
Lecture Notes

Introduction to Fortran 95 and Numerical Computing

A Jump-Start for Scientists and Engineers

Adrian Sandu
Computer Science Department, Michigan Technological University

Reproduction of (parts of) this document is permissible only with author's consent.

August 23, 2001

2 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

Acknowledgements

The present lecture notes are based in part on the following excellent books:

\Fortran 90 Programming" by Ellis, Philips and Lahey, Addison-Wesley publishing company, 1994;

\Fortran 90 Course Notes" by A.C. Marshall, U. Liverpool, 1997;

\Elementary numerical analysis" by K.E. Atkinson, 2nd edition, John Wiley & Sons, Inc, 1993.

Contents

1 A quick tour of Fortran 95 5

2 The Building Blocks of a Fortran Application 23

3 More on Flow Control 41

4 Computer Representation of Numbers and Computer Arithmetic 47

5 Applications Part I. 77

6 Intrinsic Functions 83

7 Input and Output. 89

8 Arrays 99

9 More on Procedures 115

10 Parametrised Intrinsic Types 129

11 Derived Types 133

12 Pointers and Targets 137

13 Elements of object-oriented programming 149

14 Code Performance 151

15 Linear Systems of Algebraic Equations 157

16 Linear Least Squares 175

3

4 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

17 Nonlinear Equations 181

18 Polynomial Interpolation 189

19 Numerical Integration 191

20 Piecewise Polynomial Interpolation. Splines. 197

21 Taylor Polynomials 207

Chapter 1

A quick tour of Fortran 95

1.1 Program Form

The main program unit begins with the keyword program (optional), followed by the program name (also
otional); it ends with the keyword end (required), followed by program Name Prog (optional).

program <name>
declarations
executable code

end [program <name>]

Open a �le hello.f90. Type the following \hello world" program:

! my �rst Fortran program
program hello
print �, ' Hello World!'

end program hello

Compile it with f90 hello.f90. Run the resulting code with a.out.

1.2 Free vs. Fixed Formats

In Fortran 95 the code layout is obeys the following rules, which describe the \free source form".

� statements can begin in any column;

� multiple statements on a line are allowed; they have to be separated by semicolon \;"

� an exclamation mark \!" in any column is the beginning of a comment; the rest of the line is ignored
by the compiler;

� a statement can be continued on the following line by appending a \&" sign on the current line.

For example, the above code fragment could be written in free source form as

5

6 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

! This is free�form
temp = x; x = y; y = temp ! Swap x and y
write(6,�) 'x and y are =', &

x,y ! Print x and y

For back-compatibility with Fortran 77, Fortran 90 accepts a \�xed source form". In short, the �xed
source form requirements are:

� all lines of code start in the 7th (or higher) column; the �rst 6 columns are reserved for labels, contin-
uation characters, etc.

� each statement is written on a separate line (i.e., statements are separated by newlines); a statement
can be continued on the next line by writing (any) character in the 5th column of the new line;

� comment lines start with a C in the �rst column.

Fixed format was born in 1950's, when each line of code was punched on a paper card (\punched card"). For
debugging and maintaining the code it was clearly easier to have one statement per card. When running,
a punched card had to be aligned, checked if it is a new statement or a continuation of the last, if it is a
comment, etc. - lots of information stored in the �rst 6 columns. (A million-line code, quite common today,
on punched cards, needed a truck to be carried from one computer to another).

For example, a fragment of a Fortran 90 program in �xed source form (in fact, Fortran 77 program) can
be:

C���This�is��xed�form
C���Swap x and y

temp = x
x = y
y = temp

C���Print x and y
write(6,�) 'x and y are =',
� x,y

Our compiler (f90) will consider the program to be in �xed source format if the source �le has the
extension \ .f" (for example, my program.f). The compiler will consider the program to be in free source
format if the source �le has the extension \ .f90" (for example, my program.f90). Note that a free format
source in a .f �le may result in compilation errors.

1.3 Declaration of Variables

1.3.1 Memory Organization. Variables

Discuss how memory is organized

Variables correspond to storage locations in memory. They are denoted by identi�ers, which obey the
following restrictions:

� contain up to 31 characters;

� the �rst character must be a letter;

� names are case-insensitive (no distiction between upper and lower case).

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 7

At the beginning of the program, we declare the types of the variables. Declarations reserve the necessary
number of bytes in memory and \bind" the variable name (identi�er) to the address of the reserved memory
space; the content of the reserved bytes will hold the variable's value. There are 6 intrinsic (default) data
types in Fortran: character, logical, integer, real (single precision), double precision and complex. The last
four types are re�erred to as numeric data types.

1.3.2 Integers.

Declaration:

integer I, J, K or
integer :: I , J , K

An integer can be declared and initialized with

integer :: I = 1

Normally, when the program is loaded in memory, the contents of the declared variables are unde�ned (some
compilers may set them to 0 by default). With initialization, the content of the variables when loading is
set to the prescribed values.

An integer constant (whose value cannot be changed later in the program) can be declared with

integer MAXIMUM
parameter (MAXIMUM=340)

or with

integer, parameter :: MAXIMUM=340

The plain form of declaration, and the two-statement parameter declaration come from F77, and is legal
in F90 also. The double colon \::" form is speci�c to F90. Note that we have to use the double colon
form whenever more than one attribute is given for the variable (e.g., when is integer and parameter, i.e.
constant) or when the variable is initialized.

1.3.3 Characters.

Declaration:

character C or
character :: C

For a string of characters, we can specify the length and (optionally) initialize it as

character(len=7) :: LOGIN

Again we see that, if we want to specify more than one attribute (here, character and length) the double
colon form is needed.

We can have constant (PARAMETER) characters/strings, in which case we use the declaration

character(len=8), parameter :: LOGIN="johndoe"

8 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

(the F77 two-statement form is also acceptable). Here the initialization value is 6-character long, so it will
be padded by 2 blanks to �t the declared length. Similarly, if the initialization value was too long, it would
have been truncated to the declared length.

Alternatively, we may let the character variable assume the length of the initialization string with

character(len=�), parameter :: LOGIN="johndoe", PASSWORD="michigantech"

Here LOGIN will be 7-character, and PASSWORD 12-character long.

The following equivalent form of declaration is also accepted (for back-compatibility with F77):

character�8 :: LOGIN

The LEN attribute can be overriden by a � attribute in a string declaration as follows:

character(len=8) :: LOGIN, PASSWORD�12

Here LOGIN is a string of 8 characters, but PASSWORD is a string of 12 characters.

Note that a string is a scalar; in particular it is NOT an array of characters. For example, it is possible
to declare a 10� 10 matrix whose elements are 6-character long strings:

character(len=6), dimension(10,10) :: A

A string can be split accross lines by adding an ampersand & both at the end of the current line and at the
beginning of the next. For example

"michig&

n&antech"

1.3.4 Reals.

The declarations

real X, Y, PI or
real :: X, Y, PI

state that X, Y and PI are single precision
oating point variables.

A real parameter (whose value cannot be changed subsequently) may be declared with

real PI
parameter (PI=3.141592)

or with

real, parameter :: PI=3.141592

The double colon form is needed for more than one attribute (see above), or for declarations plus initial-
izations

real :: X = 21.5g

Application: circle area and perimeter.

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 9

program �rst
implicit none ! disable implicit d.
real::R,Pi,a,p
Pi=3.1415926
print�, 'Please give radius :'
read�, R
a=Pi��R ! �� is exponentation
p=2.0�Pi�R
print�, 'Area=',a,' Perimieter=',p
end program �rst

1.3.5 Double Precision.

The declarations

double precision X, Y, PI or
double precision :: X, Y, PI

state that X, Y and PI are double precision
oating point variables. A similar discussion as for REAL type
holds.

1.3.6 Complex

Fortran allows for complex numbers also. They are declared as

complex Z, W or
complex :: Z, W

A Fortran complex variable is (and is stored as) a pair of real (single precision
oating point) variables (the
real and the imaginary part, of course). For example, to declare and initialize the complex constant 2 + 3i
we use

complex, parameter :: Z=(2.0,3.0)

1.3.7 Logical.

Logical (Boolean) variables are declared as

logical Q, P or
logical :: Q, P

They can take only (one of) two possible values: true or false (written, in Fortran notation, .TRUE. and
.FALSE.). A declaration with initialization may look like

logical :: Q=.TRUE., P=.FALSE.

10 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

1.3.8 General Form of Declarations

The general form a F90 declaration is

htypei [; hattribute� listi] :: &

[; hvariablei[= hvaluei]]

< attribute � list > contains attributes like PARAMETER, SAVE, INTENT, POINTER, TARGET, DI-
MENSION, etc. Any object may be given any number of attributes, provided they are compatible with each
other.

1.3.9 Implicit declarations

In Fortran implicit declarations are allowed. Suppose we did not declare the variables I, J, X, Y but used
them somewhere in the program. The Fortran compiler will not complain; rather, it will automatically
declare I, J as integers and X, Y as reals. The rule is that undeclared variables which have the �rst letter
I, J, K, L, M or N are considered INTEGER-s, and undeclared variables which start in A through H and O
through Z are considered REAL-s. The automatic declarations based on implicit types are called implicit
declarations. Some fourty years ago programmers found it cumbersome to explicitly declare all the variables
all the time !

In F90 implicit declarations are permitted, but undesirable. In general, their use is a very bad program-
ming habit, as it can mask programming errors, and can negatively impact future software development and
maintainance. For example, a misspelling of a variable name will result in a new variable declaration, which
can be further assigned etc, with the user being totally unaware.

An example (from A.C. Marshall) is

do30i = 1.100
<statements>

30 continue

Instead of a DO loop, because of the misprints, we will end up with a new real variable, do30i.

In consequence, we will always disable the implicit declarations by placing the command

implicit none

as the �rst line after any USE statements (i.e. before the declarations sequence). With this command in
place, the existence of variables that are not explicitly declared will lead to a copilation error.

1.4 Assignment

An expression of the form

Z = Z + 2.0

fetches the value of Z from memory, adds 2.0, and stores the result at the same memory location Z. In short,
Znew = Zold + 2:0. Note that the assignment = has a totally di�erent meaning than mathematical equality
(here, the mathematical relation Z = Z + 2:0 is an equation without solution).

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 11

1.5 Intrinsic Numerical Operations

NUMERIC TYPE :: a,b
NUMERIC TYPE :: [a] hnumerical operatori b
Fortran, like any other language, de�nes several operators that act on numerical type variables. The

addition, subtraction, multiplication, division and exponentiation operators are denoted

+ ; � ; � ; = ; and � �

respectively. Nothe that addition and subtraction can be monadic (e.g. +2:1 or �2:1) or dyadic (e.g.
2:1� 3:4) operators. Also note that we can raise a positive real number to a real power, e.g. 2:3 � �3:14, but
not (�2:3) � �3:14.

In arithmetic expressions di�erent numerical types can be used (will see later), but we usually cannot
mix numerical and character, or numerical and logical variables.

1.6 Literal Constants

We can use value constants directly in the statements; such values are called literal constants.

For example, a number can be raised to an integer power

Y = X��4 ; Z = X��(�6)

Both exponent values 4, �6 are written directly in the source text.

For real constants, we need to use either decimal point notation or scienti�c notation (similar to
oating
point notation base 10: we have a mantissa, followed by an exponent of 10; the expenent is preceded by E)

Y = X + 21.54 or Y = X + 2.154E+1

For double precision constants, we always use scienti�c notation, but now the exponent marker E is replaced
by D, from double:

Y = X + 21.54D0 or Y = X + 2.154D+1

For complex literal constants we need to specify a (real part, imaginary part) pair. To assign the number
Z = 2:25 + 4:1i we do

Z = (2.25, 4.1)

Logical constants can take one of two values, written as

Q = .TRUE. or Q = .FALSE.

Finally, character literal constants are delimited by single or double quotes

C = 'A' or C = "A"

If the delimiter is part of the string, the convention is to write it twice inside the string, for example

C = 'O"Malley'

12 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

1.7 Relational Operators

numerical type :: a,b
logical :: a < relational operator > b

F77/F90 F90 Meaning
.GT. > greater than
.GE. >= g.t. or equal to
.LE. <= l.t. or equal to
.LT. < less than
.NE. = = not equal to
.EQ. == equal to

Relational operators compare the values of two numerical operands and deliver a logical result (.TRUE.
or .FALSE.). Note that for complex operands only .EQ. and .NE. can be used.

Example.

a = 12.0 if (a.GE.10.0) then ...

The expression a .GE. 10 evaluates to .TRUE.

1.8 Intrinsic Logical Operations

logical :: a,b
logical :: [a] < logical operator > b

F90 Meaning
.NOT. monadic logical negation
.AND. logical AND (T.AND.T=T, else F)
.OR. logical OR (F.OR.F=F, else T)
.EQV. true, if both operands have same value
.NEQV. true, if operands have di�erent values

Example.

real :: a , b
logical :: q1, q2
q1 = (.NOT.q2) .AND. (a.GT.b)g

1.9 Intrinsic Character Operations

1.9.1 Substrings

character(len=�), parameter :: school="michigantech"

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 13

Expression Value
school(2:4) "ich"
school(:8) "michigan"
school(9:) "tech"
school(4) error (string is scalar)
school(4:4) "h" (correct form)

1.9.2 Concatenation

character(len=�), parameter :: &
state="michigan", name="tech"

character(len=12) :: school
school = state // name

! produces "michigantech"

1.10 Operator Precedence

user-de�ned monadic highest
�� (tightest binding)
�; = .

monadic +;� .
dyadic +;� .

== .
relational operators (.GT. etc.) .

.NOT. .

.AND. .
.OR. .

.EQV., .NEQV. (weakest binding)
user-de�ned dyadic lowest

For multiple same-level operators evaluation is done left to right (except for ��).
Paranthesis can alter the order of evaluation, and are recommended anyway for clarity. Sometimes

paranthesis can make subtle di�erences, e.g.

A=B � C 6= A=(B � C)
or

A = 2 � �29;
B = 1:999999 � 2 � �30;
C = 1:999998 � 2 � �30;
X = A+B � C ! X =1; (over
ow)
Y = A+ (B � C) ! Y = correct value

Homework 0.1 Add all possible paranthesis to indicate the order of evaluation for

:NOT:A:AND:B:EQV:C:OR:D:AND:E:OR:x:GT:y:AND:y:EQ:z

1.11 Intrinsic Functions

The most widely used functions are part of the Fortran system (are \intrinsic" to Fortran). This means that
the each Fortran system provides high quality implementations of these functions. We can call them without

14 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

linking to any mathematical library. Give some examples here.

1.12 Controlling the
ow of the program

1.12.1 Conditional execution

IF Blocks permit conditional execution of a part of program.

Syntax:

[hnamei :] IF(hlogical expri) THEN
hthen blocki

[� � �
ELSEIF(hlogical expri) THEN [hnamei]
helseif blocki

� � �]
[

ELSE [hnamei]
helse blocki

]

END IF [hnamei]

Both ELSEIF and ELSE are optional. There can be any number of ELSEIF branches.

First the IF-s hlogical expriession is evaluated, and if .TRUE. the statements in the hthen blocki are
executed and control is then transferred to the �rst statement following END IF. If .FALSE., the ELSEIF-
s hlogical expriessions are evaluated succesively, until the �rst one is found to hold .TRUE. Then the
corresponding helseif blocki statements are executed.

If none of the ELSEIF-s hlogical expriessions is found .TRUE., the ELSE branch is taken (if present).
If the ELSE branch is not present the control is transferred to the �rst instruction after END IF.

1.12.2 Examples

(Discuss control
ow diagram with rombs and rectangles)

if (i . gt . 17) then
print*, "i > 17 !"

end if

if (i . gt . 17) then
print*, "i > 17 !"

else

print*, "i <= 17 !"

end if

if (i . gt . 17) then
print*, "i > 17 !"

elseif (i . eq . 17) then
print*, "i = 17 !"

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 15

elseif (i . eq . 16) then
print*, "i = 16 !"

else

print*, "i < 16 !"

end if

Example of IF block use: solving a quadratic equation.

program quadratic eqn 1
implicit none

real::a,b,c ! coe� of the quadratic eqn.
real::d ! determinant
real::x1,x2 ! solutions , if real (cases I , II)
real::xre,xim ! real and imaginary parts of solutions (case III)
!read in the coeÆcients
print�, 'Please give quadr. eqn. coe� . a , b, c :'
read�,a,b,c
d=b��2�4.0�a�c
! check the cases and treat them seperate
if (d.GT.0.0) then

x1=(�b�SQRT(d))/(2.0�a)
x2=(�b+SQRT(d))/(2.0�a)
print�,'The eqn. has two disctinct real roots: ', &
'x1=',x1,' x2=',x2

else if(d.EQ.0.0) then
x1=�b/(2.0�a)
print�, 'The eqn. has two equal roots : ', &
'x1=x2=',x1

else ! d<0
xre=�b/(2.0�a)
xim=SQRT(�d)/(2.0�a)
print�, 'The eqn. has two complex�conjugate roots: ',&
xre,'+/�',xim,' i '

end if

end program quadratic eqn 1

Example ofcomplex numbers use: solving a quadratic equation, Solution no. 2.

program quadratic eqn 2
implicit none

real::a,b,c
complex::d,x1,x2,sd
!read in the coeÆcients
print�,'Please give a , b, c :'
read�,a,b,c
!compute discriminant
d=b��2�4�a�c
! sqrt(d): since d is complex, sqrt is complex
sd=SQRT(d)
! compute roots:
x1=(�b+sd)/(2.0�a)
x2=(�b�sd)/(2.0�a)
print�,'Roots are'
print�,'X1=',x1

16 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

print�,'X2=',x2
end program quadratic eqn 2

1.12.3 Repetitive action

DO Loops permit repetitive action.

Syntax:

DO hDO vari = hn expr1i; hn expr2i[; hn expr3i]
hexec stmtsi

END DO

The loop can be named and the body can contain EXIT or CYCLE statements.

The loop is worked out as follows

1. Evaluate numerical expressions hn expr1i, hn expr2i and, if present, hn expr3i. If not present, hn expr3i
is assumed to have the default value = 1.

2. Initialize the Do variable, DO var hn expr1i.
3. The iteration count is computed with the formula

#it = max

�
bhn expr2i � hn expr1ihn expr3i

hn expr3i c; 0
�

Note that both the number of iterations #it and the stride hexpr3i are evaluated before execution of
the loop begins. Subsequent value changes will have no in
uence on the iteration process. If #it > 0 the
execution cycle starts. At the end of each cycle, the iteration counter is decremented by 1

#it #it � 1

and the DO variable (DO var) is modi�ed by adding the stride

DO var DO var + hn expr3i

The iteration continues if #it > 0, otherwise exits. As a consequence, at the end of the iterations, DO var
might assume a value di�erent from hn expr2i.

Modifying the DO var inside the body loop is prohibited (and results in a compilation error).

For example, a missing stride hexpr3i is set by default to 1. The code

do i=1,9
print�, i

end do

will execute the loop exactly 11 times, and will produce the output 1; 2; 3; : : :9.

do i=1,9,2
print�, i

end do

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 17

will produce the output 1; 3; 5; : : :9.

A negative stride is possible, the code

do i=9,1,�2
print�, i

end do

will produce the output 9; 7; 5 : : :1.

The loop

do i=9,1,1
print�, i

end do

will produce no output since initially #it = 0. Also, the loop

do i=1,9,�1
print�, i

end do nn

will produce no output since initially #it = max(�8; 0) = 0.

EXIT statement �nishes the innermost loop; however, with named do loops, it can exit the indicated
loop, regardless of its nesting level. Similarly, CYCLE outer cycles back to the outer loop, whereas a plain
CYCLE would have cycled back to the inner loop.

outer : do i=1,9
inner : do j=i,9
print*, "before: ",i, j
if (j . gt . 3) cycle outer ! go to outer: do
print*, "before: ",i, j
if (j . gt . 6) exit outer ! go to outer: do
print*, "after: ",i,j

end do inner
end do outer

1.13 Application to DO loops: Fahrenheit to Celsius

Write a program that converts the temperature from Fahrenheit degrees to Celsius degrees (centigrades).
The steps are:

1. Problem formulation

2. Algorithm

3. Implementation

4. Run, and if the result is wrong, loop back.

program temp conv
implicit none

integer::n ! no. of temperatures to convert

18 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

real::f ,c ! temp. values in F,C
integer::i ! loop counter
print�,'No. of conversions='
read�,n
do i=1,n
print�,'Fahrenheit temp. no ',i ,'='
read�,f
c=9.0/5.0�(f�32)
print�,f ,' F is ', c ,' C'
end do

end program temp conv

1.14 Problems

1. write a program that reads in the radius and computes the area of a circle;

2. extend the program to test whether the area is negative; if so just STOP. This introduces IF blocks,
and logical expressions;

3. extend the program to read 5 radii; this introduces a DO loop and integer variables; CYCLE and
EXIT.

4. extend the code to �rst read all 5 radii and then compute all 5 areas; this introduces arrays. The
dimension (N=5) is a PARAMETER.

1.15 Input and Output

1.15.1 Standard (keyboard/console)

read�, R
print�, V
print�, 'R = ', R or
print*, "R = ", R

1.15.2 File I/O

Opening �les

In Fortran, �les are designated by unit number, which is an integer number. Values from 0 to 6 are
reserved for standard I/O, standard error, etc. Usually user-de�ned �les have unit numbers of 10 and above.

Sometimes we need to read from/ write into user de�ned �les. In order for Fortran to be aware of the
existence of user-de�ned �les, we need to OPEN them (this is somehow similar to variable declaration).

For example, the statement

open(unit=10, file='data.txt', action='READ')

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 19

will open the �le named 'data.txt'; the mode declaration states that this is an input (read-only) �le; the
statement will allocate unit number 10 to the �le 'data.txt'; from now on, all READ(10,*) will read in data
from this �le.

The statement

open(unit=11, file='results.txt', action='WRITE')nendftabularg

will open the �le named 'results.txt'; if not present, will create one; the mode declaration states that this
is an output (writeable) �le; the statement will allocate unit number 11 to the �le 'results.txt'; from now
on, all WRITE(11,*) will write data into this �le. The list of arguments must be of standard intrinsic types
(unless explicit format is used). Each WRITE statement puts the arguments on a new line; non-advancing
WRITE is possible, but we need to use formats. Note that the statement, as is, will wipe out the content of
results.txt, should it previously exist.

It is possible to declare action='readwrite' for �les which are both I/O.

Also not recommended, the two statements above can be abbreviated as

open(10, 'data.txt ', 'READ')
open(11, ' results . txt ', ' WRITE')

The opened �les may be closed with

close(10)
close(11)

The unit number can then be re-used (for a di�erent �le) in a subsequent OPEN statement.

Read and Write

The �le read function has two parameters

read(unit=unit�no, fmt=format�label) [list of arguments]

Each parameter can be replaced by a �, with the meaning \default unit" or \default format". We will talk
later about formats.

The call

read(5,�) R, V

reads two reals from unit number 5 in default format. Unit 5 is prede�ned, and is the standard input
(keyboard, unless redirected). Thus, an equivalent formulation is

read(�,�) R, V

The �le write function is very similar,

write(unitn no, format label) [list of arguments]

Each parameter can be replaced by a � (defaults). The call
write(6,�) R, V

20 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

writes two reals onto unit number 6 in default format. Unit 6 is prede�ned, and is the standard output
(monitor, unless redirected). Thus, an equivalent formulation is

write(�,�) R, V

The list of arguments must be of standard intrinsic types (unless explicit format is used). Each READ
statement reads the arguments from a new line; non-advancing READ is possible, but we need to use
formats.

1.15.3 Application

Modify the Fahrenheit to Celsius program to read the temperature (ÆF) from one �le, and output it to
another �le (ÆC).

program temp conv
implicit none

integer::i,n
real::f ,c
integer::in=10,out=11 ! unit numbers
!open the �les

open(unit=in,file='fahr.data',action='read')
open(unit=out,file='celsius.data',action='write')
!read and write how many temperatures

read(unit=in,fmt=�) n
write(unit=out,fmt=�) n
do i=1,n
read(unit=in,fmt=�) f
c=9.0/5.0�(f�32)
write(unit=out,fmt=�) c
print�,i ,' F=',f ,' is C=',c
end do

end program temp conv

The open, close, read and write functions can be checked if they performed ok using the IOSTAT param-
eter. In our case we check whether end-of-�le was reached and if so we exit the loop. This way there is no
need to have the number of temperatures as the �rst number in the �le.

program temp conv 3
implicit none

real::f ,c
integer::iostatus
!open the data �le , F
open(unit=10,file='fahr2.data',action='read',iostat=iostatus)
!check if the �le was opened properly
if(iostatus .NE.0) then
print�,'Data file could not be opened'
stop ! terminates the program
end if

!open the result �le
open(unit=11,file='celsius2.data',action='write',iostat=iostatus)
!check if the �le opened properly
if(iostatus .NE.0) then
print�,'Output file cannot be opened'
stop

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 21

end if

do

read(unit=10,fmt=�,iostat=iostatus) f
!check if this is a valid read
if(iostatus .NE.0) then
print�,'end of file reached'
exit

end if

c=5.0/9.0�(f�32)
write(unit=11,fmt=�) c
end do

end program temp conv 3

1.16 Arrays

Arrays are collection of elements of similar type. This data structure allows to implement mathematical
objects like vectors, matrices and tensors.

To declare an array with 3 real elements we use

real, dimension(3) :: v or
real :: v(3)
real v(3)

Particular entries of the array can be accessed with an index, running from 1 through the number of entries.

v(1)=1.0; v(2)=2.0; v(3)=3.0

One can assign values to all elements of v at once using an array constructor. A constructor is a list of scalar
values delimited by (/ ... /). For example the same initialization of v can be achieved using

v = (/ 1.0, 2.0, 3.0 /)

An even more compact initialization is achieved using an implicit do loop:

v = (/ (i , i=1,3) /)

In Fortran jargon the one-dimensional object v is called a rank-1 array (its entries are accessed using a
single index). One can de�ne multi-dimensional arrays as well. A rank-2 array can be de�ned for example
as

real, dimension(2,3) :: A or
real :: A(2,3)
real A(2,3))

A particular element is now accessed using two indices: A(i,j) where 1 � i � 2 and 1 � j � 3.

One can initialize a rank-n array using constructors. The list of entries in a constructor is one-dimensional;
we need to map this one-dimensional list onto the k-dimensional array. This is done using the intrinsic
function reshape. For example, we can initialize the 6 entries of A using

A = reshape ((/ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 /), (/ 2, 3 /))

22 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

The �rst argument of the reshape function is the constructor, the second is another constructor containing
the shape of A. Reshape initializes the entries of A in column-wise order; the result of the above operation is

A =

�
1:0 3:0 5:0
2:0 4:0 6:0

�
:

Arrays can be used as arguments for input/output purposes. For example

read�, A

will (expect to) read 6 numbers from the console and assign the values to elements of A in column-wise
order. Similarly,

print�, A

prints the elements of A one after another in column-wise order.

1.16.1 Application

Vector times matrix multiplication.

program mvproduct
implicit none

real, dimension(3) :: V
real, dimension(2,3) :: A
real,dimension(2) :: W
integer :: i , j

print�,'please give V(1:3)'
read�,V

print�,'Please give A (1:2,1:3)';
read�,a
! The list of numbers from console is 1�dimensional, and is
! reshaped by the read function to the shape of A in column�wise order.

! compute the matrix�Vector product
do i=1,2 ! for each entry of w, compute w(i)
w(i)=0.0
do j=1,3
w(i)=w(i)+a(i,j)�V(j)

end do

end do

! print eVerything.
print�,'A='
do i=1,2

print�,(A(i,j), j=1,3) ! use implicit do loop to print all elements in row i
end do

print�,'V=',V
print�,'W=',w
!
end program mvproduct

Chapter 2

The Building Blocks of a Fortran

Application

2.1 Program Units

An F95 application will usually consist of several program units. One of them is the main program unit,
where the execution of the program starts, and where, usually, it ends if everything went all right with the
computation. The main program unit is delimited by the following keywords:

program hprogram namei
...

end program pname

The other four types of program units de�ned in F95 are external functions, external subroutines, modules
and block data units. The beginnings and ends of these units are designated by the following syntaxes,
respectively:

function hfunction namei
...

end function hfunction namei

subroutine hsubroutine namei
...

end subroutine hsubroutine namei

module hmodule namei
...

end module hmodule namei

block data hblock data namei
...

end block data hblock data namei

23

24 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

As a general principle, the programming task is divided into smaller subtasks, which are then individually
solved. Di�erent program units can implement di�erent subtasks; programming units are standalone, in the
sense that they do not depend upon implementation details in the body of other program units; the units
communicate to each other via speci�c interfaces, so one unit only needs to be aware of the interfaces to
other program units.

2.2 External Procedures

External procedures

� are parametrised blocks of code that perform a speci�c task; this section of code is written once, and
can be re�ered to as many times as needed;

� are \independent" units which may be compiled separately;

� communicate with other program units via arguments, returned values (functions only), and global
variables (to be discussed another lecture);

� can be used as arguments in other procedure calls.

Advantages

� avoid code duplication (when same task appears several times in our program);

� lead to modularization of programs. The general principle of dividing the problem into subproblems,
and managing the subproblems separately, can be naturally implemented using procedures;

� make software reusable (pieces can be used later in a di�erent context);

In F95 there are 2 types of external procedures,

1. functions, and

2. subroutines.

2.3 External Functions

The syntax of a function declaration is

[htypei] FUNCTIONhfcn namei([hformal(dummy) argsi])
hdeclare formal(dummy) argsi
hdeclare local objectsi
� � �
hexecutable statementsi
END[FUNCTION[hfcn namei]]

For example, suppose we want to declare a function that receives the three coordinates of a cartesion
vector x,y,z and returns the euclidian norm of the vector, r =

p
x2 + y2 + z2 (this is also called the 2-norm).

The arguments x,y,z are REAL, and so is the returned value r.

The declaration could then be

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 25

! function that computes norm 2 real=type of the returned value
real function norm 2(x,y,z) !x,y,z are "dummy" arguments

implicit none !scope=body of the function
real::x,y,z !dummy args declaration
norm 2=SQRT(x��2+y��2+z��2)

!function name behaves like a variable
!holding the return value

end function norm 2

!function for norm 1
real function norm 1(x,y,z)

implicit none

real::x,y,z
norm 1=abs(x)+abs(y)+abs(z)

end function norm 1

!function for norm in�nity
real function norm inf(x,y,z)

implicit none

real::x,y,z
norm inf=max(abs(x),abs(y),abs(z))

end function norm inf

! the main program
program norms

implicit none

real::a,b,c
real,external::norm 1,norm 2,norm inf
print�,'Please give coordinates a,b,c .'
read�,a,b,c
print�,'The 2�norm= ',norm 2(a,b,c) !a,b,c are "actual" args
print�,'The 1�norm= ',norm 1(a,b,c)
print�,'The inf�norm= ',norm inf(a,b,c)

end program norms

Note that the function name hfcn namei (norm 2) behaves like a variable; when the function terminates,
this variable holds the result of the function (the \return value" of the function). The type of function is
the type of the returned result, i.e. the type of the result variable (norm2). This type is declared explicitly
as a pre�x to the function name; in our example,

real function norm2(x,y,z).

Alternatively, this declaration can be mixed with the other declarations, for example

function norm2(x,y,z)
implicit none

real :: x, y , z , norm2

Either form is valid, and one declaration should always be given (otherwise the compiler will signal an error).

The variables x,y,z are called formal (dummy) arguments. They hold the input data for the function.
When the function is invoked, they will be replaced by actual values.

The calling program also declares the type of the function, padded with the EXTERNAL attribute. For
example, the calling program might read in the coordinates and print the 2-norm of the vector:

26 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

program print norm
implicit none

real, external :: norm2
real :: a , b, c
print�, 'input~3~coordinates:'
read�,a,b,c
print�,'the norm is',norm2(a,b,c)
end program print norm

The declaration REAL, EXTERNAL :: norm2 tells the main program that norm2 is an external function
which returns a REAL result. Of course, the compiler can �gure out itself that norm2 is a function by seeing
the name norm2 followed by paranthesis and the list of arguments at the place of call. Therefore, the
EXTERNAL attribute is not really necessary here, and we can simplify the declaration to REAL :: norm2.
However, it is good programming practice to have the EXTERNAL attribute, and I advise you to keep it
whenever external functions (or procedures) are used. In passing, we note that there are instances when
the name of the external function appears without the argument list - e.g. when the function name itself
is an argument in another function call. In these instances, the EXTERNAL attribute is mandatory, since the
compiler cannot distinguish between a function name and a variable name. Again, I advise you to give the
EXTERNAL attribute all the time: the code is more readable, and you do not have to remember the detailed
requirements for using this attribute.

The argument passing mechanism uses stacks. A stack is a memory structure which can be accessed (for
both writting (push) and reading (pop)) from the top only. An example of a stack is: [see picture].

2.4 Actual arguments, formal (dummy) arguments and local vari-
ables

The function is invoked by its name, followed by a list of actual arguments. When the call is issued, in
a special memory structure, called the program stack, 5 new locations are reserved; the addresses of the 3
arguments a,b,c are pushed, in this order, into the stack. The 4th location contains the address of the real
variable norm2, which was declared in the main program and is expected to hold the result of the function
calculation. The 5th location is dedicated to the local variable loc, about which we will talk later. The
control is then transferred from the caller (here, the main program) to the called function norm2. The
function \sees" the stack; from the function perspective, on the stack are (top to bottom): result variable
address, argument z address, argument y address, and argument x address. The formal (dummy) names
x,y,z are therefore just aliases for the actual variable names, to be used inside the function body (we say
that, when the funcion is called, formal (dummy) variables are replaced by actual variables). It is therefore
required that the order in which the actual arguments are supplied is precisely the order of formal (dummy)
arguments in the function declaration. Moreover, the type of nth actual argument should coincide exactly
with the type its omologue (nth) formal (dummy) argument.

The norm calculation is performed and the result stored in norm2 (the function knows the address of
this variable also!). At this point the control is returned to the main program. Here the function call
norm2(a,b,c) is simply replaced by the value found in the result variable norm2, and the computations in
the main program proceed further.

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 27

?

�
�
�
�
�
�
�
�
��7

HH
HH

HH
HH

HH
HH

HH
HY

?

?

PROGRAM ...

END PROGRAM ...

FUNCTION &

END FUNCTION &

norm2(x,y,z)

norm2

norm2(a,b,c)
@z=@c

loc

@x=@a

@y=@b

@norm2

Stack

As presented here, the argument passing is said to be done \by reference", since references to, rather
than values of arguments are put on the stack. Note that, in practice, the situation is more complicated; the
actual parameter-passing mechanism can be somewhat di�erent than what we show here. This is the case,
for example, when the function is invoked with literal constant arguments (perfectly legal in F95)

print�, norm2(1.0, 2.0, 3.0)

Nevertheless, the above discussion is useful to understand the \inner logic" of the F95 function declaration
and function call syntax.

The variable loc is called a local variable. Its scope is the body of the function. When the function is
called, space is allocated on the stack for loc; at this point the memory location does not carry any useful
information. When the control returns to the main program (the caller), the stack pointer is reset to its
previous value, wiping out all the information on stack; loc is therefore destroyed when the function is
exited. loc does not exist between function calls. Obviously, a new function call means a new incarnation
of loc, unrelated to the previous one; in particular, loc cannot remember its value from the previous call.

Note that IMPLICIT NONE should be used in any function declaration just as it is used in the main
program.

2.4.1 Implicit Interfaces

Implicit interfaces are the old, F77 way of communication. Separate procedures are desired to be as indepen-
dent as possible from one another (so that they can be written, compiled and maintained independently); in
particular, a procedure is totally ignorant of how a di�erent procedure looks like.

Consider our norm example. The main program knows that norm2 is an external function that returns
a real value, but it has no information about the arguments.

Special problems arise when procedures call each other; the caller has very limited knowledge on the

28 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

called procedure; it passes a list of actual argument addresses to the called procedure; the called procedure
retrieves this addresses in order, and assumes they are the addresses of the formal (dummy) arguments.

The disadvantage of this approach is that the compiler is able to perform only limited consistency checks.
In F77, it is easy to make mistakes undetectable by the compiler when working with argument lists.

Consider, for example, the following subroutine

! function that computes norm 2 real=type of the returned value
real function norm 2(x,y,z) !x,y,z are "dummy" arguments

implicit none !scope=body of the function
real::x,y,z !dummy args declaration
norm 2=SQRT(x��2+y��2+z��2)

!function name behaves like a variable
!holding the return value

end function norm 2

!function for norm 1
real function norm 1(x,y,z)

implicit none

real::x,y,z
norm 1=abs(x)+abs(y)+abs(z)

end function norm 1

!function for norm in�nity
real function norm inf(x,y,z)

implicit none

real::x,y,z
norm inf=max(abs(x),abs(y),abs(z))

end function norm inf

! the main program
program norms

implicit none

real::a,b,c
real,external::norm 1,norm 2,norm inf
print�,'Please give coordinates a,b,c .'
read�,a,b,c
print�,'The 2�norm= ',norm 2(a,b,c) !a,b,c are "actual" args
print�,'The 1�norm= ',norm 1(a,b,c)
print�,'The inf�norm= ',norm inf(a,b,c)

end program norms

The accidental switch of arguments cannot be detected by the compiler and produces most curious results.

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 29

2.5 Subroutines

An external subroutine a program unit that does all the communication with the rest of the world via
arguments (and global variables); it does not return a value. The syntax of a subroutine declaration is

SUBROUTINEhsbr namei([hformal(dummy) argsi])
hdeclare formal(dummy) argsi
hdeclare local objectsi
� � �
hexecutable statementsi
END[SUBROUTINE[hsbr namei]]

For example, suppose we want to declare a subroutine that receives the three coordinates of a cartesion
vector x,y,z and computes the 2-norm of the vector, r =

p
x2 + y2 + z2 (this is also called the 2-norm).

The arguments x,y,z are REAL, and so is the computed value r.

The declaration could then be

subroutine norm2s(x,y,z,r)
implicit none

real :: x,y,z, r
r = sqrt(x��2+y��2+z��2)
end subroutine norm2s

The calling program invokes the subroutine using

call norm2s(a,b,c,d)

The CALL statement builds the argument stack and passes control to the subroutine; when END SUBROUTINE

is encountered, the control is returned to the calling program, at the �rst statement after CALL. Unlike
functions, subroutines communicate with the calling program via arguments (or global variables) only - they
do NOT return a value associated with the subroutine's name.

For example, the main program might read in the coordinates and print the 2-norm of the vector:

program print norm
implicit none

external :: norm2s
real :: a , b, c , d
print*, "input~3~coordinates:"

read�,a,b,c
call norm2s(a,b,c,d)
print*,"the norm is",d
end program print norm

The declaration EXTERNAL :: norm2s tells the main program that norm2 is an external subroutine (we do
NOT have any type declaration associated with the name!). Again, in this particular context the declaration
is super
uos, but, since it will be mandatory in other contexts, and since it improves readability, I strongly
recommend its use.

The actual arguments a,b,c,d replace the formal (dummy) arguments x,y,z,r (in this order) at the
time of call. The type and order of actual arguments should match exactly the type and order of their
omologue formal (dummy) arguments.

An IMPLICIT NONE statement should be given in each subroutine, just as it is given in the main program.

30 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

2.6 Comments

Procedures for most common programming tasks have already been written and are available for us to use
(many times for free!). One example is the set of intrinsic functions in F95. Another example are the
standard libraries for numerical computations. BLAS (Basic Linear Algebra Subroutines) is a collection of
modules that perform matrix and vector calculations. LAPACK is a complete set of subroutines for solving
numerical linear algebra problems.

Any time we have a programming task, and need to write a piece of code, it is advisable to check
whether a standard subroutine, in a standard collection, performs the same task for us. This cuts down
programming time; cuts down the likelihood of programming errors; usually, enhances performance; and, of
course, enhances software maintainability.

If we are to write our own procedures from scratch, here is some expert (and free!) advice, from A.C.
Marshall:

1. keep the procedures under 50 lines long, for a simple control structure;

2. make procedures as
exible as possible, to allow for software reuse;

3. pass as many variables as possible as actual arguments, and rely as little as possible on global storage
or host association;

4. give procedures meaningful names, and plenty of comments;

5. there is absolutely no point in reinventing the wheel - use standard libraries whenever they o�er
subroutines which solve the required task.

2.7 Modules

Modules are special program units, delimited by the following syntax:

module hmodule namei
...

end module hmodule namei

A module contains only declarations of di�erent entities; it can contain no executable statements. Other
program units (functions, subroutines, main program or even other modules) can attach the module, and by
doing so they can \see" (have access to) the entities declared in the module.

Therefore, the functionality of a module is to declare objects and to make them available to other program
units. In this regard, they are di�erent from procedures (which are supposed to perform some computations,
some I/O, etc).

We can attach a module to a program unit by inserting

use hmodule namei

as the �rst statement in the program unit (right after the header, and right before any declaration).

Jargon: when a program unit USEs a module, it has access to the (public) objects declared in the module;
we say that the module entities are visible within that program unit by use-association.

Note that, in particular, modules can be attached to other modules, which in their turn can be attached
to other modules etc. In this situation we have to be careful not to create a circular de�nition, which is of

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 31

course prohibited. An example of a circular, hence mistaken de�nition, is: module 2 uses module 1, module
3 use module 2 and module 1 uses module 3.

What we said here is not the whole story with modules: it suÆces for now, but we will study more in
the future.

2.8 Scope of Variables

The scope of an entity is the part of the program where the entity is visible. The main program, a function
or a procedure are scoping units; an entity declared inside a scoping unit is visible throughout the unit.

In particular, a variable declared in the main program or in a procedure has the body of the pro-
gram/pocedure as its scope.

A variable is local (has local scope) if its scope is that of a scoping unit.

A variable whose scope is the entire program has global scope.

Some variables can be seen by multiple program units - by extension we will also talk about global
scope. Global storage (global scope variables) can be implemented using modules or common blocks. This
is discussed later in this chapter.

2.9 Lifetime of Variables

A variable is "alive" when its name is associated with a memory location. A variable is "alive" during the
execution of the program unit that declared it:

� variables declared in the main program live throughout the execution of our application;

� local variables (declared inside a function or subroutine and which are not formal (dummy) arguments
or global variables) are automatically allocated each time the procedure is called (allocation on function
stack) and automatically deallocated when the procedure returns. They are called automatic variables.
Their value is destroyed when the procedure returns; each call means a new variable is created.

SAVE attribute makes the variable static. It is allocated in a static part of the memory and is never
deallocated (during the execution of our program). In particular static variables preserve their value between
calls. Here is an example of a subroutine which counts how many times it has been called. The variable
icount is static due to the initialization.

! function that computes norm 2 real=type of the returned value
real function norm 2(x,y,z) !x,y,z are "dummy" arguments

implicit none !scope=body of the function
real::x,y,z !dummy args declaration
norm 2=SQRT(x��2+y��2+z��2)

!function name behaves like a variable
!holding the return value

end function norm 2

!function for norm 1
real function norm 1(x,y,z)

implicit none

32 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

real::x,y,z
norm 1=abs(x)+abs(y)+abs(z)

end function norm 1

!function for norm in�nity
real function norm inf(x,y,z)

implicit none

real::x,y,z
norm inf=max(abs(x),abs(y),abs(z))

end function norm inf

! the main program
program norms

implicit none

real::a,b,c
real,external::norm 1,norm 2,norm inf
print�,'Please give coordinates a,b,c .'
read�,a,b,c
print�,'The 2�norm= ',norm 2(a,b,c) !a,b,c are "actual" args
print�,'The 1�norm= ',norm 1(a,b,c)
print�,'The inf�norm= ',norm inf(a,b,c)

end program norms

Instead of initializing it, one can make the variable ilocal static using

integer, save :: ilocal
save ilocal

A single SAVE statement not followed by a list of variables has the e�ect of declaring static(saving) all
local entities in a program unit that can be saved (note that formal (dummy) arguments and automatic
arrays cannot be saved).

2.10 Global Storage

We have seen so far that procedures communicate with the outside world via arguments and via returned
values (functions); all other variables declared are local, their scope is the body of the procedure only.

This fact has the advantage that procedures can be written without any knowledge of the program unit
from which they will be called - all that is required is that the interface is known.

However, for large programs, this will lead to very long argument lists, which can be a serious drawback
when programming (how about writing a routine with 10,000 arguments, and then calling it from 1,000
diferent places with di�erent actual arguments?). It is therefore necessary to have a mechanism for global
storage, that is, to have variables that are visible from di�erent program units, without being included in
the argument lists.

In F95, modules provide this extra mechanism of communication. Variables declared in a module are
visible within all procedures and programs which USE that particular module.

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 33

2.10.1 Circle Example

We want to write two functions, which calculate the perimeter and the area of a circle, respectively. Both
functions need the value of �. We de�ne this value in a module:

module de�ne pi
implicit none

real, parameter :: pi = 3.1415926
end module de�ne pi

By USE-ing the module in both functions, we make sure that they see the same value of �. The main
program reads in the value of the radius and prints the perimeter and the area of the circle.

real function perimeter(r)
use de�ne pi
implicit none

real :: r
perimeter = 2.0�pi�r

end function perimeter

real function area(r)
use de�ne pi
implicit none

real :: r
area = pi�r�r

end function area

program circle
implicit none

real :: r
real, external :: perimeter, area
print�, 'radius ='
read�, r
print�,'area = ',area(r)
print�,'perimeter = ',perimeter(r)

end program circle

2.10.2 Taylor Approximation of the Exponential

Consider a program which compares the Taylor approximation of the exponential with the intrinsic function.

We de�ne a module Coeff which declares the order n of the approximation; the maximal order allowed
n max=10 and a vector b of coeÆcients for the Taylor polynomial. Note that, in the de�nition, we include
speci�cally the range to be 0:n max; this means that b will contain n max+1 elements, indexed from 0 to
n max.

module coe�
integer :: n
integer, parameter :: n max = 10
real, dimension(0:n max) :: b

end module coe�

program approx
use coe�
implicit none

real :: x
integer :: i
external taylor exp
real, external :: eval

!
print*, "please input order (n <= 10)"

read�, n
n = min(n, n max)
call taylor exp

!
do i=�3,3
x= 2.0��i
print�, x,") exp=",exp(x), &

34 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

"; taylor=", eval(x)
end do

end program approx

subroutine taylor exp
! calculate the �rst n coeÆcients
! in the taylor approx. of exp
use coe�
implicit none

integer :: i
b(0) = 1.0
do i=1,n
b(i) = b(i�1)/real(i)

end do

end subroutine taylor exp

real function eval(x)
! evaluate the order n
! polyn. with coeÆcients b(i)
use coe�
implicit none

real, intent(in) :: x
integer :: i
eval = b(n)
do i = n�1,0,�1
eval = b(i)+x�eval

end do

end function eval

The subroutine Taylor exp USEs the module Coeff. As a consequence, it has access to all three global
variables n, n max and b. Note that this subroutine has no arguments, which is legal in F90, but does all the
communication with the ouside world via the global variables in the module Coeff. Taylor exp calculates
the �rst n+1 coeÆcients in the Taylor series for the exponential function, and stores them in b(0) through
b(n).

The function Eval has just one input argument, x. It also USEs the module Coeff, hence it \sees"n,
n max and b. The function evaluates the value of the polynomial

b(0) + b(1) � x+ : : :+ b(n) � xn ;

and returns this value to the calling program. It is easy to notice that a nested form evaluation algorithm
is used.

The main program also USEs Eval. Because of this, the variables in Eval exist as long as the program runs;
they are e�ectively static variables (we will discussed in the future about this). The subroutine Taylor exp,
the function Eval and the main program all have access to n, n max and b; any of them can read and write
any of these variables; in this sense, n, n max and b are called global variables. We say that the scope of n,
n max and b includes the main program, the subroutine and the function.

The main program reads in the desired order of approximation n; then, sets it to n max if it is larger than
this maximal value. When called, the subroutine Taylor exp �lls in b(0) ... b(n) with the coeÆcients
of the nth Taylor polynomial. Finally, Eval is called several times, with di�erent arguments, and the results
of the intrinsic function and this approximation are printed together, for comparison. Note that, once the
coeÆcients b(0) ... b(n) have been calculated and stored, they can be subsequently used to obtain any
number of approximate values Eval(x).

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 35

Homework 0.2 Write a module and two subroutines PUSH and POP to simulate a stack; the module will
allocate an 0:N MAX array, the memory space for the stack, and will contain a stack pointer (an integer to
keep track of the current position in the stack).

2.11 F77 Global Storage. Storage Association.

The default global storage facility in F77 are the COMMON blocks. It is likely that we will encounter them in
older software; however, we encourage the use of modules, not COMMON blocks, whenever global storage is
required.

The above version of our example program can be reformulated with COMMON blocks as follows:

program approx
integer :: n
real, dimension(0:10) :: b
common /coe�/ n, b
print*, "please input order (n <= 10)"

read�, n
n = min(n, 10)
call taylor exp

!
do i=�3,3
x= 2.0��i
print�, x,") exp=",exp(x), &

"; taylor=", eval(x)
end do

end program approx

subroutine taylor exp
! calculate the �rst
! n coeÆcients in
! the taylor approx. of exp
integer :: n
real, dimension(0:10) :: b
common /coe�/ n, b

!
integer :: i
b(0) = 1.0
do i=1,n
b(i) = b(i�1)/real(i)

end do

end subroutine taylor exp

real function eval(x)
! evaluate the order n
! polyn. with coeÆcients b(i)
integer :: n
real, dimension(0:10) :: b
common /coe�/ n, b

!
real, intent(in) :: x
integer :: i

36 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

eval = b(n)
do i = n�1,0,�1
eval = b(i)+x�eval

end do

end function eval

A common block declaration consists by the keyword COMMON, followed by the common block's name
hcb namei (included between slashes); common blocks are recognized by their names within all program
units, i.e. COMMON block names are, by default, global names (they have to di�er from any program unit
name). In the declaration, the name is followed by the list of variables stored in the COMMON block.

COMMON=hcb namei= var1; var2; var3; : : :

All program units that invoke the

common /coe�/ ...

statement, for example, will have access to the common block /coeff/'s variables. Since we can have
variables shared by multiple units, common blocks are a mean of implementing global storage. Note that
an argument of a function or subroutine cannot be simultaneously a common block variable in the same
procedure.

Physically, a common block is a contiguous zone of memory (a \block" of memory) in which succesive
chunks of bytes are allocated to succesive variables (i.e. to the variables speci�ed in the de�nition of the
COMMON block). Speci�cally, INTEGERs, REALs and LOGICALs are allocated 1 storage unit in the block,
DOUBLE PRECISION and COMPLEX variables are given 2 storage units (1 unit is usually 4 bytes, but depends
on the implementation). Characters are considered to have a di�erent storage unit, incompatible with the
numerical storage unit; they are therefore incompatible with the numerical types; chracter and numerical
variables cannot be part of the same COMMON block.

The memory block can be seen by any program unit which includes its declaration, being therefore
COMMON to several program units.

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 37

B
B
B
B
B
B
B
�
�
�
�
�
�
��
L
L
L
L
L
L
LL
�
�
�
�
�
�
��

n

b(0)

COEFF

This storage scheme is also the main weakness of COMMON blocks. The reason is that the names of
variables var1; var2 : : : are local to the program unit which declares them, while the COMMON block name is
global. Thus, di�erent program units can access the same common block, but can refer to the common block
variables with di�erent (local) names. Of course, what counts is the relative position of a variable within
the block - the name is just a (local) alias for this position. Therefore, the types and the order of common
block variables have to be the same, but their names can di�er (pretty much like the list of formal (dummy)
vs. the list of actual arguments).

For example, consider the following subroutine which prints the �rst two elements of the COMMON block

COEFF.

subroutine p2
integer :: n, p
common /coe�/ n, p
print�, n, p

end subroutine p2

The compiler cannot check that types of the succesive variables in COMMON blocks match for di�erent
common block de�nitions; it will just check that local de�nitions are consistent. Now, our intent was to
have �rst an integer (n), then a real number b(0); by mistake, we declared both integers, and the compiler
cannot help us; in consequence, the 32 bits of the real number b(0) will be interpreted as the 32 bits of a
signed integer (in two's complement) p; instead of 1.0 we obtain 1065353216.

In addition, common blocks containing data of heterogeneous(di�erent) types may lead to memory
missalignments.

38 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

2.12 BLOCK DATA statements

To initialize the variables in a COMMON BLOCK we can use the BLOCK DATA construct. For example,

block data coe� init
integer :: n
real, dimension(0:10) :: b
common /coe�/ n, b
data n /10/
data b /1.0000000000e+00, 1.0000000000e+00, 0.5000000000e+00, &

0.1666666667e+00, 4.1666666667e�02, 8.3333333333e�03, &
1.3888888889e�03, 1.9841269841e�04, 2.4801587302e�05, &
2.7557319224e�06, 2.7557319224e�07/

end block data coe� init

initializes the elements of the (coeff) COMMON block variables to n=1, x(1) = 3.0, x(2) = 5.0. Note
that a BLOCK DATA construct includes the COMMON block statement, and the de�nitions of the COMMON block
variables; also, it contains the DATA statements, which initialize the variables with the prescribed values
(i.e. at compile time the allocated memory slots for the speci�ed variables are written with the given initial
values).

The statement

save / coe�/

makes the common block static storage; it will be kept in memory for the whole duration of the current
execution (in practice most Fortran systems will automatically make all common blocks static, but we should
not rely on this!).

2.13 Include �les

To avoid the problems of inconsistent common block declarations it is common practice to place the common
blocks and their variable declarations in a �le, and then to include the �le in di�erent program units which
use the common block. For example, the �le coe�.cmm may contain

integer :: n
real, dimension(0:10) :: b
common /coe�/ n, b

and we may use

include 'coe�.cmm'

This is equivalent to inserting (rewritting) the content of coe�.cmm at each place where the �le is included.
We therefore avoid repeating the same declarations and are sure of the consistency.

2.14 More on Storage Association

Fortran allows for a special, unnamed common block, called the blank COMMON block. It is declared as

common // var 1, var 2 , ..., var n

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 39

Blank common block is useful when most, or a large number of routines, need to share same variables. Some
special features of the blank common block are

� contained data is automatically static,and

� it cannot be initialized in a BLOCK DATA statement;

� the compiler is more permissive (e.g. it allows the blank common block to be invoked with a di�erent
number of variables in di�erent program units).

In F77 several entities (scalar or array) can be associated with the same memory location, using

equivalence (var 1, var 2 , ..., var n)

All the variables in the list are stored in the same memory locations, more exactly, their storage spaces start
at the same address in the memory.

EQUIVALENCE is usually used in conjunction with large common blocks, to identify the parts of the block
for the current procedure. For example, a common block /VERY LONG/ can store 28 real arrays, containing
a total of 15,421 real elements

common /very long/ a(7311), b(121), ..., z(1272)

Suppose in a procedure only the second array, B(121) is used; we can use the declaration

real b(121)
common /very long/ blk(15421)
equivalence (b, blk(7312))

(we employed F77 syntax on purpose).

Sometimes the results of EQUIVALENCE statements are hard to understand. For example

real x, y(2), z
complex c
equivalence (x,y,c), (y(2), z)
c = cmplx(1.0,2.0)

has the e�ect of setting y(1) � x � REAL(c) = 1.0 and y(2) � z � AIMAG(c) = 2.0.

40 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

Chapter 3

More on Flow Control

3.1 Named IF and DO Blocks

Naming IF blocks is mainly cosmetic, but is useful to improve readability when nested IF blocks are used
(nesting can go to any depth!). For example

lev0 : if (a.gt.b) then
print*, "a is larger"

elseif (a. lt .b) then lev0
lev1 : if (b.gt.c) then

print*, "b is larger"

elseif (b. lt .c) then lev1
lev2 : if (c.gt.d) then

print*, "c is larger"

end if lev2
end if lev1

end if lev0

A similar discussion for DO loops.

3.2 The IF Statement

Is a shorter form of an IF block, when neither the ELSEIFs nor the ELSE branches are present. Syntax:

if (h logical expressioni) statement

If the hlogical expriession is .TRUE. then the (single) hstatementi is executed; if .FALSE., then control
is just passed further. Note that the single hstatementi is usually a very powerfull instruction, like EXIT or
GOTO.

Homework 0.3 Write a program that reads 3 lengths (3 real numbers) and reports back if they can de�ne
a triangle; if yes, print a message if the de�ned triangle is equilateral, isosoles, or arbitrary.

41

42 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

3.3 More on DO Loops

The general syntax of a do loop is:

[hnamei :]do
hexec stmtsi

end do [hnamei :]

The body of the loop (hexec stmtsi) is delimited by DO and ENDDO keywords. A name can be associated
with the DO loop. hexec stmtsi are executed as many times as required. As it stands the loop will cycle
inde�nitely; we have to append the loop with the proper mechanism to control the number of iterations.

3.3.1 Conditional EXIT

do

hexec stmts1i
if (hlogical expri) exit
hexec stmts2i

end do

The hlogical expriession is evaluated at every sweep through the loop. If true, EXIT is executed, which (of
course!) exits the loop and transfers control to the �rst statement after END DO. Usually, EXIT is in either
the �rst or the last statement in the body of the loop, for improved readability. An EXIT statement outside
the body of a loop is an error.

Conditional EXIT loops are useful when we want the input data to control the number of iterations.
For example, the Fahrenheit to Celsius program can read and convert temperatures until an unrealistic
temperature, say �1000 or less, is read in. Try this example!

3.3.2 Conditional CYCLE

do

hexec stmts1i
if (hlogical expri) cycle
hexec stmts2i

end do

If hlogical expriession is true, CYCLE is executed; it forcess control to bypass hexec stmts2i and to jump
to the DO statement; the loop will then start the next iteration. A CYCLE statement outside the body of a
loop is an error.

For example, the Fahrenheit to Celsius program can skip the conversion of the temperatures that are
unreasonably high, say 1000 or above. Try this example!

3.3.3 Exit and Cycle with named loops

EXIT statement �nishes the innermost loop; however, with named do loops, it can exit the indicated loop,
regardless of its nesting level. Similarly, CYCLE outer cycles back to the outer loop, whereas a plain CYCLE

would have cycled back to the inner loop.

outer : do i=1,9

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 43

inner : do j=i,9
print*, "before: ",i, j
if (j > 3) cycle outer ! go to outer: do
print*, "before: ",i, j
if (j > 6) exit outer ! go to outer: do
print*, "after: ",i,j

end do inner
end do outer

3.3.4 Initial Test (DO...WHILE) Loop

Syntax:

do while hlogical expri
hexec stmtsi

end do

The hlogical expriession is evaluated at the beginning of every iteration; the loop executes only if it holds
.TRUE. Clearly, the operands of the hlogical expriession need to be modi�ed during execution (otherwise
the loop will either not execute or continue forever). Initial test loops are standard in most programming
languages and have numerous applications.

The DO...WHILE LOOP can be replaced with the functionally equivalent construction: DO; IF<>EXIT
... END DO.

3.4 SELECT CASE

Syntax:

[hnamei :] SELECT CASE (hcase expri)
[� � �

CASE (hcase selectori) [hnamei]
hexec stmtsi

� � �]
[

CASE DEFAULT [hnamei]
hexec stmtsi

]

END SELECT [hnamei]

� hcase expri must be a scalar of type INTEGER, LOGICAL or CHARACTER;

� hcase selectori can be a single value (.TRUE.) or a range (12 : 16); one cannot use an expression as
case selector.

� hcase expri is evaluated and compared to the hcase selectoris, in order; when a match is found, the
branch is taken and the corresponding hexec stmtsi executed. If no hcase selectori matches then the
CASE DEFAULT branch is executed, if present.

� At the end of hexec stmtsi in the selected branch the control is passed to the �rst statement following
END SELECT.

44 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

A CASE SELECT function can be implemented with an IF ... ELSEIF... ENDIF construction; how-
ever, the former needs a di�erent expression to evaluate at each branch, and is therefore less eÆcient.
Example:

select case (i)
case (:0) ; print*, "i<=0"

case (1) ; print*, "i=1"

case default; print*, "i>=2"

end select

program season
implicit none

integer::month
print�,'Give month'
read�,month
select case (month)
case (12,1,2)
print�,'Month ',month,' is in winter'

case(3:5) ! this is range from 3 to 5
print�,'Month ',month,' is in spring'

case(6:8)
print�,'Month ',month,' is in summer'

case(9:11)
print�,'Month ',month,' is in fall '

case default

print�,'invalid month: ',month
end select

end program season

3.5 Exceptional Situations

All the control
ow constructs described so far enter the construct at only one place (IF, DO or SELECT CASE)
and exit the construct at only one place also (END IF, END DO or END SELECT respectively). This enables
the programmer to easily control the logic of the code.

In some situations, it is convenient to have the possibility to exit the constructs at di�erent places; for
example, if an error in the data was detected, measures have to be taken right away, even if we are in the
middle of several multiple nested DO loops.

Fortran provides 3 di�erent means to achieve this.

3.5.1 STOP

The statement STOP immediately terminates the execution of the program. It is used when the program has
detected an unrecoverable error.

3.5.2 RETURN

RETURN is called from a subroutine, causing its execution to be terminated immediately and transferring the
control back to the caller.

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 45

3.5.3 GO TO

Syntax:

GOTO hstmt labeli or GO TO hstmt labeli

A statement label (hstmt labeli) is a number of up to 5 digits (1 : : : 99999), written in column 1 through
5 (this is inherited from the �xed form). It is separated from the statement it labels by at least 1 blank.

For example,

12345 PRINT*, "Error"

001 CONTINUE

The statement GOTOhstmt labeli immediately transfers control to the statement labeled by hstmt labeli.

IF (A .EQ. 0) GO TO 12345

........

12345 PRINT*, "Error: A=0"

! Begin the recover-from-error strategy

The hstmt labeli can be an integer expression, evaluated at run time.

Except when needed to recover from error situations, we will avoid the use of GO TO, since it leads to
unstructured programs.

\Experience over many years has shown [GOTO statements] to be the single biggest cause of bad pro-
gramming habits and consequent programming errors." (T. Ellis, I. Philips, T. Lahey).

46 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

Chapter 4

Computer Representation of Numbers

and Computer Arithmetic

4.1 Binary numbers

In the decimal system, the number 107.625 means

107:625 = 1 � 102 + 7 � 100 + 6 � 10�1 + 2 � 10�2 + 5 � 10�3 :
Such a number is the sum of terms of the form fa digit times a di�erent power of 10g - we say that 10 is the
basis of the decimal system. There are 10 digits (0,...,9).

All computers today use the binary system. This has obvious hardware advantages, since the only digits
in this system are 0 and 1. In the binary system the number is represented as the sum of terms of the form
fa digit times a di�erent power of 2g. For example,

(107:625)10 = 26 + 25 + 23 + 21 + 20 + 2�1 + 2�3

= (1101011:101)2 :

Arithmetic operations in the binary system are performed similarly as in the decimal system; since there are
only 2 digits, 1+1=10.

1 1 1 1 0
+ 1 1 0 1

1 0 1 0 1 1

1 1 1
� 1 1 0

0 0 0
1 1 1

1 1 1
1 0 1 0 1 0

Decimal to binary conversion. For the integer part, we divide by 2 repeatedly (using integer division);
the remainders are the successive digits of the number in base 2, from least to most signi�cant.

Quotients 107 53 26 13 6 3 1 0
Remainders 1 1 0 1 0 1 1

For the fractional part, multiply the number by 2; take away the integer part, and multiply the fractional
part of the result by 2, and so on; the sequence of integer parts are the digits of the base 2 number, from

47

48 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

most to least signi�cant.
Fractional 0:625 0:25 0:5 0
Integer 1 0 1

Octal representation. A binary number can be easily represented in base 8. Partition the number
into groups of 3 binary digits (23 = 8), from decimal point to the right and to the left (add zeros if needed).
Then, replace each group by its octal equivalent.

(107:625)10 = (1 101 011 : 101)2 = (153:5)8

Hexadecimal representation. To represent a binary number in base 16 proceed as above, but now
partition the number into groups of 4 binary digits (24 = 16). The base 16 digits are 0,...,9,A=10,...,F=15.

(107:625)10 = (0110 1011 : 1010)2 = (6B:A)16

1. Convert the following binary numbers to decimal, octal and hexa: 1001101101.0011, 11011.111001;

2. Convert the following hexa numbers to both decimal and binary: 1AD.CF, D4E5.35A;

3. Convert the following decimal numbers to both binary and hexa: 6752.8756, 4687.4231.

4.2 Memory

The data and the programs are stored in binary format in computer's memory. Memory is organized in
bytes, where 1 byte = 8 binary digits. In practice we use multiples of byte.

1 Kb 1024 bytes 210 bytes
1 Mb 1024 Kb 220 bytes
1 Gb 1024 Mb 230 bytes

There are several physical memories in a computer; they form a memory hierarchy. Note that the physical
chips for cache memory use a di�erent technology than the chips for main memory; they are faster, but
smaller and more expensive. Also, the disk is a magnetic storage media, a di�erent technology than the
electronic main memory; the disk is larger, cheaper but slower.

Memory Type Size Access time
Registers 8 bytes 1 clock cycle
Cache, Level 1 126 Kb - 512 Kb 1 ns
Cache, Level 2 512 Kb - 8 Mb 10 ns
Main memory 8 Mb - 2 Gb 60 ns
Hard drive 2 Gb - 40 Gb 10 ms

4.2.1 Characters in Memory

Characters are letters of the alphabet, both upper and lower case, punctuation marks, and various other
symbols. In the ASCII convention (American Standard Code for Information Interchange) one character
uses 7 bits. (there are at most 27 = 128 di�erent characters representable with this convention). As a
consequence, each character will be stored in exactly one byte of memory.

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 49

Homework 0.4 Implement the following program

program test char
character a, b
a='s'
write(6,�) 'Please input b :'
READ�, b
write(6,�) a,b
stop

end

Note how characters are declared and initialized. Run the program successfully.

4.2.2 The Memory Model

When programming, we think of the main memory as a long sequence of bytes. Bytes are numbered
sequentially; each byte is designated by its number, called the address.

For example, suppose we have a main memory of 4 Gb; there are 232 bytes in the memory; addresses
ranging from 0:::232 � 1 can be represented using 32 bits (binary digits), or (equiv.) by 8 hexa digits.

Suppose we want to store the string \john". With one character per byte, we need 4 successive memory
locations (bytes) for the string. Each memory location has an address and a content.

'j'

'o'

'h'

'n'

Content

1B56AF75

1B56AF74

1B56AF73

1B56AF72

Address

When we declare a variable, the corresponding number of bytes is reserved in the memory; the name of the
variable is just an alias for the address of the �rst byte in the storage.

4.3 Reprentation of Signed Integers

m binary digits (bits) of memory can store 2m di�erent numbers. They can be positive integers between

00. . . 00 = (0)10 and 11. . . 11 = (2m � 1)10. For example, using m = 3 bits, we can represent any integer
between 0 and 7.

If we want to represent signed integers (i.e. both positive and negative numbers) using m bits, we can
use one of the following methods:

50 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

� Sign/Magnitude representation. Reserve the �rst bit for the signum (for example, let 0 denote positive
numbers, and 1 negative numbers); the other m� 1 bits will store the magnitude (the absolute value)
of the number. In this case the range of numbers represented is �2m�1+1 to +2m�1�1. With m = 3
there are 2 bits for the magnitude, di�erent possible magnitudes, between 0 and 127; each of these
can have a positive and negative sign. Note that with this representation we have both positive and
negative zero. If we make the convention that the sign bit is 1 for negative numbers we have

Number10 ([S]M)2
-3 [1]11
-2 [1]10
-1 [1]01
-0 [1]00
+0 [0]00
+1 [0]01
+2 [0]10
+3 [0]11

� Two's complement representation. All numbers from �2m�1 to +2m�1 � 1 are represented by the
smallest positive integer with which they are congruent modulo 2m. With m = 3, for example, we have

Number10 (2C)10 (2C)2
-4 4 100
-3 5 101
-2 6 110
-1 7 111
0 0 000
1 1 001
2 2 010
3 3 011

Note that the �rst bit is 1 for negative numbers, and 0 for nonnegative numbers.

� Biased representation. A number x 2 [�2m�1; 2m�1 � 1] is represented by the positive value �x =
x+ 2m�1 2 [0; 2m � 1]. Adding the bias 2m�1 gives positive results.

Number10 (biased)10 (biased)2
-4 0 000
-3 1 001
-2 2 010
-1 3 011
0 4 100
1 5 101
2 6 110
3 7 111

The �rst bit is 0 for negative numbers, and 1 for nonnegative numbers.

4.3.1 Integers in Memory

One byte of memory can store 28 = 256 di�erent numbers. They can be positive integers between 00000000 =

(0)10 and 11111111 = (255)10.

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 51

For most applications, one byte integers are too small. Standard data types usually reserve 2, 4 or 8
successive bytes for each integer. In general, using p bytes (p = 1; 2; 4; 8) we can represent integers in the
range

Unsigned integers: 0 � � � 28p � 1
Signed integers: �28p�1 � � � 28p�1 � 1

XXXX((((
b
b
bb!!!!

l
l
ll
%

%
%
%

S

S

S

1 byte

2 bytes

4 bytes

7

15

1

1

1

31

S 1 31

15S 1

S 1 7

Homework 0.5 Compute the lower and upper bounds for signed and unsigned integers representable with
p = 2 and with p = 4 bytes.

Homework 0.6 Write a Fortran program in which you de�ne two integer variables m and i. Initialize m
to 2147483645. Then read i and print out the sum m+ i.

program test int
implicit none

integer :: m,i
m = 2147483645
do i=1,10
print�,'i=',i ,'. m+i=',m+i

end do

end program test int

Run the program several times, with i = 1,2,3,4,5.

1. Do you obtain correct results ? What you see here is an example of integer over
ow. The result of the
summation is larger than the maximum representable integer.

2. What exactly happens at integer over
ow ? In which sense are the results inaccurate ?

3. How many bytes does Fortran use to represent integers ?

52 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

4. Modify the program to print -m-i and repeat the procedure. What is the minimum (negative) integer
representable ?

4.3.2 Note.

Except for the over
ow situation, the result of an integer addition or multiplication is always exact (i.e. the
numerical result is exactly the mathematical result).

4.4 Floating-Point Numbers

For most applications in science and engineering integer numbers are not suÆcient; we need to work with
real numbers. Real numbers like � have an in�nite number of decimal digits; there is no hope to store them
exactly. On a computer,
oating point convention is used to represent (approximations of) the real numbers.
The design of computer systems requires in-depth knowledge about FP. Modern processors have special
FP instructions, compilers must generate such FP instructions, and the operating system must handle the
exception conditions generated by these FP instructions.

We will now illustrate the
oating point representation in base 10. Any decimal number x can be uniquely
written as

x = � �m � 10e
� +1 or -1 sign
m 1 � m < 10 mantissa
e integer exponent

For example

107:625 = +1 � 1:07625 � 102 :

If we did not impose the condition 1 � m < 10 we could have represented the number in various di�erent
ways, for example

(+1) � 0:107625 � 103 or (+1) � 0:00107625 � 105 :
When the condition 1 � m < 10 is satis�ed, we say that the mantissa is normalized. Normalization
guarantees that

1. the FP representation is unique,

2. since m < 10 there is exactly one digit before the decimal point, and

3. since m � 1 the �rst digit in the mantissa is nonzero. Thus, none of the available digits is wasted by
storing leading zeros.

Suppose our storage space is limited to 6 decimal digits per FP number. We allocate 1 decimal digit for
the sign, 3 decimal digits for the mantissa and 2 decimal digits for the exponent. If the mantissa is longer
we will chop it to the most signi�cant 3 digits (another possibility is rounding, which we will talk about
shortly).

� MMM EE

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 53

Our example number can be then represented as

+1|{z} 107| {z } +2|{z}
� m e

A
oating point number is represented as (sign;mantissa; exponent) with a limited number of digits for
the mantissa and the exponent. The parameters of the FP system are � = 10 (the basis), dm = 3 (the
number of digits in the mantissa) and de = 2 (the number of digits for the exponent).

Most real numbers cannot be exactly represented as
oating point numbers. For example, numbers
with an in�nite representation, like � = 3:141592 : : :, will need to be \approximated" by a �nite-length FP
number. In our FP system, � will be represented as

+ 314 00

Note that the �nite representation in binary is di�erent than �nite representation in decimal; for example,
(0:1)10 has an in�nite binary representation.

In general, the FP representation f`(x) is just an approximation of the real number x. The relative error
is the di�erence between the two numbers, divided by the real number

Æ =
x� f`(x)

x
:

For example, if x = 107:625, and f`(x) = 1:07� 102 is its representation in our FP system, then the relative
error is

Æ =
107:625� 1:07� 102

107:625
� 5:8� 10�3

Another measure for the approximation error is the number of units in the last place, or ulps. The error
in ulps is computed as

err = jx� f`(x)j � �dm�1�e :

where e is the exponent of f`(x) and dm is the number of digits in the mantissa. For our example

err = j107:625� 1:07� 102j � 103�1�2 = 0:625ulps :

The di�erence between relative errors corresponding to 0.5 ulps is called the wobble factor. If x� f`(x)
= 0.5 ulps and f`(x) = m:mmm � � �m� �e, then x� f`(x) = �

�=2� ��dm
���e, and since �e � x < �e+1

we have that
1

2
� ��dm � x� f`(x)

x
= 0:5 ulps � �

2
� ��dm

If the error is n ulps, the last log� n digits in the number are contaminated by error. Similarly, if the

relative error is Æ, the last log�
�
2 Æ � �1�dm

�
digits are in error.

With normalized mantissas, the three digits m1m2m3 always read m1:m2m3, i.e. the decimal point has
�xed position inside the mantissa. For the original number, the decimal point can be
oated to any position
in the bit-string we like by changing the exponent.

We see now the origin of the term
oating point: the decimal point can be
oated to any position in the
bit-string we like by changing the exponent.

With 3 decimal digits, our mantissas range between 1:00; : : : ; 9:99. For exponents, two digits will provide
the range 00; : : : ; 99.

54 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

Consider the number 0:000123. When we represent it in our
oating point system, we lose all the
signi�cant information:

+1|{z} 000| {z } 00|{z}
� m e

In order to overcome this problem, we need to allow for negative exponents also. We will use a biased
representation: if the bits e1e2 are stored in the exponent �eld, the actual exponent is e1e2� 49 (49 is called
the exponent bias). This implies that, instead of going from 00 to 99, our exponents will actually range from
�49 to +50. The number

0:000123 = +1 � 1:23 � 10�4

is then represented, with the biased exponent convention, as

+1|{z} 123| {z } 45|{z}
� m e

What is the maximum number allowed by our toy
oating point system? If m = 9:99 and e = +99, we
obtain

x = 9:99 � 1050 :

If m = 000 and e = 00 we obtain a representation of ZERO. Depending on �, it can be +0 or �0. Both
numbers are valid, and we will consider them equal.

What is the minimum positive number that can be represented in our toy
oating point system? The
smallest mantissa value that satis�es the normalization requirement is m = 1:00; together with e = 00 this
gives the number 10�49. If we drop the normalization requirement, we can represent smaller numbers also.
For example, m = 0:10 and e = 00 give 10�50, while m = 0:01 and e = 00 give 10�51.

The FP numbers with exponent equal to ZERO and the �rst digit in the mantissa also equal to ZERO
are called subnormal numbers.

Allowing subnormal numbers improves the resolution of the FP system near 0. Non-normalized mantissas
will be permitted only when e = 00, to represent ZERO or subnormal numbers, or when e = 99 to represent
special numbers.

Example (D. Goldberg, p. 185, adapted): Suppose we work with our toy FP system and do not allow
for subnormal numbers. Consider the fragment of code

IF (x 6= y) THEN z=1.0/(x-y)

designed to "guard" against division by 0. Let x = 1:02� 10�49 and y = 1:01� 10�49. Clearly x 6= y but,
(since we do not use subnormal numbers) x 	 y = 0. In spite of all the trouble we are dividing by 0! If we
allow subnormal numbers, x	 y = 0:01� 10�49 and the code behaves correctly.

Note that for the exponent bias we have chosen 49 and not 50. The reason for this is self-consistency:
the inverse of the smallest normal number does not over
ow

xmin = 1:00� 10�49 ;
1

xmin
= 10+49 < 9:99� 1050 = xmax :

(with a bias of 50 we would have had 1=xmin = 1050 > 9:99� 10+49 = xmax).

Similar to the decimal case, any binary number x can be represented

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 55

x = � �m � 2e
� +1 or -1 sign
m 1 � m < 2 mantissa
e integer exponent

For example,
1101011:101 = +1 � 1:101011101 � 26 : (4.1)

With 6 binary digits available for the mantissa and 4 binary digits available for the exponent, the
oating
point representation is

+1|{z} 110101| {z } 0110| {z }
� m e

(4.2)

When we use normalized mantissas, the �rst digit is always nonzero. With binary
oating point repre-
sentation, a nonzero digit is (of course) 1, hence the �rst digit in the normalized binary mantissa is always
1.

1 � x < 2! (x)2 = 1:m1m2m3 : : :

As a consequence, it is not necessary to store it; we can store the mantissa starting with the second digit,
and store an extra, least signi�cant bit, in the space we saved. This is called the hidden bit technique.

For our binary example (4.2) the leftmost bit (equal to 1, of course, showed in bold) is redundant. If we
do not store it any longer, we obtain the hidden bit representation:

+1|{z} 101011| {z } 0110| {z }
� m e

(4.3)

We can now pack more information in the same space: the rightmost bit of the mantissa holds now the
7th bit of the number (4.1) (equal to 1, showed in bold). This 7th bit was simply omitted in the standard
form (4.2). Question: Why do we prefer

4.5 The IEEE standard

The IEEE standard regulates the representation of binary
oating point numbers in a computer, how to
perform consistently arithmetic operations and how to handle exceptions, etc. Developed in 1980's, is now
followed by virtually all microprocessor manufacturers.

Supporting IEEE standard greatly enhances programs portability. When a piece of code is moved from
one IEEE-standard-supporting machine to another IEEE-standard-supporting machine, the results of the
basic arithmetic operations (+,-,*,/) will be identical.

4.5.1 Floating Point Types

The standard de�nes the following FP types:

Single Precision. (4 consecutive bytes/ number).

�je1e2e3 � � � e8jm1m2m3 � � �m23

56 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

Useful for most short calculations.

Double Precision. (8 consecutive bytes/number)

�je1e2e3 � � � e11jm1m2m3 � � �m52

Most often used with scienti�c and engineering numerical computations.

Extended Precision. (10 consecutive bytes/number).

�je1e2e3 � � � e15jm1m2m3 � � �m64

Useful for temporary storage of intermediate results in long calculations. (e.g. compute a long inner product
in extended precision then convert the result back to double) There is a single-extended format also. The
standard suggests that implementations should support the extended format corresponding to the widest
basic format supported (since all processors today allow for double precision, the double-extended format is
the only one we discuss here). Extended precision enables libraries to eÆciently compute quantities within
0.5 ulp. For example, the result of x*y is correct within 0.5 ulp, and so is the result of log(x). Clearly,
computing the logarithm is a more involved operation than multiplication; the log library function performs
all the intermediate computations in extended precision, then rounds the result to single or double precision,
thus avoiding the corruption of more digits and achieving a 0.5 ulp accuracy. From the user point of view
this is transparent, the log function returns a result correct within 0.5 ulp, the same accuracy as simple
multiplication has.

4.5.2 Detailed IEEE representation

(for single precision standard; double is similar)

�je1e2e3 � � � e8jm1m2m3 � � �m23

Signum. \�" bit = 0 (positive) or 1 (negative).

Exponent. Biased representation, with an exponent bias of (127)10.

Mantissa. Hidden bit technique.

e1e2e3 � � � e8 Numerical Value
(00000000)2 = (0)10 �(0:m1 : : :m23)2 � 2�126

(ZERO or subnormal)
(00000001)2 = (1)10 �(1:m1 : : :m23)2 � 2�126

� � � � � �
(01111111)2 = (127)10 �(1:m1 : : :m23)2 � 20

(10000000)2 = (128)10 �(1:m1 : : :m23)2 � 21

� � � � � �
(11111110)2 = (254)10 �(1:m1 : : :m23)2 � 2+127

(11111111)2 = (255)10 �1 if m1 : : :m23 = 0
NaN otherwise

Note that �emin < emax, which implies that 1=xmin does not over
ow.

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 57

IEEE Format Emin Emax

Single Prec. -126 +127
Double Prec. -1,022 +1,023
Extended Prec. -16,383 +16,383

Table 4.1: IEEE
oating point number exponent ranges

4.5.3 Number range

The range of numbers represented in di�erent IEEE formats is summarized in Table 4.5.3.

4.5.4 Precision

To de�ne the precision of the FP system, let us go back to our toy FP representation (2 decimal digits for
the exponent and 3 for the mantissa).

We want to add two numbers, e.g.

1 = 1:00� 100 and 0:01 = 1:00� 10�2 :

In order to perform the addition, we bring the smaller number to the same exponent as the larger number
by shifting right the mantissa. For our example,

1:00� 10�2 = 0:01� 100 :

Next, we add the mantissas and normalize the result if necessary. In our case

1:00� 100 + 0:01� 100 = 1:01� 100 :

Suppose now we want to add

1 = 1:00� 100 and 0:001 = 1:00� 10�3 :

For bringing them to the same exponent, we need to shift right the mantissa 3 positions, and, due to our
limited space (3 digits) we lose all the signi�cant information. Thus

1:00� 100 + 0:00[1]� 100 = 1:00� 100 :

We can see now that this is a limitation of the FP system due to the storage of only a �nite number of digits.

The precision of the
oating point system (the \machine precision") is the smallest number
� for which 1 + � > 1.

For our toy FP system, it is clear from the previous discussion that � = 0:01.

If the relative error in a computation is p�, then the number of corrupted decimal digits is log10 p.

In (binary) IEEE arithmetic, the �rst single precision number larger than 1 is 1 + 2�23, while the �rst
double precision number is 1+ 2�52. For extended precision there is no hidden bit, so the �rst such number
is 1 + 2�63. You should be able to justify this yourselves.

If the relative error in a computation is p�, then the number of corrupted binary digits is log2 p.

Remark: We can now answer the following question. Signed integers are represented in two's complement.
Signed mantissas are represented using the sign-magnitude convention. For signed exponents the standard
uses a biased representation. Why not represent the exponents in two's complement, as we do for the signed

58 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

IEEE Format Machine precision (�) No. Decimal Digits
Single Prec. 2�23 � 1:2� 10�7 7
Double Prec. 2�52 � 1:1� 10�16 16
Extended Prec. 2�63 � 1:1� 10�19 19

Table 4.2: Precision of di�erent IEEE representations

integers? When we compare two
oating point numbers (both positive, for now) the exponents are looked at
�rst; only if they are equal we proceed with the mantissas. The biased exponent is a much more convenient
representation for the purpose of comparison. We compare two signed integers in greater than/less than/
equal to expressions; such expressions appear infrequently enough in a program, so we can live with the two's
complement formulation, which has other bene�ts. On the other hand, any time we perform a
oating point
addition/subtraction we need to compare the exponents and align the operands. Exponent comparisons are
therefore quite frequent, and being able to do them eÆciently is very important. This is the argument for
preferring the biased exponent representation.

Homework 0.7 Consider the real number (0:1)10. Write its single precision,
oating point representation.
Does the hidden bit technique result in a more accurate representation?

Homework 0.8 What is the gap between 1024 and the �rst IEEE single precision number larger than 1024?

Homework 0.9 Let x = m � 2e be a normalized single precision number, with 1 � m < 2. Show that the
gap between x and the next largest single precision number is

�� 2e :

Homework 0.10 The following program adds 1 + 2�p, then subtracts 1. If 2�p < � the �nal result will be
zero. By providing di�erent values for the exponent, you can �nd the machine precision for single and double
precision. Note the declaration for the simple precision variables (\real") and the declaration for double
precision variables (\double precision"). The command 2:0��p calculates 2p (�� is the power operator). Also
note the form of the constants in single precision (2:e0) vs. double precision (2:d0).

program test precision
real a
double precision b
integer p
print�, 'please provide exponent'
read�, p
a = 1.e0 + 2.e0��(�p)
print�, a�1.e0
b = 1.d0 + 2.d0��(�p)
print�, b�1.d0
end program test precision

Run the program for values di�erent of p ranging from 20 to 60. Find experimentally the values of � for
single and for double precision.

4.6 The Set of FP Numbers

The set of all FP numbers consists of

FP = f�0; all normal; all subnormal;�1g :

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 59

Because of the limited number of digits, the FP numbers are a �nite set. For example, in our toy FP
system, we have approximately 2 � 105 FP numbers altogether.

The FP numbers are not uniformly spread between min and max values; they have a high density near
zero, but get sparser as we move away from zero.

...................

...............
....................

...................

.................

....................

...............
...............
...........

l
l
l�

��
HHHHH�

��
�� XXXXXXXXXX���

���
���

�

0 1 100 100010

lower densityhigher density

100fpts 100fpts 100fpts

1 apart.1 apart.01 apart

For example, in our FP system, there are 90 points between 1 and 10 (hence, the gap between 2 successive
numbers is 0.01). Between 10 and 100 there are again 90 FP numbers, now with a gap of 0.1. The interval
100 to 1000 is \covered" by another 90 FP values, the di�erence between 2 successive ones being 1.0.

In general, if m � 10e is a normalized FP number, with mantissa 1:00 � m < 9:98, the very next FP
number representable is (m+�)�10e (please give a moment's thought about why this is so). In consequence,
the gap between m�10e and the next FP number is ��10e. The larger the
oating point numbers, the larger
the gap between them will be (the machine precision � is a �xed number, while the exponent e increases
with the number).

In binary format, similar expressions hold. Namely, the gap between m� 2e and its successor is �� 2e.

4.7 Rounding - up or down

It is often the case that we have a real number X that is not exactly a
oating point number: X falls between
two consecutive FP numbers X� and X+.

l h
�� BB

X

X X
- +

In order to represent X in the computer, we need to approximate it by a FP number. If we choose X�

we say that we rounded X down; if we choose X+ we say that we rounded X up. We can choose a di�erent
FP number also, but this makes little sense, as the approximation error will be larger than with X�. For
example, � = 3:141592 : : : is in between �� = 3:14 and �+ = 3:15. �� and �+ are successive
oating point
numbers in our toy system.

60 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

We will denote f`(X) the FP number that approximates X . Then

f`(X) =

�
X� ; if rounding down,
X+ ; if rounding up.

Obviously, when rounding up or down we have to make a certain representation error; we call it the
roundo� (rounding) error.

The relative roundo� error, Æ, is de�ned as

Æ =
f`(X)�X

X
:

This does not work for X = 0, so we will prefer the equivalent formulation

f`(X) = X � (1 + Æ) :

What is the largest error that we can make when rounding (up or down)? The two FP candidates can be
represented as X� = m� 2e and X+ = (m+ �)� 2e (this is correct since they are successive FP numbers).
For now suppose both numbers are positive (if negative, a similar reasoning applies). Since

jf`(X)�X j � jX+ �X�j; and X � X� ;

we have

jÆj � jX
+ �X�j
X�

=
�� 2e

m� 2e
� �:

Homework 0.11 Find an example of X such that, in our toy FP system, rounding down produces a roundo�
error Æ = �. This shows that, in the worst case, the upper bound � can actually be attained.

Now, we need to choose which one of X+, X� `better" approximates X . There are two possible ap-
proaches.

4.8 Chopping

Suppose X = 107:625. We can represent it as +1 107 +2 by simply discarding (\chopping") the digits
which do not �t the mantissa format (here the remaining digits are 625). We see that the FP representation is
preciselyX�, and we have 0 � X� < X . Now, if X was negative, X = �107:625, the chopped representation
would be -1 107 +2 , but now this is X+. Note that in this situation X < X+ � 0. In consequence, with

chopping, we choose X� if X > 0 and X+ is X < 0. In both situations the
oating point number is closer
to 0 than the real number X , so chopping is also called rounding toward 0.

�
�

A
A

A
A
�
�

-107.625

-107

0 107.625

107

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 61

Chopping has the advantage of being very simple to implement in hardware. The roundo� error for
chopping satis�es

�� < Æchopping � 0 :

For example:

X = 1:00999999 : : :) f`(X)chop = 1:00

and

Æ =
f`(X)�X

X
=
�0:0099:::
1:00999:::

= �0:0099 � �0:01 = � :

4.9 Rounding to nearest.

This approximation mode is used by most processors, and is called, in short "rounding". The idea is to
choose the FP number (X� or X+) which o�ers the best approximation of X :

f`(X) =

(
X� ; if X� � X < X++X�

2 ;

X+ ; if X++X�

2 < X � X+:

#
##
c
cc �

��
b

bb

X
- +

(X +X
+
)/2 X

-

The roundo� for the \round to nearest" approximation mode satis�es

� �
2
� Ærounding � �

2
:

The worst possible error is here half (in absolute magnitude) the worst-case error of chopping. In addition,
the errors in the \round to nearest" approximation have both positive and negative signs. Thus, when
performing long computations, it is likely that positive and negative errors will cancel each other out, giving
a better numerical performance with \rounding" than with \chopping".

There is a �ne point to be made regarding \round to nearest" approximation. What happens if there
is a tie, i.e. if X is precisely (X+ + X�)=2? For example, with 6 digits mantissa, the binary number
X = 1:0000001 can be rounded to X� = 1:000000 or to X+ = 1:000001. In this case, the IEEE standard
requires to choose the approximation with an even last bit; that is, here choose X�. This ensures that, when
we have ties, half the roundings will be done up and half down.

The idea of rounding to even can be applied to decimal numbers also (and, in general, to any basis).
To see why rounding to even works better, consider the following example. Let x = 5� 10�2 and compute
((((1� x)	 x)� x)	 x) with correct rounding. All operations produce exact intermediate results with the
fourth digit equal to 5; when rounding this exact result, we can go to the nearest even number, or we can
round up, as is customary in mathematics. Rounding to nearest even produces the correct result (1:00),
while rounding up produces 1:02.

62 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

An alternative to rounding is interval arithmetic. The output of an operation is an interval that contains
the correct result. For example x � y 2 [z; �z], where the limits of the interval are obtain by rounding down
and up respectively. The �nal result with interval arithmetic is an interval that contains the true solution;
if the interval is too large to be meaningful we should repeat the calculations with a higher precision.

Homework 0.12 In IEEE single precision, what are the rounded values for 4+2�20, 8+2�20,16+2�20,32+
2�20,64 + 2�20. (Here and from now \rounded" means \rounded to nearest".)

In conclusion, real numbers are approximated and represented in the
oating point format. The IEEE
standard recognizes four approximation modes:

1. Round Up;

2. Round Down;

3. Round Toward Zero;

4. Round to Nearest (Even).

Virtually all processors implement the (\round to nearest") approximation. From now on, we will call it, by
default, \rounding". Computer numbers are therefore accurate only within a factor of (1 � �=2). In single
precision, this gives 1� 10�7, or about 7 accurate decimal places. In double precision, this gives 1� 10�16,
or about 16 accurate decimal digits.

4.10 Arithmetic Operations

To perform arithmetic operations, the values of the operands are loaded into registers; the Arithmetic and
Logic Unit (ALU) performs the operation, and puts the result in a third register; the value is then stored
back in memory.

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 63

L
LL�
�� �

�
�
�
�
�
��L

L
L
L
L
L
LL

JJ

JJ

A
A

JJ

!!!aaa

A
A
�
�

ALU

REG 3

OP 1

OP 2

Result

REG 1 REG 2

The two operands are obviously
oating point numbers. The result of the operation stored in memory
must also be a
oating point number.

Is there any problem here? Yes! Even if the operands are FP numbers, the result of an arithmetic
operation may not be a FP number.

To understand this, let us add two
oating point numbers, a= 9.72 01 (97.2) and b= 6.43 00 (6.43),
using our toy FP system. To perform the summation we need to align the numbers by shifting the smaller
one (6.43) to the right.

9. 7 2 01
0. 6 4 3 01
10. 3 6 3 01

The result (103.63) is not a
oating number. We can round the result to obtain 1.04 02 (104).

From this example we draw a �rst useful conclusion: the result of any arithmetic operation is, in general,
corrupted by roundo� errors. Thus, the arithmetic result is di�erent from the mathematical result.

If a; b are
oating point numbers, and a + b is the result of mathematical addition, we will denote by
a� b the computed addition.

The fact that a� b 6= a+ b has surprising consequences. Let c= 9.99 -1 (0.999). Then

(a� b)� c = 1.04 02 (104);

while
a� (b� c) = 1.05 02 (105)

(you can readily verify this). Unlike mathematical addition, computed addition is not associative!

64 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

Homework 0.13 Show that computed addition is commutative, i.e. a� b=b� a.

4.11 IEEE Arithmetic

The IEEE standard speci�es that the result of an arithmetic operation (+,-,*,/) must be computed exactly
and then rounded to nearest. In other words,

a� b = f`(a+ b)

a	 b = f`(a� b)

a
 b = f`(a� b)

a� b = f`(a=b) :

The same requirement holds for square root, remainder, and conversions between integer and
oating point
formats: compute the result exactly, then round.

This IEEE convention completely speci�es the result of arithmetic operations; operations performed in
this manner are called exactly, or correctly rounded. It is easy to move a program from one machine that
supports IEEE arithmetic to another. Since the results of arithmetic operations are completely speci�ed, all
the intermediate results should coincide to the last bit (if this does not happen, we should look for software
errors!).

(Note that it would be nice to have the results of transcendental functions like exp(x) computed exactly,
then rounded to the desired precision; this is however impractical, and the standard does NOT require
correctly rounded results in this situation.)

Performing only correctly rounded operations seems like a natural requirement, but it is often diÆcult to
implement it in hardware. The reason is that if we are to �nd �rst the exact result we may need additional
resources. Sometimes it is not at all possible to have the exact result in hand - for example, if the exact
result is a periodic number (in our toy system, 2.0/3.0 = 0.666...).

4.12 The Guard Digit

Is useful when subtracting almost equal numbers. Suppose a = (1:0)2 � 20 and b = (1:11 : : :1)2 � 2�1, with
23 1's after the binary point. Both a and b are single precision
oating point numbers. The mathematical
result is a � b = (1:0)2 � 2�24. It is a
oating point number also, hence the numerical result should be
identical to the mathematical result, a	 b = f`(a� b) = a� b.

When we subtract the numbers, we align them by shifting b one position to the right. If computer
registers are 24-bit long, then we may have one of the following situations.

1. Shift b and \chop" it to single precision format (to �t the register), then subtract.

1:000 : : : 000
� 0:111 : : : 111

0:000 : : : 001

The result is 2�23, twice the mathematical value.

2. Shift b and \round" it to single precision format (to �t the register), then subtract.

1:000 : : : 000
� 1:000 : : : 000

0:000 : : : 000

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 65

The result is 0, and all the meaningful information is lost.

3. Append the registers with an extra guard bit. When we shift b, the guard bit will hold the 23rd 1.
The subtraction is then performed in 25 bits.

1:000 : : : 000 [0]
� 0:111 : : : 111 [1]

0:000 : : : 000 [1]

The result is normalized, and is rounded back to 24 bits. This result is 2�24, precisely the mathematical
value. Funny fact: Cray supercomputers lack the guard bit. In practice, many processors do subtractions and
additions in extended precision, even if the operands are single or double precision. This provides e�ectively
16 guard bits for these operations. This does not come for free: additional hardware makes the processor
more expensive; besides, the longer the word the slower the arithmetic operation is.

The following theorem (see David Goldberg, p. 160) shows the importance of the additional guard digit.
Let x, y be FP numbers in a FP system with �; dm; de;

� if we compute x � y using dm digits, then the relative rounding error in the result can be as large as
� � 1 (i.e. all the digits are corrupted!).

� if we compute x� y using dm + 1 digits, then the relative rounding error in the result is less than 2�.

Note that, although using an additional guard digit greatly improves accuracy, it does not guarantee
that the result will be exactly rounded (i.e. will obey the IEEE requirement). As an example consider
x = 2:34 � 102, y = 4:56 in our toy FP system. In exact arithmetic, x � y = 229:44, which rounds to
f`(x�y) = 2:29�102. With the guard bit arithmetic, we �rst shift y and chop it to 4 digits, ŷ = 0:045�102.
Now x � ŷ = 2:295 � 102 (calculation done with 4 mantissa digits). When we round this number to the
nearest (even) we obtain 2:30� 102, a value di�erent from the exactly rounded result.

However, by introducing a second guard digit and a third, \sticky" bit, the result is the same as if the
di�erence was computed exactly and then rounded (D.Goldberg, p. 177).

4.13 Special Arithmetic Operations

4.13.1 Signed zeros

Recall that the binary representation 0 has all mantissa and exponent bits zero. Depending on the sign bit,
we may have +0 or �0. Both are legal, and they are distinct; however, if x = +0 and y = �0 then the
comparison (x:EQ:y) returns .TRUE. for consistency.

The main reason for allowing signed zeros is to maintain consistency with the two types of in�nity, +1
and �1. In IEEE arithmetic, 1=(+0) = +1 and 1=(�0) = �1. If we had a single, unsigned 0, with
1=0 = +1, then 1=(1=�1) = 1=0 = +1, and not �1 as expected.

There are other good arguments in favor of signed zeros. For example, consider the function tan(�=2�x),
discontinuous at x = 0; we can consistently de�ne the result to be �1 based on the signum of x = �0.

Signed zeros have disadvantages also; for example, with x = +0 and y = �0 we have that x = y but
1=x 6= 1=y!

66 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

(a < b):OR:(a = b):OR:(a > b) True, if a; b FP numbers
False, if one of them NaN

+0 = �0 True
+1 = �1 False

Table 4.3: IEEE results to comparisons

4.13.2 Operations with 1

The following operations with in�nity are possible:

a=1 =

�
0; a �nite
NaN; a =1

a �1 =

8<
:
1 ; a > 0 ;
�1 ; a < 0 ;
NaN; a = 0 :

1+ a =

8<
:
1 ; a�nite ;
�1 ; a =1 ;
NaN; a = �1 :

4.13.3 Operations with NaN

Any operation involving NaN as (one of) the operand(s) produces NaN. In addition, the following operations
"produce" NaN: 1+ (�1), 0 �1, 0=0, 1=1,

p�jxj, x modulo 0, 1 modulo x.

4.13.4 Comparisons

The IEEE results to comparisons are summarized in Table 4.13.4.

4.14 Arithmetic Exceptions

One of the most diÆcult things in programming is to treat exceptional situations. It is desirable that a
program handles exceptional data in a manner consistent with the handling of normal data. The results will
then provide the user with the information needed to debug the code, if an exception occurred. The extra
FP numbers allowed by the IEEE standard are meant to help handling such situations.

The IEEE standard de�nes 5 exception types: division by 0, over
ow, under
ow, invalid operation and
inexact operation.

4.14.1 Division by 0

If a is a
oating point number, then IEEE standard requires that

a=0:0 =

8<
:

+1 ; if a > 0 ;
�1 ; if a < 0 ;
NaN ; if a = 0:

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 67

If a > 0 or a < 0 the 1 de�nitions make mathematical sense. Recall that �1 have special binary represen-
tations, with all exponent bits equal to 1 and all mantissa bits equal to 0.

If a = 0, then the operation is 0=0, which makes no mathematical sense. What we obtain is therefore
invalid information. The result is the \Not a Number", in short NaN. Recall that NaN also have a
special binary representation. NaN is a red
ag, which tells the user that something wrong happened with
the program. 1 may or may not be the result of a bug, depending on the context.

4.14.2 Over
ow

Occurs when the result of an arithmetic operation is �nite, but larger in magnitude than the largest FP
number representable using the given precision. The standard IEEE response is to set the result to �1
(round to nearest) or to the largest representable FP number (round toward 0). Some compilers will trap
the over
ow and abort execution with an error message.

Example (Demmel 1984, from D. Goldberg, p. 187, adapted): In our toy FP system let's compute

2� 1023 + 1023 i

2� 1025 + 1025 i

whose result is 1:00� 10�2, a "normal" FP number. A direct use of the formula

a+ b i

c+ d i
=

ac+ bd

c2 + d2
+
bc� ad

c2 + d2
i

returns the result equal to 0, since the denominators over
ow. Using the scaled formulation

� =
d

c
;

a+ b i

c+ d i
=

a+ b�

c+ d�
+
b� a�

c+ d�
i

we have � = 0:5, (a+ b�)=(c+ d�) = (2:5� 1023)=(2:5� 1025) = 0:01 and b� a� = 0.

Sometimes over
ow and in�nity arithmetic mat lead to curious results. For example, let x = 3:16� 1025

and compute
x2

=
(x+ 1:0� 1023)2 = 9:93� 10�1

Since the denominator over
ows it is set to in�nity; the numerator does not over
ow, therefore the result is
0!. If we compute the same quantity as�

x

x+ 1� 1023

�
=

�
3:16

3:17

�
= 0:99

we obtain a result closer to the mathematical value.

4.14.3 Under
ow

Occurs when the result of an arithmetic operation is smaller than the smallest normalized FP number which
can be stored. In IEEE standard the result is a subnormal number ("gradual" under
ow) or 0, if the result
is small enough. Note that subnormal numbers have fewer bits of precision than normalized ones, so using
them may lead to a loss of accuracy. For example, let

x = 1:99� 10�40 ; y = 1:00� 10�11 ; z = 1:00� 10+11 ;

and compute t = (x
 y)
 z. The mathematical result is t = 1:99� 10�40. According to our roundo� error
analysis, we expect the calculated t to satisfy

t̂expected = (1 + Æ)texact ; jÆj � � ;

68 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

IEEE Exception Operation Result
Invalid Operation NaN
Division by 0 �1
Over
ow �1 (or FPmax)
Under
ow 0 or subnormal
Precision rounded value

Table 4.4: The IEEE Standard Response to Exceptions

where the bound on delta comes from the fact that we have two
oating point multiplications, and (with
exact rounding) each of them can introduce a roundo� error as large as the half the machine precision
jÆ
j � �=2:

x
 y = (1 + Æ1
)(x� y)

(x
 y)
 z = (1 + Æ2
) [(x
 y)� z]

= (1 + Æ2
)(1 + Æ1
) [x� y � z]

� (1 + Æ1
 + Æ2
) [x� y � z]

� (1 + �) [x� y � z]

Since in our toy system � = 0:01, we expect the computed result to be in the range

t̂expected 2 [(1� 2�)texact; (1 + 2�)texact] = [1:98� 10�40; 2:00� 10�40] :

However, the product x
 y = 1:99� 10�51 under
ows, and has to be represented by the subnormal number
0:01� 10�49; when multiplied by z this gives t̂ = 1:00� 10�40, which means that the relative error is almost
100 times larger than expected

t̂ = 1:00� 10�40 = (1 + Æ̂)texact ; Æ̂ = 0:99 = 99� !

4.14.4 Inexact

Occurs when the result of an arithmetic operation is inexact. This situation occurs quite often!

4.14.5 Summary

The IEEE standard response to exceptions is summarized in Table 4.14.5.

4.15 Flags and Exception Trapping

Each exception is signaled by setting an associate status
ag; the
ag remains set until explicitly cleared.
The user is able to read and write the status
ags. There are 5 status
ags (one for each possible exception
type); in addition, for each
ag there is a trap enable bit (see below), and there are 4 rounding modes bits.
If the result of a computation is, say, +1, the
ag values help user decide whether this is the e�ect of an
over
ow or is a genuine in�nity, like 1=0.

The programmer has the option to

� Mask the exception. The appropriate
ag is set and the program continues with the standard response
shown in the table;

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 69

� Trap the exception. Occurrence of the exception triggers a call to a special routine, the trap handler.
Trap handlers

{ receive the values of the operands which lead to the exception, or the result;

{ clear or set the status
ag; and

{ return a value that will be used as the result of the faulty operation.

Using trap handler calls for each inexact operation is prohibitive.

For over
ow/under
ow, the argument to the trap handler is the result, with a modi�ed exponent (the
"wrapped-around" result). In single precision the exponent is decreased/increased by 192, and in double
precision by 1536, followed by a rounding of the number to the corresponding precision.

Trap handlers are useful for backward compatibility, when an old code expects to be aborted if exception
occurs. Example (from D. Goldberg, page 189): without aborting, the sequence

doSuntil(x>= 100)

will loop inde�nitely if x becomes NaN.

4.16 Systems Aspects, from D. Goldberg, p. 193

The design of computer systems requires in-depth knowledge about FP. Modern processors have special
FP instructions, compilers must generate such FP instructions, and the operating system must handle the
exception conditions generated by these FP instructions.

4.16.1 Instruction Sets

It is useful to have a multiplication of single precision operands (p mantissa digits) that returns a double
precision result (2p mantissa digits). All calculations require occasional bursts of higher precision.

4.16.2 Ambiguity

A language should de�ne the semantics precisely enough to prove statements about the programs. Common
points of ambiguity:

� x=3.0/10.0 FP number, it is usually not speci�ed that all occurrences of 10.0*x must have the same
value.

� what happens during exceptions.

� interpretation of parenthesis.

� evaluation of subexpressions. If x real and m,n integers, in the expression x+m/n is the division integer or
FP? For example, we can compute all the operations in the highest precision present in the expression;
or we can assign from bottom up in the expression graph tentative precisions based on the operands,
and then from top down assign the maximum of the tentative and the expected precision.

� de�ning the exponential consistently. Ex: (-3)**3 = -27 but (-3.0)**(3.0) is problematic, as it is de�ned
via logarithm. Goldberg proposes to consider f(x)! a, g(x)! b as x! 0. If f(x)g(x) ! c for all f; g
then ab = c. For example, 21 =1, but 11 = NaN since 11=x ! 1 but (1� x)1=x ! e�1.

70 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

4.16.3 Programming Language Features

The IEEE standard says nothing about how the features can be accessed from a programming language.
There is usually a mismatch between IEEE-supporting hardware and programming languages. Some capa-
bilities, like exactly rounded square root, can be accessed through a library of function calls. Others are
harder:

� The standard requires extended precision, while most languages de�ne only single and double.

� Languages need to provide subroutines for reading and writing the state (exception
ags, enable bits,
rounding mode bits, etc).

� Cannot de�ne �x = 0� x since this is not true for x = +0;

� NaN are unordered, therefore when comparing 2 numbers we have <;>;=; unordered.

� The precisely de�ned IEEE rounding modes may con
ict with the programming language's implicitly-
de�ned rounding modes or primitives.

4.16.4 Optimizers

Consider the following code for estimating the machine �

eps = 1.0; do eps=0.5*eps; while (eps+1 > 1);

If the compiler "optimizes" (eps+1 > 1) to (eps > 0) the code will compute the largest number which is
rounded to 0.

Optimizers should be careful when applying mathematical algebraic identities to FP variables. If, during
the optimization process, the expression x+(y+z) is changed to (x+y)+z, the meaning of the computation
is di�erent.

Converting constants like 1:0E � 40 � x from decimal to binary at compile time can change the semantic
(a conversion at run time obeys the current value of the IEEE rounding modes, and eventually raise the
inexact and under
ow
ags).

Semantics can be changed during common subexpression elimination. In the code

C = A*B; RndMode = Up; D = A*B;

A �B is not a common subexpression, since it is computed with di�erent rounding modes.

4.16.5 Exception Handling

When an operation traps, the conceptual model is that everything stops and the trap handler is executed;
since the underlying assumption is that of serial execution, traps are harder to implement on machines that
use pipelining or have multiple ALU. Hardware support for identifying exactly which operation did trap may
be needed. For example,

x = y*z; z = a+b;

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 71

both operations can be physically executed in parallel; if the multiplication traps, the handler will need
the value of the arguments y and z. But the value of z is modi�ed by the addition, which started in the
same time as the multiply and eventually �nished �rst. IEEE supporting systems must either avoid such a
situation, or provide a way to store z and pass the original value to the handler, if needed.

4.17 Long Summations

Long summations have a problem: since each individual summation brings an error of 0.5 ulp in the partial
result, the total result can be quite inaccurate. Fixes

� compute the partial sums in a higher precision;

� sort the terms �rst;

� use Kahan's formula.

4.18 Tipical pitfalls with
oating point programs

All numerical examples in this section were produced on an Alpha 21264 workstation. On other systems the
results may vary, but in general the highlighted problems remain the same.

4.18.1 Binary versus decimal

Consider the code fragment

program test
real :: x=1.0E�4
print�, x

end program test

We expect the answer to be 1:0E � 4, but in fact the program prints 9:9999997E � 05. Note that we did
nothing but store and print! The \anomaly" comes from the fact that 0:0001 is converted (inexactly) to
binary, then the stored binary value is converted back to decimal for printing.

4.18.2 Floating point comparisons

Because of the inexactities, it is best to avoid strict equality when comparing
oating point numbers. For
the above example, the code

if ((1.0 E+8�x��2) == 1.0) then
print�, 'Correct'

end if

should print ``Correct'', but does not, since the left expression is corrupted by roundo�. The right way
to do
oating point comparisons is to de�ne the epsilon machine, eps, and check that the magnitude of the
di�erence is less than half epsilon times the sum of the operands:

72 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

epsilon = 1.0E�7
w = 1.0E+8 � x��2
if (abs(w�1.0) .LE. 0.5�epsilon�(abs(w)+abs(1.0))) then
print�, 'Correct'

end if

This time we allow small roundo�'s to appear, and the program takes the right branch.

In the following example the branch correct is taken:

program quiz 2b
implicit none

real :: x
x = 1.0/2.0
if ((2.0� x) . eq . 1.0) then

print�, 'Correct'
else

print�, 'Funny'
end if

end program quiz 2b

while in the next the branch incorrect is taken:

program quiz 2a
implicit none

real :: x
x = 1.0/3.0
if ((3.0� x) . eq . 1.0) then

print�, 'Correct'
else

print�, 'Funny'
end if

end program quiz 2a

4.18.3 Funny conversions

Sometimes the inexactness in
oating point is uncovered by real to integer conversion, which by Fortran
default is done using truncation. For example the code

program test
real :: x = 1.0E�4
integer :: i
i = 10000�x
print �, i

end program test

produces a stunning result: the value of i is 0, not 1!

Another problem appears when a single precision number is converted to double precision. This does not
increase the accuracy of the number. For example the code

program test
real :: x = 1.234567
double precision :: y = 0.0D0

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 73

y = x
print �, 'X =',x,' Y =',y

end program test

produces the output

X= 1.234567 Y= 1.23456704616547

The explanation is that, when converting single to double precision, register entries are padded with zeros
in the binary representation. The double precision number is printed with 15 positions and the inexactity
shows up. (if we use a formatted print for x with 15 decimal places we obtain the same result). In conclusion,
we should only print the number of digits that are signi�cant to the problem.

4.18.4 Memory versus register operands

The code

data a /3.0/, b /10.0/
data x /3.0/, y /10.0/
z = (y/x)�(b/a)
call ratio(x,y,a1)
call ratio(a,b,a2)
call sub(a2,a1,c)
print�, z�c

may produce a nonzero result. This is so because z is computed with register operands (and FP registers
for Pentium are in extended precision, 80 bits) while for c the operands a and b are stored in the memory.
(note that the Alpha compiler produces zero).

4.18.5 Cancellation (\Loss-of Signi�cance") Errors

When subtracting numbers that are nearly equal, the most signi�cant digits in the operands match and
cancel each other. This is no problem if the operands are exact, but in real life the operands are corrupted
by errors. In this case the cancellations may prove catastrophic.

For example, we want to solve the quadratic equation

a x2 + b x+ c = 0 ;

where all the coeÆcients are FP numbers

a = 1:00� 10�3; b = 1:00� 100; c = 9:99� 10�1 ;

using our toy decimal FP system and the quadratic formula

r1;2 =
�b�pb2 � 4ac

2a
:

The true solutions are r1 = �999, r2 = �1. In our FP system b2 = 1:00, 4ac = 3:99 � 10�3, and
b2 � 4ac = 1:00. It is here where the cancellation occurs! Then r1 = (�1 � 1)=(2 � 10�3) = �1000 and
r2 = (�1 + 1)=(2� 10�3) = 0. If the error in r1 is acceptable, the error in r2 is 100%!

The same happens in single precision:

74 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

real :: a=1.0, b=�1.0E+8, c=9.999999E+7
d = sqrt(b��2�4.0�a�c)
r1 = (�b+d)/(2.0�a)
r2 = (�b�d)/(2.0�a)
e2 = (2.0�c)/(�b+d)

The exact results are �1 and �c, and we expect the numerical results to be close approximations. We
have b � �2 = 1:0E + 16 and 4ac = 3:9999997E + 08; due to cancellation errors the computed value of d is
d = 1:0E + 8. Then r1 = 0 and r2 = 1:0E + 8.

With

a=1.0E�3,b=�9999.999,c=�1.0E+4

The exact results are �1 and 1:0E + 7. d is calculated to be 1:d + 4, and b � d su�ers from cancellation
errors. The numerical roots are 1:0E +07 (exact!) and �0:9765624 (about 2.5% relative error, much higher
than the expected 1:0e� 7!).

To overcome this, we might avoid the cancellation by using mathematically equivalent formulas:

e1;2 =
2c

�b�pb2 � 4ac
:

With this formula, r2 = (2c)=(�2) = �9:99� 10�1, a much better approximation. For the second example
e2 = 0:9999999. For the third example the root is �1 (exact).

4.18.6 Insigni�cant Digits

Consider the Fortran code

program test
real :: x=100000.0, y=100000.1, z
z = y�x
print�, 'z=',z

end program test

We would expect the output
Z = 0:1000000

but in fact the program prints (on Alpha ...)

Z = 0:1015625

Since single precision handles about 7 decimal digits, and the subtraction z = y � x cancels the most
signi�cant 6, the result contains only one signi�cant digit. The appended garbage 15625 are insigni�cant
digits, coming from the inexact binary representation of x and y. Beware of convincing-looking results!

4.18.7 Order of Operations Matters

Mathematically equivalent expressions may give di�erent values in
oating point, depending on the order of
evaluation. For example

program test
real :: x=12345.6, y=45678.9, z=98765432.1

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 75

real :: w1, w2
w1 = x�y/z
w2 = y�(x�(1.0/z))
print�, w1�w2

end program test

Mathematically, the di�erence between w1 and w2 should be zero, but on Alpha ... it is about �4:e� 7.

4.19 Integer Multiplication

As another example, consider the multiplication of two single-precision, FP numbers.

(m1 � 2e1) � (m2 � 2e2) = (m1 �m2)� 2e1+e2 :

In general, the multiplication of two 24-bit binary numbers (m1 �m2) gives a 48-bit result. This can be
easily achieved if we do the multiplication in double precision (where the mantissa has 53 available bits),
then round the result back to single precision.

However, if the two numbers to be multiplied are double-precision, the exact result needs a 106-bit long
mantissa; this is more than even extended precision can provide. Usually, multiplications and divisions are
performed by specialized hardware, able to handle this kind of problems.

4.20 Homework

Homework 0.14 The following program computes a very large FP number in double precision. When
assigning a=b, the double precision number (b) will be converted to single precision (a), and this may result
in over
ow. Compile the program with both Fortran90 and Fortran77 compilers. For example, f90 file.f

-o a90.out and f77 file.f -o a77.out. Run the two versions of the program for p = 0; 0:1; 0:01. Does
the Fortran90 compiler obey the IEEE standard? For which value the single precision over
ow occurs? How
about the Fortran77 compiler? Note that, if you do not see Normal End Here ! and STOP the program did
not �nish normally; trapping was used for the FP exception. If you see them, masking was used for the
exception and the program terminated normally. Do the compilers use masking or trapping?

program test over
ow
real :: a , p
double precision :: b
print�, 'please provide p :'
read�, p
b = (1.99d0+p)�(2.d0��127)
print�, b
a = b
print�, a
print�, 'normal end here !'

end program test over
ow

Homework 0.15 The following program computes a small FP number (2�p) in single and in double preci-
sion. Then, this number is multiplied by 2p. The theoretical result of this computation is 1. Run the code for
p = 120 and for p = 150. What do you see? Does the Fortran90 compiler obey the IEEE standard? Repeat
the compilation with the Fortran77 compiler, and run again. Any di�erences?

76 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

program test under
ow
real :: a,b
double precision :: c,d
integer :: p
print�, 'please provide p'
read�, p
c = 2.d0��(�p)
d = (2.d0��p)�c
print�, 'double precision: ', d
a = 2.e0��(�p)
b = (2.d0��p)�a
print�, ' single precision : ', b
print�, 'normal end here !'

end program test under
ow

Homework 0.16 The following program performs some messy calculations, like division by 0, etc. Compile
it with both Fortran90 and Fortran77 compilers, and run the two executables. What do you see? Any
di�erences?

program test arit
real :: a , b , c , d
c = 0.0
d = �0.0
print�, 'c=',c ,' d=',d
a = 1.0/c
print�, a
b = 1.0/d
print�, 'a=',a ,' b=',b
print�, 'a+b=',a+b
print�, 'a�b=',a�b
print�, 'a/b=',a/b

end program test arit

Chapter 5

Applications Part I.

5.1 The Fibonacci Sequence

The Fibonacci sequence is de�ned by

x0 = 1; x1 = 1; x2 = 2; ; x3 = 3; : : : xi+1 = xi + xi�1; : : :

One characteristic of the sequence is that the ratio (xi+1 xi�1)=x
2
i tends to the Golden Ration

xi+1 xi�1
x2i

=)
i!1 1 +

p
5

2
:

We want to write a program that computes the �rst 50 terms in the Fibonacci sequence; at each step we
check whether the above ratio is suÆciently close to the Golden Ratio; and if it is, we print a message and
end the computations.

The implementation follows.

PROGRAM �bonacci
!
implicit none

real :: x0=1.0, x1=1.0, x2
real :: ratio , golden, tol=1.e�6
integer :: i , n max=50

!
golden = (1.0+sqrt(5.0))/2.0

!
do i=2,n max
x2 = x0+x1
print *,"x",i," = ",x2
ratio = x2/x1
if (abs(ratio�golden) .lt . tol) then
print *,"ratio did converge at i = ",i
exit

end if

x0=x1; x1=x2
end do

!

77

78 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

if (i . gt . n max) then
print *,"ratio did not converge, i = ",i

end if

!
end program �bonacci

During each sweep through the DO loop we compute and print the new element in the sequence, x2.
Then, we calculate the x2/x1 ratio, and compare it to the golden ration; if they are suÆeciently close we
exit the loop. If the loop is terminated normally, the counter is n max+1, and in this case the ratio did not
converge. At the end of each sweep we prepare for the next iteration by assigning x1, x2 to x0,x1).

5.2 Summation Formulas

Consider the summation

s =

nX
i=1

xi

On a computer, the direct evaluation

s = 0.0

do i=1,n

s = s + x(i)

end do

leads to the succesive computation of the partial sums s1 = x1, s2 = s1 � x2, : : :, si = si�1 �
xi. Each step is corrupted by roundoff error

si = si�1 � xi = (si�1 + xi) (1 + Æi) ;

and these errors accumulate from one step to another. In our case, the effect of Æi is present

in the i+ 1st step

si+1 = si � xi+1 = (si + xi+1) (1 + Æi+1)

� (si + si�1 + xi) (1 + Æi+1 + Æi+1)

(we have ignored the terms containing ÆiÆi+1).

In general, the computed sum is

sn =

nX
i=1

xi

�
1 +

X
i = 1nÆi

�

In general, the relative order can be as large as n �; in single precision � � 10�7, so computing

a long sum of n � 107 terms may give a meaningless result.

To minimize the accumulation of roundoff, we consider 2 strategies. First, we try to minimize

Æi at each step. For this, the partial sum si and the element xi must be of comparable size;

therefore, sorting the terms xi in increasing order before summation may help to reduce the

individual roundoffs.

The second strategy is more elaborate, and is called the Kahan summation algorithm. The

idea is to account for the errors at each step and to add the proper corrections as we go along.

At step i we have

si = si�1 � xi = (si�1 + xi) (1 + Æi) ;

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 79

the error made is (si�1+xi) Æi; we estimate this roundoff error by subtracting si�1 and then

xi from the result

si = si�1 � xic = (si 	 si�1)	 xi

To correct the result, we need to subtract the error c from the sum. Since c is a small number,

and the partial sum si can be quite large, in general applying the correction directly to si
is useless: si	c = si! However, we can apply the correction to the next element xi+1 (which

can be much smaller). The next step reads

y = xi+1 	 c

si+1 = si � y

Below, we give an example of a program which evaluates the sum

s = 1 +

�
1

base
+

1

base
+ : : :

�
+ : : :+

�
1

basep max
+

1

basep max
+ : : :

�

where each paranthesis
�

1
basep + : : :

�
contains exactly basep terms, and therefore evaluates to

1; the exact result is s = p max+ 1.

Note the following characteristics of the implementation. They give a flavor of how to

implement large programs.

� each major function (terms initialization, computation of the sum using sorted up, sorted

down and Kahan formula, and printing of the results) is handled by a different procedure.

Each procedure is written and tested independently.

� The main program just calls the individual procedures in the appropriate order; it is

therefore easy to keep track of the program flow by simply reading the main.

� Global data (summation terms, and sum values) are defined in a module, which is used in

all the subroutines.

! Long summations example
! di�erent algorithms for performing summation

module terms

save

! Numeration basis
integer, parameter :: base=10

! sum = 1 + base�(.) + ... + base��p max�(.)
integer, parameter :: p_max=7

! Number of terms in the sum
integer, parameter :: n_max=(base**(p_max+1)-1)/(base-1)

real, dimension(n_max) :: x

real :: exact, kahan, sortu, sortd

end module terms

subroutine init

use terms

implicit none

integer :: i, j, k=0

!
do i = 0,p_max

80 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

do j = 1,base**i

x(k+j) = 1.0/base**(i)

end do

k = k+base**i

end do

!
end subroutine init

subroutine sum_exact

!
! the exact value of the sum
!
use terms

implicit none

exact = p_max+1

end subroutine sum_exact

subroutine sum_sortd

!
! Performs normal summation,
! with the terms sorted in decreasing order
!
use terms

implicit none

integer :: i

sortd = 0.0

do i = 1,n_max

sortd = sortd + x(i)

end do

end subroutine sum_sortd

subroutine sum_sortu

!
! Performs normal summation,
! with the terms sorted in increasing order
!
use terms

implicit none

integer :: i

sortu = 0.0

do i = n_max,1,-1

sortu = sortu + x(i)

end do

end subroutine sum_sortu

subroutine sum_kahan

!
! Performs the summation using Kahan's algorithm
!
use terms

implicit none

integer :: i

real :: c, y, s

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 81

kahan = x(1)

c = 0.0

do i = 2,n_max

y = x(i) - c

s = kahan + y

c = (s-kahan) - y

kahan = s

end do

end subroutine sum_kahan

subroutine print_results

!
! Prints the setting , the results and their accuracies
!
use terms

implicit none

print *, "basis = ",base,", maximal power = ",p_max

print *, "no. of terms in the sum = ", n_max

print *, "sort down: ",sortd," error = ",(sortd-exact)/exact

print *, "sort up: ",sortu," error = ",(sortu-exact)/exact

print *, "kahan: ",kahan," error = ",(kahan-exact)/exact

end subroutine print_results

program sum

use terms

implicit none

!
call init

call sum_exact

call sum_sortd

call sum_sortu

call sum_kahan

call print_results

!
end program sum

The results of this program show clearly the advantage of Kahan summation.

! BASIS = 10, Maximal Power = 7

! No. of terms in the Sum = 11111111

! SORT DOWN: 6.95631695 Error = -0.130460382

! SORT UP: 8.01876831 Error = 2.346038818E-3

! KAHAN: 8. Error = 0.E+0

82 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

Chapter 6

Intrinsic Functions

F90 offers efficient implementations for some of the most frequently performed tasks in programming.

These implementations are available as functions, built the F90 language, and named ``intrinsics''.

For example, taking absolute value can be done by calling the intrinsic function ABS(x). Note

that ABS is built in the F90 language (and therefore it is not necessary to include any special

header, or link the program to a mathematical library to perform ABS).

6.1 Generic vs. Speci�c Functions

F90 intrinsic functions are usually generic; this means that they can accept arguments of different

types and return a value appropriate for that type of argument. For example, ABS(x) accepts

an INTEGER, REAL, DOUBLE PRECISION or COMPLEX argument x, and the returned value is of the

same type as x. In addition to the generic name, there are also specific names which depend

on the argument type. For example, IABS, ABS, DABS, CABS are the absolute value functions

for INTEGER, REAL, DOUBLE PRECISION and COMPLEX type arguments.

Why does F90 allow for both generic and specific names? First, generic names are easier

to remember and use. When we write

abs(x)

we understand that the compiler checks the type of the argument x. If it is is integer, then

the compiler will substitute ABS (the generic name) with a call to IABS (the specific name);

and similar for other types.

However, there are situations when the name of the function is not followed by arguments.

For example, we can write a user-defined plot subroutine, which takes an intrinsic function

f(x), evaluates it at x = �1:0; : : : ; 1:0 and plots the graph (x,f(x)). We will invoke our subroutine

with, say,

call my_plot(abs)

to plot (x,ABS(x)) for x between �1 and 1, and will invoke it as

call my_plot(sin)

to plot (x,SIN(x)) for x between �1 and 1. F90 allows the use of function names (ABS, SIN)

as arguments in (another) procedure call. In these instances, the intrinsic function name

83

84 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

is not followed by arguments. The compiler does not know which absolute value function to

use (will ABS be called with integer, real or complex arguments in MY PLOT? What if MY PLOT

is in a different file, which is compiled separately?) In consequence, it is the user's responsability

to replace the generic name with the secific one when the intrinsic function name is a procedure

argument.

6.2 Numerical Type Conversions

In what follows we will use the short notation I,R,D,C for INTEGER, REAL, DOUBLE PRECISION

and COMPLEX.

� INT(x); converts a R, D or C argument (x) to the corresponding INTEGER approximation using

``round towards 0'' (dumps the fractional part). For a complex argument, INT(real part)

is taken.

� CEILING(x); converts a R or D argument (x) to the corresponding INTEGER approximation

using ``round up''.

� FLOOR(x); converts a R or D argument (x) to the corresponding INTEGER approximation using

``round down''.

� NINT(x); converts a R or D argument (x) to the nearest INTEGER (using ``round to nearest'').

For example,
INT(1:7) � 1 ; INT(�1:7) � �1
FLOOR(1:7) � 1 ; FLOOR(�1:7) � �2
CEILING(1:7) � 2 ; CEILING(�1:7) � �1
NINT(1:7) � 2 ; NINT(�1:7) � �2

� REAL(k); converts a I or D argument (k) to the corresponding REAL approximation. Selects

the real part of a C argument.

� AIMAG(z); selects the imaginary part of a C argument.

� DBLE(x); converts an INTEGER or REAL argument (x) to the corresponding DOUBLE PRECISION

approximation.

� CMPLX(x,y); returns the complex value x + i�y. The arguments x,y are usually REAL, but

can also be INTEGER or DOUBLE PRECISION, in which case the returned value is REAL(x) +

i�REAL(y). CMPLX(x) returns the complex value REAL(x) + i�0.

For example,

integer :: i=2

real :: t=1.7

double precision :: x=1.7d0,y=2.8d0

complex :: z=(1.7,2.8)

print*, x, real(x) ! output = 1.7, 1.70000005
print*, real(z), aimag(z) ! output = 1.70000005, 2.79999995
print*, dble(t) ! output = 1.7000000476837158
print*, cmplx(i), cmplx(z) ! output = (2.,0.e+0), (1.70000005,2.79999995)

Note the errors in double to real and real to double conversions, as well as the representation

errors.

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 85

6.3 Numerical Intrinsic Functions

We will give the generic names for the functions, and mention the specific names if appropriate.

Only most important such functions are given here.

� ABS; absolute value. I,R,D,C argument, and same type return value. For example,

ABS(�1) � 1 ; ABS(�1:0) � 1:0
ABS(�1:D0) � 1:D0 ; ABS(CMPLX(�3:0; 4:0))� 5:0 :

Specific names are IABS, ABS, DABS, CABS.

� AINT(x): truncates to a whole R (D) number. ANINT(x): nearest whole R (D) number. They

are similar to INT and NINT, except that the returned result is R or D, depending on the

argument type.

AINT(�1:7) � �1:0 ; ANINT(�1:7) � �2:0
AINT(�1:7D0) � �1:7D0 ; ANINT(�1:7D0) � 2:D0 :

Specific names for D: DINT, DNINT.

� MAX(x,y,z,...), MIN(x,y,z,...): maximum or minimum from a list of arguments. Any number

of arguments is allowed, but all of them need to be of the same type (I, R or D). Some

specific names are MAX0 (I arguments, I result), AMAX1 (R arguments, R result), DMAX1

(D arguments, D result).

� MOD(i,j) is the remainder of the division i/j. MODULO(i,j) is i mod j. For example,

MOD(7; 3) � 1 ; MODULO(7; 3) � 1
MOD(�7; 3) � �1 ; MODULO(�7; 3) � 2 :

Specific names are AMOD, DMOD.

� SIGN(x,y) returns signum(y)�abs(x) (transfers the signum of second argument to the first).

Specific names: ISIGN, DSIGN.

� FRACTION(x), EXPONENT(x): the mantissa and the exponent in the binary representation

of a R or D argument x. For example,

FRACTION(3:141592)� 0:785398
EXPONENT(3:141592)� 2 :

� CONJG(z), complex conjugate of a complex number.

6.4 Mathematical Intrinsic Functions

� SIN(x), COS(x), TAN(x): mathematical sine, cosine and tangent. R or D arguments, meaning

angle expressed in radians. Specific names: DSIN, CSIN, DCOS, CCOS, DTAN.

� ASIN(x), ACOS(x), ATAN(x): mathematical arc sine, arc cosine and arc tangent. R or D

arguments (for ASIN, ACOS: jxj � 1). Result in radians. Specific names: DASIN, DACOS,

DATAN.

� SINH(x), COSH(x), TANH(x): mathematical hyperbolic sine, hyperbolic cosine and hyperbolic

tangent. R or D arguments. Specific names: DSINH, DCOSH, DTANH.

� LOG(x), LOG10(x), EXP(x), SQRT(x): natural logarithm, base 10 logarithm, exponential,

square root. R,D,C arguments (with some restrictions). Specific names: DLOG, CLOG,

DEXP, CEXP, DSQRT, CSQRT.

86 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

6.5 Examples

Write a program for polar to cartesian coordinate transformation.

Write a program to solve a quadratic equation.

Write a program to approximate the exponential by Taylor polynomials with a prescribed tolerance,

but using an order lower than or equal to a prescribed value (when the order needed to satisfy

a certain accuracy is too high, we stop at the prescribed maximal order and ignore the tolerance

requirement). Check program's accuracy and speed against the intrinsic function EXP.

6.6 Mixing Types

6.6.1 Mixed-Type Expressions

Operations in ALU take place between operands of the same type. When mixed type operands appear

in the same expression, it is up to the compiler to convert them to the proper, common type.

Default types obey the ordering

INTEGER weakest
REAL

DOUBLE PRECISION

COMPLEX strongest

In a mixed expression the weaker type operands are promoted to the stronger type; the result

is of the stronger type.

For example, the mixed-type expression

i*r*dp*c

is evaluated left-to right (all � have the same precedence). For the first � the integer i

is converted to real, and the result i*r is real; this result is then converted to double precision,

and (i*r)*dp is a double precision result; finally, this result in its turn is converted to

complex to be able to calculate ((i*r)*dp)*c; the returned result is complex.

6.6.2 Mixed-Type Assignement

In an assignment

{\tt LHS=RHS},

where LHS and RHS have different types, the RHS expression is evaluated first using RHS type

arithmetic; the result is then converted to the type of LHS.

Explicit type conversions are to be preffered to automatic ones. For example, the real

to integer conversion is automatically done by truncation toward 0 (similar to INT intrinsic).

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 87

6.6.3 Integer Division

A word of caution needs to be said when the expression involves an integer division. Division

of two integers produces an integer result, obtained by rounding toward zero the real result.

For example,

19=10 � 1 ; �19=10 � �1:

88 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

Chapter 7

Input and Output.

7.1 List-Directed Input and Output

List directed input is read in from the input stream (for now, the standard input device, usually

the keyboard) using

read *, input_list

List directed output sends the values of the output list to the output stream (for now, the

standard output, usually the display):

print *, output_list

Conceptually, an input (or output) stream is a long sequence of characters, grouped in records;

usually, one record = one line, and is ended by the end-of-line character; (it is possible

to specify records of arbitrary length, however, they will be ended by the end-of-record character).

The characters in a record are read (or written) in sequential order; each stream has a pointer

which indicates the current position in the stream; the next read bring in the character whose

position in the stream is specified by the stream pointere (next write puts a character in

the stream, at the position indicated by the pointer).

To illustrate this, suppose we want a program that reads in the radii of 3 circles from

the keyboard, and prints out the perimeters and the areas of the circles. This program might

be

program io

real :: r1,r2,r3,a1,a2,a3,p1,p2,p3

real, parameter :: pi=3.1415926

print *,"give 3 radii"

read *, r1, r2, r3

p1 = 2.0*pi*r1; p2 = 2.0*pi*r2; p3 = 2.0*pi*r3

a1 = pi*r1*r1; a2 = pi*r2*r2; a3 = pi*r3*r3

print *,"areas = ",a1,a2,a3

print *,"perimeters = ",p1,p2,p3

end program io

The first PRINT * statement sends the string ``Give 3 radii'' to the standard output device

(presumably the display). The star * following the PRINT means that the output data is the

edited using the implicit format.

89

90 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

The READ * statement reads 3 numerical values from the keyboard, and assigns them to r1,

r2 and r3. When providing the numbers, the user can separate them by blanks or commas,

1.1 2.2 3.3 or 1.1, 2.2, 3.3

The end of the list is either the end of line character or a slash (/); therefore, if we enter

1.1 2.2 <EOL> or 1.1 2.2 / 3.3

3.3

in either case the first 2 values will be read in and the 3rd will be ignored; r3 will be left

unmodified by the READ statement.

The last PRINT * statement outputs the values of the three areas,

Areas = 3.80132723, 15.2053089, 34.2119408

Note that numerical values are rounded to 8 fractional digits and displayed, the default format

of the current system. If we want to have more control over the form of the displayed quantities,

we need to use formatted output; similarly, formatted input gives control over the read in

data.

7.2 Formats

A console READ with format has the form

read "(editor_descriptor_list)" input_list

(note that the star has been replaced by the actual format, that is, by string containing a

list of editor descriptors, between paranthesis). The values for the input list variables

will be read in succesively, in the format specified by the corresponding descriptor from the

editor descriptor list.

For example, we can replace the READ *, r1, r2, r3 statement by

read "(F2.1,F2.1,F2.1)",r1,r2,r3

The Fw.d descriptor means that the next w characters of the input stream represent a Floating

point number; if a decimal point is not present in the data, then the last d characters are

the digits of the fractional part.

Therefore, an input line of the form

112233

will be interpreted as follows. The first edit descriptor in the list is F2.1; therefore,

the first 2 characters (11) are read in from the input stream, and considered to represent

a floating point number; since there is no decimal point in the data, the last character is

the fractional part, therefore the value is 1.1 and is assigned to r1. At this time we are

done with the first edit descriptor in the list, and we move to the second (also F2.1). The

next 2 characters (22) are read in, and similarly, they are resolved to represent the floating

point number 2.2, value which is assigned to r2. Similar treatment applies to the last edit

descriptor.

Suppose now our input line has the easy-to-read form

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 91

1.1, 2.2, 3.3

(we have decimal points, and two consecutive numbers are separated by a comma and a blank).

Then, the numbers are read in correctly if we use the following statement

read "(F3.1,2X,F3.1,2X,F3.1)",r1,r2,r3

The first edit descriptor is F3.1; therefore, the first 3 characters (1.1) represent a floating

point value, which is assigned to r1; since the data contains a decimal point, we ignore the

edit specification of the fractional part. The edit descriptor nX skips the next n characters;

therefore, the 2X descriptor will lead to ignoring the comma and the blank. Next edit desciptor,

F3.1 will read in 3 characters, 2.2, which represent a real value and which is assigned to

r2; etc.

Slashes in the format position the input stream pointer at the beginning of the next record

(here, the next line); for example, if we read

read "(F3.1,2X,F3.1,/,F3.1)",r1,r2,r3

and the input from the console is

1.1, 2.2, 3.3 <CR> \\

4.4

the assigned values are r1=1.1, r2=2.2, r3=4.4.

The formatted console PRINT has the form

print "(editor_descriptor_list)" output_list

The values of the variables in the output list will be printed out succesively, each one obeying

the format imposed by the corresponding descriptor from the editor descriptor list.

We want to print the 3 computed areas; since the radii have just one fractional digit, it

is probably sufficient to have the results rounded to 3 fractional digits.

We can use the following statement

PRINT "(A8,F7.3,2X,F7.3,2X,F7.3)","Areas = ",a1,a2,a3

The Aw edit desciptor specifies CHARACTER data of width w. The first object in the output

list is the string "Areas = "; the first edit descriptor is A8, therefore the first 8 characters

in the output stream will be Areas = . If we want to print the full string argument, without

counting for its length, we can use the plain descriptor A (without any width specification).

The second object in the output list is the REAL a1, and it will be printed in a format

specified by the second edit descriptor (F7.3; the number will be displayed on 7 characters,

with 3 digits for the fractional part (the value of a1 will be rounded to 3 digits after the

decimal point); Since there are 7 characters, we use 3 for the fractional part and one for

the decimal point, the integer part will be displayed on the remaining 3 characters. The output

is

Areas = 3.801 15.205 34.212

Note that if we initialize r1=20. (possible with 3 characters), the area a1=1256.637, a number

whose integer part contains 4 digits; this number cannot be represented in the F7.3 format,

and the produced output is ******* (7 stars).

92 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

In general, it is recommended that we allow a generous width w when printing numbers in

the Fw.d format; if we allow for more places than the number needs, the representation will

be aligned to the right, with blanks inserted in the leftmost positions (see 3.801 above).

It is also recommended that The number of digits of the fractional part should be in tune with

the number of accurate digits produced by the computation. For example, if we do the computations

in single precision we have at most 7 accurate digits in the results; it is pointless to use

a F20.10 format, which would print out 3 extra digits containing ``garbage''.

The 3rd descriptor is 2X; this will print 2 blanks in the output stream. From here on the

behavior should be clear: print a2 in the F7.3 format, then insert 2 spaces, then print a3

in the same format.

The Fw.d format prints REAL values in the decimal point notation (integer part, point, decimal

part). Alternatively, we can choose to print numbers in the exponent form. For this, we use

the descriptor Ew.d, where w is the total number of characters (the width of the representation),

and d is the number of decimal places in the normalized number; note that in this case d truly

represents the number of digits printed. For example, the statement

print "(a,e10.3,2x,e10.3,2x,e10.3)","areas = ",a1,a2,a3

produces the result

Areas = 0.380E+01 0.152E+02 0.342E+02

Note that the characters ., E, + are counted toward the total specified width of 10 places.

Let us mention that groups of descriptors can be repeated by enclosing the group between

parantheses, and prefixing this expression with the number of repeats. For example, the print

example above can be written in a shorter form as

print "(a,3(e10.3,2x))","areas = ",a1,a2,a3

The string "Areas = " can be embedded as a constant in the editor descriptor list; the following

statement produces the same output as the statement above

print "('Areas = ',3(E10.3,2X))",a1,a2,a3

(note the interplay between double and single quotes in delimiting a string within a string).

Slashes in the format move the output stream pointer to the next record (line).

print "('Areas = ',//,3(F7.3,/))",a1,a2,a3

produces the output

Areas =

3.801

15.205

34.212

If the number of items in the output list is greater than the number of edit descriptors

in the format, the edit descriptor list is ``wrapped around'' and read again from the beginning.

The statement

print "('Areas = ',(F7.3,2X))",a1,a2,a3

produces the output

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 93

Areas = 3.801

Areas = 15.205

Areas = 34.212

7.2.1 Editor Descriptors

The most important edit descriptors in F90 are given below. This table is not comprehensive.

Iw w places of integer data

Fw.d w places of real data

(in decimal point notation)

including d decimal places

Ew.d w places of real data

(in scaled number-exponent notation)

including d decimal places

Lw w places of LOGICAL data

Aw w places of CHARACTER data

A READ: n places of CHARACTER data,

enough to fill the input list item

WRITE: print all characters of the string

wX skip w places (for READ), or

insert w spaces (for PRINT, WRITE)

Tn move I/O stream pointer to position n

TLn move I/O stream pointer n positions left

TRn move I/O stream pointer n positions right

7.2.2 Example: READ Integer Data

Consider a read statement that initializes three INTEGER variables, i, j and k. The input

string is

123456789

Depending on the format, the string can be interpreted differently; below are several examples

of editor lists, and the resulting values of the variables i, j and k.

Statement i j k

READ "(I2,I3,I4)",i,j,k 12 345 6789

READ "(I2,2X,I2,2X,I2)",i,j,k 12 56 9

READ "(I2,I3,T1,I4)",i,j,k 12 345 1234

READ "(I2,TR2,I3,TL3,I4)",i,j,k 12 567 5678

Note that Tw moves the input stream pointer to the wth position of the current record/ current

input line; TLw and TRw move the input stream pointer w positions to the left and right, respectively,

inside the current record/ current input line.

7.2.3 Example: READ Character Data

Consider the length 10 character variables

94 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

character(len=10) :: C1, C2

which are initialized by a READ statement. The input string is

michigantech

Depending on the format, the values assigned to A, B are different.

Statement C1 C2

READ "(A8,A4)",C1,C2 michigan�� tech� � ��
READ "(A12,A12)",C1,C2 chigantech � � � � � � � � ��
READ "(A,A)",C1,C2 michigante ch� � � � ��

(we denote the blank spaces by �). In case 1 the first 8 characters are read in C1 (which

is padded with 2 additional blanks), and the remaining 4 characters are read in C2 (which is

padded with additional 6 blanks). In case 2 the required width (12) is greater than the length

of the string; the rightmost 10 characters are stored in C1, and there is no input left for

C2 (which is therefore not changed). In case 3 we do not specify any width; the plain A descriptor

reads in as many characters as needed to fill the variable (here, the first 10 characters fill

in C1).

7.3 File I/O

So far we have considered only terminal I/O. Many times programs read large sets of input data

from data files, and write large amounts of output results to another files; these results

can be subsequently used by other programs, which, for example, analyze them. File data are

permanent, in the sense that they remain after the program who produced them finishes.

7.3.1 Records and Files

A record is a sequence of characters and values; a sequence of records form a file. You can

think of a file as a typed page, with the records being the lines of text.

A file can have sequential access (records are read one after the other) or random access

(any record, specified by its number, can be accessed any time). The last record in a file

is of special type, called the endfile record (it allows the automatic detection of the end

of the file during reading).

In this part we talk about external files, stored on external medium - like the hard disk.

A program can read or write formatted or unformatted records.

Formatted records

� are composed of ASCII characters only

� information is in human-readable form

� when writing a formatted record, numbers are converted from internal, binary representation,

to decimal, according to the edit descriptor specification. This conversion introduces

roundoff, computational overhead, and results in a larger file.

� formatted data files are portable.

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 95

The following statement writes one formatted record; the format is explicitly given (F7.3)

write (unit=10, fmt="f7.3") r1

Unformatted records

� store data in the binary form, as represented internally by the computer.

� information is not human-readable

� there is no roundoff, no computational overhead, and results in a smaller file.

� unformatted data files may not be portable, since the internal representation may be different

on different computer systems; however, they are useful to temporarily store intermediate

results during one execution.

The following statement writes one unformatted record; no format is given

write (unit=10) r1

Unformatted data can be retrieved by unformatted read; the following statement reads one record;

again, no format is specified.

read (unit=10) x1

Note that unformatted files may not be portable from one system to another.

7.3.2 OPEN

F90 allows a number of different files (streams) to be connected to the program for both reading

and writing. Before being used by a program, a file must be connected to a logical unit (the

F90 program operates with logical units, designated by positive numbers, usually between 1

and 100).

Connecting a file to a logical unit is done using an OPEN statement.

OPEN (UNIT= integer, logical unit number

FILE= �filename', name of the file

STATUS='status', 'status' = 'OLD' looks for existing file

'NEW' creates the file, error if it already exists

'UNKNOWN' (is the default when status not specified)

� (NEW if file exists)/(OLD if it doesn't)

'REPLACE' to override existing file

'SCRATCH' unnamed file, deleted at closing

FORM='mode', 'mode' = 'FORMATTED' or 'UNFORMATTED'

ACTION='action', 'READ' (only), 'WRITE' (only) or

'READWRITE' (default if ACTION missing)

POSITION='position' when opening, position the file pointer at

the beginning 'REWIND', the end 'APPEND', where it is ASSIS (default)

ERR=label, control is transferred to label if

error when opening the file

ACCESS='access' 'SEQUENTIAL', (line by line), or

'DIRECT' (access individual tagged records)

RECL=integer record length for direct access.

)

96 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

Note that not all the above arguments need to be explicitly given.

Some units are preconnected, i.e. they are available without explicitly opening them. For

example, the default input is usually unit 5 (in some cases unit 1), and the default output

is usually unit number 6 (sometimes 2).

To unattach an opened file from the corresponding unit number when we are done we use

close(unit=10,iostat=ierr)

(this also inserts an end-of-file character when writting)

7.3.3 READ

READ(UNIT=int-expression UNIT=5 or UNIT=* for the default input unit

FMT=format FMT=``(edit descriptor list)''

FMT=� is the implicit format

FMT=label points to a labeled FORMAT statement (see below)

IOSTAT=int-variable int-variable holds a return code,

set when READ completed; 0 if OK, negative if end-of-file

ERR=label, control is transferred to label if

error when reading the file

END=label, control is transferred to label if

end-of-file encountered

EOR=label, control is transferred to label if

end-of-record encountered (non-advancing only)

ADVANCE='mode', 'YES', the default, means that each

READ starts a new record; 'NO' for non-advancing I/O.

REC=int-expression, record no for direct access

SIZE=int-var int-var holds the number of characters read

for non-advancing READ

) input list

7.3.4 READ example

The statements

read(unit=10,fmt=20) a, b, c

20 format(3(f7.2))

are equivalent to

read(unit=10,fmt=''(3(f7.2))'') a, b, c

Also, the following are equivalent statements

read(unit=5,fmt=*) a, b, c

read(unit=*,fmt=*) a, b, c

read *, a, b, c

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 97

7.3.5 WRITE

WRITE (UNIT=int-expression same as for READ

FMT=format

same as for READ IOSTAT=int-variable int-variable holds a return code, 0 if writing OK

ERR=label, control is transferred to label if

error when reading the file

ADVANCE='mode', 'YES', the default, means that each WRITE

starts a new line/record; 'NO' for non-advancing I/O.

) output list

7.3.6 FORMAT

In a READ or WRITE statement we can give the format explicitly as an argument, or we can indicate

a label where a FORMAT statement resides.

For example, the statement

write(unit=6,fmt=''('Areas = ',3(F7.3,2X))'') a1, a2, a3

can be written, equivalently, as

write(unit=6,fmt=''(a,3(F7.3,2x))'') a1, a2, a3

10 format('areas = ',3(F7.3,2x))

7.4 File Positioning

We can set the position of the file pointer using special instructions.

rewind(unit=10)

positions the file pointer to the beginning of the specified unit. Note that, writing a record

in a sequential file destroys all subsequent information, so by rewinding and writing a file

we lose all the data.

backspace(unit=10, iostat=ierr)

positions the file pointer back one record.

endfile(unit=10)

inserts the endfile record in the file, and keeps the file open, with the file pointer positioned

on the endfile record.

7.5 Writing to a string

character(len=5) :: c write(c,10) [list]

Example: opening files with names file01, file02.m, .., file22.m

98 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

Chapter 8

Arrays

8.1 Declaring Arrays

Arrays are collections of same-type elements; individual elements are accessed by subscripting

the array.

Consider A 2 <6 be a vector of 6 elements,

A = [a1 a2 a3 a4 a5 a6]

and B 2 <2�3 be a 2� 3 matrix,

B =

�
b11 b12 b13
b21 b22 b23

�

Suppose each element ai, bij is exactly represantable in floating point (i.e. ai, bij are

REAL numbers). Instead of working with 6+6=12 different REAL variables, we can treat A and

B in their entirety as F90 variables; the following are valid F90 declarations:

real, dimension(6) :: a

real, dimension(2,3) :: b

real :: a(6), b(2,3) ! shorthand form

8.2 Memory Storage

Each element of A and B is a REAL number, and requires 4 bytes in the memory. The full A and

B have 6 components, hence they require 24 bytes storage.

In F77 A it is stored in a contiguous 24-byte region in the memory as follows: A(1) in

bytes 1 through 4, A(2) in bytes 5 through 8, : : :, A(6) in bytes 20 through 24.

B is also stored in a contiguous 24-byte memory region, but now we have to be careful: the

memory model is one-dimensional, while B is a two-dimensional array. F90 stores the first

column of B first, the second column next and the third column last. In more detail, B(1,1)

is stored in bytes 1 through 4, B(2,1) in bytes 5 through 8, B(1,2) in bytes 9 through 12,

B(2,2) in bytes 13 through 16, B(1,3) in bytes 17 through 20 and B(2,3) in bytes 20 through

24.

99

100 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

We say in short that F77 uses storage association.

Unlike F77, F90 does not specify how arrays are to be organised in memory.

� Advantage. This gives flexibility and allows portability over different architectures

(e.g. on a parallel computer the compiler may decide to spread a large array over 16

different memories - this does not violate the F90 standard; the same program may run

efficiently on a single processor machine also). Consider for example a 4-processor machine.

We need to execute a saxpy operation with a scalar, x(1:1024),y(1:1024),z(1:1024) vectors:

z = a � x+ y

For efficiency the vectors are stored as follows: x(1 : 256) on processor 1, x(257 : 512)
on processor 2, x(513 : 768) on processor 3, x(769 : 1024) on processor 4. This is an example

of data-parallel programming, where the same operations are executed by different processors

on different data sets.

� Disadvantage. It is common practice to write C++ programs which use Fortran numerical

libraries, and viceversa, to call a-different-language library functions in a Fortran

program. Consider a F90 routine with an array argument; it is very difficult to call

it from C++ (or from another language), since the storage scheme needs to be known in

order to properly pass the array argument.

For input-output purposes an ordering of the elements is needed, and this is the colum-wise

ordering (F77-similar). This ordering does not imply anything about the storage scheme. For

example, if

B =

�
1 2 3
4 5 6

�
the statement

print*, b

will produce the output

1:; 4:; 2:; 5:; 3:; 6:

Similarly,

read*, b

will read in 6 numbers, the elements of B in column-wise order.

8.3 Array Attributes

In F90 the following terminology is used:

� Size = total number of elements. Both A and B have size = 6.

� Rank = number of dimensions. In F90 the rank should be less than or equal to 7. A has

rank 1, B has rank 2.

� Extent = number of elements in each dimension. A has extent 6, B has extents 2 and 3.

Note that the extent can be ZERO (in this case the expressions involving the array are

simply ignored).

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 101

� Bounds = upper and lower limits of indices; by default, they are taken 1:Extent. E.g:

A index varies between 1 and 6, while B indices vary between 1 and 2, and 1 and 3 respectively.

These bounds can be changed using declarations of the form

real, dimension(-2:3) :: a

real, dimension(-10:-9,5:7) :: b

real :: a(-2:3), b(-10:-9,5:7) ! shorthand form

� Shape = rank and extents. E.g: A has shape (/6/) and B has shape (/2,3/).

F90 provides a number of intrinsic functions that ``inquire'' the arrays about their attributes

and status. These intrinsics are useful inside procedure bodies; for example we can obtain

the dimensions (extents) of an input array argument without explicitly requiring them in the

argument list. The inquiry intrinsic functions may return the lower and the upper subscript

bounds (LBOUND and UBOUND), the shape (SHAPE) and the size (SIZE) of an array.

For example
Code Means Value
REAL; DIMENSION(�10 : �9; 5 : 7) :: B
LBOUND(B; 1) Lower Bound, dim 1 �10
LBOUND(B; 2) Lower Bound, dim 2 5
LBOUND(B) All Lower Bounds (array) (=� 10; 5=)
UBOUND(B; 1) Upper Bound, dim 1 �9
UBOUND(B; 2) Upper Bound, dim 2 7
UBOUND(B) All Upper Bounds (array) (=� 9; 7=)
SHAPE(B) Rank and extents (=2; 3=)
SIZE(B; 1) Extent in dim 1 2
SIZE(B; 2) Extent in dim 2 3
SIZE(B) No of elements 6

l

8.4 Subscripting

real, dimension(6) :: A

real, dimension(2,3) :: B, C

B = C

One can select elements of an array using subscripts. For example, A(2) and B(2,2) are

REAL variables, denoting a2 and b22 respectively. The array subscripts must be integer numbers,

integer variables, or expressions returning an integer result.

The statement

A(2) = 0.0

B(2,2) = 1.0

sets sets a2 to 0 and b22 to the value 1.

We can reference the whole array by its name. For example, the statement

B = 1.0

will set all the elements in B to 1.

We can select array sections using the \:" selector. For example, we can set a1; a2; a3 to

0 and b11; b12; b21; b22 to 1 using

102 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

A(1:3) = 0.0

B(1:2,1:2) = 1.0

8.5 Conformance

Two arrays are conformable if they have the same shape.

All arrays used directly in an expression must be conformable. For example,

real, dimension(6) :: A

real, dimension(2,3) :: B, C

B = C

is valid since B, C are conformable (the statement will just copy C into B element-by-element

multiplication). However, the statement

A = C

is illegal, since A and C have different shapes.

Note that scalars are conformal to any array (they are considered to be an array with all

elements equal to the scalar). For example,

A=2.0 ; C=3.0

will fill A with 2's, and C with 3's.

8.6 Array Expressions

In F90 it is possible to build expressions using intrinsic operators and elemental intrinsic

functions acting on arrays as variables. All arrays in an array expression must conform. The

convention is that intrinsic operations are performed element-by-element (similarly, intrinsic

functions applied to arrays act elementwise).

For example,

real, dimension(2,3) :: B, C, D

B = 3.0; C = 4.0

D = sqrt(B**2 + C**2)

will produce a matrix D full of 5's. The meaning of the last (array) statement is that of

6 elemental statements 8<
:

D(1; 1) = SQRT(B(1; 1) � �2+ C(1; 1) � �2)
......................................

D(2; 3) = SQRT(B(2; 3) � �2+ C(2; 3) � �2)

Note that all six elemental statements are, conceptually, performed in parallel (this may

or may not be true, depending on the architecture). In contradistinction, a nested pair of

DO loops would produce the same result evaluating the elements of D in a predefined order.

In conclusion, array expressions are evaluated element by element, with no particular ordering

implied; conceptually, all elemental operations are performed simultaneously.

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 103

8.7 Array Sections

We can select sections of an array using the following subscript-triplet

[hbound1i] : [hbound2i][: hstridei]

The subscripts of the array section start at hbound1i, are incremented by hstridei and stop at

or before hbound2i. The selected subscript values are similar to the values of the DO-loop

variable i generated by the statement

DO i = hbound1i; hbound2i; hstridei

The bounds and the stride must be integer-valued expessions; if missing, they are assumed

to take implicit values as follows:

� missing hbound1i: bound1 = subscript's lower bound, as declared.

� missing hbound2i: bound2 = subscript's upper bound, as declared.

� missing hstridei: stride = 1.

For example, let

REAL; DIMENSION(�2 : 6) :: A

be the array [a�2; a�1; a0; a1; a2; a3; a4; a5; a6]. Note that the subscript's lower bound is �1, and

upper bound is 6. Then the following sections can be selected

A(1:3) [a1; a2; a3]
A(1:3:2) [a1; a3]
A(1:4:2) [a1; a3]
A(3:1) zero sized section

A(3:1:-1) [a3; a2; a1]
A(:) whole array

A(4:) [a4; a5; a6]
A(:2) [a�2; a�1; a0; a1; a2]
A(::4) [a�2; a2; a6]
A(2:2) [a2]
A(2) scalar element a2

Note that a section of the array is an array itself.

As a second example, consider

REAL, DIMENSION(4,4) :: B

104 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

��
��
��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��
��
��

��
��

��
��

��
��

��
��

��
��

��
��

B(1:2,1:2) B(1:4:2,1:4:3)

B(1:3,3) B(::2,:)

8.8 RESHAPE intrinsic function

This intrinsic function changes the shape of an array to the desired form.

The syntax is

RESHAPE(harrayi; hshapei[; hpadi][; horderi])

For example,

RESHAPE((=1; 2; 3; 4=); (=2; 2=)) =)
�
1 3
2 4

�
If the constructor list is too short, elements from the hpadi are used to pad the result:

RESHAPE((=1; 2; 3=); (=2; 2=); (=0=)) =)
�
1 3
2 0

�

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 105

(if the constructor list is longer than the size specified by hshapei, the first size elements

will be used for the array, and the rest will be ignored).

The column-wise order can be changed (the subscripts vary in the order specified by horderi):

RESHAPE((=1; 2; 3=); (=2; 2=); (=0=); (=2; 1=)) =)
�
1 2
3 0

�

8.9 Array Constructors

Have the form

(= scalar1; scalar2; : : : ; scalarn =)

The list of scalars are placed into the array in order. The size of the constructor must

equal the size of the array.

real, dimension(6) :: A, B

real, dimension(2,3) :: C

A = (/1.0,2.0,3.0,4.0,5.0,6.0/)

B = (/ (i, i=1,6) /)

C = RESHAPE((/1.0,2.0,3.0,4.0,5.0,6.0/), (/2,3/))

The B definition contains an implied DO loop (the values of i generated by the construct ``DO

i=1,6'').

Only one dimensional constructors are allowed; to initialize higher rank matrices, we need

to explicitly RESHAPE the constructor to the desired shape.

We can use constructors to initialize arrays, for example

integer, dimension(6) :: A = (/ (i, i=1,6) /)

real, dimension(2,3), parameter :: &

C = reshape((/1.,2.,3.,4.,5.,6./),(/2,3/))

8.10 Allocatable Arrays

In F90 temporary arrays can be dynamically created, used, and then discarded at will; the necessary

memory is grabbed, used, and then put back (dynamic heap storage).

The declaration

real, dimension(:), allocatable :: A

states that A is a temporary matrix; no memory is allocated at the time of declaration; the

size of A is irrelevant at this point, and the precise specification of the shape is deferred

until the allocation point. In F90 jargon, A is said to be a deferred-shape array; in contrast,

the ``standard'' declaration

real, dimension(5,5) :: B

makes B an explicit-shape array.

To reserve memory for A, we use

106 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

allocate(A(-1:3,2:5), STAT=ierr)

Upon completion of the function, the integer variable ierr reports the success of the allocation

process: ier = 0 if everything is ok, and ierr 6= 0 if the allocation request was denied.

The intrinsic inquiry function

allocated(A)

returns a logical result: .TRUE. if A is allocated, and .FALSE. otherwise.

Heap storage is reclaimed using

if(allocated(A)) deallocate(A, stat=ierr)

(this deletes the array from memory and returns the space as free space in the heap). ierr

reports the succes of the dealloction function. Note that we check first if A was allocated.

There is always an overhead in managing dynamic arrays; therefore, if the size of the array

is known, the memory restrictions are not tight, or the arrays are needed during most of the

program's lifetime, one should preffer explicit-shape arrays.

Attention: a deffered-shape array allocated in a procedure should be deallocated upon return

- otherwise the memory space becomes inaccesible for the rest of the program's life (an inaccessible

memory chunk is called ``garbage'').

An allocatable array in a procedure can be SAVEd. For example,

subroutine ...

real, allocatable, dimension(:,:), save :: A

...

if (.not.allocated(a)) allocate(A(10,10)

A is allocated during the first call to the subroutine; after the procedure termination, A

will remain allocated and its value preserved becaude of the SAVE attribute; following calls

to the subroutine will ``see'' that A was already allocated and will work with the old values.

Homework 0.17 In a loop, allocate arrays of increasing size, and check the allocation status;

exit the loop when the allocation request is refused. What is the largest size of a succesfully-allocated

array? Do not forget to deallocate the current array before the new allocation at the next

iteration.

8.11 Masked Assignment

Assignments can be executed for noregular sections of the arrays only. For example the assignments

can be selectively executed only for those elements which satisfy a certain condition. This

is accomplished using a WHERE construct.

Suppose for example we have three real matrices:

A =

�
10: 10:
10: 10:

�
; B =

�
1: 3:
5: 9:

�
; C =

�
0: 2:
4: 6:

�
:

We want to change the matrix A such that aij = bij=cij; if cij = 0 then we skip the division

and let the old value of aij unchanged.

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 107

The form of the construct is

where (C /= 0)

A = B/C

end where

The argument of WHERE is evaluated first. This argument is a matrix of logical elements, and

is called the mask. The mask must conform to the implied shape of each assignment in the body.

In our example

C:NE:0 =

�
:FALSE: :TRUE:
:TRUE: :TRUE:

�
(all the elements of the mask are, conceptually, evaluated in parallel).

Next, the statements in the body of the WHERE construct are evaluated succesively. The

matrix assignment C = A/B is performed element by element, but only for those elements (i; j)
for which maskij =.TRUE.; in our example, the result of the masked assignment is

A =

�
10: 1:5
1:25 1:5

�
:

The complete form of the WHERE construct includes an ELSEWHERE branch as well:

where (C /= 0)

A = B/C

elsewhere

A = -1.0

end where

The ELSEWHERE assignments are performed for those elements (i; j) for which maskij =.FALSE.;
the result of our example is

A =

� �1:: 1:5
1:25 1:5

�
:

Note: a short form is possible; similar to the IF statement, there is a WHERE statement

which reads

where (C /= 0) A = B/C

WHERE statements cannot be nested. The execution first evaluates the mask (a matrix of

.TRUE./.FALSE. depending on the elemental value of the condition) then executes the assignments

for the .TRUE. positions (the WHERE block), then execute the assignments for the .FALSE. positions

(the ELSEWHERE block).

8.12 Vector-valued Subscripts

Are useful for building irregular sections of arrays (when subscripts do not follow a linear

pattern).

For example,

integer, dimension(2) :: V=(/4,2/)

integer, dimension(4) :: W=(/3,2,4,1/)

real, dimension(10,10) :: A

108 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

A(V,W) is the irregular 2�4 section of the matrix resulting from intersecting rows V (i)
with columns W (j).

If A = [1; 2; 3; 4; 5; 6], B = [10; 11; 12], V = [3; 5; 3], then A(V) = [3; 5; 3]; B = A(V) is OK and

will produce B = [3; 5; 3], but A(V) = B should be avoided since the subscript 3 is repeated

(A(3) is assigned twice, and since no order can be guaranteed in the parallel assignment, the

result is not well defined).

Vector subscripting basically performs index indirection (of one, two or more nested levels)

and is therefore very inefficient; it should not be used unless really necessary.

8.13 Homework

Homework 0.18 Consider the matrices A = [.1 .2;.4 .6], B=[.5 .9; .7 .8]. Initialize A with

an array constructor, then Read in 4 numbers for B, then compute the expression C=sin(A)+cos(B).

Using inquiry intrinsic functions print the total no of elements in C, the shape of C, the

upper and lower bounds for A, B, C.

.

Homework 0.19 Write a subroutine that takes an integer matrix and negates all the odd elements

(Hint: use WHERE).

8.14 Vector and Matrix Multiplication Intrinsics

If A, B are conform, dimension one arrays, their dot product is computed by calling the function

DOT PRODUCT; the result is, of course, a scalar DP

DP = dot_product(A,B)

The meaning is

Type DP

REAL A(1) � B(1) + A(2) � B(2) + : : :
DOUBLE A(1) � B(1) + A(2) � B(2) + : : :
COMPLEX CONJG(A(1)) � B(1) + CONJG(A(2) � B(2)) + : : :
LOGICAL A(1):AND:B(1):OR:A(2):AND:B(2)+ : : :

For two matrices C and D (at least one has dimension 2) their matrix-matrix product is given

by

E = matmul(C,D)

The result is a matrix. The shapes of C, D, E have to obey the usual mathematical relation

for matrix multiplication. Note that the matrix product MATMUL(C,D) is not equal to the element-by-elemen

product C*D.

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 109

Homework 0.20 Consider the matrix

A =

2
664

1 8 3 9
8 3 0 �3
�2 �2 1 9
5 �3 2 �1

3
775

Write a small program to compute and print

1. A 4� 4 REAL matrix B with random elements. Such a matrix can be created using

CALL RANDOM NUMBER(B) :

2. MATPROD(A, B)

3. MATPROD(A, B) - A*B

4. DOT PROD(first row A, third column B)

8.15 Maximum and Minimum Intrinsics

max(a1, a2, a3, ...) min(a1, a2, a3, ...)

return the maximum (minimum) value over a list of arguments.

The arguments a1; a2; : : : can be (conformal) arrays; the result of MAX (MIN) is then an array

of the same shape and size as the arguments, containing element by element maxima (minima).

Homework 0.21 Write a small program to calculate MAX and MIN of

� MAX and MIN(1,3 2,5,3).

� MAX and MIN(5, (/2,6,1,6,3,2/),(/7,3,9,1,6,3/))

The maximum value among the elements of an array A can be obtained with

maxval(A)

The location of the first element which has this maximum value is given by

maxloc(A)

If the rank of the matrix A is r, the returned result is an r-dimensional array, containing

the values of the subscripts (i.e. the location) of the maximum value element.

We can take the maximum values along a specified dimension, using

maxval(A, DIM=d)

When we use the DIM argument, the result of MAXVAL is a rank r-1 array, with the maximum values

in other dimensions.

For example, if A is a 2-dimensional matrix, using d=1 computes the maxima in each column,

and d=2 computes the maxima in each row. The results are rank 1 arrays (vectors).

Finally, we can use the masked form of MAXVAL, for example

110 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

maxval(A, MASK=A<4)

The survey is only performed on elements of A which correspond to .TRUE. elements of the mask;

here the maximum is taken over the elements of A which are less than 4.

Note that DIM and MASK arguments can be used simultaneously.

The functions

MINLOC(A) ; MINVAL(A[; MASK= m][; DIM = d]) ;

return the position of the minimal element in an array, and the minimal value respectively;

their use is similar to the use of MAXLOC, MAXVAL.

Homework 0.22 Consider the matrices

A =

2
4 1 8 3 9

8 3 0 �3
�2 �2 1 9

3
5B =

2
4 4 5 2 9

5 �3 2 �1
9 �2 7 �5

3
5

Write a small program that allocates A, B, computes and prints the following, and deallocates

A, B before exit.

maxloc(A, mask=B.LT.0)

maxloc(A, dim=1)

maxloc(A, dim=2)

maxloc(A, mask=B.LT.0, dim=1)

maxloc(A, mask=B.LT.0, dim=2)

minloc(B, dim=1)

minloc(B, dim=2)

8.16 Array Reduction Intrinsics

Reduction functions act on a rank r array A, and return a result of a smaller rank. If the

argument DIM is absent the result is a scalar, if DIM is present the result is an array of

rank r-1.

� SUM(A [,DIM=d] [,MASK=m]) returns the sum of array elements, along an optionally specified

dimension under an optionally specified mask.

� SUM(A [,DIM=d] [,MASK=m]) returns the sum of array elements, along an optionally specified

dimension under an optionally specified mask.

� PRODUCT(A [,DIM=d] [,MASK=m]) returns the product of array elements, along an optionally

specified dimension under an optionally specified mask.

� ALL(MASK [,DIM=d]) returns .TRUE. if all entries in the logical array MASK are .TRUE.; the

operation can be performed along a certain dimension. (Note: returns .TRUE. for zero-sized

arrays)

� ANY(MASK [,DIM=d]) returns .TRUE. if at least one entry in the logical array MASK is .TRUE.;

the operation can be performed along a certain dimension. (Note: returns .FALSE. for zero-sized

arrays)

� COUNT(MASK [,DIM=d]) returns the number of .TRUE. elements in the logical array MASK; the

operation can be performed along a certain dimension. (Note: returns 0 for zero-sized arrays)

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 111

Homework 0.23 With

A =

2
4 1 8 3 9

8 3 0 �3
�2 �2 1 9

3
5B =

2
4 4 5 2 9

5 �3 2 �1
9 �2 7 �5

3
5

write a small program to compute and print

1. COUNT(B.LT.0)

2. COUNT(B.LT.0, DIM=1)

3. COUNT(B.LT.0, DIM=2)

4. SUM(A)

5. SUM(A, DIM=1), SUM(A, DIM=2)

6. PROD(A)

7. PROD(A, DIM=1), PROD(A, DIM=2)

8. ALL(A.NE.B), ANY(A.NE.B)

Homework 0.24 Write three functions that have one input argument, a rank 2 array (a matrix)

A, and return

1. the Frobenius norm of the matrix
qPn

i=1

Pn
j=1 a

2
ij;

2. the 1-norm of the matrix maxi
Pn

j=1 jaij j;
3. the 1-norm of the matrix maxj

Pn
i=1 jaij j.

8.17 Array Arguments

In F90 arrays can be passed as procedure arguments. There are several points to be made regarding

how the shape and the size of an array argument is consistently passed to the procedure.

Consider for example the subroutine COMMUT that computes the ``commutator'' of two matrices

A and B,

C = AB� BA

8.17.1 Explicit Shape Arrays

One possible definition of the subroutine is

subroutine commut(A,B,C)

implicit none

real, dimension(10,10), intent(in) :: A, B

real, dimension(10,10), intent(out) :: C

C = matmul(A,B)-matmul(B,A)

end subroutine commut

The shape of the dummy array arguments A,B,C is explicitly declared: they are 10�10 matrices.

When calling the subroutine, the sizes and shapes of the actual arguments must of course conform

to the sizes and shapes of dummy arguments; therefore, the routine can only compute the commutator

of 10� 10 matrices. The explicit shape approach is very inflexible, and usually avoided.

112 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

8.17.2 Assumed Shape Arrays

We want the routine to work for square arrays of any dimension. To allow this, the recommended

method in F90 is to declare dummy array arguments as assumed shape arrays:

subroutine commut(A,B,C)

implicit none

real, dimension(:,:), intent(in) :: A, B

real, dimension(:,:), intent(out) :: C

C = matmul(A,B)-matmul(B,A)

end subroutine commut

An assumed-shape declaration must have the same type and rank as the actual argument declaration.

When the subroutine is called, the dummy arrays A,B,C assume the shape of the associated

actual arguments. The actual argument can be an array, or an array section, but needs to have

an explicit shape. An assumed-shape array as actual argument lacks the bound/extent information

and cannot be passed on to a further procedure. Note that the program units which call procedures

with assumed shape arguments need to have explicit interfaces available at the point of call

(we will iscuss later about this).

Note that, whenever an external subroutine uses assumed-shape array arguments, the calling

program must contain an interface of the respective procedure. This allows the compiler to

prepare the necessary information when passing array arguments. An interface is placed before

local declarations; it contains the subroutine headers and argument declarations. The syntax

can be viewed in the following example:

interface

subroutine commut(A,B,C)

implicit none

real, dimension(:,:), intent(in) :: A, B

real, dimension(:,:), intent(out) :: C

end subroutine commut

end interface

8.17.3 Automatic Arrays

Some temporary arrays can depend on dummy arguments; these arrays are truly automatic, they

are created and destroyed with each invocation of the procedure. Automatic arrays are not

dummy arguments; they are declared as explicit-shape arrays are, except that the size is depends

oninput arguments - it is therefore known at run time only. Traditionally, such arrays are

used for workspace. For example, two automatic arrays P1, P2 can be declared to conform to

A:

subroutine commut(A,B,C)

implicit none

real, dimension(:,:), intent(in) :: A, B

real, dimension(:,:), intent(out) :: C

real, dimension(size(A,1),size(B,2)) :: P1

real, dimension(size(B,1),size(A,2)) :: P2

P1 = matmul(A,B)

P2 = matmul(B,A)

C = P1 - P2

end subroutine commut

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 113

When using automatic arrays we have to include an interface in the calling program.

In F77 we had to explicitly pass the size of A in the argument list, and use this dummy

variable to declare P1,P2:

subroutine commut(A,B,C,N)

real, dimension(N,N) :: P1,P2}

Note that automatic arrays cannot have the SAVE attribute - the reason being that they can

have different shapes and sizes during different procedure calls.

8.17.4 F77's Assumed-Size Arrays

An assumed-size array may only appear as a dummy argument of a procedure; in its declaration,

all the extents except the last one must be given explicitly, and the last one is specified

by �.
For example, the calling program declares

real, dimension(50) :: Z

call test(Z)

and the subroutine header is

subroutine test(Z)

real, dimension(*) :: Z

The idea in F77 was that Z was allocated in the calling program; the only thing the subroutine

needs to know is where the array Z starts; all other elements are found in subsequent memory

locations.

8.18 Array-Valued Functions

In F90 we can have functions that return array results. If the input arguments are assumed-shape,

the result must be automatic. For example, we can reformulate the commutator as an array-valued

function:

function commut(A,B)

implicit none

real, dimension(:,:), intent(in) :: A,B

real, dimension(size(a,1),size(a,2)) :: COMMUT

if((size(A,1)/=size(A,2)) .or. &

(size(A,2)/=size(B,1)) .or. &

(size(B,1)/=size(B,2))) then

print*, 'Error: input matrices not conformal'

return

end if

commut = matmul(A,B)-matmul(B,A)

end function commut

Here we check the compatibility of the input arguments.

114 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

Note that declaring the result (COMMUT) as an assumed-shape array does not work, since it

is not associated with any actual argument; we have to declare COMMUT explicitly with proper

dimensions that depend on the size of dummy arguments - in other words, COMMUT is declared

as an automatic array.

Chapter 9

More on Procedures

9.1 Recall F90 Program Units

� main PROGRAM = the unit where the execution begins, and where it eventually returns before

termination.

� MODULE = ``packs'' procedures and declarations

� Procedures

{ (External) SUBROUTINE = parametrized sequence of code;

{ (External) FUNCTION = parametrized sequence of code that returns a result in the function

name.

9.2 Side E�ects

A notorious characteristic of bad software design are the side effects. Side effects may happen

when a function or subroutine modifies the values of their input arguments, the result being

a hard-to-control program logic.

For example, suppose we want a function norm2w (w stands for wrong!) which computes the

2-norm of the vector, then projects the vector on the (y,z) plane by setting its x-coordinate

to zero.

At some point in the program we have 2 vectors which have the same (x,y) coordinates, but

a different z coordinate, [a; b; c] and [a; b; d]. To fix the ideas, suppose a = 3, b = 1, c = 7,
and d = 2. Our intent is to compute the norm of the first vector (

p
a2 + b2 + c2 � 7:6811) plus

the norm of the (y,z) projection of the second vector (
p
02 + b2 + d2 � 2:4495). The correct

result is � 10:1306.

We write the following line of code:

y = norm2w(a,b,c) + norm2w(a,b,d)

When the first call is executed,
p
a2 + b2 + c2 is computed, then a is set to 0; at the second

call,
p
02 + b2 + c2 is computed, and a is set again to zero; overall, we get the correct result.

115

116 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

Now, the trouble is that we do not know that norm2w(a,b,c) is evaluated first, and norm2w(a,b,d)

second. Except for operator precedence, F95 standard says nothing about the order of argument

evaluation. The compiler may choose to evaluate the right operand first (i.e. norm2w(a,b,d)),

put the result in temporary storage, evaluate the left operand next (i.e., norm2w(a,b,c)) and

then perform the addition. Now the result is � 10:8127, clearly different than what we had

in mind.

9.3 Argument Intent

In order to increase robustness to side-effects, and to facilitate efficient compilation, dummy

arguments in the procedure declaration can be tagged with an intent attribute:

� INTENT(IN) Input only arguments; they cannot be written inside the procedure (or the compiler

will complain);

� INTENT(OUT) Output only arguments; they cannot be read until they are written inside the

procedure (assume they come in with garbage); also, if they are not assigned at all in

the procedure body, a compilation error will result;

� INTENT(INOUT) Both input and output; assumed to hold valid data at entry, but this value

can be modified by the procedure and passed back to the calling program.

For example, in our norm2s subroutine we may declare

real, intent(in) :: x,y,z

real, intent(out) :: r

Also, the norm2 function declarations may be

real, intent(in) :: x,y,z

9.4 Pure Functions

A pure function is free of side effects. A function is pure if all of the following three

requirements are fullfilled:

� all arguments have the explicit attribute INTENT(IN);

� the function does not modify any global variables, and

� it does not perform I/O.

We can declare a function to be pure, and the compiler will check the above conditions. Example:

pure real function norm_2(x, y, z)

implicit none

real, intent(in) :: x,y,z

norm2 = sqrt(x*x+y*y+z*z)

end function norm_2

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 117

9.5 Internal Procedures

In F90 program units contain declarations, executable statements, but may also contain internal

procedures. A program unit that contains internal procedures is called the host. Internal

procedures

� may be called only from within the host;

� have access to all the host declarations;

� can override host declarations;

� may not contain further internal procedures;

� are separated from the host by a CONTAINS statement, for example

PROGRAM hnamei
CALL SUB1(� � �)

CONTAINS

SUBROUTINE sub1(� � �)
.....................

END SUBROUTINE sub1
END PROGRAM hnamei

9.6 Modules Hosting Procedures

MODULE example

! Type Definitions

! Global Data

...

CONTAINS

SUBROUTINE level 1

: : :
CONTAINS

SUBROUTINE level 2

: : :
END SUBROUTINE level 2

END SUBROUTINE level 1

END MODULE example

Procedures, together with global data, are visible by use-association (i.e. are visible

in the program units that USE the module). In modules, one level of nesting is allowed for

contained procedures (in contradistinction to program or procedure hosts, where nesting is

not allowed). The second-level routines are visible from the first-level routines, and only

the first-level routines are visible from the unit that USEs the module. In F95 an indefinite

number of nesting levels is allowed.

9.7 Scope

The scope of an entity is the range of a program within which the entity is visible and accesible.

118 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

� Local scope: the entity is visible within the program unit in which it is defined.

� When the declaring program CONTAINS functions (and/or subroutines), the declared entity

can be made available to the hosted procedures via

{ Host association: An entity defined in a program unit is visible within all procedures

contained in that program unit.

{ Argument association. An entity defined in a program unit is made available to a

contained function or subroutine by being passed as argument.

� Global scope: the entity has to be declared in a module; then it is visible in each program

unit which USEs that module.

9.8 Scope example

program test_scope

implicit none

integer :: i=1, j=2, k=3, glb=4, loc=5

!
print*,"(1) main: i=",i,", j=",j, &

", k=",k,", glb=",glb,", loc=",loc

call my_sum(i,j,k)

print*,"(2) main: i=",i,", j=",j, &

", k=",k,", glb=",glb,", loc=",loc

!
contains

!
subroutine my_sum(a,b,c)

integer, intent(in) :: a,b

integer, intent(out) :: c

integer :: loc=7

print*,"(1) my_sum: i=",i,", j=",j, &

", k=",k,", glb=",glb,", loc=",loc, &

", a=",a,", b=",b,", c=",c

c = a**2 + b**2

!
! c = i��2 + j��2 is ok , same result ,
! since we read i , j in <my sum>
! k = a��2 + b��2 is illegal since
! we cannot write k;
!
glb = 6 ! seen by main (global)
loc = 8 ! NOT seen by main (local)

!
print*,"(2) my_sum: i=",i,", j=",j, &

", k=",k,", glb=",glb,", loc=",loc, &

", a=",a,", b=",b,", c=",c

end subroutine my_sum

!
end program test_scope

In the subroutine my sum the following variables are visible

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 119

� a,b,c by argument association

� i,j,k,glb by host association (global variables)

� loc locally owned by my sum (no relation to m in main).

The results produced by the above program are

(1) main: i=1, j=2, k=3, glb=4, loc=5

(1) my_sum: i=1, j=2, k=3, glb=4, loc=7, a=1, b=2, c=3

(2) my_sum: i=1, j=2, k=5, glb=6, loc=8, a=1, b=2, c=5

(2) main: i=1, j=2, k=5, glb=6, loc=5

glb is a global variable; its declaration in the main program is valid within my sum. In

consequence, the modification glb = 6 is visible in the main program also (even after the function

ends).

loc is declared in main, but is also re-declared as a local variable in my sum. This local

re-declaration overrides the global declaration within the body of the function. Therefore,

loc is a local variable of the function my sum (and bears no relationship with the loc in main

- they're like John from California and John from Wisconsin). The modification loc = 8 is

seen locally only; when the function terminates and control is returned to main program, loc

is restored to the value it had before the function call (this value, 5, is local to the main

program).

Variables i,j,k are in a special situation: they are the actual arguments when calling

my sum (and therefore are visible by argument association under the dummy names a,b,c) and

are in the same time visible by host association (under their original names i,j,k). In order

to prevent uncontrollable side-effects, F90 syntax allows us to read i,j,k inside my sum, but

forbids us to modify them (they behave like dummy arguments with INTENT(IN)). If we want to

modify k, for example, we have to use the equivalent dummy (argument) name c.

The hosted functions and subroutines inherit not only the declared variables but also the

IMPLICIT NONE declaration.

Finally, note that internal procedures cannot be used as arguments (only INTRINSIC and EXTERNAL

procedures can, and they need to be declared with the proper attribute).

9.9 Procedure Interfaces

A procedure interface consists of all the information needed for the caller-callee communication;

such information must discriminate between a function or a subroutine and should provide the

types, number and order of arguments (such that the actual argument list must the dummy argument

list).

9.9.1 More on Implicit Interfaces

Implicit interfaces are the old, F77 way of communication. Separate procedures are desired

to be as independent as possible from one another (so that they can be written, compiled and

maintained independently); in particular, a procedure is totally ignorant of how a different

procedure looks like.

120 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

Special problems arise when procedures call each other; the caller has very limited knowledge

on the called procedure; it passes a list of actual argument addresses to the called procedure;

the called procedure retrieves this addresses in order, and assumes they are the addresses

of the dummy arguments.

The disadvantage of this approach is that the compiler is able to perform only limited consistency

checks. In F77, it is easy to make mistakes undetectable by the compiler when working with

argument lists.

Consider, for example, the following F77 subroutine

subroutine BubbleSort(iv,n,how)

integer n, how, iv(*)

integer i, j, tmp, iperm

iperm = 0

do i=1,n

do j=i,n

if (how.eq.-1 .and. iv(i).lt.iv(j) .or.

& how.eq.1 .and. iv(i).gt.iv(j)) then

tmp = iv(i); iv(i) = iv(j); iv(j) = tmp

iperm = iperm + 1

end if

end do

end do

how = iperm

end

The subroutine receives a vector of integers, iv of dimension n (here the star means assumed

size, that is the routine receives the address of the first aelement and is able to handle

the whole vector from here). The routine returns the vector iv with elements sorted in increasing

order (if how=+1), or in decreasing order (if how=-1); upon return the variable how will contain

the number of swaps performed by the bubble algorithm.

The main program can be

program impint

integer n

parameter (n=4)

integer iv(n), iw, how

data iv /3,1,4,2/

how = -1

call BubbleSort(iv, n, how)

print *, 'sorted decreasingly: ',(iv(i),i=1,n),' how:', how

end

and produces the output

Sorted Decreasingly: 4 3 2 1 How: 3

Now, if we mistype

hoe = -1

call sort(iv, n, hoe)

the variable hoe will be considered a real variable; the bytes starting at that memory address

will be considered as representing an integer (-1082130432) by the subroutine; since it is

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 121

not +1 or �1, the output is 3 1 4 2. Note that, since the main program knows nothing about

the subroutine sort, the compiler cannot detect the inconsistency of using a real actual argument

hoe when the third dummy argument how is of type integer.

Suppose we call

call sort(iv, n, -1)

This call is fine for input purposes, the third argument being a constant of type integer;

the problem is that the third argument (how) is intended to return the number of swaps, and

is written inside the procedure; this produces a segmentation fault (it is anyway clear that

we cannot write the constant �1). Again, the compiler cannot help us because of its limited

knowledge of the function.

The call

call sort(iv, n)

is also fine with the compiler; obviously, the dummy argument how will not be initialized (in

fact it takes a garbage-value). Similarly, we can include extra arguments without bothering

the compiler

call sort(iv, n, how, extra)

(but we can trick ourselves if we want to read the value of extra upon return).

Also, if iw is an integer scalar, the call

call sort(iw, n, how)

is permitted by the compiler; since F77 assumes that the entries of iv are stored sequentially

into memory, the subroutine will "work" with the memory locations following those that contain

iw; if we are lucky we get a segmentation error; if not, other data can be messed up - without

any warning - and we get meaningless results.

9.9.2 Explicit Interfaces

The above examples show clearly that it is important to provide the caller with essential information

about the called procedure's arguments; this information must include the types, number and

order of dummy arguments.

If, in the above examples, the main program contains the function sort, all the faulty examples

above will result in compilation errors. We say that internal procedures have an explicit

interface with the host. This means that the host (main program) has all the information needed

about the procedure's argument list.

Explicit interfaces provide the compiler with all the needed information to

� perform consistency checks (actual vs. dummy argument lists);

� better optimize the code;

� communicate enough info from the caller to procedures ar runtime.

In general, procedures have an explicit interface with the calling program (the calling

program has complete knowledge about the procedure's argument list) in the following situations:

122 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

1. the procedure is intrinsic to Fortran (e.g. SIN, EXP, MAX, etc.)

2. the procedure is internal, and the calling program is its host;

3. the procedure is internal, and a module is its host; the calling program USEs the host

module;

4. the calling program has a block interface construct (to be discussed next);

5. a module has a block interface construct, and the calling program USEs this module.

9.9.3 Explicit Interfaces for Internal Procedures

In F90, the above program may be

program impint

implicit none

integer, parameter :: n=4

integer, dimension(n) :: iv=(/3,1,4,2/)

integer :: iw, how

how = -1

call sort(iv, n, how)

print *, iv(1:n), how

contains

subroutine sort(iv,n,how)

integer, dimension(:), intent(in) :: iv(:)

integer, intent(in) :: n

integer, intent(inout) :: how

...................

end subroutine sort

end program impint

In this case the interface of sort with the main program is explicit.

9.9.4 Explicit Interfaces for External Procedures

In F90 ``it is possible, often essential and wholly desirable'' to provide explicit block interfaces

whenever external procedures are used.

An interface declaration of an external procedure is initiated by INTERFACE statement and

terminated by END INTERFACE. The declaration specifies the attributes of the dummy arguments

and the procedure - it is in fact the whole procedure, without the local declarations and the

executable code. An interface that is part of the declarations sequence is called ``explicit''.

For example, consider the sorting function. If the function is internal to the main program

we have an explicit interface, but we lose modularity. With block interface, the routine can

be in a different place (different file, or different library) and still have explicit interface.

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 123

PROGRAM impint SUBROUTINE sort(iv,n,how)

IMPLICIT NONE INTEGER, DIMENSION(:), &

INTERFACE INTENT(IN) :: iv(:)

SUBROUTINE sort(iv,n,how) INTEGER, INTENT(IN) :: n

INTEGER, DIMENSION(:), & INTEGER, INTENT(INOUT) :: how

INTENT(IN) :: iv(:) INTEGER :: i, j, tmp, iperm

INTEGER, INTENT(IN) :: n iperm = 0

INTEGER, INTENT(INOUT) :: how DO i=1,n

END SUBROUTINE sort DO j=i,n

END INTERFACE IF (how.EQ.-1.AND.iv(i).LT.iv(j).OR.&

INTEGER, PARAMETER :: n=4 how.EQ.1.AND.iv(i).GT.iv(j)) THEN

INTEGER, DIMENSION(n) :: iv tmp = iv(i); iv(i) = iv(j)

INTEGER :: iw, how iv(j) = tmp; iperm=iperm+1

iv=(/3,1,4,2/) END IF

how = -1 END DO

CALL sort(iv, n, how) END DO

PRINT *, iv(1:n), how how = iperm

END PROGRAM impint END SUBROUTINE sort

If the subroutine sort is called from different program units, then a copy of the bloc interface

should be included in the declaration sequence of each caller. If at a later time we decide

to modify the interface, all these copies need to be updated. A way to circumvent these drawbacks

is to write the block interface once, in a module, then to USE the module in all units that

call the subroutine. For example, we may have

PROGRAM impint MODULE sort interf

USE sort interf INTERFACE

IMPLICIT NONE SUBROUTINE sort(iv,n,how)

INTEGER, PARAMETER :: n=4 INTEGER, DIMENSION(:), &

INTEGER, DIMENSION(n) :: iv INTENT(IN):: iv(:)

INTEGER :: iw, how INTEGER, INTENT(IN) :: n

iv=(/3,1,4,2/); how = -1 INTEGER, INTENT(INOUT):: how

CALL sort(iv, n, how) END SUBROUTINE sort

PRINT *, iv(1:n), how END INTERFACE

END PROGRAM impint END MODULE sort interf

When the compiler performs the consistency checks for the argument list, it verifies that

the actual arguments match (in number, type and order) the dummy arguments provided by the

block interface declaration (and not the dummy arguments of the procedure itself!). Therefore,

if there is a mismatch between the interface arguments and the procedure arguments, the compiler

is fed wrong information, and a run time error may occur.

A direct way to provide an explicit interface for a procedure, without writing a block interface,

is to write a module which hosts the procedure itself, then USE this module in all the program

units that call the procedure. For our example, this can be achieved as follows.

124 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

PROGRAM impint MODULE sort code

USE sort code CONTAINS
IMPLICIT NONE SUBROUTINE sort(iv,n,how)

INTEGER, PARAMETER :: n=4 INTEGER, DIMENSION(:), &

INTEGER, DIMENSION(n) :: iv INTENT(IN):: iv(:)

INTEGER :: iw, how INTEGER, INTENT(IN) :: n

iv=(/3,1,4,2/); how = -1 INTEGER, INTENT(INOUT):: how

CALL sort(iv, n, how)

PRINT *, iv(1:n), how END SUBROUTINE sort

END PROGRAM impint END MODULE sort code

Consider the TEST SCOPE program, but now with MY SUM an explicit procedure. We declare the

interface as follows:

program test scope

implicit none

interface

subroutine my sum(a,b,c)

integer, intent(in) :: a,b

integer, intent(out) :: c

end subroutine my sum

end interface

integer :: i=1, j=2, k=3, glb=4, loc=5

...

call my sum(i,j,k)

...

end program test scope

Since

� internal procedures have visible interfaces, as they are build within the host;

� intrinsic procedures have explicit interfaces built in the language;

we need to write explicit interfaces for external procedures only.

Note that an explicit interface and the EXTERNAL attribute cannot be used simultaneously;

this is no problem, since INTERFACEd procedures can be used as actual arguments.

9.10 Required Interfaces

Explicit interfaces are mandatory in the following situations.

1. the external procedure has dummy arguments that are assumed-shape arrays, pointers or

targets. The compiler needs to figure out the rank, type and bounds of the array that

need to be passed to the routine; pointers or targets. The compiler needs to figure out

types and attributes that are to be transmitted to the procedure;

2. the external procedure has optional arguments; the compiler need to know the names of

the arguments to figure out the correct association;

3. the external function returns an array or pointer valued result; the compiler needs to

pass back info in a different form than usual;

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 125

4. the external character function contains an inherited LEN=* specifier; the compiler needs

to know to pass string length info to and from the procedure;

5. the reference is a call to a generic name (extra info required);

6. the reference has a keyword argument (same reasons as for the optional case);

7. the reference is a defined assignment (extra info required);

8. the function reference is a call to a defined operator (extra info required);

9.11 Keyword Arguments

Normal argument correspondence is performed by position (nth actual argument corresponds to

nth dummy argument). F90 allows us to circumvent this ``fixed form'' limitation. The arguments

can be specified in any order, provided they are labeled by appropriate keywords at the site

of call. A keyword is the name of the dummy variable in the procedure declaration (followed

by an = sign); using keywords is necessary for the compiler to resolve the argument correspondence,

if they are given out of order. Moreover, if a procedure has a long list of similar type arguments

(say, 10 integer arguments) the use keywords greatly improves readability.

For example, the ``Polar-to-Cartesian'' subroutine

subroutine polar2cart(r, theta, x, y)

real, intent(in) :: r, theta

real, intent(out) :: x, y

...

end subroutine polar2cart

can be called as

call polar2cart(1.0, 30.0, c1, c2)

or as

call polar2cart(r=1.0, theta=30.0, x=c1, y=c2)

or as

call polar2cart(x=c1, y=c2, r=1.0, theta=30.0)

9.12 Optional Arguments

Consider the following function

my_exp(x, tol, n_max)

which uses a Taylor polynomial (of order at most n max) to approximate the value of EXP(x)

within tol. We know that higher order Taylor polynomials approximate EXP better; the function

chooses the optimal order for which the approximation error is less than tol; however, if tol

is too small, a very large order of the approximating polynomial may be needed; in this situation

the polynomial of order n max is used, even if the error is larger than tol.

126 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

When we call the function we have to specify the argument and the desired tolerance, and

the maximal order, for example

Y = my_exp(x, 1.E-6, 10)

This is clumsy, since most often we use, say, tol = 1.E-6 and n max = 10; we would like to

omit the last arguments when calling the function (and use implicitly the default values);

but also retain the possibility of changing the defaults to some other values now and then.

We can do this in F90 by specifying the tol and n max as optional arguments.

real function my_exp(x, tol, n_max)

implicit none

real, intent(in) :: x

real, intent(in), optional :: tol

real :: err_max

integer, intent(in), optional :: n_max

integer :: order_max

...

if(present(tol)) then

err_max = tol

else

err_max = 1.e-6

end if

if(present(n_max)) then

order_max = n_max

else

order_max = 10

end if

...

end function my_exp

The OPTIONAL parameter allow tol and n max to be omitted when the function is called. For

example,

y = my_exp(x)

is a valid call and signifies that tol, n max take the default values 1.E-6 and 10.

In the function body, the intrinsic function PRESENT(tol) returns .TRUE. if the current

function call explicitly had tol as argument, and .FALSE. if tol was omitted. This distinction

allows us to know when the optional arguments are not present and replace them by their default

values.

Note that, when an optional argument is missing, the space on the stack associated with

it is not allocated; in consequence missing optional arguments ``do not exist'' in the function

body and we cannot read and write them (we can only test their existence with PRESENT()). For

example the statement

if(.not.present(tol))~ tol=1.e-6

is wrong, since it writes a variable that has not been allocated.

Finally, let us mention that only some of the optional arguments might be missing. For

example

y = my_exp(x, 1.e-8)

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 127

is correct (tol=1.E-8 and n max assumes the default value, 10). However, the statement

y = my_exp(x,12)

is incorrect, and , in particular, does NOT mean default tol and n max=12. Whenever an optional

argument is missing, the following arguments must be tagged with the proper keywords (otherwise

the compiler has no way of knowing which argument is which). The correct call for default

tol and n max=12 is

y = my_exp(x,n_max=12)

In general it is always good practice to use keywords whenever the optional arguments are explicitly

present in the procedure call.

Some built in functions (OPEN, READ, WRITE) have optional arguments and keywords - remember?

9.13 Recursive Functions

Recursion = procedures call themselves (either directly or indirectly). This is a powerful,

but dangerous feature: if used incorrectly, the efficiency, and sometimes the meaning of the

algorithm may suffer.

The declaration of a recursive function may be

integer recursive function fact(n) result(n_fact)

The RESULT keyword specifies a variable where the result of the function is stored; this is

necessary since the name of the function cannot be used to return the result for efficient

implementation reasons. The value of dummy argument N fact will be returned to the caller

under the name fact; clearly, the type of the function (fact) must coincide with the type of

the returned variable (N fact); it is enough to declare only one of them. Above, we declared

fact to be INTEGER, and this automatically declares N fact INTEGER. Alternatively, we can declare

N fact, and this will automatically extend to fact (see example below).

In our previous lectures on functions we learned that, by default, the name of the return

variable coincides with the name of the function. With any function (recursive or not), it

is possible to rename the return variable using the statement RESULT(ret var) in the function

header.

The full example of the declaration and use of factorial function:

recursive function fact(n) result(n_fact)

integer, intent(in) :: n

integer:: n_fact

if (n > 0) then

n_fact = n*fact(n-1)

else

n_fact = 1

end if

end function fact

The function repeatedly calls itself, with decreased n, until the argument is 0, when the

recursion begins to unwind.

128 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

9.14 Recursive Subroutines

In F90 subroutines can also be recursive. The factorial example can be implemented using a

subroutine, as follows:

recursive subroutine factorial(n,n_fact)

integer, intent(in) :: n

integer, intent(out):: n_fact

if (n > 0) then

call factorial(n-1,n_fact)

n_fact = n*n_fact

else

n_fact=1

end if

end subroutine factorial

Chapter 10

Parametrised Intrinsic Types

10.1 Rationale

Fortran 77 programs had some portability problems steming from the fact that the precision

of data types is different on different processors. For example, a REAL variable is represented

on 4 bytes on a UltraSparc processor, but is represented on 8 bytes on a Cray processor. Therefore,

an F77 program that works all right on Cray may fail on UltraSparc, due to insuficient accuracy.

F90 addresses this portability problem using parametrised intrinsic types. The idea is

that a processor can support different INTEGER, REAL COMPLEX, CHARACTER and LOGICAL representations;

they are usually described in the compiler's manual. F90 allows to explicitly select a specific

representation of a data type using a numerical parameter, called data types's kind.

Since several kinds of, say, REALs are allowed, we may ask how do we operate with them in

a mixed expression, and how do we use them as procedure arguments. In mixed expressions lower

accuracy kind terms are promoted to higher accuracy kinds; actual and dummy procedure arguments

must match in both type and kind.

10.2 Parametrised Integers

Consider the following declarations

integer(kind=1) :: i1

integer(kind=2) :: i2

integer(kind=4) :: i4

integer(kind=8) :: i8

The variables i1, i2, i4, i8 are all of type INTEGER, but they have different KINDs; this means

they will be stored using a different scheme. The presence of the numerical parameter KIND

distinguishes between different kinds of integers; the exact meaning of a specific KIND parameter

value is processor dependent.

For example, on an Alpha 21264 processor, i1 can hold numbers between �128 and +127; similarly,

i2 can hold values between �32768 and 32767, i3 between �2147483647 and 2147483647, and i4

between �9223372036854775808 and 9223372036854775807; on Alpha 21264 KIND=p means storing the

integer on p bytes; allowed values are p=1,2,4,8.

129

130 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

Numerical constants of a specific kind can be specified by appending an underscore and the

kind number, for example

i1 = 39_1; i8 = 39876_8

In order to make the code completely portable, and to work with kind numbers transparently,

we can specify the range of integer values. The function

selected_int_kind(2)

returns the minimal kind number able to hold integers in the range (�102; 102). Therefore, we

request the accuracy needed by the program, and let the compiler decide which kind number,

on the processor at hand, satisfies this. One elegant use of the select function may look

like

integer, parameter :: short = selected_int_kind(2), &

medium = selected_int_kind(3), &

long = selected_int_kind(8), &

huge = selected_int_kind(16)

integer(kind=short) :: i1

integer(kind=medium) :: i2

integer(kind=long :: i4

integer(kind=huge) :: i8

i1 = 39_short; i8 = 39876_huge

If there is no available kind that can accomodate the required range (�10p; 10p), the function

SELECTED INT KIND(p) returns �1 and we get an error at compile time.

10.3 Parametrized Reals

Since a floating point number is represented by mantissa and exponent, we need to select two

parameters

P the precision, giving the number of decimal digits allowed in the mantissa, and

R the range of the decimal exponent.

The selector function

selected_real_kind(P=7, R=12)

returns a kind value that supports numbers with 7 decimal digits and exponent magnitudes in

the range (10�12; 10+12).

Consider the following declarations

integer, parameter :: single = selected_real_kind(p=6, r=37), &

double = selected_real_kind(p=14,r=307), &

quad = selected_real_kind(p=33,r=4931)

real(kind=single) :: x

real(kind=double) :: y

real(kind=quad) :: z

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 131

On an Alpha 21264 processor the kind values are single = 4, double = 8, quad = 16. The variables

x, y, z are of type REAL, but have different kinds; using parametrized declarations we can

work at the level of accuracy desired. Since the kinds single, double and quad are defined

via the selector function, we can count on the precision and range desired, regardless of the

machine. The code is therefore portable.

10.4 Kind Functions

The function KIND(var) returns the kind of the variable var. For example, the code

integer(kind=4) :: i4

k = kind(i4)

returns the value k = 4.

Intrinsic types have a predetermined kind value. With the KIND function we can inquire

about the default kinds,

integer :: i

real :: x

double precision :: y

ki = kind(i); kx = kind(x); ky = kind(y)

\end{stlisting}

%

On Alpha 21264 the results are {\tt ki} = 4, {\tt kx = 4} and

{\tt ky = 8}.

All type conversion functions have an optional {\tt KIND} argument

for specifying the kind of the result (recall that the type of the result

is given by the function itself).

For example,

%

\begin{lstlisting}{}

real :: x

integer(kind=huge) :: i8

i8 = int(x,kind=huge) ! or i8 = int(x,kind=kind(i8))

10.5 Mixed KIND Expressions

In the expressions that contain mixed kind operands, lower accuracy operands are promoted to

the higher accuracy kind. Also, the RHS is converted to the kind of LHS before assigning (this

might create problems if the RHS has higher accuracy than LHS).

10.6 Parametrised Logical Vaiables

Logical variables can be represented differently. For example, on Alpha 21264, the declaration

logical :: l

k = kind(l)

132 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

gives k=4 (which means that 4 bytes are used to store l). Since logical variables take only

one of two possible values, it makes sense to try to store them using less memory; for example,

logical(kind=1) :: l1

logical(kind=2) :: l2

logical(kind=4) :: l4

l1 = logical(ll,kind=1); l2 = logical(ll,kind=2)

l1 is stored on 1 byte, and l2 is stored on 2 bytes; conversion from one representation to

another is done via the LOGICAL function, with the KIND= argument.

10.7 Parametrised Character

Different character sets can be selected by different kind values (US, greek, arabic, etc)

The values are compiler-dependent, and not all systems support all character sets.

character(kind=character_set,LEN=10) :: greek

10.8 Kinds and Procedures

Actual arguments must exactly match the dummy arguments in

� Type,

� Kind, and

� Rank (for array arguments).

Therefore, whenever we use parametrised declarations, we have to be consistent throughout the

program. A good practice is to define the kind parameters in a module, and use it in all program

units. Note that, since the intrinsic default types are processor dependent, a truly portable

program needs to use parametrized declarations.

With generic interfaces (to be studied later), each kind value needs its own procedure declaration;

we should not mix intrinsic and parametrized types in a generic interface, since on some systems

the intrinsic kind can overlap one defined kind which results in an error in the interface.

Chapter 11

Derived Types

11.1 De�ninig Derived Types

Compound entities (similar to C ``structures'', or to Pascal ``records'') can be defined in

F90; they are known as derived types.

For example, the three real coordinates of a 3D Point can be packed into a single variable.

First, we define a new type in a derived-type statement

type Point

real :: x,y,z

end type Point

An object of type Point can be declared in a type declaration statement

type(Point) :: A, B

To select individual components of a derived type object, we use the % operator; for example

A%x = 1.0

A%y = 2.0

A%z = 3.0

assigns the values 1,2,3 to the individual components (coordinates) of A.

As an alternative to component-by-component assignment, it is possible to use a derived

type constructor to assign values to the whole object. The derived type constructor is the

type name followed by a paranthesised list of values, which will be assigned to the individual

components. For example, the coordinate assignment of A can be solved using

A = Point(1.0, 2.0, 3.0)

Assignment between two objects of the same derived type is intrinsically defined (and is

equivalent to component-by-component assignment). For example, the statement

B = A

has the effect of setting the x,y,z components of pt B to 1,2 and respectively 3.

133

134 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

Note that, since F90 does not imply any form of storage association, there is no reason

to suppose that objects of type Point occupy 3 contiguous REAL storage locations.

A new derived type can contain another derived type as one of its components; the derived

type of the components must have already been declared or must be the type currently being

declared. As an example of ``supertype'' consider

type Sphere

type(Point) :: center

real :: radius

end type Sphere

type(sphere) :: bubble

bubble%radius = 1.0

bubble%center%x = 0.2

bubble%center%y = 0.4

bubble%center%z = 0.6

bubble = Sphere(Point(0.2,0.4,0.6), 1.0)

Finally, derived objects can be used in I/O statements similarly to the intrinsic objects.

The statement

print*, bubble

is equivalent to

print*, bubble%center%x, bubble%center%y, bubble%center%z, bubble%radius

%

11.2 Arrays and Derived Types

} In F90 is possible to have an array of derived-type objects. For example

type(Point), dimension(4) :: tetrahedron

} It is also possible for a derived type to contain array components.

type Pnt

real, dimension(3) :: x

end type Pnt

type Volume

type(Point), dimension(4) :: tetrahedron

INTEGER :: label

end type Volume

type(Volume), dimension(100) :: diamond

The diamond is an object of type (``which has a'') Volume. Geometrically, the diamond has

many facets, and we can conceptually ``create'' it (in a computer graphics program) by adjoining

a number of tetrahedra. Each tetrahedron is described by its four corner points, and each

corner point is given by its set of cartesian coordinates x1; x2 and x3.

} We can reffer to a specific coordinate of one of the node points. For example

diamond(5)%tetrahedron(2)%x(1)

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 135

means 5th tetrahedron, 2nd node point, 1st coordinate.

We can also reffer to a subsection of the array component, provided that there is only one

non-scalar index in the reference. For example,

diamond(:)%tetrahedron(2)%x(1)

diamond(5)%tetrahedron(:)%x(1)

diamond(5)%tetrahedron(2)%x(:)

are all correct, however the form

diamond(:)%tetrahedron(:)%x(1)

diamond(5)%tetrahedron(:)%x(:)

diamond(:)%tetrahedron(2)%x(:)

are incorrect, since we can only section at most one component at a time.

11.3 Derived Types and Procedures

} In F90 derived type objects can be passed as arguments in much the same manner intrinsic

objects do. They can be given attributes (OPTIONAL, INTENT, dimension, SAVE, ALLOCATABLE,

etc) However, some care needs to be exercised, as discussed below.

Consider the following sequence of code:

program dist

implicit none

real, external :: distance

type Point

real :: x,y,z

end type Point

type(Point) ::a,b

a = point(1.,2.,3.)

b = point(4.,6.,8.)

print*, distance(a,b)

end program dist

!
real function distance(a,b)

type Point

real :: x,y,z

end type Point

type(Point), intent(in) :: a,b

distance = sqrt((a\%x-b\%x)**2 + &

(a%y-b%y)**2 + (a%z-b%z)**2)

end function distance \\

Everything seems fine, but in reality it is not, because of the following. The type Point

definition in the main program and the type Point definition in the distance function declare

two different types, with two different scopes (the definitions behave the same way two different

local variable declarations would behave). Recall that the compiler represents the derived

types however it sees fit, and it can happen that the main program type(Point) variables have

a different storage scheme than the distance function's type(Point) variables.

The solution to this ``problem'' is to make the type definition accessible by either

136 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

� USE association (the type is defined in a module, which is then used by both the main

program and the distance function), or

� Host association (the distance function is contained in the main program).

As a general rule, it is therefore preferable to always encapsulate type definitions in

modules, and make them visible by USE association. For example, the module

module Pnt

type Point

reaL :: x,y,z

end type Point

end module Pnt

can be used in both the main program and external function.

} Functions can return results of an arbitrary defined type. For example, consider the

type of ``double precision complex numbers'', and the function that adds two double precision

complex numbers returns a double precision complex result

module dpc

type DP_Complex

double precision :: re, im

end type DP_Complex

contains

FUNCTION DPC_Add(a,b)

type(DP_Complex), intent(in) :: a,b

type(DP_Complex) :: DPC_Add

DPC_Sum%re = a%re + b%re

DPC_Sum%im = a%im + b%im

end function DPC_Add

end module dpc

Chapter 12

Pointers and Targets

12.1 Pointers and Targets

Unlike C pointers, F90 pointers are much less flexible and more highly optimized. The space

to which a F90 pointer ``points'' is called a target.

Several restrictions

� F90 pointers are strongly typed: e.g. a pointer to a REAL, scalar target may not point

to any other data type; similarly, a pointer to a REAL 1D array cannot point to a REAL

2D array;

� any variable that is pointed at must have the TARGET attribute;

� pointers are automatically dereferenced (the pointer name and the target name reffer to

the same memory location);

� it is not possible to print out the address of the target of a pointer.

Benefits: provide a more flexible alternative to allocatable arrays, and allow the creation

and manipulation of linked lists, etc.

12.2 Pointer Declaration

Include POINTER attribute. For example:

real, pointer :: PtoR, PtoR2

PtoR, PtoR2 are pointers to a scalar, REAL target.

real, dimension(:,:), pointer :: PtoA

PtoA is pointer to a rank 2, REAL array of REALs.

Note that

� the declaration fixes the type, kind and rank of any possible target;

137

138 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

� pointers to arrays are declared using deffered-shape specification;

� rank of the target is fixed, but actual shape may vary;

POINTER attribute is incompatible with ALLOCATABLE or PARAMETER.

12.3 Target Declaration

real,target :: x, y

real, dimension(5,3),target :: a, b

real, dimension(4,7),target :: c, d

x,y may become associated with PtoR, while a,b,c,d may become associated with PtoA.

The TARGET attribute is defined solely for optimization purposes. The compiler can assume

that any nonpointer object not explicitly declared as a TARGET is only reffered to by its original

name.

12.4 Pointer Assignment

Is a form of referring an object by different names - the pointer and its target reffer to

the same space in memory. Pointer assignment takes place between a pointer variable and a

target variable, or between two pointer variables.

PtoR => y

Pointer PtoR is associated with the target y, i.e. PtoR becomes an alias for y.

PtoA => b

Pointer PtoA is associated with the target b, i.e. PtoA becomes an alias for b.

PtoR2 => PtoR

Pointer PtoR2 is associated with the target of the pointer PtoR, i.e. is associated with y;

now both PtoR and PtoR2 are aliases for y. This statement is correct since all pointer variables

implicitly have the TARGET attribute (PtoR is here a target).

Note the difference between ``pointer asignment'' (=>, which makes the pointer and the

target variables reference the same space) and ``normal assignment'' (=, which alters the

value in the space reffered to by the LHS).

For example,

x=3.0

PtoR => y ! pointer assignment
PtoR = x ! y = x

The last statement effectively sets y to 3. Pointers in a ``normal assignment'' are automatically

dereferenced; thus, PtoR is effectively an alias for y.

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 139

12.5 Association with Arrays

An array pointer may be associated with the whole target array, or with a regular section of

the target (as long as the section has the correct rank).

For example, let

a = reshape((/1,2,3,4,5,6,7,8,9/),(/3,3/))

and define

PtoA => a(1:3:2,2:3)

The vector assignment is valid, and we have that SHAPE(PtoA) = (/2,2/), SIZE(PtoA)=4; PtoA(1,1)=a(1,2)=4

and PtoA(2,1)=a(3,2)=6 etc.

We can associate pointers with pointers as follows:

PtoR\, => PtoA(2,2)

This means that PtoR, PtoA(2,2), a(3,3) are all aliases of the same memory space.

The pointer assignment

PtoA => a(1:3,2)

is not valid, since the rank of the target is not 2.

An array pointer cannot be associated with a vector-subscripted array section. For example,

the following is invalid:

v = (/2,3,1/); PtoA => a(v,v)

12.5.1 Example: Array swapping

This example shows the usufulness of pointers. Suppose we want to swap 2 large arrays. The

direct code will involve creating an extra array and copying a large amount of data 3 times:

real, dimension(1000,1000):: A, B, Tmp

Tmp=A; A=B; B=Tmp ! 3 array copies involved

If we decide to work with pointers to arrays in the code swapping will only involve changing

pointer values, which is considerably more efficient:

real, dimension(1000,1000) :: mat1, mat2

real, dimension(:,:), pointer :: a, b, tmp

a=>mat1; b=> mat2 ! initial
tmp=>a; ! tmp points to the target of a , i .e . to mat1
a=>b; ! a points to the target of b , i .e . to mat2
b=>tmp ! b points to the target of tmp, i .e . to mat1

or even better:

real, dimension(1000,1000), target :: MatA, MatB

real, dimension(:,:), pointer :: A, A

A=>MatA; B=>MatB ! normal
A=>MatB; B=>MatA ! swapped

140 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

12.6 Status of a Pointer

Pointer Status:

� Undefined (initial status);

� Associated (the pointer has a target);

� Disassociated (the pointer is defined but has no target - ``Null'' value).

For example, the declaration

REAL; POINTER :: PtoR

leaves PtoR in undefined association status. We can bind the pointer to a target

PtoR => x

which changes the pointer status to associated. Finally, we can break the association with

the target (without setting PtoR to point to a different target) by

nullify(PtoR)

PtoR has now the ``Null'' values, and its status is disassociated.

The association status may be tested using the logical intrinsic function

associated(PtoR)

which returns .TRUE. if the pointer is associated, .FALSE. if not associated, or undefined

if the pointer itself is undefined (because of this, it is a good idea to NULLIFY all pointers

right after the declarations).

We can test the target of the pointer,

associated(PtoR,x)

which returns .TRUE. if the pointer is defined and associated to the specific target x, and

.FALSE. otherwise.

The function is useful to avoid deallocation errors

if (associated(PtoA)) deallocate(PtoA, STAT=ierr)

12.7 Dynamic Targets

The ALLOCATE statement can reserve space to be the target of a pointer; in this case the pointer

is not so much an alias of another variable, but a reference to an unnamed part of the heap

storage.

For example,

allocate(PtoR,STAT=ierr)

allocate(PtoA(n*n,2*k-1),STAT=ierr)

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 141

allocate new space for a single real, and then for a rank 2 array. If PtoA, PtoR were previously

associated with other targets, those associations are broken (overwritten) by the ALLOCATE

statements.

The deallocation statement

deallocate(PtoR,STAT=ierr)

breaks the connection between the pointer and its target and returns the freed space to the

heap. The pointer remains in disassociated status.

We cannot use a pointer deallocate statement for objects that were not created by pointer

allocation (e.g. allocate an allocatable matrix and associate a pointer to it, cannot just

deallocate the pointer).

Note that nullifying the ``allocated'' pointer is possible

nullify(PtoR)

but is not recommended; nullification breaks the pointer-target connection, but does not free

the target storage; this space will become inaccessible until the program terminates, unless

it is pointed to by at least one more pointer.

12.8 Pointers to Arrays vs Allocatable Arrays

We can create space dynamically using allocatable arrays, or using pointer allocation. In

general, allocatable arrays are more efficient, while pointer allocation is more flexible.

There are two main restrictions imposed upon allocatable arrays which do not apply to pointer

arrays:

� ALLOCATABLE arrays cannot be used as components of derived types (to be discussed later);

� unallocated ALLOCATABLE arrays cannot be pased as actual arguments to procedures.

For example,

program ptralloc

implicit none

real, dimension(:), allocatable :: a

real, dimension(:), pointer :: b

allocate(a(4))

call t1(a)

print*, a

call t2(b)

print*, b

contains

subroutine t1(a)

real, dimension(:) :: a

a = reshape((/1.,2.,3.,4./),(/4/))

end subroutine t1

subroutine t2(b)

real, dimension(:), pointer :: b

allocate(b(4));

142 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

b = reshape((/5.,6.,7.,8./),(/4/))

end subroutine t2

end program ptralloc

12.9 Pointers and Procedures

Pointers can be passed as actual and dummy arguments in much the same way as non-pointer variables

(dummies and actuals must match in type, kind and rank). Note that a POINTER variable cannot

have the INYTENT attribute.

If a pointer or target is used as a dummy argument, then an explicit interface is required

at the place of call. The reason is that a pointer argument can be interpreted in two ways:

� immediately dereference and pass the target (the dummy argument does not have the POINTER

attribute);

� pass the pointer, so that it can be manipulated as a pointer in the procedure (the dummy

argument has the POINTER attribute);

In the folowing example Pint2 is dereferenced before being passed to Beer, Pint1 is not:

program Brew

integer, pointer :: Pint1, Pint2

call Beer(Pint1,Pint2)

...

contains

subroutine Beer(arg1,arg2)

integer, pointer :: arg1

integer, intent(in) :: arg2

...

end subroutine Beer

end program Brew

Pint1 in the calling unit and arg1 in Beer reffer to the same space; however, if an unassociated

pointer is the actual argument, and is associated in the procedure, it is not guaranteed that

the pointer will still be associated after return.

12.10 Pointer Valued Functions

F90 allows functions to be pointer-valued. For example,

function largest(a,b)

implicit none

integer,target,intent(in) :: a,b

integer,pointer :: largest

if (a.gt.b) then

largest => a

else

largest => b

end if

end function largest

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 143

Using the generalized pointer assignment form

pointer => ptr_expression

(ptr expression returns a pointer result), the function name must identify a target by being

the LHS of a pointer assignment

integer, pointer :: greater

greater => largest(a,b)

The interface of an external pointer valued function must always be explicit.

12.11 Pointers and Derived Types

} F90 allows pointers to derived types

type(DP_Complex), target :: a

type(DP_Complex), pointer :: Ptr_a

Ptr_a => a

} Derived types may contain pointer components

type Student

integer :: id

character,dimension(:),pointer :: name

end type Student

When the derived type contains pointer components, the structure asignment works as follows.

Consider the code sequence

type(Student) :: stud1, stud2

stud1 = stud2

The meaning is that

stud1%id = stud2%id ! copy
stud1%name => stud2%name ! pointer assignment

Although it is not possible to have ALLOCATABLE arrays as components of derived types, we can

still work with student names of different lengths using pointer components. Here the component

name is a pointer to a dynamically sized 1-D array of characters. We use it as follows:

type(Student) :: leader

leader%id = 1234

allocate(leader%name(8))

leader%name = (/"J","o","h","n"," ","D","o","e"/)

12.12 Example: Linked Lists

Pointer components may ``point to'' objects of any intrinsic type, any derived type previously

defined or to the type being currently defined. Note that it is not possible to have a target

type which has yet to be defined.

144 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

It is therefore possible to construct linked lists using derived types and pointer components.

For example, objects of the type Node contain a value, an id number, a pointer to the previous

node and one to the next node in the double linked list.

module CircularList

implicit none

type node

integer :: id

real :: value

type(node), pointer :: prev, next

end type node

!
contains

!
function BuildCircularList(n)

implicit none

integer, intent(in) :: n

type(node), pointer :: BuildCircularList

integer :: i, ierr

type(node), pointer :: head, temp, curr

!
allocate(temp,stat=ierr)

if (ierr.ne.0) then

print*, "allocation error"; return

end if

head%id = 1; head%value = 0.0

!
curr => head

do i=2,n

allocate(temp,stat=ierr)

if (ierr.ne.0) then

print*, "allocation error"; return

end if

temp%id = i; temp%value = 0.0

curr%next => temp; temp%prev => curr; curr => temp

end do

! the next 2 lines circularly \ close " the list
curr%next => head; head%prev => curr

BuildCircularList => head

end function BuildCircularList

!
end module CircularList

program test

use CircularList

implicit none

type(node), pointer :: f, b

f => BuildCircularList(3)

b => f

do i=1,7

print*, f%id, f%value, b%id, b%value

f => f%next; b => b%prev

end do

end program test

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 145

12.13 Arrays of Pointers

Despite the F90 syntax restrictions, it is possible to create de facto arrays of pointers.

For example, the sequence

type iptr

integer, pointer :: comp

end type iptr

type(iptr), dimension(100) :: I

declares a 100 dimensional vector whose components are pointers to integers. It is not possible

to select sections of the I array

I(10)%comp ! valid
I(10:20)%comp ! invalid

We can define an array of pointers to integer arrays

type IAptr

integer, dimension(:), pointer :: comp

end type Iptr

type(IAptr), dimension(100) :: IA

Each pointer component can then be made to point to an unnamed space in the heap,

allocate(IA(1)%comp(20), STAT=ierr)

or can be made to point to an existing array

integer, target :: JA(10)

ia(2)%comp => JA

Note that ALLOCATABLE arrays cannot be components of derived types.

12.14 Example: Sorting Vectors

Given N vectors of measurements (of different dimensions), write a program that sorts the set

of vectors according to their mean; several vectors of equal mean are sorted according to their

variance.

To represent each set of measurements, we choose the structure

type meas_set

real, dimension(:), pointer :: data

integer :: dim

real :: mean, dev

end type meas_set

where the number of measured values in the set, dim, may vary; data holds the measured values,

mean and dev the mean value and the standard deviation of the set of measurements.

Suppose we have a total of N Meas data sets. For reasons that will become clear later,

we want to work with pointers to objects of type Meas Set; thus, we construct

146 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

type ptr_meas_set

type(meas_set), pointer :: v

end type ptr_meas_set

type(ptr_meas_set), dimension(n_meas) :: mx

type(ptr_meas_set) :: tmp

Each measurement set will correspond to one entry in the vector mx.

We can read in the N Meas measurement sets as follows. If there are still measured data

sets to be read in, we allocate an object of the type Ptr Meas Set, then read in the number

of points dim, allocate the vector data of dimension dim, read the measured values and store

them in data.

do i=1,n_meas

allocate(mx(i)%v)

if (ierr.ne.0) ! some action
read(10,10) mx(i)%v%dim ! no. of data points
allocate(mx(i)%v%data(mx(i)%v%dim), stat=ierr) ! allocate data vector
if (ierr.ne.0) ! some action
read(10,10) mx(i)%v%data ! read data

end do

After creating the storage and reading in the data, we can compute the mean and the deviation

for each data set

do i=1,n_meas

! compute the mean
mx(i)%v%mean = 0.0

do j=1,mx(i)%v%dim

mx(i)%v%mean = mx(i)%v%mean + mx(i)%v%data(j)

end do

mx(i)%v%mean = mx(i)%v%mean/mx(i)%v%dim

! compute the deviation
mx(i)%v%dev = 0.0

do j=1,mx(i)%v%dim

mx(i)%v%dev = mx(i)%v%dev + (mx(i)%v%data(j)-mx(i)%v%mean)**2

end do

mx(i)%v%dev = sqrt(mx(i)%v%dev/mx(i)%v%dim)

end do

Now we need to sort the measured data in increasing mean order. Since the sorting algorithms

move the data around, and we want to avoid repeated copying of large measurement vectors, we

introduced the array of pointers mx. Interchanging to elements of mx means interchanging two

pointer values; this is a cheap operation, when compared to interchanging two 10,000-elements

vectors.

The simplest sorting algorithm might look like

do k=1,n_meas

do i=1,n_meas-1

if(mx(i)%v%mean > mx(i+1)%v%mean) then

tmp = mx(i+1)

mx(i+1) = mx(i)

mx(i) = tmp

end if

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 147

end do

end do

148 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

Chapter 13

Elements of object-oriented

programming

This chapter needs to written.

13.1 Public and Private Entities

13.2 Derived Type Constructors

Can support default values, optional and keyword arguments. Subsequent modifications of the

type internal structure can be made invisible to the user.

module d3

!
type coords

private

real :: x,y,z

end type coords

!
contains

!
type(coords) function init_coords(x,y,z)

real, intent(in), optional :: x,y,z

init_coords = coords(0.0,0.0,0.0)

if(present(x)) init_coords%x = x

if(present(y)) init_coords%y = y

if(present(z)) init_coords%z = z

end function init_coords

!
subroutine print_coords(c)

type(coords), intent(in) :: c

print*, c%x,c%y,c%z

end subroutine print_coords

!
end module d3

149

150 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

The components of a Coords type object are not visible to the user; they can only be accessed

through the functions contained in the module d3. In particular, the components cannot be

printed in a normal IO statement; a module procedure Print Coords is needed for this.

13.3 Generic Procedures

� group a number of procedures with similar functionality (``the overload set'') under one

name;

� the compiler decides which specific procedure to call based on the type, number, rank

and kind of non-optional arguments (decision made at compile time);

� the overload set must be unambiguous.

module gi

interface plus1

module procedure iplus1

module procedure rplus1

module procedure dplus1

end interface ! plus1
contains

integer function iplus1(x)

integer, intent(in) :: x

iplus1 = x + 1

end function iplus1

real function rplus1(x)

real, intent(in) :: x

rplus1 = x + 1.0

end function rplus1

double precision function dplus1(x)

double precision, intent(in) :: x

dplus1 = x + 1.0d0

end function dplus1

end module gi

The call plus1(2) will return an integer result, while plus1(2.0) will return a real result.

Chapter 14

Code Performance

In this section we discuss different elemenets that impact the performance of a Fortran code.

We should not perform machine-specific optimizations that destroy the portability or the

readability of the code. We should rely on standard packages where available to ensure both

performance and portability. An example is BLAS.

For the timings in this section we used the following machines:

� Alpha 21260 at 500 MHz, 512 MB RAM, Linux, native compiler (fort);

� Intel P-III 1 GHz, 256 MB RAM, Portland Group compiler (pgf90) and Pacific-Sierra compiler

(vf90), which is a F90 to F77 translator plus Gnu g77 compiler;

� Ultra Sparc ?? with Sun's native compiler (f90).

All compilations used the default level of optimization (-O).

14.1 Measures of performance

The ultimate measure of performance is cpu time. Fortran defines several intrinsic procedures

to measure time.

The intrinsic subroutine

system_clock(count, count_rate, count_max)

gives the system clock in clock ticks (count). The number of ticks per second is count rate,

and the maximum value of the tick counter is count max (after which the tick counter resets).

A frequently used measure for performance is the number of floating point operations per

second of cpu time (the flop rate).

151

152 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

14.2 The Computational Algorithm

The most important factor that determines performance is the computational algorithm. Two

algorithms that provide similar results can be compared from the point of view of computational

expense - the one that uses fewer operations is to be preffered. Of course, comparing two

algorithms that do not provide similar results is meaningless.

14.2.1 Example: sorting

Sometimes better algorithms are available for the same problem. The classic example is bubblesort

versus quick sort.

14.2.2 Example: the DFT versus FFT

14.3 Avoid Computations when their result is known

Best example: avoid multiplications by zero. Sparse matrices exploit this.

14.3.1 Example: multiplication of tridiagonal matrices

In this example we show how exploiting the particularities of the problem can lead to a more

efficient solution.

We are given two tridiagonal matrices A, B, and we want to compute their product C.

integer,parameter::n=1024

real,dimension(n,n) :: A,B,C

A=0.0; B=0.0

do i=2,n-1

A(i,i-1) = 1.0; A(i,i) = 2.0; A(i,i+1) = 1.0;

B(i,i-1) = 2.0; B(i,i) =-4.0; B(i,i+1) = 2.0;

end do

A(1,1)= 2.0; A(1,2)=1.0; A(n,n-1)=1.0; A(n,n)= 2.0

B(1,1)=-4.0; B(1,2)=2.0; B(n,n-1)=2.0; B(n,n)=-4.0

Consider first the direct code

c=0.0

call system_clock(count1,cr,cmax)

do i=1,n

do j=1,n

do k=1,n

c(i,j)=c(i,j)+a(i,k)*b(k,j)

end do

end do

end do

call system_clock(count2,cr,cmax)

time=dble(count2-count1)/dble(cr)

print*,'time=',time,' seconds.'

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 153

This algorithm performs n3 multiplications and n3 additions, a total of 2n3 flops. The time

on Alpha is 151.5770 seconds, i.e. the rate 14.1676 Mflops/sec.

Alpha (fort) Intel (pgf90) Sun (f90)

Time Rate Time Rate

151.5 14.1 11.3 188.9 61.1 31.1

Now, we do the same thing using the intrinsic matrix multiplication function,

c = matmul(a,b)

Alpha (fort) Intel (pgf90) Sun (f90)

Time Rate Time Rate

146.2 14.6 13.8 155.7 5.2 405.3

Let us now notice that C is only pentadiagonal; we do not have to compute all n2 entries,

since most of them are known to have value 0. Moreover, each nonzero element of C is given

by a scalar product of two vectors having at most 3 nonzero elements each. Therefore, we can

avoid multiplications by zero to obtain the algorithm

C(1,1) = A(1,1)*B(1,1)+A(1,2)*B(2,1)

C(1,2) = A(1,1)*B(1,2)+A(1,2)*B(2,2)

C(1,3) = A(1,2)*B(2,3)

C(2,1) = A(2,1)*B(1,1)+A(2,2)*B(2,1)

C(2,2) = A(2,1)*B(1,2)+A(2,2)*B(2,2)+A(2,3)*B(3,2)

C(2,3) = A(2,2)*B(2,3)+A(2,3)*B(3,3)

C(2,4) = A(2,3)*B(3,4)

do i=2,n-2

C(i,i-2) = A(i,i-1)*B(i-1,i-2)

C(i,i-1) = A(i,i-1)*B(i-1,i-1)+A(i,i)*B(i,i-1)

C(i,i) = A(i,i-1)*B(i-1,i)+A(i,i)*B(i,i)+A(i,i+1)*B(i+1,i)

C(i,i+1) = A(i,i)*B(i,i+1)+A(i,i+1)*B(i+1,i+1)

C(i,i+2) = A(i,i+1)*B(i+1,i+2)

end do

C(n-1,n-3) = A(n-1,n-2)*B(n-2,n-3)

C(n-1,n-2) = A(n-1,n-2)*B(n-2,n-2)+A(n-1,n-1)*B(n-1,n-2)

C(n-1,n-1) = A(n-1,n-2)*B(n-2,n-1)+A(n-1,n-1)*B(n-1,n-1)+A(n-1,n)*B(n,n-1)

C(n-1,n) = A(n-1,n-1)*B(n-1,n)+A(n-1,n)*B(n,n)

C(n,n-2) = A(n,n-1)*B(n-1,n-2)

C(n,n-1) = A(n,n-1)*B(n-1,n-1)+A(n,n)*B(n,n-1)

C(n,n) = A(n,n-1)*B(n-1,n)+A(n,n)*B(n,n)

This algorithm performs about 38+13�(n�3) multiplications and additions, a huge reduction

from n3. The results are the same, but the computational time is considerably smaller (about

0:02 seconds).

14.4 Avoid redundant computations

You can save and reuse partial results.

154 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

14.5 Memory E�ects

14.5.1 Cache

Insert brief explanation of memory hierarchy, cache memory, etc.

Idea: maximize the locality of data. Access data with stride 1.

14.5.2 Memory access patterns

Should preserve data locality, such that the data in cache memory is reused as much as possible.

Loop ordering is therefore important for this.

do j=1,n

do k=1,n

do i=1,n

c(i,j)=c(i,j)+a(i,k)*b(k,j)

end do

end do

end do

The results are summarized in the following table:

Alpha (fort) Intel (pgf90) Intel (vf90) Sun (f90)

Loop order Time Rate Time Rate Time Rate

ijk 148.4 14.5 11.3 188.9 9.20 233.4 61.1 31.1

kji 17.1 125.6 31.2 68.7 31.1 69.1 10.2 210.3

kij 345.8 6.2 212.6 10.1 209.3 10.2 138.1 15.6

jik 144.0 14.9 11.15 192.54 8.6 250.3 67.7 31.7

jki 14.02 153.1 7.0 305.82 6.9 311.2 10.78 199.1

ikj 348.1 6.2 213.1 10.1 220.7 9.73 134.1 16.0

The ``winner'' is

the jki ordering in all cases. This is consistent with a column-wise storage of matrices in

memory.

14.5.3 Loop Unrolling

Unroll the j-loop (level = 4)

do j=1,n-3,4

do k=1,n

do i=1,n

c(i,j) = c(i,j) + a(i,k)*b(k,j)

c(i,j+1) = c(i,j+1) + a(i,k)*b(k,j+1)

c(i,j+2) = c(i,j+2) + a(i,k)*b(k,j+2)

c(i,j+3) = c(i,j+3) + a(i,k)*b(k,j+3)

end do

end do

end do

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 155

Alpha (fort) Intel (pgf90) Intel (vf90) Sun (f90)

Time Rate Time Rate Time Rate

6.1 347.8 13.2 162.5 14.5 148.4 8.4 255.3

This unrolling boosts the Alpha

and Sun performance, but hurts the Intel.

Unroll the k-loop (level = 2)

do j=1,n

do k=1,n-1,2

do i=1,n

c(i,j) = c(i,j) + a(i,k)*b(k,j) + a(i,k+1)*b(k+1,j)

end do

end do

end do

Alpha (fort) Intel (pgf90) Intel (vf90) Sun (f90)

Time Rate Time Rate Time Rate

11.7 183.2 5.3 402.0 5.9 360.3 6.7 320.0

This unrolling boosts the Intel

performance.

Combining the j and k unrollings gives

Alpha (fort) Intel (pgf90) Intel (vf90) Sun (f90)

Time Rate Time Rate Time Ratei Time Rate

5.23 410.4 8.14 263.6 8.51 250.5 6.0 355.6

The results of loop unrolling depend strongly on the system.

14.5.4 Reusing the data to minimize no. of fetches per computation step

14.5.5 Scalar copying

14.5.6 Blocking

14.5.7 BLAS

Standard libraries allow us to be very efficient on different architectures, since libraries

are optimized specifically for them.

call SGEMM ('N', 'N', n, n, n, 1.0, a, n, b, n, 1.0, c, n)

The compiled code is linked to the library, for example

f90 code:f90 � lblas

Alpha (fort) Intel (pgf90) Sun (f90)

Time Rate Time Rate

2.37 905.7 2.97 723.1 ? ?

156 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

Chapter 15

Linear Systems of Algebraic

Equations

15.1 Least Squares Fitting

Consider the following problem. We have a set of 21 data points, representing measurements

of a rocket altitude during flight at 21 consecutive time moments. We know that, in an uniformly

accelerated motion, the altitude as a function of time is given by

h(t) = at2 + bt+ c (15.1)

From the data set

t h(t) t h(t) t h(t)

------------ ------------ ------------

0.0 -0.2173 0.7 3.3365 1.4 6.3312

0.1 1.0788 0.8 1.9122 1.5 6.3549

0.2 0.1517 0.9 3.0594 1.6 8.5257

0.3 0.1307 1.0 3.7376 1.7 8.7116

0.4 1.4589 1.1 3.3068 1.8 8.2902

0.5 2.9535 1.2 3.7606 1.9 11.4596

0.6 2.4486 1.3 6.6112 2.0 11.2895

we try to infer the parameters a, b, c, which define the smooth curve (16.1). In particular,

the acceleration of the vehicle is 2a, and, if m is the mass of the rocket and g is the gravitational

acceleration, then we can infer the total force produced by thrusters F = m(2a+ g).

Note that we have 21 data points to determine 3 parameters; the data is corrupted by measurement

errors (for example, the first altitude is negative!). We will use the redundancy in the data

to ``smooth out'' these measurement errors; see Figure 16.1 for the distribution of data points

and the parametrized curve.

At each time moment ti, we are given the measured height hi (in the data set); the height

obtained by the formula (16.1) is h(ti) = at2i+bti+c. Therefore, the formula (16.1) ``approximates''

the measured height at time ti with an error

ei = h(ti)� hi = at2i + bti + c� hi :

157

158 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

0

2

4

6

8

10

12

Time

Al
tit

ud
e

Data points
Fitted Curve
Original Curve

Figure 15.1: Altitude versus time: the data points and the resulting �tted quadratic curve.

We want the values a, b and c chosen such that the differences ei between the model and the

measurements are small. Therefore, we impose that the sum of squares of errors is minimized

g(a; b; c) =
P21

i=1 e
2
i =

P21
i=1

�
at2i + bti + c� hi

�2
We recall from calculus that, when g attains its minimum value, the derivatives are equal to

zero. therefore, to obtain a minimum of g, the following necessary conditions hold

@g
@a = 2

P21
i=1

�
at2i + bti + c� hi

�
t2i = 0

@g
@b = 2

P21
i=1

�
at2i + bti + c� hi

�
ti = 0

@g
@c = 2

P21
i=1

�
at2i + bti + c� hi

�
= 0

These equations form a linear system in the unknowns a, b, c, which, in matrix notation, is2
4
P21

i=1 t
4
i

P21
i=1 t

3
i

P21
i=1 t

2
iP21

i=1 t
3
i

P21
i=1 t

2
i

P21
i=1 t

1
iP21

i=1 t
2
i

P21
i=1 t

1
i

P21
i=1 1

3
5
2
4 a

b
c

3
5 =

2
4
P21

i=1 hi t
2
iP21

i=1 hi tiP21
i=1 hi

3
5 (15.2)

The computations give a = 2:12, b = 1:2455, c = 0:3664.

15.2 The problem

This presentation is devoted to solving linear systems of the form8>>><
>>>:

a11x1 + a12x2 + � � � + a1nxn = b1
a21x1 + 5x2 + � � � + a2nxn = b2

...

an1x1 + an2x2 + � � � + annxn = bn

(15.3)

The unknowns are x1 � � �xn and they need to satisfy simultaneously all n equations. Several

simulaneous equations form a system; each equation is linear (involves only the first power

of the unknowns), therefore we have a linear system of equations. The numbers aij are called

the coefficients (aij is the coefficient of variable xj in equation number i) and bi are called

the right hand sides.

Linear systems arise in a variety of applications in science and engineering.

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 159

15.3 Row Operations

Consider the linear system 8<
:

x1 + 2x2 + 3x3 = 6
2x1 + 5x2 + x3 = 8
3x1 + 2x2 + 4x3 = 9

(15.4)

We can see directly that the solution is [x1 = 1; x2 = 1; x3 = 1].

We can represent it in matrix form as2
4 1 2 3

2 5 1
3 2 4

3
5 �
2
4 x1

x2
x3

3
5 =

2
4 6

8
9

3
5

or, in short,

A � x = b

where A is the matrix of coefficients, b is the right hand side vector and x is the vector

of unknowns.

If we multiply one equation by a constant (for example, multiply first equation by (�2))
we obtain an equivalent system, i.e. a system with the same solution. In our example, we

can see that 8<
:
�2x1 + (�4)x2 + (�6)x3 = �12
2x1 + 5x2 + x3 = 8
3x1 + 2x2 + 4x3 = 9

has the solution [x1 = 1; x2 = 1; x3 = 1].

If we add two equations together, and replace the second equation by the result, we obtain

an equivalent system also. For example, first equation plus the second give

0 + x2 + �5x3 = �4

and, when replacing the second equation by this result, we get8<
:
�2x1 + �4x2 + �6x3 = �12

x2 + �5x3 = �4
3x1 + 2x2 + 4x3 = 9

This system has the same solution [x1 = 1; x2 = 1; x3 = 1].

In conclusion, multiplying one equation by a constant or replacing one equation by the sum

of itself plus another equation lead to equivalent systems.

If we combine these two operations into a single step we conclude that we can replace one

equation by the sum of itself plus a multiple of another equation without modifying the solution

of the system. For example, multiplying the first equation of the system (15.4) by �2 and

adding it to the second equation leads to the equivalent system8<
:

x1 + 2x2 + 3x3 = 6
x2 + �5x3 = �4

3x1 + 2x2 + 4x3 = 9
(15.5)

160 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

15.4 The triangular form

We exploit the fact that row transformations do not change the solution of the system Ax =
b and transform the system succesively as follows.

In matrix notation, multiplying the first row by 2 and subtracting it from the second row

leads to

A(1) =

2
4 1 2 3

0 1 �5
3 2 4

3
5 b(1) =

2
4 6
�4
9

3
5

We store the multiplier 2 as follows. Take a matrix L = I; since the multiplier is used

to cancel A21, we store it into L21.

L =

2
4 1 0 0

2 1 0
0 0 1

3
5 :

Multiplying the first row by 3 and subtracting it from the third gives

A(2) =

2
4 1 2 3

0 1 �5
0 �4 �5

3
5 ; b(2) =

2
4 6
�4
�9

3
5 ; L =

2
4 1 0 0

2 1 0
3 0 1

3
5 :

Finally, by multiplying the second row by �4 and subtracting it from the third we obtain

A(3) = U =

2
4 1 2 3

0 1 �5
0 0 �25

3
5 ; b(3) =

2
4 6
�4
�25

3
5 ; L =

2
4 1 0 0

2 1 0
3 �4 1

3
5 : (15.6)

Now, all the elements in the sub-diagonal positions of A(3) are zero, and only the elements

above the main diagonal are left. This transformed A(3) is in ``upper triangular form''; we

usually denote it by U. In the same time, the matrix of multipliers L has only zero elements

above the main diagonal; it is in ``lower triangular form'' (L stands for lower). Note that

all the diagonal elements of L are 1, while the diagonal elements of U can take any values,

without any restriction.

If we multiply L and U we obtain the original matrix A

LU =

2
4 1 0 0

2 1 0
3 �4 1

3
5
2
4 1 2 3

0 1 �5
0 0 �25

3
5 =

2
4 1 2 3

2 5 1
3 2 4

3
5 = A: (15.7)

The relation A = LU is called the ``LU decomposition'' of A. Since U has zeros below the

main diagonal, we can use this space to store the elements of L; therefore, we can represent

the LU decomposition compactly as 2
4 1 2 3

2 1 �5
3 �4 �25

3
5

15.5 Solving the upper triangular system

The upper triangular system

U x = b(3) (where U = A(3)) ;

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 161

is equivalent to the initial system

A x = b

in the sense that they admit the same solution x.

The upper triangular system is8<
:

x1 + 2x2 + 3x3 = 6
x2 + (�5)x3 = �4

�25x3 = �25
(15.8)

From the last equation x3 = 1. We substitute this value in equation 2

x2 � 5 � 1 = �4

from which we infer that x2 = 1.

Finally, we substitute the known values of x2, x3 in equation 1

x1 + 2 � 1 + 3 � 1 = 6

and we obtain x1 = 1.

In short, we start with the last equation and find xn. Then, we move backwards through

the equations; at each step we substitute the known values xk+1 : : : xn in the current equation

k, and compute the value of xk. This process is called backward substitution.

15.6 General algorithms

For the LU decomposition we have

DO j=1,n-1

DO i=j+1,n

m = - A(i,j)/A(j,j)

DO k=j+1,n

A(i,k) = A(i,k) - m*A(j,k)

END DO

A(i,j) = m

END DO

END DO

The number of multiplications and divisions used is

N� =
n�1X
j=1

nX
i=j+1

0
@1 +

nX
k=j+1

1

1
A � n3

3
:

Similarly, the number of sumations is n3=3.

For the backward substitution the algorithm that

b(n) = b(n)/A(n,n)

DO j=n-1,1,-1

162 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

DO k=j+1,n

b(j) = b(j) - A(j,k)*b(k)

END DO

b(j) = b(j)/A(j,j)

END DO

The number of multiplications is about n2=2.

15.7 Computing the determinant

Using the LU factorization

A = L � U
we have that the determinant of A equals the product of the diagonal elements of U

det(A) = det(U) = U(1; 1) � U(2; 2) : : :U(n; n) :

15.8 Pivoting

What happens with our method when applied to the system

A =

2
4 0 2 3

2 5 1
3 2 4

3
5 ; b =

2
4 5

8
9

3
5 :

The unpleasant answer is that, although the system is well defined with solution [x1 = 1; x2 =
1; x3 = 1], our method simply fails. We try to zero A(2; 1) by subtracting the first row, multiplied

by a suitable constant �, from the second row; since A(1; 1) = 0, no matter what constant �
we choose, the difference A(2; 1)� �A(1; 1) = A(2; 1) 6= 0.

We can remedy things if we change the order of the equations, such that A(1; 1) 6= 0. Obviously,

changing the order of the equations does not affect the solution. For example, interchanging

equations 1 and 3 means permuting rows 1 and 3 in A, b:

A =

2
4 3 2 4

2 5 1
0 2 3

3
5 ; b =

2
4 9

8
5

3
5 :

Note that we have two distinct choices when making A(1; 1) 6= 0: interchange rows 1 and 3,

or interchange rows 1 and 2. We will always choose the permutation that maximizes the absolute

value of A(1; 1). The reason is that this choice minimizes the propagation of roundoff errors

during the computation (a rigorous proof of this fact is beyond the scope of this class).

In our example, interchanging rows 1$ 3 makes A(1; 1) = 3, while interchanging rows 1$
2 makes A(1; 1) = 2; hence we will use 1$ 3.

The process of interchanging rows in order to maximize jA(i; i)j is called partial pivoting

(``partial'' because the maximum is selected from fjA(i; i)j; jA(i+1; i)j; : : : ; jA(n; i)jg, i.e. only

from a ``part'' of the matrix).

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 163

15.9 Triangular form with pivoting

We bring again to a triangular form the system

A =

2
4 1 2 3

2 5 1
3 2 4

3
5 b =

2
4 6

8
9

3
5 L =

2
4 1 0 0

0 1 0
0 0 1

3
5 P =

�
0
0

�

but this time we use pivoting; the n�1 dimensional vector P stores the row permutations,

while L stores the multipliers as before.

For the first step, since the maximal element in the first column of A is A(3; 1) = 3 we

permute rows one and three, and store this permutation as P (1) = 3.

A =

2
4 3 2 4

2 5 1
1 2 3

3
5 b =

2
4 9

8
6

3
5 L =

2
4 1 0 0

0 1 0
0 0 1

3
5 P =

�
3
0

�

As before, we multiply the first row by 2=3 (1=3) and subtract it from the second (third)

row in order to zero the elements A(2; 1) and A(3; 1) respectively; the multipliers 2=3, 1=3 are

stored in L in the appropriate positions.

A =

2
4 3 2 4

0 11=3 �5=3
0 4=3 5=3

3
5 b =

2
4 9

2
3

3
5 L =

2
4 1 0 0

2=3 1 0
1=3 0 1

3
5 P =

�
3
2

�

Now we process the second column. The maximum between A(2; 2) and A(3; 2) is A(2; 2) = 11=3;
no row permutation is necessary here, hence P (2) = 2. The second row is multiplied by 4=11
and subtracted from the third to get

U =

2
4 3 2 4

0 11=3 �5=3
0 0 25=11

3
5 b =

2
4 9

2
25=11

3
5 L =

2
4 1 0 0

2=3 1 0
1=3 4=11 1

3
5 P =

�
3
2

�

Now the product LU gives

L U =

2
4 3 2 4

2 5 1
1 2 3

3
5

that is, the initial matrix A with rows 1 and 3 interchanged. In matrix language,

L � U = � � A ; � =

2
4 0 0 1

0 1 0
1 0 0

3
5 :

Note that, when pivoting is used, all the multipliers are less than or equal to 1. Compactly

we can represent the LU decomposition of A as

A =

2
4 3 2 4

2=3 11=3 �5=3
1=3 4=11 25=11

3
5 ; P =

�
3
2

�
: (15.9)

15.10 Operation count

The LU factorization algorithm uses n3=3 multiplications and additions, while the forward/backward

substitution uses n2=2.

164 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

15.11 Singularity

Consider the system

A =

2
4 1 2 3

2 5 1
3 7 4

3
5 x = b =

2
4 6

8
14

3
5

It can be easily checked that all the following vectors are solutions to the system:

x =

2
4 1

1
1

3
5 ; x =

2
4 �14�4

0

3
5 ; x =

2
4 �14t
�4 + 5t

t

3
5 ; for any real t :

Why does this system have a non-unique solution? The third row of A equals the sum of the

first plus the second row, therefore A is singular.

The solution of the linear system Ax = b:

� A nonsingular) there is a unique solution x;

� A singular)
{ if b 2 range(A) there are infinitely many solutions,

{ if b 62 range(A) there are no solutions.

Singularity has to be detected and reported during the LU decomposition step. Numerically,

if we apply the LU decomposition with pivoting to the example matrix2
4 1 2 3

2 5 1
3 7 4

3
5 !

2
4 3 7 4

2 5 1
1 2 3

3
5 !

2
4 3 7 4

0 1
3 � 5

3
0 � 1

3
5
3

3
5 !

2
4 3 7 4

0 1
3 � 5

3
0 0 0

3
5 :

we end up with an upper triangular matrix U which has a zero diagonal element. When back-substituting

we obtain the equation 0x3 = 0, which will hold for any value x3 = t. When diagonal elements

of U are zero (or very small) the system is (almost) singular.

15.12 Multiple systems with the same matrix

It is often the case that we need to solve consecutively several linear systems that share

the same coefficient matrix

Ax� = b� ; Ax� = b� ; Ax
 = b
 : : :

We can save substantial amounts of CPU time by computing the LU decomposition of the matrix

A once, and then re-using it to obtain different solutions with different right hand sides.

In the standard solution, we applied to the right hand vector b all the permutations and

row operations applied to A, then solved the upper tringular system

Ux = modi�ed RHS :

To re-use the LU decomposition, we need to apply the permutations and row operations (stored

in P and L respectively) to the new right hand vector b� - that is, compute L�1�c, then solve

the upper triangular system

Ux = modi�ed RHS :

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 165

Now, all permutations are stored in P and all row operations in L, hence we can use this information

directly. In matrix language,

Ax = c) �Ax = �c) LUx = �c) Ux = L�1�c

For example, the system 2
4 1 2 3

2 5 1
3 2 4

3
5 �
2
4 x1

x2
x3

3
5 =

2
4 14

15
19

3
5 = c

has the same coefficient matrix as (15.4), but the right hand side vector is now c instead

of b.

Therefore, we use the decomposition (15.9) as follows.

First, interchange rows (elements) 1 and P (1) = 3 in the right hand side vector2
4 19

15
14

3
5

Then, multiply first row by L(2; 1) and subtract it from the second row, and by L(3; 1) and subtract

it from the third row, to obtain2
4 19

15
14

3
5 L(2;1)=2=3�!

2
4 19

7=3
14

3
5 L(2;1)=1=3�!

2
4 19

7=3
23=3

3
5

Note that L(2; 1) and L(3; 1) are now stored in A(2; 1) and A(3; 1) respectively.

Next, we need to interchange rows 2 and P (2) = 2 - nothing to do. Multiply second row

by L(3; 1) and subtract it from the third row2
4 19

7=3
23=3

3
5 L(3;1)=4=11�!

2
4 19

7=3
75=11

3
5

So far we have applied the permutations (P) and row transformations (L) to the new RHS

vector c. It remains to solve the system

Ux = c

or 2
4 3 2 4

0 11=3 �5=3
0 0 25=11

3
5
2
4 x1

x2
x3

3
5 =

2
4 19

7=3
75=11

3
5

It is easy to see that [x1 = 1; x2 = 2; x3 = 3].

15.13 Computing the inverse of a matrix

There are some situations when computing the inverse of a matrix is needed. Based on the fact

that

A � A�1 = I

166 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

where I is the identity matrix, the inverse of A, X = A�1, satisfies the equation

A �X = I :

If we write explicitly the column composition of X and the identity matrix I we have

A

2
4 x11 x12 x13

x21 x22 x23
x31 x32 x33

3
5 =

2
4 1 0 0

0 1 0
0 0 1

3
5

From here we see that, columnwise, the above relation is equivalent to solving 3 systems

with the same matrix A:

A

2
4 x11

x21
x31

3
5 =

2
4 1

0
0

3
5 ; A

2
4 x12

x22
x32

3
5 =

2
4 0

1
0

3
5 ; A

2
4 x13

x23
x33

3
5 =

2
4 0

0
1

3
5 :

For our example we get

A�1 = A

2
4 �18=25 1=5 11=25

2=25 1=5 �4=25
13=25 �1=5 �1=25

3
5

15.14 Coding the LU decomposition

The F90 routine is given A, the coefficient matrix; it returns the LU factorization, stored

compactly in A and the integer vector of permutations, or pivots, Pivot. Note that the content

of A is overwritten by this routine.

An LU decomposition routine might look like:

SUBROUTINE LU_Fact(A,Pivot,Ierr)

IMPLICIT NONE

!

! The arguments:

!

! The input matrix, at exit

! will hold the LU factorization

REAL, DIMENSION(:,:), INTENT(INOUT) :: A

! Vector of permutations

INTEGER, DIMENSION(:), INTENT(OUT) :: Pivot

! Singularity indicator, = 0 if A nonsingular,

! and = column number j if the first zero

! pivot was detected in column j

INTEGER, INTENT(OUT) :: Ierr

!

! The local variables:

!

LOGICAL :: singular ! Singularity flag

INTEGER :: i,j,k,n ! DO loop variables

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 167

INTEGER, DIMENSION(:) :: p ! pivot location

REAL, DIMENSION(:) :: Tmp ! Temporary row

REAL :: uround ! rounding unit

!

! Check if the argument is a square matrix

IF(size(A,1).NE.size(A,2)) THEN

PRINT*,"Error in Factorize: A must be square"

RETURN

END IF

n=SIZE(A,1) ! the dimension of the matrix

ALLOCATE(Tmp(n),stat = k)

IF (k.NE.0) THEN

PRINT*,"Error in Factorize: cannot allocate Tmp"; RETURN

END IF

!

ALLOCATE(p(n),stat = k)

IF (k.NE.0) THEN

PRINT*,"Error in Factorize: cannot allocate p"; RETURN

END IF

!

Ierr = 0 ! reset error indicator

singular = .FALSE. ! reset singularity flag

uround = 1.0E-7 ! unit roundoff, set it to

! 1.0D-14 for double precision

!

DO j=1,n-1 ! columns 1:n-1

!

p=MAXLOC(ABS(A(j:n,j)))+j-1 ! Look for pivot, A(p(1),j)

IF (p(1).NE.j) THEN ! If pivot is non-diagonal

Tmp(:) = A(j,:) ! permute rows j and p(1)

A(j,:) = A(p(1),:)

A(p(1),:) = Tmp(:)

Pivot(j) = p(1) ! Save the pivot position

ELSE

Pivot(j) = j ! Save the pivot position

END IF

!

! If A(j,j)=0 then the matrix is singular

! uround is the rounding unit (machine epsilon)

IF (ABS(A(j,j)) .LT. uround) THEN

Ierr = j ! Singularity Position

singular = .TRUE. ! Singularity Flag

exit ! the `DO j' loop

END IF

!

DO i=j+1,n ! rows to be processed

A(i,j) = A(i,j)/A(j,j) ! Store the multiplier

A(i,j+1:n) = A(i,j+1:n) - A(i,j)*A(j,j+1:n)

END DO ! Row loop

!

END DO ! Column loop

!

168 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

! If A(n,n)=0 then the matrix is singular

! uround is the rounding unit (machine epsilon)

IF (abs(A(n,n)) .LT. uround) THEN

Ierr = n ! Singularity Flag

singular = .TRUE.

END IF

!

IF (allocated(Tmp)) DEALLOCATE(Tmp)

!

IF (.NOT. singular) THEN

Ierr = 0

END IF

15.15 Coding the forward-backward substitution

The routine accepts the LU factorization of the coeficient matrix, stored compactly in A, the

vector of pivots Pivot and a right hand side vector b. It returns the solution of the system

stored in the vector b (i.e. b is overwritten with the solution).

A sample substitution routine might be

! Check if the arguments match

IF (size(A,1).NE.size(b,1)) THEN

PRINT*,"Error in solve: A and b must match"

RETURN

END IF

n=SIZE(A,1) ! the dimension of the matrix

!

! Permute the vector b, b <- Pb

!

DO j=1,n-1 ! columns 1:n-1

!

IF (Pivot(j).NE.j) THEN ! If pivot is non-diagonal

Tmp = b(j) ! permute elements j and pivot(j)

b(j) = b(Pivot(j))

b(Pivot(j)) = Tmp

END IF

!

END DO

!

! Forward Substitution, y <- L\b

!

DO i=2,n

b(i) = b(i) - DOT_PRODUCT(A(i,1:i-1), b(1:i-1))

END DO

!

!

! Backward Substitution, x <- U\y

!

b(n) = b(n)/A(n,n)

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 169

DO i=n-1,1,-1 ! elements to be processed

b(i) = (b(i) - DOT_PRODUCT(A(i,i+1:n),b(i+1:n)))/A(i,i)

END DO

15.16 LAPACK and BLAS.

The best known librarys for linear algebra calculations is LAPACK (Linear Algebra PACKage).

LAPACK uses the Basic Linear Algebra Subroutines (BLAS).

Factorization

The single precision LAPACK factorization function is sgetrf (single precision, general

matrix, triangular factorization).

It is called by

sgetrf(m; n; A; lda; Ipiv; Info)

The arguments are

m (input) Number of rows of A;

n (input) Number of columns of A;

A (input) The matrix A; and (output) the L and U factors;

lda (input) leading dimension of matrix A.

Ipiv (output) n-dimensional integer vector of permutations;

Info (output) the status of factorization. 0=success, i > 0 means singularity - U(i; i) = 0,
j < 0 means incorrect j-th argument.

Substitution.

The single precision LAPACK substitution function is sgetrs (single precision, general matrix,

triangular substitution).

It is called by

sgetrs(Trans; n; nrhs; A; lda; Ipiv;b; ldb; Info)

The arguments are

Trans (input) 0N 0 means no transpose (solve for Ax = b); 0T 0 means transpose (solve for ATx =
b);

n (input) Number of equations;

nrhs (input) Number of right hand sides;

170 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

A (input) The the L and U factors of matrix A as given by sgetrf;

lda (input) leading dimension of matrix A.

Ipiv (input) n-dimensional integer vector of permutations, as given by sgetrf;

b (input) the right hand side vector; and (output) the solution x. For multiple right hand

sides b is a n� nrhs matrix.

ldb (input) leading dimension of vector b.

Info (output) the status of factorization. 0=success, i > 0 means singularity - U(i; i) = 0,
j < 0 means incorrect j-th argument.

Compilation and Linkage.

We need to link our object code to the lapack and blas libraries

f90 file:f90 � lm � llapack � lblas

15.17 Homework

15.17.1 LU decomposition

Write a routine that computes the LU decomposition of a matrix with partial pivoting.

Input arguments:

� A, a square n� n matrix.

Output arguments:

� A, containing the compact storage of L and U; the input value of A is overwritten.

� Pivot, an integer n�1 dimensional vector, containing the pivot positions (i.e. the permutations).

� Ierr, an integer, indicating the column where a zero pivot was found (which means that

the matrix is singular). Ierr = 0 if no zero pivots were found (nonsingular matrix).

The header and the declarations of this routine should be

subroutine LU_Fact(A,Pivot,Ierr)

implicit none

! The input matrix, at exit

! will hold the LU factorization

real, dimension(:,:), intent(inout) :: A

! Vector of permutations

integer, dimension(:), intent(out) :: Pivot

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 171

! Singularity indicator, = 0 if A nonsingular,

! and = column number j if the first zero

! pivot was detected in column j

integer, intent(out) :: Ierr

.....................................

15.17.2 Back-substitution

Write a routine that solves a system after knowing its LU decomposition. Input arguments:

� A, a compact LU decomposition, as computed by the routine at point 1.

� Pivot, teh integer vector of permutations, as computed by the routine at point 1.

� b, a right hand vector.

Output arguments:

� b, containing the solution of the system; the input value of b is overwritten.

The header and the declarations of this routine should be

subroutine FB_Subst(A,b,Pivot)

implicit none

! The LU factorization, as given by LU_Fact

real, intent(in), dimension(:,:) :: A

! The RHS vector

real, intent(inout), dimension(:) :: b

! Vector of permutations, as given by LU_Fact

integer, dimension(:), intent(in) :: Pivot

.....................................

The routines LU Fact and FB Subst will both be submitted in the same file, lin solve.f90.

15.18 Tests

Test your routines on the following systems:

Two systems with the same A.

0.9501 0.7621 0.6154 0.4057 0.0579

0.2311 0.4565 0.7919 0.9355 0.3529

A= 0.6068 0.0185 0.9218 0.9169 0.8132

0.4860 0.8214 0.7382 0.4103 0.0099

0.8913 0.4447 0.1763 0.8936 0.1389

172 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

2.7912 6.2328

2.7679 9.0263

b = 3.2772 and c = 11.1428

2.4658 6.0341

2.5448 6.5785

The main program and all additional routines for this example will be submitted in a file

lin twosys.f90.

A singular system.

The following system is singular; apparently the solution is [1; 1; 1; 1], but your decomposition

routine should signal singularity by encountering very small pivots.

0.1934 0.1509 0.8537 0.8216 2.0196

A= 0.6822 0.6979 0.5936 0.6449 b= 2.6186

0.8756 0.8488 1.4473 1.4665 4.6382

0.2481 0.2646 0.6752 0.8198 2.0077

The main program and all additional routines for this example will be submitted in a file

lin singular.f90.

The Hilbert matrix

The n� n Hilbert matrix is defined as

A(i; j) =
1

i+ j � 1
; 1 � i; j � n ;

and we construct b such that the solution of the system Ax = b has all the components equal

to 1.

b(i) =
nX

j=1

1

i+ j � 1
; 1 � i � n :

Write a routine that generates A and b for given n.

Find the inverse A�1 for n = 2; 5. What can you say about the errors in the solution? (subtract

the exact solution from the numerical solution obtained).

The exact inverses are

4 -6

-6 12

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 173

25 -300 1050 -1400 630

-300 4800 -18900 26880 -12600

1050 -18900 79380 -117600 56700

-1400 26880 -117600 179200 -88200

630 -12600 56700 -88200 44100

Solve the system Ax = b for n = 10; 30. What can you say about the errors in the solution?

(subtract the exact solution [1; 1; : : : 1] from the numerical solution obtained).

This is an example of an ill-conditioned system.

The main program and all additional routines for this example will be submitted in a file

lin hilbert.f90.

174 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

Chapter 16

Linear Least Squares

16.1 Least Squares Data Fitting

Consider the following problem. We have a set of 21 data points, representing measurements

of a rocket altitude during flight at 21 consecutive time moments. We know that, in an uniformly

accelerated motion, the altitude as a function of time is given by

h(t) = at2 + bt+ c (16.1)

From the data set

t h(t) t h(t) t h(t)

------------ ------------ ------------

0.0 -0.2173 0.7 3.3365 1.4 6.3312

0.1 1.0788 0.8 1.9122 1.5 6.3549

0.2 0.1517 0.9 3.0594 1.6 8.5257

0.3 0.1307 1.0 3.7376 1.7 8.7116

0.4 1.4589 1.1 3.3068 1.8 8.2902

0.5 2.9535 1.2 3.7606 1.9 11.4596

0.6 2.4486 1.3 6.6112 2.0 11.2895

we try to infer the parameters a, b, c, which define the smooth curve (16.1). In particular,

the acceleration of the vehicle is 2a, and, if m is the mass of the rocket and g is the gravitational

acceleration, then we can infer the total force produced by thrusters F = m(2a+ g).

Note that we have 21 data points to determine 3 parameters; the data is corrupted by measurement

errors (for example, the first altitude is negative!). We will use the redundancy in the data

to ``smooth out'' these measurement errors; see Figure 16.1 for the distribution of data points

and the parametrized curve.

At each time moment ti, we are given the measured height hi (in the data set); the height

obtained by the formula (16.1) is h(ti) = at2i+bti+c. Therefore, the formula (16.1) ``approximates''

the measured height at time ti with an error

ei = h(ti)� hi = at2i + bti + c� hi :

175

176 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

0

2

4

6

8

10

12

Time

Al
tit

ud
e

Data points
Fitted Curve
Original Curve

Figure 16.1: Altitude versus time: the data points and the resulting �tted quadratic curve.

We want the values a, b and c chosen such that the differences ei between the model and the

measurements are small. Therefore, we impose that the sum of squares of errors is minimized

g(a; b; c) =
P21

i=1 e
2
i =

P21
i=1

�
at2i + bti + c� hi

�2
We recall from calculus that, when g attains its minimum value, the derivatives are equal to

zero. therefore, to obtain a minimum of g, the following necessary conditions hold

@g
@a = 2

P21
i=1

�
at2i + bti + c� hi

�
t2i = 0

@g
@b = 2

P21
i=1

�
at2i + bti + c� hi

�
ti = 0

@g
@c = 2

P21
i=1

�
at2i + bti + c� hi

�
= 0

These equations form a linear system in the unknowns a, b, c, which, in matrix notation, is2
4
P21

i=1 t
4
i

P21
i=1 t

3
i

P21
i=1 t

2
iP21

i=1 t
3
i

P21
i=1 t

2
i

P21
i=1 t

1
iP21

i=1 t
2
i

P21
i=1 t

1
i

P21
i=1 1

3
5
2
4 a

b
c

3
5 =

2
4
P21

i=1 hi t
2
iP21

i=1 hi tiP21
i=1 hi

3
5 (16.2)

The computations give a = 2:12, b = 1:2455, c = 0:3664.

16.2 The general problem formulation

We have a set of data points (ti; yi) for i = 1; � � � ;m which, for example, represent time moments

and measurements. We want to find a relationship (function) that gives y(t). For this, we

consider a set of n predefined functions f�0(t); � � � ;�n(t)g and claim that the relationship is

of the form

y(t) = f(t) =

n�1X
i=0

ai�i(t) ; (16.3)

where the parameters ai are unknown for the moment and will be determined based on the data.

Usually the number of parameters is much smaller than the number of data pairs,

n� m :

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 177

For example, if n = 3 and we use polynomial functions �0(t) = 1, �1(t) = t, �2(t) = t2 we

recover the previous example, where we fitted a quadratic function; in this example m = 21�
n = 3.

To determine faig we insert the data in the relation (16.3) and obtain the following equation

y1 =
n�1X
i=0

ai�i(t1) = a0�0(t1) + � � �+ an�1�n�1(t1) ;

y2 =
n�1X
i=0

ai�i(t2) = a0�0(t2) + � � �+ an�1�n�1(t2) ;

...

ym =

n�1X
i=0

ai�i(tm) = a0�0(tm) + � � �+ an�1�n�1(tm) :

Denoting

� =

2
64 �0(t1) � � � �n�1(t1)

...
...

...

�0(tm) � � � �n�1(tm)

3
75 ; y =

2
64 y1

...

ym

3
75 ; a =

2
64 a0

...

an�1

3
75 ;

the equations become

�a = y :

This system has m rows (equations) and only n columns (unknowns), with m� n. Therefore

we can only find a solution in an approximative sense.

16.3 The Calculus Approach

The residual (error) made is

r = y � �a =

2
64 y1 � a0�0(t1) : : :� an�1�n�1(t1)

...

ym � a0�0(tm) : : :� an�1�n�1(tm)

3
75

We try to find the vector of parameters a such that we minimize

g(a) =

mX
i=1

fyi � a0�0(ti)� � � � � an�1�n�1(ti)g2

= rT r = yT y � 2aT�T y + aT�T�a :

As in Calculus, for finding the minimum we take the derivative w.r.t. a and set it to zero,

@g

@a
= �2�Ty + 2�T�a = 0

which is equivalent with the following system of normal equations

�T�a = �T y :

178 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

range(

y

φ)

r

φ a

Figure 16.2: The residual has minimum norm when it is orthogonal to the range(�); from the orthogonality
relation one can determine the least squares solution vector a.

16.4 Orthogonality

We want a such that r ? range(�). This means that:

�T r = 0 =) �T (y ��a) = 0 =) �T�a = �T y :

16.5 Augmented system

The relations:

y = r +�a ; �T r = 0 ;

can be written as �
I �
�T 0

� �
r
a

�
=

�
y
0

�
which is called the augmented system.

16.6 Matlab

In matlab the lsline command fits a line through a set of plotted data points. The overdetermined

system �a = y can be solved in a least squares sense by simply a = � y. The command p=polyfit(t,y,n)

gives the coefficients of the degree n polynomial which fits the (ti; yi) data points in a least

squares sense. To calculate the values of this polynomial at points x we use polyval(p,x).

16.7 Algorithm for polynomial least squares �tting

Given the m data points (ti; yi) for 1 � i � m (m is large), we want to find a degree n polynomial

that fits the data in the least squares sense. This polynomial is

f(t) = a0 + a1t+ � � �+ ant
n :

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 179

To determine the n+1 coefficients a0 � � � an we will use the method of normal equations. For

this we build the m� (n+ 1) matrix �

� =

2
6664

1 t1 � � � tn�11 tn1
1 t2 � � � tn�12 tn2
...

...
...

1 tm � � � tn�1m tnm

3
7775 ; (�)ij = tj�1i 1 � i � m; 1 � j � n+ 1 ;

and the vector of measurements y

y =

2
64

y1
...

ym

3
75 :

� has a special form and is called a Vandermonde matrix.

The system of normal equations is

Pa = b ; P = �T� ; b = �T y ; a =

2
64 a0

...

an

3
75 :

To determine the matrix P we apply the matrix multiplication formula:

Pij =

mX
k=1

�
�T
�
ik
(�)kj =

mX
k=1

(�)ki (�)kj =

mX
k=1

(tk)
i�1

(tk)j�1 =

mX
k=1

ti+j�2k :

Clearly, Pij = Pji so we need to determine only the elements of the upper triangle of P.

For the right hand side vector, we have

bi =

mX
k=1

�
�T
�
ik
yk =

mX
k=1

(�)ki yk =

mX
k=1

ti�1k yk ; 1 � i � n :

! Compute P

DO i=1,n+1

DO j=1,i

P(i,j) = 0.0

ipower=i+j-2

DO k=1,m

P(i,j) = P(i,j) + t(k)**ipower

END DO

P(j,i) = P(i,j)

END DO

END DO

! Compute b

DO i=1,n+1

b(i) = 0.0

DO k=1,m

b(i) = b(i) + t(k)**(i-1)*y(k)

END DO

END DO

! Solve the system Pa=b etc.

180 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

16.8 Note

In practice a much better numerical method for least squares approximations is the QR decomposition

of �.

Chapter 17

Nonlinear Equations

17.1 The Newton Method for Nonlinear Equations

The Newton method is useful for solving nonlinear equations of the form

f(x) = 0 :

More exactly, given x0, an initial, rough guess of the solution, the method builds a sequence

of points

x0 ; x1 ; : : : xk ; xk+1 ; : : :

which converge to the true solution of the problem

lim
k!1

xk = x� ;

where

f(x�) = 0 :

We start with an intial guess x0. f(x�) can be expanded in Taylor series around the guessed

solution x0

0 = f(x�) = f(x0) + f 0(x0)(x� � x0) +
1

2
f 00(x0)(x� � x0)

2 + � � �
Our purpose is to derive a better approximation for x�. From the above formula we have

�f(x0) = f 0(x0)(x� � x0) +
1

2
f 00(x0)(x� � x0)

2 + � � � =) x� = x0 � f(x0)

f 0(x0)
� f 00(x0)

2f 0(x0)
(x� � x0)

2 + � � �

In this exact formula the higher order terms of the right hand side depend on the unknown x�.
We simply ignore them to arrive at the approximate relation

x� � x1 = x0 � f(x0)

f 0(x0)

The obtained x1 is (hopefully) a better approximation to x� than the initial guess x0 was.

To obtain an even better approximation we repeat the procedure with x1 the ``guess'' and arrive

at

x2 = x1 � f(x1)

f 0(x1)

181

182 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

It is clear now that we can repeat the steps as many times as we need, untill xn is sufficiently

close to x�.

The sequence of succesive approximations is built recursively using Newton's formula

xk+1 = xk � f(xk)

f 0(xk)
; k = 0; 1; 2; : : : (17.1)

From the formula we infer that

� each iteration requires one evaluation of the function f and one evaluation of its derivative

f 0;

� the iteration step cannot be performed if f 0(xk) = 0.

Usually, if f 0(x�) 6= 0 and x0 sufficiently close to x� then Newton iterations converge very

fast.

The order of convergence of an iterative procedure is the largest number p for which

jx� � xk+1j � Cjx� � xkjp

(here C is some constant which does not depend on k). The larger p is the faster the method

converges.

For Newton's method p = 2; we say that Newton's method converges quadratically. To see

this we develop f(x�) in Taylor series around xk:

f(x�) = f(xk) + f 0(xk)(x� � xk) +
1

2
f 00(xk)(x� � xk)2 + : : :

fsince f(x�) = 0g
0 = f(xk) + f 0(xk)(x� � xk) +

1

2
f 00(xk)(x� � xk)2 + : : :

�f(xk) = f 0(xk)(x� � xk) +
1

2
f 00(xk)(x� � xk)2 + : : :

� f(xk)

f 0(xk)
= x� � xk +

f 00(xk)(x� � xk)2

2f 0(xk)
+ : : :

xk � f(xk)

f 0(xk)
= x� +

f 00(xk)

2f 0(xk)
(x� � xk)2 + : : :

fsince xk+1 = xk � f(xk)=f
0(xk)g

xk+1 = x� +
f 00(xk)

2f 0(xk)
(x� � xk)2 + : : :

xk+1 � x� =
f 00(xk)

2f 0(xk)
(x� � xk)2 + : : :

jxk+1 � x�j � max
k

����� f 00(xk)2f 0(xk)

����
�
jx� � xkj2 = Cjx� � xkj2

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 183

17.1.1 Order of convergence

To check experimentally that the order of convergence equals p we form the error ratios and

see that they converge to a constant:

jx� � xk+1j
jx� � xk jp

�!

k !1 Const:

Check this for the example

f(x) = x4 � 9x3 � 17x2 + 225x� 200 ; x� = 1 ; x0 = 0 :

f(x) = x5 � 7x4 + 24x3 � 48x2 + 55x� 25 ; x� = 1 ; x0 = 0 :

17.2 The Secant Method

The sequence of succesive approximations is built recursively using the formula

xk+1 = xk � f(xk)

sk
; k = 0; 1; 2; : : : (17.2)

With Newton's method sk = f 0(xk).

In order to avoid the (possibly expensive) derivative computation at each step, we use

sk =
f(xk)� f(xk�1)

xk � xk�1
:

The order of convergence for the secant method is

p =
1 +
p
5

2
� 1:6

(the proof is rather cumbersome and we skip it here). Since 1 < p < 2 we say that the secant

method converges superlinearly.

17.3 The Modi�ed Newton Method

Again, the idea is to reduce the number of derivative computations without hurting the convergence

of the method.

Modified Newton uses formula (17.2) with

sk = f 0(x0) ; for all k :

that is

xk+1 = xk � f(xk)

f 0(x0)
; k = 0; 1; 2; : : : (17.3)

This means that only one derivative computation is required, regardless of the number of iterations

involved.

If after, say, m iterations the speed of convergence decreases, we need to update the derivative;

set

sk = f 0(xm) ; for all future k :

184 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

and continue with

xk+1 = xk � f(xk)

f 0(xm)
; k = m;m+ 1;m+ 2; : : : (17.4)

Modified Newton is a method extensively used in scientific and engineering computations.

To obtain the order of convergence, we do the following calculations:

f(x�) = f(xk) + f 0(xk)(x� � xk) + : : :

fsince f(x�) = 0g
0 = f(xk) + f 0(xk)(x� � xk) + : : :

�f(xk) = f 0(xk)(x� � xk) + : : :

� f(xk)

f 0(x0)
=

f 0(xk)

f 0(x0)
(x� � xk) + : : :

xk � f(xk)

f 0(x0)
= xk +

f 0(xk)

f 0(x0)
(x� � xk) + : : :

fsince xk+1 = xk � f(xk)=f
0(x0)g

xk+1 = xk +
f 0(xk)

f 0(x0)
(x� � xk) + : : :

xk+1 � x� =

�
1� f 0(xk)

f 0(x0)

�
(xk � x�) + : : :

jxk+1 � x�j � max
k

�����1� f 0(xk)

f 0(x0)

����
�
jx� � xk j

= Cjx� � xkj

This means that p = 1 and we say that the Modified Newton method converges linearly. Of

course, for convergence we need C < 1.

17.4 Fixed point iterations

The example

f(x) = x5 � 7x4 + 24x3 � 48x2 + 55x� 25 = 0 :

can be witten as

x =
�x5 + 7x4 � 24x3 + 48x2 + 25

55

which can be transformed in the iterations:

xk+1 =
�x5k + 7x4k � 24x3k + 48x2k + 25

55

In general the relation f(x) = 0 is rewritten as x = g(x) and we use the iterations xk+1 =
g(xk). These iterations converge if jg0j < 1.

For linearly convergent iterations we define the rate C as the limit

jx� � xk+1j
jx� � xkj

�!

k !1 Const:

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 185

17.5 The Newton Method for Systems

The Newton method is useful for solving nonlinear systems of equations of the form8>>><
>>>:

f1(x1; x2; : : : ; xn) = 0
f2(x1; x2; : : : ; xn) = 0

...

fn(x1; x2; : : : ; xn) = 0

(17.5)

There are n independent variables x1; x2; : : : ; xn; in vector notation, these variables are the

entries of the vector variable ~x

~x =

2
6664

x1
x2
...

xn

3
7775

The system is defined by n functions f1; f2; : : : ; fn (each fi is a function of the n variables x1; x2; : : : ; xn).
In vector notation,

~f (~x) =

2
6664

f1(x1; x2; : : : ; xn)
f2(x1; x2; : : : ; xn)

...

fn(x1; x2; : : : ; xn)

3
7775

Therefore, the system of equations (17.5) can be written compactly as

~f (~x) = ~0 :

We want to find a solution of the system, i.e. a set of values ~x�1; : : : ; ~x
�
n such that all the

equations are simultaneously satisfied

~f(~x�) =

2
6664

f1(x
�
1; x

�
2 : : : ; x

�
n)

f2(x
�
1; x

�
2 : : : ; x

�
n)

...

fn(x
�
1; x

�
2 : : : ; x

�
n)

3
7775 =

2
6664

0
0
...

0

3
7775 = ~0 :

Newton's method builds a sequence of points

~x0 ; ~x1 ; : : : ~xk ; ~xk+1 ; : : :

which converge to the true solution of the problem

lim
k!1

~xk = ~x� :

In one dimension, the sequence is built using Newton's formula

xk+1 = xk � �f 0(xk)��1 f(xk) ; k = 0; 1; 2; : : : (17.6)

For n-dimensional problems, this formula generalizes to

~xk+1 = ~xk � �F (xk)��1 ~f(xk) ; k = 0; 1; 2; : : : (17.7)

186 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

The place of the derivative f 0 is now taken by the Jacobian matrix F defined as

F (~x) =

�
@fi
@xj

�
1�i;j�n

=

2
66664

@f1
@x1

@f1
@x2

: : : @f1
@xn

@f2
@x1

@f2
@x2

: : : @f2
@xn

...
...

...
@fn
@x1

@fn
@x2

: : : @fn
@xn

3
77775

Let
~Æk = ~xk+1 � ~xk ; ~xk+1 = ~xk + ~Æk :

The Newton formula (17.7) can be written as

F (~xk)~Æk = �~f(~xk) : (17.8)

This is a system of linear equations; F is a n�n matrix, ~Æ and and ~f are n-dimensional
vectors.

One step of the Newton method (say, the kth step) proceeds as follows:

0 We have ~xk available, and want to compute the next iterate, ~xk+1;

1 Evaluate the vector function ~f(~xk) (we evaluate each component function f1 : : : fn individually);

2 Evaluate the derivative matrix F (~xk) (each entry @fi=@~x
j is a function of ~x1 : : : ~xn and need

to be evaluated individually);

3 Solve the system (17.8). For this, we need to

3.1 compute the LU decomposition (with pivoting) of the matrix F (~xk);

3.2 apply the back-substitution algorithm to the right hand side �~f(~xk), to obtain the

solution ~Æk;

This step cannot be performed if F (~xk) is singular; if this happens we need to terminate

the computations.

4 Compute the next iterate as ~xk+1 = ~xk + ~Æk.

Note that one Newton step is very expensive. We have to evaluate O(n2) functions (the entries

of F (~x)) and we need to calculate the LU decomposition of F each step.

17.6 The Modi�ed Newton Method for Systems

The idea is to reduce the number of derivative evaluations and the number of LU decompositions

without hurting the convergence of the method.

The modified Newton formula is

~xk+1 = ~xk �A�1 ~f(xk) ; k = 0; 1; 2; : : : (17.9)

with

A = F (x0) :

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 187

The modified Newton step can be equivalently written as

A~Æk = �~f(~xk) ; ~xk+1 = ~xk + ~Æk : (17.10)

This means that only one Jacobian (A = F (~x0) computation is required, and only one LU decomposition

is performed, regardless of the number of iterations involved. All the linear systems (17.10)

share the same ``coefficient'' matrix A, and therefore we can re-use the same LU decomposition.

With modified Newton, we start with computing the matrix A = F (~x0 and its LU decomposition

(with pivoting!). The algorithm does not work if F (~x0) is singular; if this happens we need

to terminate the computations.

One step of the Modified Newton algorithm follows.

0 We have ~xk available, and want to compute the next iterate, ~xk+1;

1 Evaluate the vector function ~f(~xk) (we evaluate each component function f1 : : : fn individually);

2 Solve the system (17.10). For this, we use the available LU decomposition of A. Apply

the back-substitution algorithm to the right hand side �~f(~xk), to obtain the solution
~Æk;

3 Compute the next iterate as ~xk+1 = ~xk + ~Æk.

If after, say, m iterations the speed of convergence decreases, we need to update the derivative;

set

A = ~f(~xm) ;

and continue with (17.9) for k � m.

From the third iteration on we will monitor the progress of the iterations. For a good

starting point, if the iterations proceed all right, we have

k~xk+1 � ~xkk � �kk~xk � ~xk�1k

Estimate

�k � k~x
k+1 � ~xk + �k
k~xk � ~xk�1�k

(with � � 10�8 to guard against division by zero). If �k > 0:9 then the progress of the iterations

is not satisfactory; with modified Newton we have to update the derivative,

A = F (~xk+1)

and continue with the iterations.

If �k > 1 for 3 or 4 consecutive steps the iteration is likely to diverge, and a better

starting point should be chosen; print the proper message and exit gracefully.

188 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

Chapter 18

Polynomial Interpolation

18.1 Example

Given the m+1 data points (ti; yi) for 0 � i � m, we want to find a degree m polynomial that

``passes through'' all the data points.

18.2 Direct algorithm for polynomial interpolation

Given the m+1 data points (ti; yi) for 0 � i � m, we want to find a degree m polynomial that

``passes through'' all the data points. This polynomial is

p(t) = a0 + a1t+ � � �+ amt
m :

To determine the m+1 coefficients a0 � � � am we write the interpolating conditions which require

the value of the polynomial in ti be equal to yi

p(t0) = y0 =) a0 + a1t0 + � � �amtm0 = y0
p(t1) = y1 =) a0 + a1t1 + � � �amtm1 = y1

...

p(tm) = ym =) a0 + a1tm + � � � amtmm = ym

These relation can be formulated as an (m+ 1)� (m+ 1) linear system:

� a = y ;

with the system matrix � (it has a special form and is called a Vandermonde matrix)

� =

2
6664

1 t0 � � � tm�10 tm0
1 t1 � � � tm�11 1m2
...

...
...

1 tm � � � tm�1m tmm

3
7775 ; (�)ij = tj�1i�1 1 � i; j � m+ 1 :

The vector of measurements y and the vector of polynomial coefficients a are

y =

2
64 y1

...

ym

3
75 ; a =

2
64 a0

...

am

3
75 :

189

190 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

18.3 Nested polynomial evaluation

We want to evaluate the value of the polynomial p at a certain point z. Using the ``nested''

factorization

p(z) = a0 + a1z + a2z
2 + � � �+ am�2z

m�2 + am�1z
m�1 + amz

m

= a0 + z (a1 + z (� � � z (am�2 + z (am�1 + zam)) � � �))

the value p(z) can be evaluated in only m multiplications and m additions: we initialize

p = am and for every i from m� 1 to 0 we update pnew = ai + zpold.

18.4 Lagrange form of the interpolation polynomial

18.5 Newton form of the interpolation polynomial

18.6 Reconstructing functions

Sometimes not possible, see Runge's function. Between the interpolating points the polynomial

ocillates wildely.

18.7 Chebyshev points

Equidistant n points in [�1; 1] are

tk = �1 + 2
k � 1

n� 1
; k = 1; � � � ; n :

Chebyshev points are

tk = � cos

�
(2k � 1)�

2n

�
; k = 1; � � � ; n :

Chapter 19

Numerical Integration

19.1 The Numerical Integration Problem

We have learned in Calculus how to compute the definite integral

Z b

a

f(x)dx

where f(x) is a continuous function. If F (x) is the antiderivative of f(x), then the Fundamental

Theorem of Calculus states that Z b

a

f(x)dx = F (b)� F (a) :

In most practical situations, however, the antiderivative is not available. For example,

the Gaussian integral Z 1

0

e�x
2

dx

cannot be evaluated analytically, since the antiderivative of e�x
2

is not an elementary function.

The purpose of this project is to compute numerically the definite integral
R b
a f(x)dx; in

other words, we want an algorithm (that will translate in a piece of code) to compute an approximation

of the integral, up to the desired accuracy.

In Calculus we learned that the integral is a limit of Riemann sums. On a computer, we

also approximate the integral by a sum. We consider the set of node points fxig

a = x0 < x1 < x2 < : : : < xn�1 < xn = b

and approximate the integral by the sum

Z b

a

f(x)dx �
nX
i=0

wif(xi) :

There are many possible, meaningfull choices for the node points values xi and the values of

the weights wi; different sets of values define different integration methods.

191

192 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

In what follows we focus on two simple algorithms: the trapezoidal and the Simpson method.

All the methods discussed here use an equidistant set of node points. More precisely, if we

define the step

h =
b� a

n

the node points are

xi = a+ i h ; i = 0; 1; : : : ; n :

19.2 The Trapezoidal Method

This method was extensively discussed in class. The integral is approximated by the sum

Tn =
h

2
(f(x0) + 2 f(x1) + : : :+ 2 f(xn�1) + f(xn))

Note that the weights are

wi =

�
h=2 for i = 0 and i = n
h for 1 � i � n� 1

19.3 The Simpson Method

The Simpson method uses quadratic approximations of the function on each subinterval [x2j ; x2j+2]
(three function values, at x2j,x2j+1 and x2j+2 are used to determine uniquely the quadratic

polynomial). We add up all the integrals of the quadratic polynomials on all the subintervals,

to obtain an approximation of the function integral over [a; b]. This approximation is (the

Simpson formula)

Sn =
h

3
(f(x0) + 4 f(x1) + 2 f(x2) + 4 f(x3) + 2 f(x4) : : :+ f(xn))

Note that the weights are

wi =

8<
:

h=3 for i = 0 and i = n
2h=3 for i even; 1 � i � n� 1
4h=3 for i odd; 1 � i � n� 1

An efficient implementation of the algorithm that computes Sn for different values of n
might use 3 variables:

sum endn = f(a) + f(b)
sum oddn =

P
1�i<n; i odd f(xi)

sum evenn =
P

1�i<n; i even f(xi)

The integral is

Sn = h � (sum endn + 4:d0 � sum oddn + 2:d0 � sum evenn)=3:d0

To implement the adaptive Simpson method, we need to compute S2n efficiently, re-using the

function values that were calculated for Sn. The key is to observe that, when doubling the

number of subintervals, the old node points x0; x1; : : : ; xn are a subset of the new node points

become �x0;�(x2; : : : ; �xn are a subset of the node points x0; x1; : : : ; xn.

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 193

19.4 Example.

The Gaussian integral Z 1

0

e�x
2

dx = 0:74682413281243

was computed with 14 accurate digits.

The results are given below.

SINGLE PRECISION

Tol Trapezoidal Simpson

error n error n

0.1E+01 -.2E-01 21 0.5E-03 21

0.1E+00 -.2E-01 21 0.4E-04 22

0.1E-01 -.1E-02 23 0.4E-04 22

0.1E-02 -.3E-03 24 0.4E-04 22

0.1E-03 -.2E-04 26 0.3E-05 23

0.1E-04 -.1E-05 28 0.2E-06 24

0.1E-05 -.2E-06 29 -.8E-07 25

0.1E-06 -.2E-06 210 0.0E+00 26

0.1E-07 -.1E-04 0 0.8E-07 28

0.1E-08 -.1E-04 0 0.8E-07 28

0.1E-09 -.1E-04 0 0.8E-07 28

0.1E-10 -.1E-04 0 0.8E-07 28

0.1E-11 -.1E-04 0 0.8E-07 28

DOUBLE PRECISION

TOL Trapezoidal Simpson

error n error n

0.1E+01 -.2E-01 21 0.5E-03 21

0.1E+00 -.2E-01 21 0.4E-04 22

0.1E-01 -.1E-02 23 0.4E-04 22

0.1E-02 -.3E-03 24 0.4E-04 22

0.1E-03 -.2E-04 26 0.3E-05 23

0.1E-04 -.1E-05 28 0.2E-06 24

0.1E-05 -.3E-06 29 0.1E-07 25

0.1E-06 -.2E-07 211 0.7E-09 26

0.1E-07 -.1E-08 213 0.7E-09 26

0.1E-08 -.3E-09 214 0.4E-10 27

0.1E-09 -.2E-10 216 0.3E-11 28

0.1E-10 -.1E-11 218 0.2E-12 29

0.1E-11 -.3E-12 219 0.6E-14 210

Aside from this presentation, we compare the results above with the results obtained via

Gaussian Quadrature integration formula. This method gives excellent results with only several

node points; it is therefore much more efficient than both trapezoidal and Simpson rules.

Gauss Quadrature

error n

-3.0E-4 2

-1.2E-5 3

4.4E-7 4

-8.0E-9 5

194 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

19.5 Homework

Write two subroutines that compute the integral

Z b

a

f(x)dx

by Trapezoidal and Simpson methods respectively.

The user will provide the function f, the interval endpoints a and b, and the tolerance

tol.

The routines will return Tn, and Sn respectively. The number of node points n should be

a power of 2 (n = 2k). n is automatically selected by the routine such that the numerical

result approximates the true integral within tol (jTn �
R
b

a
f(x)dxj � tol, and jSn �

R
b

a
f(x)dxj � tol

respectively). The routines will also return ierr, a state variable. ierr=0 means that the

integration did not succeed; if the integration was successfull, then ierr returns the number

of node points n.

The trapezoidal routine header and the declarations part should look like

subroutine trap(f,a,b,tol,T,ierr)

implicit none

interface

real function f(x)

real, intent(in) :: x

end function f

end interface

real, intent(in) :: a,b,tol

real, intent(out) :: T

integer, intent(out) :: ierr

The Simpson routine header and the declarations part should look like

subroutine simpson(f,a,b,tol,S,ierr)

implicit none

interface

real function f(x)

real, intent(in) :: x

end function f

end interface

real, intent(in) :: a,b,tol

real, intent(out) :: S

integer, intent(out) :: ierr

You need to insert detailed comments about the meaning of input, output and local variables,

and about the computational algorithm.

Both routines will reside in the same file, named integration.f90.

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 195

19.6 Test Problem.

Use your routines to compute the Gaussian integralZ 1

0

e�x
2

dx = 0:74682413281243

whose value (computed with 14 accurate digits) is shown above.

The results are given below.

SINGLE PRECISION

Tol Trapezoidal Simpson

error n error n

0.1E+01 -.2E-01 21 0.5E-03 21

0.1E+00 -.2E-01 21 0.4E-04 22

0.1E-01 -.1E-02 23 0.4E-04 22

0.1E-02 -.3E-03 24 0.4E-04 22

0.1E-03 -.2E-04 26 0.3E-05 23

0.1E-04 -.1E-05 28 0.2E-06 24

0.1E-05 -.2E-06 29 -.8E-07 25

0.1E-06 -.2E-06 210 0.0E+00 26

0.1E-07 -.1E-04 0 0.8E-07 28

0.1E-08 -.1E-04 0 0.8E-07 28

0.1E-09 -.1E-04 0 0.8E-07 28

0.1E-10 -.1E-04 0 0.8E-07 28

0.1E-11 -.1E-04 0 0.8E-07 28

DOUBLE PRECISION

TOL Trapezoidal Simpson

error n error n

0.1E+01 -.2E-01 21 0.5E-03 21

0.1E+00 -.2E-01 21 0.4E-04 22

0.1E-01 -.1E-02 23 0.4E-04 22

0.1E-02 -.3E-03 24 0.4E-04 22

0.1E-03 -.2E-04 26 0.3E-05 23

0.1E-04 -.1E-05 28 0.2E-06 24

0.1E-05 -.3E-06 29 0.1E-07 25

0.1E-06 -.2E-07 211 0.7E-09 26

0.1E-07 -.1E-08 213 0.7E-09 26

0.1E-08 -.3E-09 214 0.4E-10 27

0.1E-09 -.2E-10 216 0.3E-11 28

0.1E-10 -.1E-11 218 0.2E-12 29

0.1E-11 -.3E-12 219 0.6E-14 210

Aside from the project, compare the results above with thre results obtained via Gaussian

Quadrature integration formula. This method gives excellent results with only several node

points; it is therefore much more efficient than both trapezoidal and Simpson rules.

Gauss Quadrature

error n

-3.0E-4 2

-1.2E-5 3

4.4E-7 4

-8.0E-9 5

196 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

Chapter 20

Piecewise Polynomial Interpolation.

Splines.

20.1 The Piecewise Interpolation Problem

Given the m + 1 data points (ti; yi) for 0 � i � m, we want to find continuous function that

``passes through'' all the data points.

One possibility is to compute a degree m polynomial that passes through each of the the

(m+1) data points. Such a polynomial exists and can be uniquely determined; fitting a single

polynomial to a large number of data points can lead to insatisfactory results. We have seen

however that between the interpolation points the polynomial oscillates, and these oscillations

grow larger for higher order polynmials.

We want to use a low order polynomial that interpolates several points in the data set.

On each subinterval we will have a different such polynomial; thus we use piecewise polynomial

interpolation.

For our data set the interpolating function is

f(t) =

8>>>>>>>><
>>>>>>>>:

P1(t) ; for t0 � t � t1
...

Pi(t) ; for ti�1 � t � ti
Pi+1(t) ; for ti � t � ti+1

...

Pm(t) ; for tm�1 � t � tm

Pi are polynomial of the degree wanted. Since we want f(t) to be continuous we require that

Pi(ti) = Pi+1(ti) ; i = 1 � � �m� 1 :

197

198 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

20.2 Piecewise linear interpolation

On each subinterval [ti�1; ti] we have a linear polynomial

Pi(t) = yi�1 +
t� ti�1
ti � ti�1

(yi � yi�1) ; i = 0 � � �m :

20.3 Spline interpolation

On each subinterval [ti�1; ti] we have a cubic polynomial Pi(t). To obtain a very smooth, good-looking

curve with minimal unwanted oscillations we impose that the function f(t) is twice continuously

differentiable. This means that we impose the continuity, countinuous first derivative and

continuous second derivative conditions at all intermediate points:

Pi(ti) = Pi+1(ti) ; P 0i (ti) = P 0i+1(ti) ; P 00i (ti) = P 00i+1(ti) ; i = 1 � � �m� 1 : (20.1)

The length of the ith interval is

hi = ti � ti�1 ; i = 1; � � � ;m :

The piecewise cubic polynomials have the form:

Pi(t) = ai�1
(ti � t)

3

6hi
+ ai

(t� ti�1)
3

6hi

+

�
yi�1 � ai�1h

2
i

6

�
ti � t

hi
+

�
yi � aih

2
i

6

�
t� ti�1

hi
; i = 1 � � �m ; ti�1 � t � ti :

The parameters ai will be calculated such that the continuity conditions (20.1) are satisfied.

20.3.1 Interpolation and Continuity.

We compute the values at ti�1 and ti to see that the interpolation condition is automatically

satisfied:

Pi(ti�1) = ai�1
(ti � t)3

6hi
+

�
yi�1 � ai�1h

2
i

6

�
ti � t

hi

= ai�1
h2i
6
+

�
yi�1 � ai�1h

2
i

6

�
= yi�1

Pi(ti) = ai
(ti � ti�1)

3

6hi
+

�
yi � aih

2
i

6

�
t� ti�1

hi

= ai
h2i
6
+

�
yi � aih

2
i

6

�
= yi

The interpolating relation

Pi(ti) = Pi+1(ti) = yi

means also that the function f(t) is continuous.

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 199

20.3.2 Same slope condition.

The first derivative is

P 0i (t) = �ai�1 (ti � t)
2

2hi
+ ai

(t� ti�1)
2

2hi

�
�
yi�1 � ai�1h

2
i

6

�
1

hi
+

�
yi � aih

2
i

6

�
1

hi
; i = 1 � � �m ; ti�1 � t � ti :

At the end points

P 0i (ti�1) = �ai�1 (ti � ti�1)
2

2hi
�
�
yi�1 � ai�1h

2
i

6

�
1

hi
+

�
yi � aih

2
i

6

�
1

hi
;

= �ai�1hi
3

+
yi � yi�1

hi
� aihi

6

P 0i (ti) = ai
(ti � ti�1)

2

2hi
�
�
yi�1 � ai�1h

2
i

6

�
1

hi
+

�
yi � aih

2
i

6

�
1

hi

=
aihi
3

+
yi � yi�1

hi
+
ai�1hi

6
i = 1 � � �m ; ti�1 � t � ti :

where we used the relation hi = ti�ti�1 several times. Changing i! i+1 in the first relation

above gives

P 0i+1(ti) = �aihi+1

3
+
yi+1 � yi
hi+1

� ai+1hi+1

6

The ``same slope'' condition at all intermediate points

P 0i (ti) = P 0i+1(ti) ; for intermediate points i = 1; � � � ;m� 1 :

translates to

aihi
3

+
yi � yi�1

hi
+
ai�1hi

6
= �aihi+1

3
+
yi+1 � yi
hi+1

� ai+1hi+1

6
; i = 1; � � � ;m� 1

or, after some manipulations

hi
6
ai�1 +

hi + hi+1

3
ai +

hi+1

6
ai+1 =

yi+1 � yi
hi+1

� yi � yi�1
hi

; i = 1; � � � ;m� 1: (20.2)

These are m�1 relations to determine the m+1 unknown coefficients a0; � � � ; am. Clearly,

we need two more relations in order to arrive at a unique solution. Depending on these extra

two relations, we obtain splines of different flavours (natural, B-splines, not-a-knot).

For ``natural spline'' the extra conditions are

a0 = 0 ; am = 0 :

For the remaining unknown values a1 � � � am�1 the relations (20.2) can be written as a linear

system2
6666666666664

h1+h2
3

h2
6 0 � � � � � � 0 0

h2
6

h2+h3
3

h3
6 0 � � � � � � 0

...
...

...
...

...
...

... 0 hi
6

hi+hi+1
3

hi+1
6 0

...
...

... 0
...

...
... 0

0 � � � � � � 0 hm�2
6

hm�2+hm�1
3

hm�1
6

0 0 � � � � � � 0 hm�1
6

hm�1+hm
3

3
7777777777775

2
6666664

a1
...

ai
...

am�1

3
7777775 =

2
66666664

y2�y1
h2
� y1�y0

h1
...

yi+1�yi
hi+1

� yi�yi�1
hi

...
ym�ym�1

hm
� ym�1�ym�2

hm�1

3
77777775

(20.3)

200 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

The matrix of this system is tridiagonal and the system can be solved very efficiently.

20.3.3 Same curvature condition.

The second derivative is

P 00i (t) = ai�1
ti � t

hi
+ ai

t� ti�1
hi

; i = 1 � � �m ; ti�1 � t � ti :

At the end points we have

P 00i (ti�1) = ai�1 ; P 00i (ti) = ai :

Shifting again the index in the first relation i! i+ 1 gives

P 00i+1(ti) = ai =) P 00i+1(ti) = P 00i (ti) ;

therefore the same curvature condition is also satisfied.

20.4 Example

Consider the seven-point data set

t y

-0.97492791218182 0.09519417591355

-0.78183148246803 0.14059547049600

-0.43388373911756 0.34691493861656

-0.00000000000000 1.00000000000000

0.43388373911756 0.34691493861656

0.78183148246803 0.14059547049600

0.97492791218182 0.09519417591355

tk are the seven Chebyshev points

tk = � cos

�
(2k � 1)�

14

�
; k = 1; � � � 7 :

and yk the corresponding value of the Runge function

r(t) =
1

1 + 10t2
; yk = r (tk) :

Fitting a degree-6 polynomial through the seven point data set, using piecewise linear and

spline interpolants are shown in Figure 20.4.

20.5 Homework

This project should be done in DOUBLE PRECISION.

Write a subroutine spline that has:

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 201

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

data points
order−6 polyn. interp.
desired shape

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

data points
piecewise linear interp.
desired shape

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

data points
spline interpolation
desired shape

Figure 20.1: Di�erent interpolants for the data set. Polynomial interpolant is order 6 (upper plot) and
oscillates. Piecewise linear interplation (middle) is non-smooth, while spline interpolation (lower plot) is
smooth and approximates the function very well.

202 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

20.5.1 Input.

� t and y, (m+1)-dimensional vectors of data.

� x, an arbitrary (k)-dimensional vector of abscissa values.

20.5.2 Output.

� v the (k)-dimensional vector of spline interpolant values, v(i) = S(x(i)).

The interface of this routine should be

subroutine spline(t,y,x,v)

implicit none

double precision, intent(in), dimension(:) :: t,y,x

double precision, intent(out), dimension(:) :: v

end subroutine spline

You will need to compute the parameters ai first. Use natural splines. For the solution

of the resulting tridiagonal system. use LAPACK's function dgtsv. Be very careful on the

data vectors needed (we do not use the full matrix, only the 3 diagonals as vectors).

Go to http://www.netlib.org/lapack/double/dgtsv.f for more information on how to use this

function.

SUBROUTINE DGTSV(N, NRHS, DL, D, DU, B, LDB, INFO)

*

* .. Scalar Arguments ..

INTEGER INFO, LDB, N, NRHS

* ..

* .. Array Arguments ..

DOUBLE PRECISION B(LDB, *), D(*), DL(*), DU(*)

* ..

*

* Purpose

* =======

*

* DGTSV solves the equation

*

* A*X = B,

*

* where A is an n by n tridiagonal matrix, by Gaussian elimination with

* partial pivoting.

*

* Note that the equation A'*X = B may be solved by interchanging the

* order of the arguments DU and DL.

*

* Arguments

* =========

*

* N (input) INTEGER

* The order of the matrix A. N >= 0.

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 203

*

* NRHS (input) INTEGER

* The number of right hand sides, i.e., the number of columns

* of the matrix B. NRHS >= 0.

*

* DL (input/output) DOUBLE PRECISION array, dimension (N-1)

* On entry, DL must contain the (n-1) sub-diagonal elements of

* A.

*

* On exit, DL is overwritten by the (n-2) elements of the

* second super-diagonal of the upper triangular matrix U from

* the LU factorization of A, in DL(1), ..., DL(n-2).

*

* D (input/output) DOUBLE PRECISION array, dimension (N)

* On entry, D must contain the diagonal elements of A.

*

* On exit, D is overwritten by the n diagonal elements of U.

*

* DU (input/output) DOUBLE PRECISION array, dimension (N-1)

* On entry, DU must contain the (n-1) super-diagonal elements

* of A.

*

* On exit, DU is overwritten by the (n-1) elements of the first

* super-diagonal of U.

*

* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)

* On entry, the N by NRHS matrix of right hand side matrix B.

* On exit, if INFO = 0, the N by NRHS solution matrix X.

*

* LDB (input) INTEGER

* The leading dimension of the array B. LDB >= max(1,N).

*

* INFO (output) INTEGER

* = 0: successful exit

* < 0: if INFO = -i, the i-th argument had an illegal value

* > 0: if INFO = i, U(i,i) is exactly zero, and the solution

* has not been computed. The factorization has not been

* completed unless i = N.

*

Recall that the compilation is done with

f90 spl:f90 � llapack � lblas

After you found ai's you can start to compute the interpolating values v.

� For every x(`) find the interval where it lies, ti�1 � x(`) � ti, and compute the value

of the respective polynomial v(`)= Pi(x(`));

� If x(`)< t0 then the point is outside left the interpolating interval and we simply return

y0 for the value of the interpolating polynomial at that point.

� If x(`)> tm then the point is outside right the interpolating interval and we simply return

ym for the value of the interpolating polynomial at that point.

204 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

20.5.3 Test

Test your code on the data set:

t y

-1.0 0

-0.5 2.0

0 0

0.5 -4.0

1.0 1.0

Use x = �1 : 0:01 : 1. Find v. Save [t,y] and [x,v] in ascii files.

In MATLAB load the result files and plot the data and the obtained values:

plot(t,y,'o',x,v)

legend('Data','Spline')

print -deps spl.eps

20.5.4 Note

In the theory the data points are counted (t0; y0) through (tm; ym). Inside the program you will

need to count the data points from 1 to m. This can be in principle avoided by specifying

the subscript range for the vectors.

20.5.5 Submit

a single file spl.f90 that contains all the routines needed to run the spline interpolation

(of course, without the LAPACK routine).

20.5.6 Test Driver

program test_spline

implicit none

interface

subroutine spline(t,y,x,v)

implicit none

double precision, intent(in), dimension(:) :: t,y,x

double precision, intent(out), dimension(:) :: v

end subroutine spline

end interface

integer, parameter :: ndata=5

integer, parameter :: nplot=201

double precision, dimension(ndata) :: t = (/-1.d0,-.5d0,0.d0,0.5d0,1.0d0/)

double precision, dimension(ndata) :: y = (/0.d0,2.d0,0.d0,-4.d0,1.d0/)

double precision, dimension(nplot) :: x=(/ (-1.d0+(i-1)*1.0D-2, i=1,nplot) /)

double precision, dimension(nplot) :: v

integer :: i

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 205

!

call spline(t,y,x,v)

!

open(10, file='Data.m',action='WRITE')

open(20, file='Results.m',action='WRITE')

!

do i=1,ndata

write(10,FMT='(F24.16,4X,F24.16)') t(i), y(i)

end do

!

do i=1,nplot

write(20,FMT='(F24.16,4X,F24.16)') x(i), v(i)

end do

!

close(10)

close(20)

!

end program test_spline

Results of this example are shown in the next Figure.

206 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

1

2

3

Data Points
Natural Spline (ours)
Not−a−Knot Spline (Matlab−s)

Figure 20.2: The spline results for the test driver.

Chapter 21

Taylor Polynomials

21.1 The Taylor Polynomial

Most mathematical functions (exp, sin, cos, etc) cannot be in general evaluated exactly. By

hand, and on a computer as well, we usually calculate some approximations to these functions.

The approximate functions need to be easy to evaluate, and have to provide values which are

close enough to the values of the original function. One of the most convenient ways to compute

functions is to approximate them by polynomials.

A Taylor polynomial of degree n is constructed to mimic the behavior of f(x) near a point

x = a. If pn is a degree n Taylor polynomial,

pn(x) = b0 + b1 (x� a) + b2 (x� a)2 + : : :+ bn (x� a)n

it has n+ 1 coefficients a0 through an.

We have to choose the n + 1 coefficients such that pn(x) � f(x) for x � a. For this, it

is natural to require that the value of the polynomial (and the values of its first n derivatives)

coincides with the value of the function (and the values of function's first n derivatives,

respectively) for x = a. This means that pn(a) = f(a), and since b0 = pn(a) we have determined

b0. This one condition is clearly not sufficient to determine all n+1 coefficients of the

polynomial. An extra condition, that forces more resemblance between pn and f when x � a
is p0n(a) = f 0(a). Since b1 = p0n(a), we have determined the second coefficient also. If n =
1 this is enough; if not, we continue imposing conditions on higher derivates of pn, until

we have n+ 1 conditions for the n+ 1 coefficients:

pn(a) = f(a)

p0n(a) = f 0(a)

: : :

p(n)n (a) = f (n)(a)

To fix the ideas, let f(x) = ex, a = 0 and n = 1. Then

p1(x) = b0 + b1 (x � a)

has two unknown coefficients, a0 and a1. We therefore use the conditions

b0 = p1(a) = f(a) = e0 = 1

207

208 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

b1 = p01(a) = f 0(a) = e0 = 1

Hence, p1(x) = 1 + x.

For n = 2, we add the third condition p0002 (0) = (ex)000(0), which reads 2 b2 = 1, or b2 = 1=2.
Thus the quadratic approximation of ex near a = 0 is

p2(x) = 1 + x+
x2

2
:

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f = exp(x)
p

1
 = 1+x

p
2
 = 1+x+x2/2

In the general case, if is easy to see that

pn(x) =

nX
i=0

(x� a)j

j!
f (j)(a)

(to check this take the first several derivatives of pn and evaluate them at x = a).

In order to be able to write this formula, we need of course to assume that f is at least

n times continuously differentiable; we will actually assume f 2 Cn+1 for the purpose of

writing an error estimate also.

For f 2 C1 (f has derivatives of any order) we can increase n indefinitely; the approximations

pn get better and better, and, in the limit, they will coincide with f. In the limit the summation

becomes infinite, and we obtain the Taylor series expansion

f(x) =

1X
i=0

(x � a)j

j!
f (j)(a)

Question: to define pn we have to evaluate f, together with several of its derivatives.

Aren't we better off just evaluating f, and forgetting about this whole approximation stuff?

The answer is that, indeed, we have to evaluate f; f 0; : : : f (n) at a once. Then pn, once constructed,

will be a cheap approximation for thousands of future calls. Moreover, f and its derivatives

are evaluated at one point a, while pn(x) is a good approximation of f(x) for an entire interval

x 2 [a� `; a+ `].

Homework 0.25 Produce a general formula for the Taylor polynomial pn(x), when a = 0 and f(x)
is

1)
p
1 + x ; and 2) (1 + x)1=3 :

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 209

Homework 0.26 For different a's we have diferent pn's. For example, let

f(x) = 1 + 2x+ 3x2 + 4x3

Thus f is a polynomial, and p3(x) = f(x) for a = 0. Now, the question is to find �p3(x) when

a = 1, i.e.

�p3(x) = b0 + b1(x � 1) + b2(x� 1)2 + b3(x � 1)3

21.2 Taylor Remainder

In practice, given a function f and a desired accuracy �, we would like know which degree n
to choose for the Taylor polynomial approximation, such that

jf(x) � pn(x)j � � :

In other words, the error made when replacing f by pn should not exceed �. Higher degree Taylor

polynomials provide better approximations, but are more and more expensive to compute. Can

we find the minimal order n (� cheapest to compute pn) for which the approximation error is

small enough ?

The following formula from Calculus is exactly what we need to estimate the error.

Let f(x) have n + 1 continuous derivatives for a � ` � x � a + `. Construct the Taylor

polynomial pn that approximates f around a. The difference between the function value and

the polynomial value Rn(x) = f(x)� pn(x) is

Rn(x) =
(x� a)n+1

(n+ 1)!
f (n+1)(c); � � x � �;

where c is an unknown number between a and x. Rn(x) is therefore the approximation error;

it is called the Taylor remainder.

To prove the formula, we use repeated integrations by parts.

f(x) = f(a) +

Z x

a

f 0(t)dt

= f(a)�
Z x

a

(a� t)0f(t)dt

= f(a) + (a� t)f 0(t)jxa +
Z x

a

�
(t� a)2

2

�
f 0(t)dt

= f(a) + (x� a)f 0(a) +
(t� a)2

2
f 00(t)jxa + : : :

The remainders can then be brought from the integral form to the standard form using the

mean value theorem Z x

a

�
(t� a)2

2

�
f 0(t) =

(x� a)2

2
f 0(c)

where c is a number between a and x.

For example, let f(1) = ex and a = 0. We want to find the Taylor polynomial pn which approximates

f(x) within 10�3 for x = 1. The problem can be formulated as follows: find n such that

jRn(1)j � 10�3 :

210 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

According to the Taylor remainder formula

Rn(1) =
(1� 0)n+1

(n+ 1)!
ec; with 0 � c � 1:

Since ec � e < 3 for 0 � c � 1 the following inequality (error bound) holds:

jRn(1)j � 3

(n+ 1)!
:

It is therefore enough to find n such that

3

(n+ 1)!
� 10�3

n = 7 satisfies this and, therefore, p7 is the desired approximation.

When computing functions, or other mathematical objects (e.g. integrals) we are forced

to make certain algorithmic approximations. In our case, we cannot evaluate the infinite Taylor

series; we need to truncate it, i.e. to stop the computations after a finite number of terms.

The resulting error Rn(x) is a first example of truncation error in numerical computing. Truncation

is a second source of numerical errors, after roundoff. While roundoff is due to inexact computer

arithmetic, truncation errors are due to ``inexact mathematical formulas'', i.e. to the algorithmic

approximations we make in order to keep the computations feasible.

\Big Oh" Notation.

If the absolute value of the function �(x) is bounded by a constant times hk as h ! 0,
we say that � = O(hk) (``� is Oh of hk''); this means that � goes to zero as fast as, or

faster than the kth power of h, as h! 0:

�(x) = O(hk) , j�(x)j � C jhkj as h! 0 :

If we want to approximate the function f(x) by the Taylor polynomial pn(x) throughout the

interval x 2 [a� h; a+ h] we make the following approximation error

jf(x) � pn(x)j =
jx� ajn+1

(n+ 1)!
f (n+1)(cx)

� hn+1

(n+ 1)!
max

a�h�cx�a+h
jf (n+1)(cx)j

In other words, the Taylor polynomial approximation error within [a� h; a+ h] is

jf(x)� pn(x)j = O(hn+1) :

Homework 0.27 How many terms do we need to consider in the Taylor polynomial approximation

of 1=(1 � x) around a = 0, such that for �0:1 � x � 0:1 the relative truncation error (i.e.

the Taylor remainder divided by the function value) is less than 100 times the roundoff error?

The computations are done in single precision, � � 10�7. Hint: we want to find n such that

max
�0:1�x�0:1

���� Rn(x)

1=(1� x)

���� � 100� :

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 211

Homework 0.28 Write a computer code that approximates � to 10�5 based on the following steps.

1. Find the nth Taylor polynomial with the remainder Rn for f(x) = 1=(1+x2) around a = 0.

2. Find the nth Taylor polynomial pn with the remainder Rn for f(x) = arctan(x), using the

fact that

arctan(x) =

Z x

0

dt

1 + t2
:

3. Use � = 4arctan(1) � 4pn(1).

21.3 Important functions

In what follows a = 0.

ex =

nX
i=0

xn

n!
+

xn+1

(n+ 1)!
ec

sin(x) =

nX
i=1

(�1)i x2i+1

(2i+ 1)!
+ (�1)n+1 x2n+3

(2n+ 3)!
cos(c)

cos(x) =

nX
i=0

(�1)i x
2i

(2i)!
+ (�1)n+1 x2n+2

(2n+ 2)!
cos(c)

1

1� x
=

nX
i=0

xi +
xn+1

1� x

(1 + x)� =

nX
i=0

�
�
i

�
xi +

�
�

n+ 1

�
xn+1(1 + c)��n�1

where�
�
i

�
=

�(� � 1) � � � (�� i+ 1)

i!

and

i! = i(i� 1)(i� 2) � � � 1

21.4 Applications

Write a program to plot

f(x) =
log(1 + x)

x
for � 0:5 � x � 0:5:

The trouble is that, when x � 0, f(x) � 0=0. We can overcome this problem with Taylor approximating

polynomials:

log(1 + x) �
nX
i=0

(�1)i
i+ 1

xi+1

and therefore
log(1 + x)

x
�

nX
i=0

(�1)i
i+ 1

xi :

The Taylor approximation is well defined (even for x = 0).

212 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

The second problem requires to accurately evaluate

f(x) =
ex � 1

x

for jxj � 10�4. We see that

lim
x!0

ex � 1

x
= 1:

Now, for x = 10�6, in single precision arithmetic,

x = 10�6; ex = 1:00000095

and
ex � 1

x
= 0:9536:::

Clearly this result is corrupted by a large error. The source is the subtraction of two

almost equal numbers, ex and 1. Most of the significant digits will cancel out (in our case,

the first 7 significant digits)

1:00000095� 1:00000000 = 0:95� 10�6

This is called a loss of significance error (or cancellation error). Now, we need to divide

the small and inacurate number 0:95�10�6 by the small number 10�6, which is in fact a multiplication

by 106. The errors of order 10�7 will become now errors of order 10�1.

0:95� 10�6

10�6
= 0:95

Hence, by this division to a small number, the errors migrated from the 7th digit after the

decimal point to the first digit before the decimal point (which is 0, instead of 1).

Using a Taylor polynomial of order 5,

ex � 1

x
� 1 +

x

2
+
x2

6
+
x3

24
+

x4

120
+

x5

840

we can overcome the loss of significance error. Besides, this Taylor approximation is well

defined (and equal to 1) when x = 0. For x = 10�6 the Taylor approximation value is 1:00000048,
correct in the first 7 digits.

21.5 Polynomial Evaluation

We discuss now the computational cost for evaluating the Taylor polynomial value at some point

x
pn(x) = b0 + b1x+ : : : bn�1x

n�1 + bnx
n :

When evaluating x��k the compiler (usually) translates it to k�1 multiplications. Thus,

the naive algorithm

p = b(0)

do i=1,n

p = p + b(i)*x**i

end do

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 213

will require n additions and 1 + 2 + : : : n, i.e. n(n+ 1)=2 multiplications.

A better alternative is to save the computed power of x from one iteration to the next.

Since xi+1 = x � xi, iteration i will need just two multiplications (not i) to compute bix
i.

p = b(0)

powx = 1.0

do i=1,n

powx = powx*x ! powx = x**i

p = p + b(i)*powx

end do

This second algorithm needs n additions and 2n multiplications.

We can do even better than this, by rewriting the polynomial in nested form

pn(x) = b0 + x (b1 + x (: : : (bn�2 + x (bn�1 + bnx)) : : :))

We have to start with the last term and loop back to the first. The algorithm goes as follows

p = b(n)

do i=n-1,0,-1

p = b(i) + x*p

end do

and requires n additions and only n multiplications.

Homework 0.29 Let f(x) = cos(x) and a = 0. Show how to evaluate pn(x) efficiently, using nested

multiplication.

21.6 Sample Program

The following program calculates the order n of the Taylor polynomial which approximates ex

within TOL, for a given X. Note that P is the sum of the series up to n+ 1.

PROGRAM TAYLOR

!

! APPROXIMATES EXP(X) BY A TAYLOR

! POLYNOMIAL OF DEGREE AT MOST 100.

! THE DEGREE IS COMPUTED S.T.

! EXP(X)-P(X) <= TOL

!

IMPLICIT NONE

REAL :: X, P, R, TERM, TOL, E, ERR

INTEGER :: I

INTEGER, PARAMETER :: N_MAX = 100

!

PRINT*,"X="

READ*, X

214 c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing.

PRINT*,"TOLERANCE="

READ*, TOL

!

E = EXP(X) ! TRUE FUNCTION VALUE

ERR = TOL/E ! NORMALIZED ERROR

!

TERM = 1.0

P = 1.0

DO I=1,N_MAX

TERM = TERM*X/REAL(I)

P = P + TERM

IF (TERM .LT. ERR) EXIT

END DO

!

PRINT*,"ORDER=",N-1,". TRUE ERROR=",(E-P)

!

END PROGRAM TAYLOR

21.7 homework

21.7.1 Taylor polynomials

Any sufficiently smooth function f(x) can be approximated the nth order Taylor polynomial pn(x)
for x 2 [a� h; a+ h]

f(x) = pn(x) +Rn(x)

pn(x) =

nX
i=0

f (i)(a)

i!
(x� a)i

The term Rn is called the remainder, and measures the error of the Taylor approximation.

For example, if

f(x) = cos(x) ; a = 0 ; h = �

then cos(x) can be approximated along the interval x 2 [��; �] by the following Taylor polynomial:

cos(x) = pn(x) +Rn(x)

pn(x) =

nX
i=0

(�1)i x
2i

(2i)!

Rn(x) = (�1)n+1 x2n+2

(2n+ 2)!
cos(c)

The quantity c in the definition of Rn is a number between 0 and x.

When we replace cos(x) by pn(x) we make an error of Rn(x). An upper bound for this error

is obtained as follows

jRn(x)j =

����(�1)n+1 x2n+2

(2n+ 2)!
cos(c)

����
=

���� x2n+2

(2n+ 2)!
cos(c)

����
�

���� x2n+2

(2n+ 2)!

���� (since for all c; cos(c) � 1)

c
Adrian Sandu, 1998-2001. Introduction to F95 and Numerical Computing. 215

We know that the factorial grows much faster than the exponential; in the above formula,

when n increases, the denominator grows faster than the numerator. Therefore it is clear that

when n (the order of the Taylor polynomial) increases, Rn decreases (that is, the higher the

order the better we approximate the function).

21.7.2 The project

Write a function my cos that approximates cos(x) by a Taylor polynomial. The subroutine should

work for x 2 [��; �] (this is sufficient, since the interval covers one period of the cosine).

The function should take two arguments, x and tol, and should return the value of pn(x).
The order of the Taylor polynomial n is determined inside the function such that

jRn(x)j � x2n+2

(2n+ 2)!
� tol :

Before returning, the function should print the order of the polynomial determined.

The maximal order allowed for the Taylor polynomial is 100. If we did not succed to properly

approximate cos(x) with polynomials of order up to 100, then probably something is wrong (e.g.

the required tol is smaller than the machine epsilon, etc). In this situation the function

prints an error message and returns (the returned value is p100(x).

The main program should compute my cos(x) and cos(x) and compare their values for tol = 1:e�
3; 1:e� 6; 1:e� 9; for each tolerance use x = k � �=10 with k = 1; 2; : : : 10.

