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Abstract. The metric traveling salesman problem is one of the most
prominent APX-complete optimization problems. An important partic-
ularity of this problem is that there is a large gap between the known up-
per bound and lower bound on the approximability (assuming P 6= NP ).
In fact, despite more than 30 years of research, no one could find a bet-
ter approximation algorithm than the 1.5-approximation provided by
Christofides. The situation is similar for a related problem, the metric
Hamiltonian path problem, where the start and the end of the path are
prespecified: the best approximation ratio up to date is 5/3 by an algo-
rithm presented by Hoogeveen almost 20 years ago.
In this paper, we provide a tight analysis of the combined outcome of
both algorithms. This analysis reveals that the sets of the hardest input
instances of both problems are disjoint in the sense that any input is
guaranteed to allow at least one of the two algorithms to achieve a sig-
nificantly improved approximation ratio. In particular, we show that any
input instance that leads to a 5/3-approximation with Hoogeveen’s al-
gorithm enables us to find an optimal solution for the traveling salesman
problem. This way, we determine a set S of possible pairs of approxima-
tion ratios. Furthermore, for any input we can identify one pair of ap-
proximation ratios within S that forms an upper bound on the achieved
approximation ratios.

1 Introduction

While being one of the hardest problems with respect to approximability in its
general formulation [21], the metric traveling salesman problem (∆TSP) is well
know to be APX-complete. Unless P = NP , it does not permit an approxima-
tion ratio that is better than 220/219 [19]. The best algorithm available is a
1.5-approximation algorithm by Christofides [10]. The situation is very similar
for the metric Hamiltonian path problem with prespecified start and end ver-
tex (∆HPP2): the lower bound is closely related to that of the ∆TSP and the
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5/3-approximative algorithm by Hoogeveen [16] was not improved so far. An
alternative proof for the same result was given by Guttmann-Beck et al. [15].
For both problems, the upper bounds on the approximability have resisted all
attempts of improvement for many years.

The two problems are closely related, since both of them take a complete
metric graph as input and the goal of both problems is to visit each of the
vertices. The ∆TSP is basically the ∆HPP2, where the start vertex and the end
vertex are the same.

In this paper, we significantly improve our former result from [8]. We char-
acterize hard input instances for both Christofides’ and Hoogeveen’s algorithm
and show that the sets of worst-case instances for these algorithms are disjoint
in the sense that a hard instance for one problem allows a significantly improved
approximation for the other one. We determine the set S of all possible pairs
of approximation ratios that are achieved this way (depicted in Figure 1). This
includes the guarantee that a worst-case input for Hoogeveen’s algorithm, for
which we can only compute a 5/3-approximative solution, enables us to com-
pute an optimal solution for ∆TSP on that input. We are guaranteed that the
cost of this optimal solution is exactly 4/3 times as high as that of an optimal
solution for ∆HPP2. In addition to the results on the structure of hard inputs,
we show that for each input, we can determine a pair of approximation ratios
from S that forms an upper bound on the achieved ratios.

To show that our analysis is tight, we present a class of hard input instances
for each of the possible pairs from S that forms an upper bound.

Our detailed analysis of these algorithms provides deep insight of the core of
the hardness involved in classes of input instances for which we cannot provide an
improved approximation. We show for instance that in any worst case instance
for Hoogeveen’s algorithm, the minimum spanning tree involved in the algorithm
contains a path between the end vertices of cost exactly 1/3 of the cost of
an optimal solution and a gradual relaxation of this bound for inputs that do
not cause worst-case behavior. This generalizes some of the results from [15].
The properties revealed in this work restrict the types of inputs that a possible
improved algorithm for the ∆HPP2 has to cope with. This might be helpful for
creating improved algorithms for the ∆HPP2 or the ∆TSP.

1.1 Related Known Results

The result of this paper is a win/win strategy for approximation algorithms. The
concept of win/win strategies is to specify a parameter of the input instance and
to guarantee — for any value of the parameter — that we can compute an im-
proved solution for one of two problems according to some complexity measure.
Here, the parameter is the computed bound on the approximation ratio for the
Hamiltonian path problem and the complexity measure is the approximation
ratio.

Win/win strategies fit well into the framework of parameterized complex-
ity [11, 18] as well as stability of approximation [5, 14, 7], because all of these
approaches are based on studying the “hardness” of their problem instances.



In parameterized algorithms, win/win strategies are a tool used for kernel-
ization [1], which is a technique used in order to reduce the size of the problem
instance and the parameter. Prieto and Sloper presented such a kernelization
of the k-internal spanning tree problem by using a win/win strategy that re-
lates the k-internal spanning tree problem and the vertex cover problem [20].
An overview on the use of win/win strategies in parameterized algorithms can
be found in [13].

The concept of win/win strategies relates to the design of hybrid algorithms
as proposed by Vassilevska et al. [22]. They presented algorithms that allow either
an improved approximation ratio or an improved (but still exponential) runtime
for computing exact solutions.

Win/win strategies for approximation were independently introduced in our
paper [8] and by Eppstein [12]. Eppstein uses the name paired approximation for
this concept. He was able to use win/win as an upper bound technique and he
showed for some pairs of problems that they do not have such a relation.

The win/win result from [8] is related to the result of this paper, but the
achieved pairs of approximation ratios of this paper are significantly improved
(see Figure 1). The result from [8] is existential in the sense that it does not
provide the possibility to identify pairs of approximation ratios within the given
boundaries.

Our results open an interesting connection to another field of algorithmics
called reoptimization. In reoptimization, one is given an optimal or almost op-
timal solution for some input instance. Now the problem is to find a solution
for a different input instance that is closely related to the given one. Some ap-
proximation results on reoptimization can be found in [2–4, 6]. In [9], one can
find an overview on reoptimization. Let us consider the reoptimization problem
of ∆HPP2, where the modification is to change one of the end vertices. If there
is an approximation algorithm for this reoptimization problem that is better
than 5/3-approximative, then we can use this algorithm for ∆HPP2: for a given
worst-case instance I of Hoogeveen’s algorithm, we determine an optimal ∆TSP
solution and use this as input for the reoptimization problem by declaring the
start vertex of I to be the start vertex as well as the end vertex. Then I is the
modified instance that is to be solved by the reoptimization algorithm. However,
to improve the approximation ratio for ∆HPP2 by a constant factor, we depend
on the ability of the reoptimization algorithm to handle a broader range of input
instances: instead of requiring an optimal solution for the given input graph, it
has to be able to accept solutions that deviate by a (small) constant factor from
an optimal solution.

1.2 Organization of the Paper

Section 2 fixes the notation used in the paper. The core of this paper is located
in Section 3, where we show the combined upper bounds on the approximation
ratios achieved by Christofides’ and Hoogeveen’s algorithm. Section 4 then pro-
vides a more detailed analysis of hard instances. Finally, Section 5 shows that
the analyses of all upper bounds shown in this paper are tight.



2 Preliminaries

For graphs, we use a notation similar to [23]. In a graphG = (V,E), the edges are
sets of two vertices. A trail from u to v is a sequence of adjacent edges leading
from u to v, where no edge may be used more than once. A trail is uniquely
defined by a list of vertices uw1w2 . . . wiv, where consecutive vertices describe
the edges of the trail. We say that w1 . . . wi are the inner vertices. The length of

a trail is the number of its edges. A trail, where each vertex is used at most once,
is a path. A closed trail, i. e., a trail that starts and ends with the same vertex,
is a circuit. A circuit, where each inner vertex is visited only once, is a cycle. In
a graph G = (V,E), a Hamiltonian path from u to v is a path of length |V | − 1
from u to v and a Hamiltonian tour is a cycle of length |V |. Let [n] denote the
set {1, 2, . . . , n}, where n is an integer.

We call a complete graph G = (V,E) with cost function c : E → Q+ metric,
if the edge costs satisfy the triangle inequality c({u, v}) ≤ c({u,w}) + c({w, v})
for any pairwise distinct vertices u, v, w ∈ V .

The metric traveling salesman problem, ∆TSP, is the problem of finding a
minimum-cost Hamiltonian tour in a complete metric graph. The metric min-

imum-cost Hamiltonian path problem in complete graphs, where the two end
vertices are fixed, is called ∆HPP2.

Given a graph G = (V,E) and two vertices u and v in G, then we define
G+ {u, v} as (V,E ∪ {{u, v}}). In a graph, a vertex is odd or even, if its degree
is odd or even.

3 A Win/Win Strategy for ∆TSP and ∆HPP2

In this section, we provide an improved analysis of a simple algorithm that
combines the two well-known algorithms from [10] and [16]. The algorithm is
exactly that from [8]. For completeness, we state this algorithm here.

Algorithm 1 Path and Cycle [8]

Input: A complete graph G = (V,E), a metric cost function c : E → Q+, and two
vertices s and t.

1: Compute a minimum spanning tree T in G.
2: Compute a minimum perfect matching MC on the odd vertices of T in G.
3: Compute a minimum perfect matching MP on the odd vertices of the multigraph

T + {s, t} in G.
4: Compute an Eulerian tour EulC in the multigraph T ∪ MC and an Eulerian path

EulP in the multigraph T ∪MP .
5: Shorten EulC and EulP to a Hamiltonian tour HC and a Hamiltonian path HP ,

respectively.
Output: HC and HP .

We first bound the costs of the matchings involved in the algorithm. Let OptP
and OptC be optimal solutions for the ∆HPP2 and the ∆TSP, respectively.



Lemma 1.

c(MP ) + c(MC) ≤ min{c(OptP ), c(OptC)}

Proof. First we show that c(MP )+c(MC) ≤ c(OptP ) holds. Let P be an optimal
Hamiltonian path from s to t in G and let v1, v2, . . . , vk be the odd vertices of T .
Let us assume without loss of generality that they are in the order as they appear
in OptP. It is clear that k is even. Then we define the matching M ′

C as the set
of edges {vi, vi+1}, where i is odd. Analogously, M ′

P is the matching containing
the edges {vj, vj+1}, where j is even. Additionally, M ′

P contains {s, v1} if v1 6= s
and {vk, t} if vk 6= t. Observe that M ′

C is a perfect matching on the odd vertices
of T and M ′

P is a perfect matching on the odd vertices of T + {s, t}. Since M ′

C

and M ′

P are disjoint, due to the triangle inequality c(M ′

P ) + c(M ′

C) ≤ c(OptP ).
Since MP and MC are minimal, c(MP ) ≤ c(M ′

P ) and c(MC) ≤ c(M ′

C).
Now we show that c(MP )+ c(MC) ≤ c(OptC). Note that MC is a minimum-

cost perfect matching of v1, v2, . . . , vk. By Christofides’ analysis, we have c(MC) ≤
c(OptC)/2: due to the triangle inequality, the cycle formed by v1, v2, . . . , vk in
the order as these vertices appear in an optimal Hamiltonian tour OptC is not
more expensive than OptC itself. Since this cycle has two disjoint perfect match-
ings, the cheaper one has a cost of at most half of the cycle’s cost. An analogous
analysis shows

c(MP ) ≤ c(OptC)/2. (1)

The only difference is the set of vertices that forms the minimum cost perfect
matching which is composed of the odd vertices from T + {s, t}. ⊓⊔

Let α := c(HP )/c(OptP) be the approximation ratio for the computed Hamil-
tonian path and let β := c(HC)/c(OptC) be the approximation ratio for the
computed Hamiltonian tour for a given input G, c, s, t, where HP and HC are
the solutions of Algorithm 1. Furthermore, we determine a value p from the costs
of intermediate graphs in Algorithm 1 as

p := max{c(T ), c(MP ) + c(MC), 1.5c(MP )}.

We will show in the following, that p forms a lower bound on the cost of an
optimal solution for ∆HPP2.

Let α′ be the value such that c(HP ) = α′p. Thus, we can determine the value
of α′, whereas we do not know the value α. We will use α′ as a parameter that
determines a guarantee for the achieved approximation ratios for ∆TSP and
∆HPP2.

Lemma 2. For any input of Algorithm 1,

(2α− 2)c(OptP ) ≤ (2α′ − 2)p ≤ c(OptC) ≤ (3 − α′)p ≤ (3− α)c(OptP ).

Proof. We first show that p ≤ c(OptP) holds. Since OptP is a spanning tree,
c(T ) ≤ c(OptP). Due to Lemma 1, also c(MP ) + c(MC) ≤ c(OptP). Due to
the analysis of Hoogeveen’s algorithm in [16], c(MP ) ≤ 2c(OptP)/3 and thus



3c(MP )/2 ≤ c(OptP). Therefore, also the maximum of the three values is at
most c(OptP).

Since p is a lower bound on c(OptP),

(2α− 2)c(OptP ) = 2c(HP )− 2c(OptP) ≤ 2c(HP )− 2p = (2α′ − 2)p,

which shows the first inequality of the lemma.
We continue the proof by showing (2α′ − 2)p ≤ c(OptC). Since c(HP ) =

α′p ≤ c(T ) + c(MP ),

(2α′ − 2)p ≤ 2(c(T ) + c(MP ))− 2p ≤ 2(c(T ) + c(MP ))− 2c(T ) = 2c(MP ).

Now the second inequality follows because of (1).
For the third inequality c(OptC) ≤ (3 − α′)p, we note that c(HC) ≤ c(T ) +

c(MC). Due to the definition of p, c(MC)+ c(MP ) ≤ p and c(T ) ≤ p. Therefore,

c(T ) + c(MC) ≤ 2p− c(MP ).

Since c(MP ) ≥ c(HP )− c(T ) holds,

c(MP ) ≥ α′p− c(T ) =

(

α′ −
c(T )

p

)

p ≥ (α′ − 1)p.

Therefore we get
c(HC) ≤ 2p− (α′ − 1)p = (3− α′)p. (2)

The last inequality follows, since

(3− α′)p = 3p− α′p = 3p− c(HP ) ≤ 3c(OptP)− αc(OptP) = (3− α)c(OptP).

⊓⊔

As a first consequence of Lemma 2, we can relate the actual approximation
ratio α that A achieved for the given input for ∆HPP2 to that for ∆TSP, β.

Theorem 1. For any input of A,

β ≤ min

{

1.5,
1

α− 1
−

1

2

}

and α ≤ min

{

5

3
,

1

β + 1/2
+ 1

}

.

Proof. Due to the analysis of Christofides and Hoogeveen, we can bound β and
α from above by 1.5 and 5/3. For the second bound of β we note that, due to
Lemma 2 and (2), c(HC) ≤ (3 − α)c(OptP). Since Lemma 2 also states that
c(OptC) ≥ (2α− 2)c(OptP), we get

β =
c(HC)

c(OptC)
≤

(3− α)c(OptP )

(2α− 2)c(OptP )
=

3− α

2α− 2
=

2− (α− 1)

2(α− 1)
=

1

α− 1
−

1

2
. (3)

The remaining statement of the theorem now follows immediately, since β ≤
1/(α− 1)− 1/2 implies α ≤ 1/(β + 1/2) + 1. ⊓⊔
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Fig. 1. The gray area describes the set S of all combinations of the approximation
ratios α and β for the ∆HPP2 and the ∆TSP achieved by Algorithm 1. The solid line
describes the upper bound on the approximation ratios achieved by that algorithm. The
dashed lines represent the upper bounds on the approximation ratios proven in [8]. The
hatched area contains the set of possible pairs of solutions given that α′ coincides with
the highest value of α within the area.

Figure 1 gives a graphical representation of the theorem. The set S of all valid
combinations of approximation ratios achieved by Algorithm 1 is represented as
the gray area.

The following corollary follows from Theorem 1 by setting α = 5/3.

Corollary 1. Any worst-case instance for Hoogeveen’s algorithm for ∆HPP2

allows us to compute an optimal Hamiltonian cycle in G.

Theorem 1 described properties that belong to the core of the relation be-
tween the two problems. Now we will change the focus and describe how to use
the revealed relations in order to guarantee improved approximations according
to parameters that we can measure, namely α′. More precisely, we determine the
approximation ratios according to the spanning tree T and the matchings MP

and MC . Let δ = p− c(T ). Note that δ ≥ 0 and α ≤ α′ holds.

Theorem 2. For any input of A,

β ≤ min{1.5, 1/(α′ − 1)− 1/2} − δ/c(OptC).

Proof. Analogous to the proof of Theorem 1, c(HC) ≤ c(OptC) · (1/(α
′ − 1) −

1/2) and c(HC) ≤ c(OptC) · 1.5. In this analysis, however, we estimated c(T )
by c(OptP). The cost of the actual solution HC is at least δ cheaper than we
estimated previously. Therefore, the claim of the theorem follows. ⊓⊔

The effect of Theorem 2 is depicted in the hatched area in Figure 1.



4 Implications of the Win/Win strategy

In this section, we classify hard input instances for the ∆HPP2. To this end,
similar to [15] we combine Algorithm 1 and a variant of the well-known tree-
doubling algorithm for the ∆TSP, namely Algorithm 2, which enables us to
restrict the class of hard input instances.

Algorithm 2 Tree Doubling

Input: A complete graph G = (V,E), a metric cost function c : E → Q+, and two
vertices s and t.

1: Compute a minimum spanning tree T in G.
2: Let Pst be the unique path in T that connects s and t.
3: Find an Eulerian tour EulP in the multi-graph T + (T − Pst).
4: Shorten EulP to a Hamiltonian path HP .
Output: HP .

In particular, we focus on the distance of s and t in G. Let A be the algorithm
that runs both Algorithm 1 and Algorithm 2. The output of A is the cycle HC

from Algorithm 1 and the path HP that is the smaller one of the two computed
Hamiltonian paths. We introduce α̃ and α̃′ similar to α and α′, but with a
slightly extended meaning: these values are based on A instead of Algorithm 1.
For simplicity, we assume both algorithms involved in A to use the same spanning
tree T .

Theorem 3. For any input of A,

(2α̃− 3)c(OptP ) ≤ (2α̃′ − 2)p− c(OptP ) ≤ c({s, t}) ≤ c(Pst)

≤ (2− α̃′)p ≤ (2 − α̃)c(OptP ).

Proof. The first and the last inequality hold, similar to Lemma 2, since c(HP ) =
α̃c(OptP) = α̃′p and p ≤ c(OptP).

For the second inequality, note that any Hamiltonian path from s to t can
be made a Hamiltonian cycle by adding the edge {s, t}. Therefore, c(OptC) ≤
c(OptP )+c({s, t}) and thus, applying Lemma 2, (2α̃′−2)p ≤ c(OptP )+c({s, t}),
which implies the second inequality.

The third inequality c({s, t}) ≤ c(Pst) trivially holds due to the triangle
inequality.

For the fourth inequality, we first have to analyze Algorithm 2. The algorithm
is correct because in T +(T −Pst), all vertices but s and t have an even degree,
which ensures the existence of EulP . Due to the triangle inequality, c(HP ) ≤
c(EulP ). Therefore, c(HP ) ≤ c(T + (T − Pst)).

By the definitions of α̃′ and p, we have α̃′p ≤ 2c(T ) − c(Pst) and thus the
fifth inequality follows:

c(Pst) ≤ 2c(T )− α̃′p ≤ 2p− α̃′p.

⊓⊔



Theorem 3 reveals several properties of hard input instances. For instance,
by setting α̃ to 5/3 in Theorem 3, we conclude that in each worst-case instance
for ∆HPP2, c(Pst) = c({s, t}) = c(OptP)/3 holds. This means that according to
Theorem 1, adding the edge {s, t} to an optimal Hamiltonian path from s to t
yields an optimal Hamiltonian tour in the same graph.

Furthermore, since Pst is a part of T , we can take into account the number
of edges in Pst. Let γ be the value such that c(Pst) = γc(OptP). In other words
γ is the fraction of c(OptP) that is formed by Pst.

Theorem 4. Suppose that there are k or fewer edges in Pst. Then there exists

an algorithm that achieves an approximation ratio of

(3− α̃)

(

1

α̃− 1
−

1

2

)

+

(

1−
2

k

)

γ

for ∆HPP2.

Proof. Let e = {u, v} be the edge of maximal cost in Pst such that the four
vertices are in the order s, u, v, t within Pst. Given the Eulerian cycle EulC from
Algorithm 1, we remove e from EulC and add the two edges {s, u} and {v, t}.
The resulting graph has an Eulerian path from s to t. Let H ′

p be that tour
shortened to a Hamiltonian path. Then the cost of H ′

P is at most

c(T ) + c(MC)− c(e) + (c(Pst)− c(e)).

Since there are at most k edges in Pst, c(e) ≥ c(Pst)/k. The value of β is based
on the cost of HC , which is c(T )+c(MC). Therefore, Theorem 1 implicitly states
that c(T )+ c(MC) ≤ (1/(α̃− 1)− 1/2)c(OptC) holds and we can bound the cost
of H ′

P from above by

c(H ′

P ) ≤

(

1

α̃− 1
− 1/2

)

c(OptC) +

(

1−
2

k

)

c(Pst)

≤

(

1

α̃− 1
− 1/2

)

(3− α̃)c(OptP) +

(

1−
2

k

)

γc(OptP).

The last inequality holds because of Lemma 2. Dividing this value by c(OptP)
yields the claimed approximation ratio. ⊓⊔

Note that in the special case that α̃ = 5/3, Theorem 4 together with Theo-
rem 3 implies that the cost of the computed Hamiltonian path is at most

(

5

3
−

2

3k

)

· c(OptP ).

5 Combined Hard Input Instances

In this section, we show that the analysis of Theorem 1 is tight. To this end, we
construct a class of graphs that can be adapted to any choice of 1.5 < α̂ < 5/3,
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Fig. 2. The graph Gα̂,i,k. The bold lines form a part of the spanning tree T .

where α̂ is the aimed-for lower bound on the approximation ratio achieved for
∆HPP2. We define β̂ := max{1.5, 1/(α̂−1)−1/2}, the guaranteed upper bound

for ∆TSP according to Theorem 1. Hence, we aim for a lower bound β̂ on the
achieved approximation ratio for ∆TSP.

The basic building blocks of the graphs are the well known hard input in-
stances for Christofides’ algorithm from [10] (also described, e. g., in the textbook
[17]) and for Hoogeveen’s algorithm from [16].

Let i ≥ 4 be an even number. Then we construct the graph Hi,ρ = (Vi, Ei,ρ),
where Vi = {v1, v2, . . . , vi} and ρ is a value that depends on the specific pair of
bounds that we aim for. We specify Ei,ρ by determining the edges of cost ρ/i. All
remaining edges have the cost of the shortest path between the corresponding
vertices. We say that two vertices are connected, if they are connected by an
edge of cost ρ/i. For any j ∈ [i − 1], vj and vj+1 are connected. Furthermore,
for any j ∈ [i− 2], vj and vj+2 are connected.

Now, for k ∈ N, we construct a graph Gα̂,i,k with n = 1 + (i + 2)k vertices
(k copies of Hi,ρ and 2k + 1 additional vertices) as depicted in Figure 2.

For each j = 1, 2, . . . , k, we create a cycle sjyjzjtjsj such that each edge of
the cycle has cost 1. The remaining two edges between these vertices are of cost
2. To each vertex tj , we attach a copy of Hi,ρ with ρ = 5−3α̂

α̂−3/2 such that tj = v1.

Now we join all k components such that for j ∈ [k − 1], tj = sj+1. Again, all
remaining edges of the resulting graph cost as much as the shortest path between
the corresponding vertices. The end vertices are s = s1 and t = tj .

Theorem 5. For each 3/2 < α̂ < 5/3 and each ε > 0, there are integers i and
k such the combined result of Algorithm 1, Algorithm 2, and Theorem 4 is not

(α̂− ε)-approximative for ∆HPP2 and not (β̂ − ε)-approximative for ∆TSP for

the input Gα̂,i,k.



6 Conclusion

We have shown a tight bound of the combined approximation ratio of Hoogeveen’s
algorithm and Christofides’ algorithm and for any input, we provided a pair of
approximation ratios that is guaranteed to be achieved. We revealed a strong re-
lation between the two problems and characterized properties of hard instances.
These properties might be helpful in order to find an improved algorithm for
∆HPP2 or ∆TSP. Since the described properties of hard input instances are
very specific, the results of this paper show that for most of the practical input
instances, we can guarantee better approximation ratios than in the worst-case.
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prove the presentation.

References

1. Abu-Khzam, F.N., Collins, R.L., Fellows, M.R., Langston, M.A., Suters, W.H.,
Symons, C.T.: Kernelization algorithms for the vertex cover problem: Theory and
experiments. In: Arge, L., Italiano, G.F., Sedgewick, R. (eds.) Proc. of the 6th
Workshop on Algorithmic Engineering and Experiments (ALENEX 2004). pp. 62–
69. Society for Industrial and Applied Mathematics (2004)

2. Archetti, C., Bertazzi, L., Speranza, M.G.: Reoptimizing the traveling salesman
problem. Networks 42(3), 154–159 (2003)

3. Ausiello, G., Escoffier, B., Monnot, J., Paschos, V.T.: Reoptimization of mini-
mum and maximum traveling salesman’s tours. In: Arge, L., Freivalds, R.V. (eds.)
Proc. of the 10th Scandinavian Workshop on Algorithm Theory (SWAT 2006).
LNCS, vol. 4059, pp. 196–207. Springer, Berlin (2006)
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