
In V. Honavar, M. Patel, and K. Balakrishnan (editors)
Advances in the Evolutionary Synthesis of Neural Systems
Cambridge, MA: MIT Press, 1999. 

Learning Sequential Decision Tasks

David E. Moriarty and Risto Miikkulainen

Department of Computer Sciences

The University of Texas at Austin

Austin, TX 78712

moriarty,risto@cs.utexas.edu

Technical Report AI95-229

January 1995

Abstract

This paper presents a new approach called SANE for learning and performing sequential
decision tasks. Compared to problem-general heuristics, SANE forms more e�ective decision
strategies because it learns to utilize domain-speci�c information. SANE evolves neural
networks through genetic algorithms and can learn in a wide range of domains with minimal
reinforcement. SANE's evolution algorithm, called symbiotic evolution, is more powerful
than standard genetic algorithms because diversity pressures are inherent in the evolution.
SANE is shown to be e�ective in two sequential decision tasks. As a value-ordering method
in constraint satisfaction search, SANE required only 1/3 of the backtracks of a problem-
general heuristic. As a �lter for minimax search, SANE formed a network capable of focusing
the search away from misinformation, creating stronger play.

1 Introduction

Sequential decision tasks (Barto et al. 1990; Grefenstette et al. 1990) can be characterized
by the following scenario: An agent observes a state of a dynamic system and chooses from
a �nite set of actions. The system then enters a new state upon which the agent must
select another action. The system may return a payo� after each decision made or after
a sequence of decisions. The objective is to select the sequence of actions that return the
highest cumulative payo�. Often the best strategy is not to maximize each individual payo�,
because some actions may produce high immediate payo�s but may enter states from which
high later payo�s are impossible. Developing good strategies involves assigning credit to
individual decisions based on the overall payo�, which is a di�cult problem in machine
learning known as the credit assignment problem.

1



Sequential decision tasks appear in many practical real-world problems including control,
game playing, scheduling, and resource allocation. In many current applications decisions
are based on simple heuristics or \rule of thumb" strategies. These strategies are normally
problem-general and do not take advantage of domain-speci�c information. For example, in
a communication network, packet routing is normally decided by a shortest-path algorithm,
which is a problem-general policy. However, Littman and Boyan (1993) have shown that
better routing policies can be achieved by incorporating more domain-speci�c knowledge
such as network topology and reliability of local information. Similarly, in most high-rise
buildings, better elevator dispatching systems are being built by incorporating knowledge of
the speci�c tra�c patterns on each 
oor. Therefore, it appears that a learning mechanism
to automatically develop such domain-speci�c strategies could be of great bene�t in a wide
range of tasks.

This paper describes a new approach called SANE (Symbiotic,Adaptive Neuro-Evolution)
that combines genetic algorithms and neural networks to learn and perform sequential de-
cision tasks. Neural networks have proven very e�ective in pattern recognition and pattern
association tasks and have been shown to generalize well to unseen situations. Genetic al-
gorithms provide a general training tool in which few assumptions about the domain are
necessary. Since genetic algorithms only require a single �tness evaluation over the entire
(possibly multi-step) task, they can be applied to domains with very sparse reinforcement,
which makes them particularly well-suited for evaluating performance in sequential decision
tasks.

SANE was implemented in two sequential decision tasks in the �eld of arti�cial intelli-
gence. In the �rst task, SANE evolved a network to perform value ordering in a constraint
satisfaction problem. The SANE network required 1/30 of the backtracks of random value
ordering and 1/3 of the backtracks of the commonly-used maximization of future options
heuristic. In the second task, SANE was implemented to focus a minimax search in the game
of Othello. In this task, SANE formed a network to decide which moves from a given board
situation are promising enough to evaluate. Using the powerful evaluation function from
the Bill program (Lee and Mahajan 1990), SANE was able to generate better play while
examining 33% fewer board positions than normal, full-width minimax search. SANE's per-
formance in these domains demonstrates both its e�ectiveness and applicability to a broad
range of tasks.

The body of this paper is organized as follows. In the next section, the basic steps in
SANE are described along with details of the current implementation. Sections 3 and 4
present the empirical results in the tasks of value ordering and focusing a minimax search.
Future research directions are outlined in section 5, which include applications to non-
Markovian tasks and domains with multiple decision tasks.

2 Symbiotic, Adaptive Neuro-Evolution

Recently there has been much interest in combining genetic algorithms and neural networks.
Genetic algorithms are global search techniques patterned after Darwin's theory of natural

2



evolution. Numerous potential solutions are encoded in strings called chromosomes and
evaluated in a task. Substrings, or genes, of the best solutions are combined to form new
solutions, which are inserted into the population. Each iteration of the genetic algorithm
consists of solution evaluation and recombination and is called a generation. The idea is
that structures that led to good solutions in previous generations can be combined to form
better solutions in subsequent generations.

In neuro-evolution, the solutions take the form of neural networks. Most approaches to
neuro-evolution operate on a population of complete neural networks that are encoded in
separate chromosomes (Belew et al. 1991; Koza and Rice 1991; Whitley et al. 1993). By
evolving full solutions to the problem (i.e. complete neural networks), the algorithm typi-
cally converges the population towards a single dominant individual. Such concentration is
desirable if it occurs at the global optimum, however, often populations prematurely converge
to a local optimum. Once the population has converged,the search becomes a random walk
using the mutation operator.

The problem of premature convergence is not unique to neuro-evolution, but is an open
research issue in the genetic algorithms community as well. To prevent premature conver-
gence, the population must remain diverse. Diversity will disperse individuals throughout
the search space giving the population a more global view of the space of solutions. As a
result, convergence at suboptimal solutions is much more unlikely.

SANE incorporates the idea of diversity into neuro-evolution. SANE evolves a population
of neurons, where the �tness of each neuron is determined by how well it cooperates with
other neurons in the population. To evolve a network capable of performing a task, the
neurons must optimize di�erent aspects of the network and form a mutualistic symbiotic
relationship. Neurons will evolve into several specializations that search di�erent areas of
the solution space. Premature convergence is thus avoided and the population can discover
better solutions to more di�cult problems.

SANE evolves a population of hidden neurons for a given type of architecture such as
a 2-layer-feedforward network (2 layers of weights). The basic steps in one generation of
SANE are as follows (table 1): During the evaluation stage, random subpopulations of size
� are selected and combined to form a neural network. The network is evaluated in the task
and assigned a score, which is subsequently added to each selected neuron's �tness variable.
The process continues until each neuron has participated in a su�cient number of networks.
The average �tness of each neuron is then computed by dividing the sum of its �tness scores
by the number of networks in which it participated. The neurons with high average �tness
have cooperated well with other neurons in the population. Neurons that do not cooperate
and are detrimental to the networks that they form receive low �tness scores and are selected
against.

Once each neuron has a �tness value, crossover operations are used to combine the
chromosomes of the best-performing neurons. Mutation is employed at low levels to introduce
new genetic material. In this sense, mutation is only used as an insurance policy against
missing key genetic material, not as a mechanism to create diversity.

Each neuron is de�ned in a bitwise chromosome that encodes a series of connection
de�nitions, each consisting of an 8-bit label �eld and a 16-bit weight �eld. The absolute

3



1. Clear all �tness values from each neuron.
2. Select � neurons randomly from the population.
3. Create a neural network from the selected neurons.
4. Evaluate the network in the given task.
5. Add the network's score to each selected neuron's �tness value.
6. Repeat steps 2-5 a su�cient number of times.
7. Get the neurons' average �tness scores by dividing their total �tness

values by the number of networks they were implemented in.
8. Perform crossover operations on the population based on the average

�tness value of each neuron.

Table 1: The basic steps in one generation of SANE.

15 1.242 143 -2.21 2 .053

212 5.811 32 -3.41 151 -1.67

65 -.04 100 2.556 134 8.131

0 1 2 3 4 5 6 7

0 1 2 3 4

1.242

8.131

-3.41
2.556

-.04

.053

-2.21

-1.67

5.881

Input Layer

Output Layer

label weight

Figure 1: Forming a simple 8 input, 3 hidden, 5 output unit neural network from three hidden neu-
ron de�nitions. The chromosomes of the hidden neurons are shown to the left and the corresponding
network to the right. In this example, each hidden neuron has 3 connections.

value of the label determines where the connection is to be made. The neurons only connect
to the input and the output layer. If the decimal value of the label, D, is greater than 127,
then the connection is made to output unit D mod O, where O is the total number of output
units. Similarly, if D is less than or equal to 127, then the connection is made to input unit
D mod I, where I is the total number of input units. The weight �eld encodes a 
oating
point weight for the connection. Figure 1 shows how a neural network is formed from three
sample hidden neuron de�nitions.

Once each neuron has participated in a su�cient number of networks, the population is
ranked according to the average �tness values. A mate is selected for each neuron in the
top quarter of the population by choosing a neuron with an equal or higher average �tness
value. A one-point crossover operator is used to mate two neurons creating two o�spring
per mating. The two o�spring replace the worst-performing neurons (according to the rank)
in the population. Mutation at the rate of 1% is performed on the entire population as the
last step in each generation.

The implementation of SANE outlined above has performed well, however, SANE could
be implemented with a variety of di�erent neuron encodings and even with network archi-

4



tectures that allow recurrency. More advanced encodings and evolutionary strategies may
enhance both the search e�ciency and generalization ability. Extensions to the current
implementation will be a subject of future research.

An empirical evaluation of SANE was performed in the standard reinforcement learning
benchmark of balancing a pole on a cart (Moriarty and Miikkulainen 1994a). The learning
speed and generalization ability of SANE was compared to those of the best-known reinforce-
ment learning approaches to this problem: the single-layer Adaptive Heuristic Critic (AHC)
of Barto et al. (1983), the two-layer Adaptive Heuristic Critic of Anderson (1989) and the
GENITOR neuro-evolution system of Whitley et al.(1993). SANE was found to be consider-
ably faster (in CPU time) and more e�cient (in training episodes) than the two-layer AHC
and GENITOR implementations. Compared to the single-layer AHC, SANE was an order
of magnitude faster even though it required more training episodes. The generalization ca-
pabilities of the four methods were comparable. An analysis of the �nal populations veri�es
that SANE �nds solutions in diverse, unconverged populations and can maintain diversity
in prolonged evolution.

The purpose of this paper is to show how SANE can be applied to existing and novel
sequential decision tasks. The �rst task, value ordering in constraint satisfaction problems,
was selected because it is an important problem where general solutions have performed
inconsistently. The second task, focusing minimax search, was selected to demonstrate how
SANE can be applied to existing problems previously unrealized as sequential decision tasks.

3 CSP Value Ordering

Constraint satisfaction problems (CSP) are common in many areas of computer science such
as machine vision, scheduling, and planning. A number of variables must be assigned values
such that none of the constraints among them are violated. CSPs are usually solved through
depth-�rst search: the variables are chosen for instantiation one at a time, and their di�erent
legal values are tried one at a time. The order in which variables and values are considered
determines how soon a solution is found, and therefore, choosing the variable and value
bindings wisely can signi�cantly reduce search time.

Most CSP applications use the �rst-fail method (Haralick and Elliot 1980) for ordering
the variable bindings. At each level of the search, the variable with the smallest number of
possible values is chosen for instantiation. However, deciding the order in which the values
are assigned is much more di�cult, partly because good value-ordering heuristics are highly
problem speci�c (Kumar 1992). Learning the domain-speci�c heuristic information to build
an e�ective value-ordering policy would therefore be a signi�cant demonstration of SANE in
an important sequential decision task.

3.1 The Car Sequencing Problem

Car sequencing is an instance of the job-shop scheduling problem (Van Hentenryck et al.
1992). In an automobile factory, a continuously moving assembly line is used to put options

5



Classes 1 2 3 4 5 6 Capacity (r=s)

Option 1 + - - - + + 1/2
Option 2 - - + + - + 2/3
Option 3 + - - - + - 1/3
Option 4 + + - + - - 2/5
Option 5 - - + - - - 1/5

Table 2: The car-sequencing problem with 6 classes and 5 option stations. The options required
by each class are indicated with a +. The capacities of the option stations are shown in the form
r=s.

such as power windows on cars. When a car enters an option station, the workers walk
along with the car until the option has been installed. The capacity of the option station is
indicated by \r out of s": For example, an option station with a capacity of 2 out of 5 can
handle a maximum of 2 cars for every 5 that pass on the assembly line. If 3 cars require
that option, the option station will be overdriven. Di�erent classes of cars require di�erent
options. The problem is to �nd an ordering on the assembly line such that no option station
becomes overdriven.

Table 2 shows a particular car sequencing problem taken from (Van Hentenryck et al.
1992). The number of classes, number of options, capacities of the option stations, and
options required by each class were �xed. The number of cars in each class and total
number of cars to schedule were varied in di�erent instances of the problem. In a constraint
satisfaction formulation, the slots on the assembly line represent the variables and the classes
represent the possible values for the variables. In our experiments, the �rst-fail heuristic was
used for variable ordering, which results in always assigning each slot in the order they
appear on the assembly line (Moriarty and Miikkulainen 1994b). A good strategy for value
ordering was left to be developed by SANE.

3.2 Evolving a Value-ordering Neural Network

A 2-layer neural network was evolved using SANE to decide which car class to place in the
next slot on the assembly line. Networks were evaluated by implementing them as part of
a chronological backtrack search program. At each level of the search, the network received
a window of the previous 12 slot assignments as input (�gure 2). Each slot was represented
by six input units (one for each class). Initially, all the input units would be 0, because no
assignments have been made. Since the neural network needs some activation in the input
layer to produce output, an extra (bias) input unit that was always 1 was included to allow
the network to generate initial choices. The entire input layer, thus, consisted of 73 units.
Figure 2 shows an example instantiation of the assembly line and the input the network
receives.

The output layer consisted of six units, one for each class. The activation of each output
unit (computed as a weighted sum of its input activations) indicates how strongly the network
suggests assigning that class to the next slot. The output layer, thus, represents a ranking of
the classes and determines the order in which classes are assigned to the slots during search,

6



001000 000010 000100 000100 010000 100000 001000 000010 000100 000001 010000 001000Input Layer Activations

Slot # 1

2 6 3 5 4 4 2 1 3 5 4 6 2 3

2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

1

Class 

Figure 2: A partial sequence instantiation and the corresponding input to the network. The
network receives the previous 12 assignments as input. For example, a car of class 3 has been
assigned to slot 4. The �rst input unit is always 1 to allow the network to make initial choices.
The next slot to be scheduled is slot 16.

unless the choice violates either of the following two constraints: (1) there must be a car
of that class remaining to be assigned, and (2) the assignment must must not violate any
option station's capacity.

The network has no knowledge of the number and types of cars to schedule. Its output
layer merely represents the order in which values should be tried given the current slot
assignments. If there are no cars left of the highest ranked class or the assignment would
cause an option station to be overdriven, the class with the next highest output unit is tried,
unless it too violates one of the two constraints. Implementing these two simple constraints
outside the network serves to essentialize the problem and relieve it of much of the trivial
overhead. The primary task is to di�erentiate between good and bad choices. By not
requiring the network to identify which classes are valid, it can more easily learn the value-
ordering task. This is analogous to removing the requirement of legal move identi�cation
from a move-evaluating network in game playing, which also proved to be a good strategy
(Moriarty and Miikkulainen 1995).

A simple forward-checking algorithm was also implemented to prune the search space
early. For each option station, the total number of cars requiring that option was counted.
If the number exceeded the capacity of the option station over all remaining slots, the search
path was terminated.

The population consisted of 800 linear threshold neurons with each threshold set at 0.
The subpopulation size � was 100, and 40 networks were formed per generation of neurons.
Each neuron thus participated in an average of 5 networks per generation. Each neuron was
encoded a 240-bit chromosome that contained ten 24-bit connection de�nitions.

The evaluation consisted of selecting 5 scheduling problems from a database of 1000
problem instances and using the network to order the classes in a chronological backtrack
search. The problem instances contained between 10 to 25 cars, and the option requirements
and station capacities were the same as in table 2. The score of each network was determined
by the total number of backtracks incurred, which creates a challenging credit assignment
problem for the individual value-ordering decisions.

7



3.3 Value-ordering Results

The population was evolved for 100 generations requiring approximately 40 minutes on an
IBM RS6000 25T. The best network in each generation was evaluated using a 50 problem
validation set. As the �nal result, the best network over all generations was selected and
tested on a di�erent 50 problem test set. For comparison, random value ordering and the
maximization of future options heuristic (Kale 1990; Kumar 1992) were also run on the test
set. The maximization of future options heuristic was implemented to prefer the class that
leaves the most option stations free.

The average number of backtracks per problem in the test set were 781 for random value
ordering, 85 for the maximization of future options heuristic, and 26 for the SANE network.
While the problem-general heuristic did reduce the number of backtracks signi�cantly over
random ordering, it required 3 times more backtracks than the SANE network.

The SANE network appeared to take a �rst-fail approach to value ordering by preferring
classes that place the most demand on the system. This approach is most obvious in the
case of class 1, and constitutes the largest di�erence between the network's ordering and that
of the maximization of future options heuristic. The network always preferred to schedule
cars of class 1 as soon as possible, whereas the maximization of future options heuristic
normally tried them last. Intuitively, cars of class 1 should be di�cult to schedule, because
they require the most options. Thus, it seems sensible that if a car of class 1 needs to be
scheduled and it can �t without causing any immediate con
icts, it should be placed in
the next slot. The maximization of future options heuristic, however, will not schedule it
because it will limit the remaining options available to future cars. This approach delays the
scheduling of class 1 cars and can incur large backtracks if they cannot �t later.

The maximization of future options is considered a good problem-general approach be-
cause it directs the search toward areas in the search space with high solution densities (Kale
1990). Using a similar heuristic, Kale (1990) was able to solve an order of magnitude larger
instances of the n-queens problem than with the standard left-right column ordering. In
this particular case, however, SANE discovered a better ordering through domain-speci�c
knowledge. It is the attainment of this domain-speci�c knowledge that separates SANE from
other more problem-general approaches and should allow SANE to be e�ective in a broad
range of problems.

4 Focusing Minimax Search

Value-ordering provided a well-studied decision task where problem-general approaches have
performed poorly. SANE, however, requires no pre-existing knowledge of the decision task
but instead learns its decision policies through direct interaction with the domain. In other
words, since SANE can learn in domains with very sparse reinforcement, decision tasks that
previously received little attention because they were either too hard to learn or analyze may
be optimized by SANE networks. This section presents an application of SANE to such a
novel decision task.

8



Almost all current game programs rely on the minimax search algorithm to return the
best move. Because of time and space constraints, searching to the end of the game is not
feasible for most games. Heuristic evaluation functions, therefore, are used to approximate
the payo� of a state. However, heuristics create errors that propagate up the search tree,
and can greatly diminish the e�ectiveness of minimax (Korf 1988). Minimax also does not
promote risk taking, assuming that the opponent will always make the best move. Often in
losing situations the best move may not be towards the highest min/max value, especially if
it will still result in a loss. Knowledge of move probabilities could guide the search towards
a more aggressive approach and take advantage of possible mistakes by the opponent.

Most game programs overcome weak evaluation functions by searching deeper in the
tree. Presumably, as the search frontier gets closer to the goal, the evaluations become
more accurate. While this may be true, there is no guarantee that deeper searches will
provide frontier nodes closer to the goal states. Hansson and Mayer (1990) showed that
without a sound inference mechanism, deeper searches can actually cause more error in the
frontier nodes. A more directed search, therefore, seems necessary. Using SANE to focus
minimax away from misinformation and towards more e�ective moves is an important, novel
application to game playing and further demonstrates SANE's ability to incorporate domain-
speci�c knowledge (In this case, weaknesses of minimax and the evaluation function) to form
an e�ective decision strategy.

4.1 Creating a Focus Window

In earlier work (Moriarty and Miikkulainen 1994c), we showed how standard neuro-evolution
methods can evolve a focus network in the game of Othello to decide which moves in a given
board situation are to be explored. In this paper, the SANE method was applied to the
same task with signi�cantly stronger results. In the search focus task, the network sees the
updated board and evaluates each move at each level of minimax search. Only those moves
that are better than a threshold value will be further explored. The search continues until a
�xed depth bound is reached. An evaluation function is applied to the leaf states, and the
values are propagated up the tree using the standard minimax method. The �-� pruning
algorithm is used as in a full-width search to prune irrelevant states.

Restricting the number of moves explored has two key advantages: (1) the branching
factor is reduced, which greatly speeds up the search. As a result, searches can proceed
deeper on more promising paths. (2) The focus networks are forced to decide which moves
the minimax search should evaluate, and in order to play well, they must develop an under-
standing of the minimax algorithm. It is possible that they will also discover limitations of
minimax and the evaluation function, and learn to compensate by not allowing minimax to
evaluate certain moves.

Figure 3 illustrates the focused search process. The player has a choice of 5 moves (a
through e) and is searching 2 moves ahead. The leaf states are evaluated according to a
static evaluation function. The actual payo� value of each leaf is shown below the depth
bound. The di�erence between these values is the error or misinformation generated by the
evaluation function. Move e is the strongest move since it will generate an actual payo� of

9



13 5 -5 6 5 5 2 18 3

-5 5 2

-4 3 -1 9 10 -3 6

-4 -3

-3

6 2 4 11 12 155912-232 112 6 -2

a b c d e

Depth bound

Estimated payoffs

Actual payoffs

Figure 3: A minimax search to level 2. Min (circles) selects the lowest payo� and max (squares)
the highest of min's choices. A full-width search considers all possible moves, while a focused search
considers only those moves in the focus window (shown by the shaded region). The value for the
root node is shown for a focused search. The full-width search would select move b, although move
e is max's best choice. The focused search does not consider move b and selects move e.

at least 11. Because of the misinformation, which evaluates move e at -3, a full-width search
would select move b, since it returns a payo� of at least 5. The focused search, however, is
able to select move e by excluding move b from consideration.

4.2 Implementation of Focus Networks in Othello

Two input units were used to represent the type of piece in each board space (�gure 4).
If the space contains the network's piece, the �rst input unit is turned on (value = 1). If
the space contains the opponent's piece, the second input unit is turned on. If the space is
empty, neither input unit is activated. The two input units are never both on.

Each output unit corresponded directly to a space on the board. The activation of an
output unit determined whether a move was to be considered or not. If the activation was
greater than or equal to 0, the move was included in the focus window. Separate output
units were used for the two players to allow o�ensive and defensive strategies to develop.
Thus, the ranking for the network's moves may di�er from the ranking of the opponent's
moves.

To evaluate a network, it was inserted into an �-� search program and played against
a full-width, �xed-depth minimax-�-� search. The number of wins over ten games played
determined the network's score. To create di�erent games, an initial state was selected
randomly among the 244 possible board positions after four moves. Both players were
allowed to search through the second level and used the evaluation function from the Bill
program (Lee and Mahajan 1990), which is composed of large Bayes-optimized lookup tables
gathered from expert games.1 Bill was at one time the world-champion program and is still
believed to be one of the best in the world. Any improvement over the current Bill evaluation
function would thus be a signi�cant result.

1Thanks to Richard Korf and Kai-Fu Lee for providing Bill's evaluation function.

10



1

2

4

5

7

128

Hidden units

Network’s
moves

a1

b1

c1

d1

h8

a b c d e f g h

1

2

3

4

5

6

7

8

3

6

8

a1

b1

c1

h8

a1

b1

c1

h8

opponent’s
moves

Figure 4: The architecture of the focus networks for Othello. Two inputs are used to encode each
position on the board. The encoding of the �rst four spaces (a1, b1, c1, d1) for the given board
with the network playing black are shown in the input layer. The activation of the output layer
is shown by the shading. The corners (such as a1 and h8) have high activations since corners are
almost always good moves.

4.3 Focused Search Results

The SANE neurons were evolved for 200 generations, which took about 11 hours of CPU
time on an IBM RS6000 25T. After evolution, the best network of each generation was
tested against another full-width search in each of the 244 initial games, however, this time
each player was allowed to search through level 3. The network with the highest winning
percentage over these tests was selected as the best network.

Table 3 shows the best focus network's performance over various search levels against
the full-width opponent. The results show that the focus network was playing a comparable
and in most cases better game than Bill. Most remarkably, the focus networks won while
looking at only a subset of the states as the full-width search. Of all available moves to
level 6, only 77% were included in the focus network's window. Since the full-width search is
looking at the same moves as the focused search plus additional moves, there must be some
misinformation in the additional moves that are causing it to select poor moves. Since the
focused search employs the same evaluation function to the same depth and yet is selecting
better moves, it appears that the focus network is shielding the root from this misinformation.

The results indicate that SANE can evolve better and more e�cient game play through
more selective search. SANE is able to tailor the minimax search to make the best use out
of the information the evaluation function provides. SANE can optimize even highly sophis-
ticated evaluation functions, like that of the Bill program. This is a signi�cant improvement
over the standard neuro-evolution approach used in (Moriarty and Miikkulainen 1994c),
which could improve play with a weak heuristic, but could not extend to Bill's evaluation

11



Level 1 2 3 4 5 6

% of games won by SANE 54 54 62 49 53 51

Avg. states for SANE 198 931 5808 30964 166911 939999

Avg. states for full-width 207 977 6305 35932 212285 1217801

Table 3: The winning percentage of SANE and the average number of states examined per game
for each depth bound.

function in deeper searches.

More generally, the simulations demonstrate SANE's ability to form e�ective decision
policies in novel decision tasks. Whereas most research has improved game-playing through
optimization of the evaluation function (Hansson and Mayer 1990; Lee and Mahajan 1990) or
altering the minimax algorithm (Korf and Chickering 1994; McAllester 1988), SANE attacks
misinformation by making search-level decisions that can overcome de�ciencies in minimax
and the evaluation function. Such a novel approach to game-tree search, which is one of the
most-studied �elds in arti�cial intelligence, illustrates how SANE, through its generality and
ability to learn with sparse reinforcement, may uncover previously unrealizable sequential
decision tasks.

5 Future Work

Each of the decision tasks described in this paper were Markovian decision problems, where
the future behavior of the system depended only on the current state and future inputs.
While many interesting tasks can be formulated as Markov problems, in many real-world
applications, factors outside the current observable state may also in
uence system behav-
ior. For example in chess, move decisions are often based not only on the current board
con�guration, but also on the opponent's apparent strategy up to that point. SANE can
be applied to such tasks with the addition of recurrent connections. A recurrent network
maintains an internal representation in its hidden layer and it can be used to identify his-
torical factors that a�ect system performance. Since forming recurrent connections requires
little additional computation in SANE, SANE should be able to e�ciently evolve recurrent
networks for non-Markovian tasks.

Future work on SANE also includes applying it to larger real-world domains with multiple
decision tasks. One such domain is local area networks (LAN), where possible tasks include
packet routing, resource allocation, congestion control, and priority queueing. While stan-
dard methods for LAN control exist, SANE's domain-speci�c knowledge, attained through
direct interaction with the LAN, should produce more e�ective decision policies. Other pos-
sible domains include elevator control, air and automobile tra�c control, and robot control.
Since SANE makes few domain assumptions, it should be applicable in each of these domains
as well as many others.

An important question to be explored in future research is: Can SANE simultaneously
evolve networks for separate decision tasks? For example, can neurons involved in priority
queueing be evolved with neurons involved in packet routing? Evolving neurons for many dif-

12



ferent networks at once should not be very di�erent from evolving them for a single network,
because in any case SANE must develop neurons that specialize and serve very di�erent
roles. The input layers and output layers of each network could be concatenated to form a
single, multi-task network. Since a hidden neuron can establish connections to any input or
output unit, it can specialize its connections to a single decision task or form connections
between sub-networks that perform di�erent tasks. Such inter-network connections could
produce interesting interactions between decision strategies, which is an issue that to our
knowledge has not been studied before.

6 Conclusion

SANE provides a powerful new mechanism for learning and performing sequential decision
tasks. SANE's neural networks provide e�ective pattern recognition and generalization,
while the genetic algorithm allows SANE to learn under sparse reinforcement. The value
ordering and minimax tasks illustrate how SANE can outperform problem-general heuristics
by incorporating domain-speci�c information such as the option capacities of an assembly
line or the weaknesses of an evaluation function. SANE's few domain assumptions and ability
to learn in tasks with sparse reinforcement should make it applicable to a broad range of
decision tasks, including real-world problems.

References

Anderson, C. W. (1989). Learning to control an inverted pendulum using neural networks.
IEEE Control Systems Magazine, 9:31{37.

Barto, A. G., Sutton, R. S., and Anderson, C. W. (1983). Neuronlike adaptive elements that
can solve di�cult learning control problems. IEEE Transactions on Systems, Man, and
Cybernetics, SMC-13:834{846.

Barto, A. G., Sutton, R. S., and Watkins, C. J. C. H. (1990). Learning and sequential
decision making. In Gabriel, M., and Moore, J. W., editors, Learning and Computational
Neuroscience. Cambridge, MA: MIT Press.

Belew, R. K., McInerney, J., and Schraudolph, N. N. (1991). Evolving networks: Using
genetic algorithmwith connectionist learning. In Farmer, J. D., Langton, C., Rasmussen,
S., and Taylor, C., editors, Arti�cial Life II. Reading, MA: Addison-Wesley.

Grefenstette, J. J., Ramsey, C. L., and Schultz, A. C. (1990). Learning sequential decision
rules using simulation models and competition. Machine Learning, 5:355{381.

Hansson, O., and Mayer, A. (1990). Probabilistic heuristic estimates. Annals of Mathematics
and Arti�cial Intelligence, 2:209{220.

Haralick, R., and Elliot, G. (1980). Increasing tree search e�ciency for constraint satisfaction
problems. Arti�cial Intelligence, 14(3):263{313.

13



Kale, L. V. (1990). A perfect heuristic for the n non-attacking queens problem. Information
Processing Letters, 34(4):173{178.

Korf, R. E. (1988). Search: A survey of recent results. In Shrobe, H. E., editor, Exploring
Arti�cial Intelligence. San Mateo, California: Morgan Kaufmann.

Korf, R. E., and Chickering, D. M. (1994). Best-�rst minimax search: Othello results. In
AAAI-94.

Koza, J. R., and Rice, J. P. (1991). Genetic generalization of both the weights and archi-
tecture for a neural network. In International Joint Conference on Neural Networks,
vol. 2, 397{404. New York, NY: IEEE.

Kumar, V. (1992). Algorithms for constraint satisfaction problems: A survey. AI Magazine,
13:32{44.

Lee, K.-F., and Mahajan, S. (1990). The development of a world class Othello program.
Arti�cial Intelligence, 43:21{36.

Littman, M. L., and Boyan, J. A. (1993). A distributed reinforcement learning scheme
for network routing. Technical Report CMU-CS-93-165, School of Computer Science,
Carnegie Mellon University.

McAllester, D. A. (1988). Conspiracy numbers for min-max search. Arti�cial Intelligence,
35:287{310.

Moriarty, D. E., and Miikkulainen, R. (1994a). E�cient reinforcement learning through
symbiotic evolution. Technical Report AI94-224, Department of Computer Sciences,
The University of Texas at Austin.

Moriarty, D. E., and Miikkulainen, R. (1994b). Evolutionary neural networks for value
ordering in constraint satisfaction problems. Technical Report AI94-218, Department
of Computer Sciences, The University of Texas at Austin.

Moriarty, D. E., and Miikkulainen, R. (1994c). Evolving neural networks to focus minimax
search. In Proceedings of the Twelfth National Conference on Arti�cial Intelligence
(AAAI-94). Seattle, WA.

Moriarty, D. E., and Miikkulainen, R. (1995). Discovering complexOthello strategies through
evolutionary neural networks. Connection Science, 7(3). (To Appear).

Van Hentenryck, P., Simonis, H., and Dincbas, M. (1992). Constraint satisfaction using
constraint logic programming. Arti�cial Intelligence, 58:113.

Whitley, D., Dominic, S., Das, R., and Anderson, C. W. (1993). Genetic reinforcement
learning for neurocontrol problems. Machine Learning, 13:259{284.

14


