find a job in that location,

An alternative job pool scheme consists of one of many load bal-
ancing techniques. Here, processors keep local jobpools from which
they choose jobs to execute, and participate in load balancing to trade
tbeir job allocations. The best load balancing scheme known is by
Rudolph, Silvkin-Allalouf, and Upfal(RSU) [15]. In RSU, aproces-
sor about to dequeue a job attempts to load bakmce with probability
inversely proportional to thesize of its job pool. If it decides to load

balance, it picks a processor at random and attempts to equalize their

job pool sizes.

In high load situations where processors frequently enqueue and
dequeue jobs, load balancing algorithms, and specifically RSU, are
known tooutperform Diffracting and Elimination trees [l8, 16]. The
lock-based counters do well against RSU inthelow load levels, and

Diffracting and Elimination trees seem to come close to RSU’s level of
performance, but overall, noshared counter method has been able to
effective y compete with RSU. We now show that the RDT has become
an effective competitor.
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5.4.1 10-Queens

The n-Queens problem is a good problem to test the RDT on. Here,
every consume operation will produce 10 new jobs at a higher depth
until a limit is hit. The recursive nature of the algorithm leads it to

apply different load levels on the producer and consumer functions.
Under low loads, the counters can become lock-based algorithms and
compete effectively against RSU. As the number of processors par-
ticipating increases, the trees can grow larger to give the distributed
performance necessary to compete with RSU. Figure 13 shows how
ciose the Diffracting tree comes to RSU in total time elapsed throughout
the differing load levels.

5.4.2 Sparse Producer/Consumer Actions

The pitfall of RSU and the other load balancing algorithms is the

poor performance that occurs under sparse access patterns. To exhibit
this, we make half the active processors consumers and the other half
producers. Producers initially produce a job and wait until that job is
consumed before they produce anew job. This continues until a total of
2560 jobs have been completed. This creates a sparse access pattern in
the system since any load balancing transaction could at most shift one
job, which is the necessary consumption for the production to continue.
We run this system for RSU, a RDTjob pool, and a queue-lock job pool.
We measure the time elapsed between the beginning of the benchmark

until 2560 elements are consumed, and show the results in Figure 12.
As one can see, the RDT provides near queue-lock performance in

low-loads, and approaches the performance of RSU in higher loads.
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Alewife./Proteus Correlation

It is important to compare the results gathered on the Alewife
with the Proteus, to make sure that the results can be extended over.

Figure 14 is the counterpart to Figure 5. Notice that the shapes of the
Diffracting Trees look similar, although they seem to flatten out more
quickly on the Alewife than on the Proteus. But, we really need to see

two curves side by side. We construct a Proteus optimal composite
for throughput for 1 to 32 processors and normalize the Alewife curve

to it. This graph is shown in F~gure 15. The results show that the
Alewife trees have a higher optimal load level, but the graphs still look
comparable, a good result for Proteus.
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