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ABSTRACT  Confronted with an object of perception, an
individual will spontaneously try to identify unambiguously and
consistently all its parts; except in rare instances of “illusory
phenomena,” he will immediately succeed. This elementary fact
is formalized in a law of visual perception. It is used to define
sets of stable states for a sensory mode of a biological system.
As characterized, stable states are to perception as quantum
states are to atomic structure: they represent natural states of
physical systems. They are shown to be observable and to have
an exact mathematical representation.

A class of bounded open subsets of a two-dimensional Eu-
clidean space, whose boundaries are piecewise compact ana-
lytic arcs, is used to construct a nontrivial mathematical model
for stable states. The finitely many components of this mathe-
matical model of a stable state (image) are mapped onto an
object of perception Y’con) by perceptual judgments. These
jujgments, which include the judgment of stability, have an
exact interpretation in this model. They unify and make precise
such traditional notions of psychology as “Gestalt,” “figure-
ground,” and “(visual) boundary.”

Postulates for a general theory of perception are given. They
are used to establish a formal relationship between biological
and subjective studies of sensory phenomena and so provide a
framework in which subjective studies can be used to analyze
(their associated) biological progesses. In applying these meth-
ods to cases, all icons are divided into two classes (the static and
dynamic cases). The static case is treated.

1. Introduction

1.1. The law of perceptual stability, applied to human vision,
has a simple intuitive form: perception occurs if and only if an
individual stabilizes his field of vision or, equivalently, if he
identifies all its parts in an unambiguous and mutually consis-
tent way.? There is a mathematical form for the stability law
which is universally valid (see 3.6). This fact and its theoretical
and practical consequences lead to the conjecture that the sta-
bility principle expresses a natural law (see ref. 1) that governs
the dependency of a biological system and its sensory envi-
ronment and which human vision can be shown to obey. Effects
of the stability law can be directly observed in the common
experience of perception. They account for ambiguous per-
ception. And the stability law confirms the psychological hy-
pothesis that there exist abstract conditions, defined for the
entire field of vision, that constrain the independent perception
of its parts.b

To give an exact statement of the stability law, it was neces-
sary to construct a new formal and conceptual framework for
the mathematics and method that are used to investigate per-
ception. This framework, (stability theory) unifies the study
of perception. It rests on the discovery of a simple topological
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characterization (see 2.6) of an observer’s judgment of stability
(see 3.3 and ref. 3) of his field of vision. The validity and weight
of the stability law depend on the fact that the stability judg-
ment is as strong, universal, and unambiguous as any perceptual
judgment known.

1.2. The mathematics and method required to state and
apply the stability law will be developed and verified in four
stages. )

(1) A new mathematical object is defined by using elementary
properties of the Euclidean plane, which gives an analytic
model for stability.

(#) Six postulates for a theory of perception are stated; and
from these postulates a method of formal pairs is described by
means of which mathematical structures can be assigned to
perceptual judgments.

(444) It is demonstrated that the method is valid by showing
that it applies exactly and universally to cases (objects of per-
ception) and, thus, that the stability law is well defined.

(v) Grounds for validity of the stability law are given, fol-
lowed by some immediate effects of the law on the way we
study both perception and the corresponding biology of sen-
sation and cognition.

1.3. Cases to which stability theory can always be applied
definitively and without qualification—cases to which per-
ceptual judgments can in practice be applied unambiguously
so that the model is well defined—are subject to several con-
ditions. All perceptual judgments rendered by an observer of
his visible surround are assumed to have been rendered by the
observer of a reference object which, relative to the observer-
frame, is a wholly contained, proper part (not equal to the
whole) of the observer’s field of vision and is fixed, static, flat,
and without discernible holes. Eye movement, which is other-
wise unrestricted, is defined relative to the observer-frame. An
observer’s head and body are always taken to define the fixed
rigid spatiotemporal frame of reference. Physical orientation
of the observer (with respect to visible body parts and the

Abbreviations: (D), stable decomposition; OBD, oriented boundary

decomposition.

* This work will appear in two parts; the second part will be in a sub-
sequent issue.

a As a simple illustration, the three obvious, distinct, stable, and mu-
tually incompatible ways of viewing Necker’s line drawing of a cube
(two distinct readings in space and one in the plane) can be charac-
terized by three distinct exact decompositions of the (flat) field of
vision into independently and compatibly identified parts. The
statement can be taken to define “perception.”

b Stated in traditional terms, the stability phenomena obviously ac-
counted for by this law include figure-ground relationships, multiple
stability, Gestalt effects, and cognitive contours. The account is in-
dependent of metrical conditions, which are not discussed here. This
work is self-contained and independent of standard accounts, which
will be considered separately. See, for example, Gibson (2), pp.
310-318.
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physiological effects of gravity and motion) is defined relative
to the observer-frame. These conditions define the static theory,
which is the framework we now adopt. Unrestricted cases can
be treated by refining the static theory and thus extending its
scope.

The distinction of monocular, binocular, and cyclopean vision
is irrelevant to the stability law for the static cases. It may be
easily observed that the stability law holds as well for binocular
as monocular perception, although it is somewhat easier and
less abstractly understood by imagining a model for monocular
perception. These distinctions can be interpreted in the ex-
tended theory.

2. The analytic model for stability

2.1. The mathematics of stability theory can be derived from
several sources. We have chosen to use elementary properties
of the Euclidean plane because of their inherent mathematical
richness and intuitive accessibility and because they allow us
to demonstrate the existence of a nontrivial model in a well-
studied context, further justification for which depends on work
in progress. In this model three classes of elementary objects are
defined from the primitive structure of the plane, in whose
. composite forms we find mathematical counterparts to per-
ceptual judgments.

Before giving the mathematical details, let us consider briefly
a rough nontechnical description of the analytic model for
stability. In simple terms, this model gives a particular way of
decomposing an unbroken region of the plane into distinct
subregions. The (topological) boundary of each subregion is
itself broken into parts (arcs). And each of the arcs of a boundary
is oriented. Orientation of an arc is marked by a single arrow
pointing into one of the regions adjacent to the arc according
to the rule: in going around a boundary, the arrow directions
alternate.

In this model, our three classes of mathematical elements are
a set of regions in the plane (which need not be unbroken), a set
of oriented boundary arcs, and sets of isolated points, which are
used to mark the places on boundaries where orientation
changes. The exact decomposition of an unbroken region D in
the plane into a (finite) collection of these elements is a stable
decomposition [S(D)]. The set of oriented arcs of the boundary
of a region is called an oriented boundary decomposition
(OBD) of that region. Aided by this summary, the nonmathe-
matical reader can now proceed directly to 2.7.

2.2. If we assume we are given the Euclidean plane together
with the usual topology, then we can construct a model for
stability theory by the proper choice of (i) a set of open sets, (i)
a set of arcs, and (iit) a set of points. It now will be shown how
they can be chosen. All mathematical usage is standard unless
noted otherwise.

The open sets of stability theory are called “allowable.” The
collection of all allowable open sets in the plane is represented
by the symbol T. An open set u is allowable if two conditions
are satisfied: (i) u is bounded, and (i) the topological boundary
of u is the union of a finite number of compact analytic arcs.
A compact analytic arc is an image in the plane of the closed
interval [0,1] under a map that is analytic on a neighborhood
of the interval and is 1:1 and has a nonvanishing derivative on
the open interval (0,1).

Three consequences of condition # will be used: (a) we can
define a relative-orientation, locally, on the boundary of an
allowable open set u; (b) the number of connected components
of an allowable open set is finite; and (c) if two such sets inter-
sect, then the number of components of their intersection is still
finite.
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2.3. An arc is a member of a special class of subsets of the
boundary of an allowable open set u. We define an arc to be any
subset of the boundary that is homeomorphic either with the
open interval (0,1) or a circle. We call attention to the fact that
these arcs as defined are only piecewise-analytic.

Let us now suppose c is an arc of the boundary of u in the
above sense. It is a fact that if p is a point in ¢ and N is a suffi-
ciently small neighborhood of p (topologically, a disc) then there
is a subarc of ¢ that divides N into exactly two disjoint open sets.
Then c is orientable relative to u if, at every point p in ¢, it is
possible to find one such set that lies wholly in u.

If ¢ is an arc of the boundary of u, and ¢ is orientable relative
to u, then an orientation of c relative to u is a consistent choice,
for each point p in ¢, of exactly one such set, such that each set
chosen lies either wholly in u or wholly out of u. By a consistent
choice of sets is meant that if, for each of two points in ¢ a
suitable neighborhood has been specified and one set chosen,
and if the two points can be joined by a subarc of ¢ that is wholly
contained by the two neighborhoods, then the orientations agree
wherever the neighborhoods have nonempty intersection. Any
orientable arc has at least one such orientation.

2.4. A distinguished class of structures can now be defined
relative to an arc decomposition of the boundary of an allowable
open set u. The boundary of an allowable open set can always
be exactly decomposed into a finite number of disjoint arcs and
isolated points, such that each arc is orientable relative tou. A
consequence of the definition of orientation is that we may not
always be free to choose a particular orientation for a given arc;
the orientation of an arc relative to a given decomposition of
the boundary of an allowable open set may be unique.

A finite collection ¢ of disjoint oriented arcs whose union,
together with a finite set of isolated points, is exactly the topo-
logical boundary of u is an oriented boundary decomposition
for u if the alternation rule holds. The alternation rule states:
if ¢; and ¢; are two disjoint oriented arcs that belong to such a
collection ¢, and if p is an isolated point for which ¢,uc;u {p}
is an arc, then ¢; and c; have opposite orientations.

All boundary structures that enter stability theory belong to
the restricted class of sets of oriented arcs and isolated points
that satisfy the alternation rule. The alternation rule guarantees
that a boundary is broken into a set of oriented arcs whose as-
sociated set of points is exactly the set of points at which ori-
entations reverse. This is a minimality condition that ensures
the well-definedness of these structures in the model.

2.5. An allowable simply connected domain in the plane
defines the base space in a fully developed model. The funda-
mental mathematical object of stability theory can be defined
relative to such a subset of the plane.

Any allowable and simply connected domain in the plane
can be decomposed into finitely many allowable open sets, each
of which carries an oriented boundary decomposition. If D is
such a domain, then a stable decomposition S, S = S(D), is a
finite collection of allowable open sets u; in D together with an
oriented boundary decomposition for each u; that satisfy the
following three conditions: (1) the open sets are pairwise disjoint,
(1) the collection of open sets together with their boundaries
exactly cover the closure of D, and (#f) if two arcs that lie in D
also lie in the boundary of open sets u; and u; of S, for some
and §, then their orientations agree wherever the arcs have a
nonempty intersection. The associated collection of open sets
is an open decomposition of D.

Condition i reflects the fact that orientation of an arc is
defined relative to a particular open set. Any arc in D that lies
on the boundary of two distinct members of an open decom-
position of D has an orientation relative to each. Condition
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requires that they agree. (Technical refinement of the condition
of “agreement” is possible; the practical consequences are
neither obvious nor germane to this discussion.)

A stable decomposition S breaks D into a finite number of
disjoint open sets, together with a finite set of unambiguously
oriented arcs and a finite set of points. A stable decomposition
specifies an exact decomposition of the subset of the plane
consisting of the domain D and its boundary. Such a decom-
position differs from S(D) by a finite number of points. (The
significance of this fact will not be discussed here.)

2.6. A stable decomposition is by construction a particular
collection of open sets, arcs, and points lying in a domain D. But
we do not make use of all the geometrical properties that such
a collection has gotten from the plane. So we use an equivalence
relationship on the set of all stable decompositions of a domain
D to refine the definition of S(D). Abusing notation, we then
identify both the original object and this new one with the same
symbol; we identify the class with its representative member.
This makes sense because, although we have not yet specified
a particular relation, any such relation chosen would be de-
termined by exactly those applications of the model that we
describe.

The equivalence relations that interest us are those given by
sets of functions that are homeomorphisms of D with itself and
also preserve stability. This means that if ¢ is such a function,
and S(D) is a stable decomposition of D, then S(D) is mapped
onto a stable decomposition /(D) by ¢, and S(D) and S'(D) are
indistinguishable as stable decompositions of D. All topological
relations and arc orientations are preserved by ¢, although S(D)
and §’'(D) will usually differ in other respects.

We will let ® denote the set of all such mappings. Equiva-
lence relations will be defined by subsets of ®. One example of
such a collection of functions is the set of real analytic homeo-
morphisms ¢, where ¢ is a 1:1 real analytic map of D into itself
whose inverse is also real analytic and whose differential is
everywhere non-zero.

There is a well-defined procedure for associating one
member of an equivalence class of stable decompositions with
perceptual judgments. But it is the properties of these classes
which the model can be said to represent. Their defining maps
showed that it is possible to preserve stability, the structures on
D defined by particular stable decompositions S, preserving all
topological relations and the orientation of arcs while drastically
altering both local and global geometry in the model. It is in this
sense that we describe this model as being “essentially topo-
logical” and independent of geometry.

2.7. We can easily make drawings to represent properties
of the abstract mathematical structures just defined. And we
will assume that all such sketches are made in the way usual to
mathematics. But, for us, a sketch is also an object of perception.
To call attention to the potential ambiguities in their inter-
pretation, we add three observations on the use of sketches to
represent the mathematics of stability theory.

(1) Anarc in an abstract model is represented in a sketch by
a drawn line. But an abstract arc is one-dimensional (its breadth
is zero) whereas its drawn representative has positive (nonzero)
breadth if it is visible in a sketch.

(#) Orientation of an (abstract) arc can be represented in a
sketch by a short arrow, drawn at a point on the (sketched) arc
and inward- or outward-directed relative to an adjacent region;
the representation in unambiguous (the arrow rule).

(#i) The geometrical relationships of which an observer is
aware in a sketch do not necessarily represent properties of the
abstract model that the sketch records; they are to be taken as
artifacts of the drawing, even though the sketch may be very
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close in appearance to the original object of perception being
modelled.

3. Method

3.1. The foundation for this discussion of perception is given
by a set of six postulates.© This set of postulates is sufficient to
form a theoretical framework in which the complete relation-
ship of a biological system x to its sensory environment (sur-
round) can be expressed. It is prima facie evident that these
postulates apply compatibly to all sensory modes of which
perceptual judgments can be rendered.d

In the following, the notion “perceptual judgment” is
primitive. The notion “state of x” is also taken to be primitive,
and its usage is adapted from physics.® The notions “system”
and “surround” are adapted from biology. We do not yet need
to specify the mathematical structure of the space of states of

The six postulates for a theory of perception are as fol-
lows:

(i) The relationship of a system x and its sensory surround
is a set of pairs of abstract states (x,y), where x is a state of the
system x and y is a state of its sensory surround.

(i) For a system x, a state y, of its surround is an abstract
model, constructed relative to x, of a particular perceptual
environment of x.

(i) A state x of a system x relative to a state y of the sur-
round of x! can be formally characterized (in the study of
human sensation) in two categorically independent ways: from
subjective phenomena, and from biological phenomena. They
are, respectively, the subjective and the biological character-
izations of a state x of a system x (relative to y).

(iv) If y is a state of the surround of a system x, a subjective
characterization of a state x of the system x relative to y can
be derived® from y by one or more perceptual judgments that
are rendered of y by an observer.

(v) If y is a state of the surround of a system x, a biological
characterization of a state x, of the system x relative to y can
be given in terms of anatomical and physiological® character-
istics of the system x.

(vi) The (mathematical) properties of a subjective charac-
terization of a state x of a system x relative to y are faithfully
represented! in any valid complete biological model in which

¢ A strong resemblance of this work to the theoretical basis for psy-
chophysics advanced by Fechner (4) was noted in a personal com-
munication from Hans Geissler. The general conceptions and
methods are in accord; they differ fundamentally in their abstract
organization and mathematics and in their dependence, respectively,
on cognition and sensation.

d The compatibility of method for vision and natural languages was
shown by Shiman (5) and in unpublished work by L. Shiman and R.
T. Oehrle.

© A “state x of x”" is a member of a mathematically well-defined class
of structures by which the nature of x is characterized, as quantum
states characterize atoms.

f “Surround” has here the meaning of “environment”; it is not to be
confused with “surround (of a figure)” or “ground (of a figure).”

€ By “x derived from y” we mean z, is assigned to y by analysis of y
with respect to perceptual judgments. This accords with the principle
of constraint.

b That is, by physical, biophysical, electrophysiological, neuroanato-
mical, or other means. Notice that these results do not presume the
well-definedness of any particular physical or biological descriptions
of the system.

! The representation is required to preserve all (mathematical) prop-
erties of the original.
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a biological characterization of the same state of the same sys-
tem relative to the same state of its surround.]

A subjective state x of a system x is an image, and the cor-
responding state y of the surround of x is an icon.¥ An image
x is matched to an icon y whenever the image x can be derived
by perceptual judgements from the icon y. In this case the icon
y supports the image x.

An image is well defined only if it has been matched to an
icon by an observer. We will, therefore, assume that for every
image a supporting icon and an observer can be specified.

3.2. In this study of perception, the word “icon” has three
distinct but consistent usages. By definition, an icon can only
be specified relative to a system x. The general characterization
given by the postulates is abstract. Concretely, an icon is:

(i) A mathematical object that models the complete vi-
sual-sensory (optical) relationship of a system x to its sur-
round.

() An optical projection onto the system x of its surround,
that can be represented as a luminous image on an idealized
sensing surface of the retina (ref. 8, pp. 345-346), represented
topologically as a disc.

(#1) The effective, immediate, and complete visible source
of the image, typically identified with physical reference objects
whose location can be verified by touch—for example, a pho-
tograph.

The main effect of giving one (abstract) characterization of
an icon whose formal properties are compatible with all three
interpretations is to allow both the subjective and biological
modes of the same system state to be defined relative to the
same surround state. It is the case that physical differences in
the visual systems of individuals (of whatever species) that affect
the optical relationship of the individual (system) to its sensory
surround will affect the properties of the icon. We assume that
an observer can identify what he perceives with an actual
source; in the same spirit, we will speak of breaking an icon into
parts.

3.3. A stable image is the subjective (psychological)
counterpart of an icon that is stably perceived. Stability of an
image is established by a judgment of the entire icon that af-
firms both its coherence and the consistent and unambiguous
identifiability of all its parts. The judgment itself is the stability
judgment. Stability is a characteristic of an ordinary subjective
state of an observer. In other words, the ordinary visual expe-
rience of a human observer is modeled by stable images. Given
an icon, it is universally verifiable that an observer will always
try to identify a stable image with it.

There are icons (such as Necker’s crystallographic “cube”)
that support two or more distinct, incompatible, stable images.
Because in such cases the corresponding icon is unchanged,
these cases show that perception depends on properties both
of the image and of the icon. Partial independence of percep-
tion from the icon is evident as well in cases of “mis-taken”
identity, in which individual psychological factors, totally un-
related to the icon, are found to affect the images assigned by
an observer to it. In restating this observation as a principle of
perception, the principle of constraint affirms that: an icon
constrains but cannot uniquely determine an image per-
ceived.

The stability judgment of an icon is rendered as an unbroken

§ This is the bridge from subjective study of perception to biological
study of behavior. See Tinbergen (6) pp. v-x and 1-14.

k Usage of the terms “image” and “icon” is adapted from Panofsky (7),
pp. 3-81. I am greatly indebted to Panofsky for his characterization
of these terms.
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whole. It is fundamental and it is unambiguous. But the rela-
tionship that is verified by the judgment is global: no internal
analysis of the image structure is provided. By introducing two
additional judgments, by means of which stable images can be
mathematically decomposed, stability theory establishes a
structural relationship between image and icon that opens the
way to the mathematical study of the subjective state itself and
the dependence of perception on the structure of icons.

3.4. An image can be mathematically characterized by
using the concept of a formal pair. Formal pairs are used to
model perceptual judgment of identification. Identification
matches a formal pair with a visible region (not necessarily
connected) of an icon. The procedure is made more explicit in
4 of the subsequent paper. The two symbols that appear in these
formal pairs represent (respectively) an identity and an al-
lowable open set. This open set, defined in 2.2, is also called a
“region” (of an image). We represent such a formal pair by the
symbol (e,u). A set of such pairs is represented by the symbol
{(eisus) | i € ).

Usage of a symbol ¢ to represent an identity is subject to two
conditions:

() An identity is fixed once its symbol representative has
been chosen.

(1) Equality holds for two symbols if their corresponding
identities are the same.

The symbol u represents an open set in the model of an image
and is to be clearly distinguished from the corresponding region
in the icon.

We can think of identification as giving a name to a specific
region in an icon; the name corresponds to whatever meaning
or characteristic significance we attach to, or identify with, and
by which we can identify a region. The subjective counterpart
of such a name is an identity. We represent an identity by an
elementary symbol. This symbol is the only objective correlate
of an identity.

An identity is defined (and is only claimed to exist) relative
to a specific region in an icon. The second entry in a formal pair
is used to symbolize the subjective counterpart of the surface
extension of the identified visible region of the icon. We rep-
resent this region mathematically by an open set in T. We will
always treat the formal pair as a primitive whole, and its com-
ponent entries as derived.

3.5. The third judgment is adjunction and is applied ac-
cording to the adjunction rule. The adjunction rule is a function
defined on formal pairs (identity-region pairs) that assigns to
a formal pair an oriented boundary decomposition for its
component open set. An oriented boundary decomposition is a
set of inward-oriented and a set of outward-oriented arcs that
orient and decompose the topological boundary (except for a
finite set of points) of an open setin T.

An inward-orientation (defining an adjoined boundary) is
assigned to those subarcs of the boundary of a region along
which, relative to its paired identity, the adjacent region is
complete; in other words, an inward-orientation is assigned to
an arc wherever, relative to the identity assigned to that regjon,
the region is understood to terminate. An oriented boundary
decomposition represents the dependence of an identity on the
shape of the boundary of its paired region. An inward-oriented
arc marks a part of a boundary where the visible shape of the
region which that arc defines can be said to be dependent on
the identity paired with that region. An outward-oriented arc
represents a part of a boundary of a region along which the
shape of the arc is independent of the paired identity.

3.6. A mathematical model of a stable image of an icon I is
constructed by matching with I a finite set of formal pairs that
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define an exact decomposition for I. Such a matched set of
formal pairs (F) is a stable state of 1. A stable state gives a
consistent and unambiguous account of all visible parts of I. If
F is a stable state of I, I supports the stable state of F.

A finite set of formal pairs defines a stable state F of an icon
I, relative to the analytic model, defined in 2, whenever:

(1) Each formal pair is matched under identification to a
specific visible region in the icon and each visible part of the
icon is accounted for exactly once by the set of formal pairs.

(#) A simply connected domain D, D € T, is assigned to the
entire region of the icon (in effect, an additional formal pair
identifying the icon as a whole).

(#i4) Paired with each identity is an opensetu € T,u = D,
chosen in such a way that the sets do not intersect.

(iv) The adjunction rule applied to each formal pair (e,u)
assigns to its component open set u an oriented boundary de-
composition.

(v) The collection of component open sets together with their
boundary structures form a stable decomposition S(D) of the
domain D.

We identify a stable state with a stable image by the stability
hypothesis. This identifies a mathematical model of a subjective
state of an observer with a stably perceived icon. The following
is called the “Stability Hypothesis™":

If an icon 1 supports a stable image, then 1 supports a
compatible stable state F, and conversely.

This means that, for any F, the F-decomposition of I supports
a stable image and that, conversely, for any stable image there
exists an F whose F-decomposition of I supports that image.
This hypothesis expresses in the form of a mathematical re-
lationship the simple intuitions described in 1.1. It thus gives
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an exact statement of the Law of Perceptual Stability for
human vision.

The well-definedness and validity of the stability law will be
treated in another communication that will consider in detail
the immediate practical application and the further theoretical
consequences of this principle.
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