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Ultracold atoms in optical lattices have great potential to contribute
to a better understanding of some of the most important issues in
many-body physics, such as high-temperature superconductivity’'.
The Hubbard model—a simplified representation of fermions mov-
ing on a periodic lattice—is thought to describe the essential details
of copper oxide superconductivity’. This model describes many of
the features shared by the copper oxides, including an interaction-
driven Mott insulating state and an antiferromagnetic (AFM) state.
Optical lattices filled with a two-spin-component Fermi gas of ultra-
cold atoms can faithfully realize the Hubbard model with readily
tunable parameters, and thus provide a platform for the systematic
exploration of its phase diagram>*. Realization of strongly correlated
phases, however, has been hindered by the need to cool the atoms to
temperatures as low as the magnetic exchange energy, and also by the
lack of reliable thermometry’. Here we demonstrate spin-sensitive
Bragg scattering of light to measure AFM spin correlations in a reali-
zation of the three-dimensional Hubbard model at temperatures
down to 1.4 times that of the AFM phase transition. This temperature
regime is beyond the range of validity of a simple high-temperature
series expansion, which brings our experiment close to the limit of the
capabilities of current numerical techniques, particularly at metallic
densities. We reach these low temperatures using a compensated
optical lattice technique®, in which the confinement of each lattice
beam is compensated by a blue-detuned laser beam. The temper-
ature of the atoms in the lattice is deduced by comparing the light
scattering to determinant quantum Monte Carlo simulations’ and
numerical linked-cluster expansion® calculations. Further refinement
of the compensated lattice may produce even lower temperatures
which, along with light scattering thermometry, would open avenues
for producing and characterizing other novel quantum states of mat-
ter, such as the pseudogap regime and correlated metallic states of
the two-dimensional Hubbard model.

A two-spin-component Fermi gas in a simple cubic optical lattice may
be described by a single-band Hubbard model with nearest-neighbour
tunnelling t and on-site interaction U > 0. At a density n of one atom
per site, and for sufficiently large U/t, there is a crossover from a ‘meta-
1lic’ state to a Mott insulating regime” as the temperature T is reduced
below U. The Mott regime has been demonstrated with ultracold atoms
in an optical lattice by observing the reduction of doubly occupied
sites'® and the related reduction of the global compressibility''. For T
below the Néel ordering temperature Ty, which for U>>t is approxi-
mately equal to the exchange energy J = 4¢*/U, the system undergoes a
phase transition to an AFM state'. In the context of quantum simula-
tions, AFM phases of Ising spins have been previously engineered with
bosonic atoms in an optical lattice’® and with spin-1/2 ions'*"*. Also,
nearest-neighbour AFM correlations due to magnetic exchange have
been observed along one dimension of an anisotropic lattice'®. The

same experiment achieved temperatures as low as T = 0.95t = 2.6Ty
when the lattice was configured to be isotropic"’, where Ty = 0.36¢ is
the maximal value of the Néel transition temperature'>'*'°,

Our experiments are performed with an all-optically produced®, quan-
tum degenerate, two-state mixture of the two lowest hyperfine ground
states of fermionic °Li atoms, which we label |} and | |). The repulsive
interaction between atoms in states | 1) and | |) is controlled via a mag-
netic Feshbach resonance®, which we use to set the s-wave scattering
length a; in the range from 80a, to 560a,, where g is the Bohr radius. A
simple cubic optical lattice is formed at the intersection of three mutu-
ally perpendicular infrared retroreflected laser beams. We can dynam-
ically rotate the polarization of the retroreflection, and thus continually
adjust the potential between a lattice and a harmonic dimple trap. The
overall confinement produced by the Gaussian envelope of each infra-
red lattice beam is partially compensated with a superimposed, non-
retroreflected, blue-detuned laser beam®**. The compensation beams
serve three purposes: (1) they help flatten the confining potential in
order to enlarge the volume of the AFM phase; (2) they provide a way
to maintain the central density near n = 1 as the lattice is loaded; and
(3) they may mitigate the effects of heating in the lattice by lowering the
threshold for evaporation.

A degenerate sample with total atom number N between 1.0 X 10
and 2.5 X 10° is prepared in the harmonic dimple trap (without com-
pensation) at a temperature T/Tr = 0.04 % 0.02, where Ty is the Fermi
temperature. The lattice is turned on slowly to a central depth of
vo = 7E, (see Methods), where E, = h*/(2m/?) is the recoil energy, h
is Planck’s constant, m is the atomic mass, and 4 = 1,064 nm is the
wavelength of the lattice beams. While loading the lattice, the intensities
of the compensation beams are adjusted to maintain a peak density
n = 1. We have measured the temperature in the dimple trap before and
after transferring the atoms to the lattice (see Methods and Extended
Data Fig. 3), and have observed that the compensating beams mitigate
heating in the lattice, perhaps by allowing continued evaporative cool-
ing® or by a reduction of three-body loss.

Bragg scattering of near-resonant light**~** is depicted in Fig. 1. The
Bragg condition for scattering from an AFM-ordered sample is satisfied
when the momentum Q transferred to a scattered photon is equal to 7,
where m=(2n/a)(—1/2,—1/2,1/2) is a reciprocal lattice vector of
the magnetic sublattice, and a = 4/2 is the lattice spacing. Cameras are
positioned to detect scattering at Q = mand also at Q = 6, a momen-
tum transfer that does not satisfy the Bragg condition and is used as a
control. We obtain spin sensitivity, in analogy to neutron scattering in
condensed matter, by setting the Bragg laser frequency between the
optical transition frequencies for the two spin states®®*”. Prior to the
measurement, we jump vy to 20E, in a few microseconds to lock the atoms
in place (see Methods), and then illuminate them in situ for 1.7 ps with
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Figure 1 | Schematic depiction of Bragg scattering. a, Rendering of the
experimental set-up used for Bragg scattering. Light is collected for momentum
transfers Q = mand Q = 0. A bias magnetic field, which sets the quantization
axis and the interaction strength, points in the z direction. The input Bragg
beam lies in the y-z plane, and its wavevector makes an angle of 3° with the
positive y axis. b, The two spin states are denoted by red and blue circles. AFM
order develops at the Mott plateau, shown here to be located in the centre,
where n = 1. AFM correlations are suppressed outside the central region where
n < 1. Bragg scattering requires the input and output wavevectors, ki, and ko,
respectively, to satisfy the Bragg condition k,,, — ki, = 7. The red and blue
arrows denote light scattered from one spin state or the other. The two spin
states scatter with opposite phase shifts, so that their respective sublattices
interfere constructively for Q = m. For a different momentum transfer

kout — ki, = 0, scattering is relatively insensitive to AFM correlations owing
to the lack of constructive interference between the scattered photons, which
have random relative phases A¢.

the Bragg probe. Alternatively, we can suddenly turn off the 20E, lattice
and illuminate the atoms after time-of-flight 7.

Figure 2 shows the results of simultaneous measurements of the
scattered intensity for Q = wand Q = 6 (I, and Iy, respectively), as a
function of 7. After a few microseconds of expansion, when the extent
of the atomic wave packets becomes comparable to the lattice spacing,
the light scattered from correlated spins no longer interferes construc-
tively at the detector. More precisely, the Debye-Waller factor e ~2"e(®)
=exp[— 2 i=x,y,zQ?<”12>f] decays to zero after a sufficiently long ©
(see Methods) and the sample is effectively uncorrelated. Here ; is the
displacement of an atom from the centre of the lattice site at which it
was initially localized.

By comparing the intensity of the light scattered in situ (t = 0) to
that after sufficiently long t (Igo and I, respectively), we effectively
normalize the Bragg scattering signal to the diffuse scattering back-
ground of an uncorrelated sample, achieving high sensitivity to magnetic
ordering and strong rejection of common mode systematics. Figure 2
shows that there is enhanced scattering at © = 0 relative to the uncor-
related cloud (t =9 ps) for Q = &, whereas for Q = 0 scattering at
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Figure 2 | Time-of-flight measurement of scattered intensity from a sample
with AFM correlations. a, Normalized intensity of Bragg-scattered light

(Q = m) asa function of time-of-flight 7. The in situ (t = 0) scattered intensity is
denoted I, while the intensity after sufficiently long 7, corresponding to an
effectively uncorrelated sample, is denoted I ... b, For @ = 0 the in situ sample
shows a reduction of scattering, as compared to long 7, due to the presence
of double occupancies and to the presence of AFM spin correlations (see text).
Each data point and error bar is the mean and standard error of the mean
(s.e.m.) of at least 17 measurements of the scattered intensity. The solid grey line
is the intensity calculated using the value of the Debye-Waller factor at 7,
whereas the dashed grey line uses the average value of the Debye-Waller factor
during the 1.7 pis exposure of the Bragg probe (see text and Methods).

7= 0 is reduced, such that Igy/Ig. < 1. Double occupancies, present
as ‘virtual’ states even at low temperatures®®, reduce coherent scattering
in all directions, since each atom in the pair has opposite spin and
therefore scatters with opposite phase. For Q = 7 the coherent enhance-
ment from AFM spin correlations exceeds this reduction. Furthermore,
the coherent enhancement of the signal along Q = & suppresses the
scattered intensity in other directions.

For a momentum transfer @, the spin structure factor Sy of the
sample is defined as

So= 3 2@ (8 (0.0,) )
irj

Here N is the total number of atoms, the sums extend over all lattice
sites i and j, R; is the location of the jth site, and g is the z component
of the spin operator for the jth site:

5510), =010} a1, =+ 3 1)y o51L),= — 3 1L)» o0, =0[11),

In a sample with complete AFM ordering S, = N, whereas for uncor-
related samples in the lattice S, = 1 and Sy = 1. The choice of the z spin
component for this analysis is arbitrary, as each of the other axes would
result in the same value for Sg in the absence of a symmetry-breaking
field. In the limit of tightly localized wavefunctions (e ~2"e(r=0~1),
and for a weak probe, the spin structure factor is Sp = Igo/Ig-. We
determine the spin structure factor by measuring the scattered intens-
ities I and I-. and applying a correction to account for the in situ
Debye-Waller factor in the 20E, lattice and for saturation of the atomic
transition, which generates a small component of inelastically scattered
light (see Methods).

Within the local density approximation (LDA) we model the sample
by considering each point in the trap as a homogeneous system in equi-
librium at a temperature T, with local values of the chemical potential
and the Hubbard parameters determined by the trap potential. The
spin structure factor of the sample S¢ can then be expressed as the inte-
gral over the trap of the local spin structure factor per lattice site, s¢.
Figure 3a shows numerical calculations of s, for various temperatures
in a homogeneous lattice with U/t = 8, close to where Ty is maximal'.
The figure shows that s, is sharply peaked around n = 1 and grows ra-
pidly as T approaches Ty from above.

Figure 3b and c shows n and s, profiles, respectively, calculated for
our experimental parameters at various values of Uy/t,, where Uy, and
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Figure 3 | Numerical calculations. a, Spin structure factor per lattice site s, as
a function of # in a homogeneous lattice for several temperatures (see
Methods). s, is sharply peaked near n =1 and diverges as T approaches Tj.
b, Density profiles calculated at T/t, = 0.6 for different Up/t,, using in each case
the value of N that maximizes the experimentally measured S, (see text and
Extended Data Fig. 2). ¢, Profiles of the local spin structure factor s,(r), for the
same conditions as in b. The vertical green line in b and ¢ marks the radius at
which s,(r) is maximized for Uy/t, = 11.1 (see text).

to denote the local values of the Hubbard parameters at the centre of
the trap. As seen in Fig. 3b, only a fraction of the atoms in the sample is
near n = 1, where AFM correlations are maximal. The finite extent of
the lattice beams causes the lattice depth to decrease with distance
from the centre, resulting in an increasing t such that both U/t and
T/t decrease with increasing radius for constant T (see Extended Data
Fig. 1). The radial decrease in T/t causes s,(r) to maximize at the largest
radius for which the density is # = 1. For large Uy/t, the cloud exhibits
an n = 1 Mott plateau and s,(r) is maximized at the outermost radius
of the plateau.

In the experiment, we measure Sy as a function of Uy/t,. At each
value of Uy/t, we vary the atom number N to maximize the measured
Sz (see Methods and Extended Data Fig. 2). According to the picture
presented above, this has the effect of optimizing the size and location
of the n = 1 region of the cloud such that AFM correlations are max-
imized. The compensation strength gy, which is the same for all Uy/t,,
was also adjusted to maximize S,. We found the optimum to be
o = 3.7E, at a lattice depth vy = 7E, (see Methods). Besides the equi-
librium considerations regarding the optimal size and location of the
Mott plateau, we believe that the dynamical adjustment of g, during
the lattice turn-on reduces the time for the system to equilibrate, by
minimizing the deviation of the equilibrium density distribution in the
final potential from the starting density distribution in the dimple trap
before loading the lattice.

Figure 4 shows the measured values of S, and Sy at optimal N for
various values of Uy/t, (see Extended Data Fig. 5 for the raw counts at
the CCD cameras). We find that S, is peaked for 11 < Uy/t; < 15. In
contrast, the measurements of Sy vary little over the range of inter-
action strengths, consistent with an absence of coherent Bragg scatter-
ing in this direction. Measurements of S after hold time in the lattice
show that the Bragg signal decays for larger temperatures (see Extended
Data Fig. 4). Comparing the measured S, with numerical calculations
for ahomogeneous lattice (for example, those in Fig. 3a) allows us to set
a trap-independent upper limit on the temperature, which we deter-
mine to be T/t <0.7.

Precise thermometry is obtained by comparing the measured S, with
numerical calculations averaged over the trap density distribution for
different values of T. The results of such numerical calculations are
shown in Fig. 4, labelled by the value of T/t+, which we define as the
local value of T/t at the radius where the spin structure factor per lattice
site is maximal (see Fig. 3c). At Uy/ty = 11.1, where measured AFM
correlations are maximal, we find T/¢« = 0.51 = 0.06, where the uncer-
tainty is due to the statistical error in the measured S, and the systematic
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Figure 4 | Spin structure factor. Measured S (filled circles) and Sg (open
circles) at optimized N (see text) for various Uy/ty. The values of the s-wave
scattering length corresponding to Uy/t, for the experimental points are shown
along the top axis. For each point at least 40 in situ and 40 time-of-flight
measurements of the scattered intensities are used to obtain the spin structure
factor. Error bars are obtained from the s.e.m. of the scattered intensities; the
raw data are presented in Extended Data Fig. 5. Numerical calculations of
S (open symbols, lines as guide to the eye) and Sy (open symbols, dashed lines
as guide to the eye) are shown for various values of T/t+. The numerical
calculations for Sg are unreliable for T/t« < 0.7 and Uy/t, > 15. Sg decreases
slightly for weak interactions, where the fraction of double occupancies
increases.

uncertainty in the lattice parameters used for the numerical calculation.
This temperature is consistent with the data at all values of Up/t,. We
warn, however, that for values of U/t > 10 a single-band Hubbard model
may not be adequate, as corrections involving higher bands may become
non-negligible””?.

Aswas shown in Fig. 3b, for Up/t, = 11.1 the dominant contribution
to S, comes from the outermost radius of the Mott plateau. At that radius,
the local value of U/t is Us«/t+=9.1, consistent with determinant
quantum Monte Carlo (DQMC) calculations for the homogeneous
lattice'*'®**, which find Ty to be maximized for U/t between 8 and 9.
For Up/ty = 11.1, t= = 1.3 kHz, so we can infer the temperature of the
system to be T=32*4nK. In terms of Ty, the temperature is
T/Tn = 1.42 £ 0.16. At this temperature, the numerical calculations
indicate that the correlation length is approximately the lattice spa-
cing. The calculations show that the entropy per particle in the trap is
S/(N kg)=0.76, where kg is the Boltzmann constant (see Extended Data
Fig. 6). This entropy range is consistent with T/Tr measured in the
harmonic dimple trap® after a lattice round trip, as shown in Extended
Data Fig. 3.

We have observed AFM correlations in the three-dimensional (3D)
Hubbard model using ultracold atoms in an optical lattice via spin-
sensitive Bragg scattering of light. Because magnetic order is extremely
sensitive to T in the vicinity of Ty, Bragg scattering provides precise
thermometry in regimes previously inaccessible to quantitative tem-
perature measurements. Whereas previous cold-atom experiments on
the 3D Fermi-Hubbard model were in a temperature regime that could
be accurately represented by a simple high-temperature series expan-
sion, the data presented here are near the limit of the capabilities of
advanced numerical simulations. Our experimental set-up can be con-
figured to study the two-dimensional (2D) Hubbard model in an array
of planes; further progress to lower temperature will put us in a position
to answer questions about competing pairing mechanisms in 2D, and
may ultimately resolve the long-standing question of d-wave super-
conductivity in the Hubbard model.
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METHODS

Preparation. °Li atoms are first captured and cooled in a magneto-optical trap
(MOT) operating at 671 nm. They are further cooled in a second MOT stage employ-
ing 323 nm light near resonant with the 2§ — 3P transition. As described prev-
iously®, these atoms are laser cooled into a large-volume optical dipole trap (ODT)
where a balanced spin mixture of the states | 1) = |28,/ F = 1/2, mp = +1/2) and
[1) = 2812 F=1/2, mp = —1/2) is produced.

Once the large-volume ODT is loaded, we set the magnetic field to 340G
(a;= —289ay) to perform evaporative cooling. The intensities of the lattice beams
(1,064 nm) in dimple configuration (with the polarization of each retroreflection
perpendicular to that of each input beam) are turned on in 1s. The depth of the
dimple, which at this point is only a small perturbation on the ODT, is adjusted to
control the final atom number in the experiment. The depth of the ODT is then
ramped to zero in 5.5 s to evaporatively cool the atoms into the dimple. To produce
a final sample with repulsive interactions, the magnetic field is increased to 595 G
(as= +326a,) in a 5ms linear ramp starting 3 s into the evaporation trajectory.
Owing to the small volume of the dimple relative to the ODT, evaporation into the
dimple is efficient and deeply degenerate samples are reliably produced.

We measure T/ T in the dimple trap by fitting the density profile, after 0.5 ms of
time-of-flight, to a Thomas-Fermi distribution®’. The magnetic field is tuned to
528 G to make the gas non-interacting before the measurement. For the experi-
ments reported here, the final dimple depths are in the range between 0.325E, and
0.5E, per axis, resulting in N in the range (1.0-2.5) X 10°. The measured value
T/Tr = 0.04 = 0.02 is independent of N within this range. The uncertainty in T/ T
is the standard deviation of the fitted value for at least six independent realizations.
Here as elsewhere no statistical methods were used to predetermine sample size.
Compensated optical lattice. The experiment takes place in a compensated sim-
ple cubic optical lattice potential that can be expressed as

Viap(x.,y,2) = Vi (x;y,2) + Vip (y; 2,x) + Vip (2; x,p)
where
Vip(x;9,2) = Vi(x; 3,2) + Ve (x; ,2)

and V7, Vare the potentials produced by the lattice (1,064 nm) and compensation
(532 nm) beams, respectively:

2, 2 5
Vi(x;.2) = —vp exp{—zy tz } cos’ <7nx>
w

2
L

2 2
Ve (x;.2) =go exp {*2}/ +2Z } .

we
Here, v, is the lattice depth and g is the compensation (vo, g > 0). A schematic of
the compensated lattice, and the spatial variation of the Hubbard parameters due
to the finite lattice beam waists, are shown in Extended Data Fig. 1.

The beam waists (1/¢” radius) of the three axes are calibrated independently by

phase modulation spectroscopy of each lattice beam and by measuring the fre-
quency of breathing mode oscillations. The waists are found to be (up to a +5%
systematic uncertainty) wy, = (47, 47, 44) pm and wc = (42, 41, 40) pm, for beams
propagating along x, y, z, respectively.
Lattice loading. To load the lattice from the dimple trap, we first rotate the polar-
ization of the retroreflected beams parallel to that of the input beams in 100 ms. In
the following 25 ms, we increase the lattice depth to 2.5E, and ramp the magnetic
field to set the final value of Up/f,. The lattice depth is then ramped to 7.0E, in
15ms.

Throughout the process of loading the lattice from the dimple, the power of the
compensating beams is adjusted in order to maintain the peak density of the
sample at n = 1. At the final lattice depth of v, = 7.0E,, the average compensation
per beam is g, = 3.7E,. The value of g, for each beam is adjusted slightly from this
average in order to create samples that appear spherically symmetric.
Round-trip T/ Tz measurements. After loading the atoms into the 7E, lattice we
wait for a hold time #, and then reverse the lattice loading ramps to return to the
harmonic dimple trap and measure T/Tg. This measurement, shown in Extended
Data Fig. 3, sets an upper limit on the entropy of the system in the lattice, and is
also a measure of the heating rate of the system in the lattice.

Temperature dependence of S,. In Extended Data Fig. 4 we show S, as a function
of hold time in the lattice #, and observe that it decays for longer hold times, as
expected from the increase in T/Tg. Although the preparation of the sample and
the final potential are somewhat different for the data presented in Extended Data
Figs 3 and 4, the data support the contention that the Bragg signal decreases with
increasing T.

Variation of N to maximize S. The global chemical potential ;o must be increased
for larger Uy/t, to guarantee the formation of a Mott plateau in the trap. A larger y,
results in larger atom number. N is adjusted to maximize the Bragg signal for each
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experimental value of Up/f, in Fig. 4. We adjust N by tuning the depth of the dimple
trap in which degeneracy is achieved before loading the atoms into the lattice. The
optimal value of N as a function of Uy/t, is shown in Extended Data Fig. 2.

Spin structure factor measurement. We measure the spin structure factor at two
different values of the momentum transfer Q given by
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n= " (—0.5,—0.5,+0.5)

2
0= §(+0.396,—0.105,—0.041),

where a = //2 is the lattice spacing.

We detect the scattered light using two separate cameras as the cloud is illumi-
nated with the Bragg probe beam for 1.7 ps. The Bragg probe beam is a collimated
Gaussian beam with a waist of 450 pm and 250 ©W of power, resulting in an intensity
I,=79mW cm > The intensity of the probe determines the on-resonance sat-
nhel”
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e, is the polarization of the probe light, & _, is the unit vector in the direction of the
dipole matrix element of the transition, 2y =671 nm is the wavelength of the
transition, and I is its linewidth. The polarization of the incident light in our
experiment is linear and perpendicular to the quantization axis, so |ép~é,1 |2 =1/2.
The Bragg probe detuning is set between the two spin states, such that
A=|4;| =|4,| = 64T, where 4; and 4, are the detunings from the two spin
states.

The spin structure factor is defined in equation (1) as a sum over lattice sites , j.
By quickly ramping the lattice depth to vy = 20E,, the state of the system is pro-
jected into a product state, where the wavefunction of each atom is localized at a
lattice site. Hence, we can write Sp as a sum over particles m, n:

4 (R —
So= g2 ¢t He), o),

uration parameter so = I, ‘ ee_ !2 / =15.5, where c is the speed of light,

where (0.,),, is the z component of the spin of the nth atom.

When illuminated with the probe light, each atom can be considered as an
independent scatterer, and the intensity at the detector can be obtained by sum-
ming the field contributions from the individual atoms and squaring the total field.
We assume that the spatial wavefunction of all atoms is the harmonic oscillator
ground state in a lattice site of depth v,, and that it does not change during the
measurement. The resulting intensity at the detector is given by

A50/2 _aw, ZAS()(SZ i0'(R, —R,
Ip(t)=— N4 2We® E 4(a;), (a2) &0 (Ry—Ry) )
2 4624’50 (452+SQ)2 mn FmE

m#n
3 hekl

where 0 = 4/I', and A= e |A|*. Here A is the polarization vector of the
b8

3
scattered field, 4 = f1 x (1 X _ ), where #1is a unit vector pointing in the direction
of the detector, which is located at a distance rp from the sample.

In equation (2) the first term arises from uncorrelated scattering by the atoms,
while the second term represents the interference due to magnetic correlations.
We can identify the spin structure factor in the interference term as

3 4(02),(02),¢ TR =N (S —1)

m.n
m#n
and obtain
I
SQ =1 +CQ(T) (M — 1)
Ipo
Asy/2
where Iy, = ;L/N, and the correction factor is Co(7) =e*"e® [ 1+ 5—92 .
4(5 +50 4()

In the experiment we obtain Sy by combining measurements of the scattered
intensity in situ (t = 0) and after sufficiently long time-of-flight (z = 6 pis). The
correction factor takes the values C,(t = 0) = 1.52 for @ = wand Cy(r = 0) = 1.18
for 0= 6.

Time-of-flight. After the atoms are released in time-of-flight, the Debye-Waller
factor decays as the atomic wavefunctions expand, resulting in a corresponding
decay of the Bragg scattered intensity. For a lattice of depth v,

2
e~ 2Wol) — ¢ ~2Wo(r=0) gy {_ Vvo/Er (@) Tz:|.

2 2ma

This equation was used to calculate the solid grey line in Fig. 2. The average value of
the Debye-Waller factor during the duration of the Bragg exposure
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(1.7}13)71] e el gy

T

is used to calculate the dashed grey line in Fig. 2.

The data shown in Fig. 2 was taken at Up/ty = 13.4 with N=2.5 X 10° atoms.
This value of N is above the optimal value, so the ratio of Io/I . in Fig. 2 gives
Sz= 1.4, which is less than the expected optimal value of S, from Fig. 4.
Momentum transferred from the probe to the atoms. As mentioned above, we
assume that the spatial wavefunction of the atoms remains unchanged for the
duration of the exposure. For this assumption to be valid, the Lamb-Dicke para-

2 2
meter 1> = M needs to be < 1. In the 20E, lattice, n* = 0.27, meaning that
2Er VQ/Er

approximately one out of every four photons scattered will excite an atom to the
second band of the lattice. An atom in the second band has larger position uncer-
tainty and hence a smaller Debye-Waller factor, which reduces its contribution to
the Bragg scattering signal. 502

The total number of photons scattered per atom is given by N, = texp I i

0

where the duration of the probe is feg, = 1.7 ps. For sy =155 and 0 =6.4,
N, = 2.7, thus justifying the assumption that the atoms remain in the lowest band
during the pulse.

For the Bragg scattering measurements performed after time-of-flight, the momen-
tum transferred from the probe to the atoms plays a more important role, since the
atoms are not trapped and will recoil after every photon scatter. Despite this, we
still see a good agreement between the observed decay of the Bragg scattering signal
and the decay expected for a Heisenberg-limited wave packet, as shown in Fig. 1.
We have also performed non-spin-sensitive Bragg scattering measurements from
the 010 planes of the lattice and observe the same agreement, justifying that
momentum transfer from the probe to the atoms can be neglected for the exposure
times used.

Optical density. A low optical density of the sample is important so that the probe
is unattenuated through the atom cloud, and multiple scattering events of the
Bragg scattered photons are limited*®. The optical density can be approximated as

(T()|ép'é71|2 1 3N 13
OD~— 53—~ —
46 +s, a* \4n

where g :313/211. With sy =155, = 6.4 and N= 1.8 X 10° atoms we have
OD = 0.072. At this value we do not expect significant corrections to the spin
structure factor measurement due to the attenuation of the probe. We have not
included any corrections in our measurement due to finite optical density effects.
Light collection. We collect Bragg scattered light in the & direction over a full
angular width of 110 mrad, given by a 2.5cm diameter collection lens located
23 cm away from the atoms. In the @ direction, light is collected by a 2.5cm
diameter lens placed 8 cm away from the atoms, corresponding to a full angular
width of 318 mrad. The scattered light in each of the directions is focused to a few
pixels on the cameras, so no additional angular information is obtained. For
N=18X10°s,=155,4=6.4I'and a 1.7 us pulse, the detector in the & dir-
ection collects approximately 1,300 photons, whereas the detector in the 0 dir-
ection collects approximately 10* photons. The noise floor from readout, dark
current and background light per shot has a variance equivalent to approximately
250 photons in the 7 direction and 1,000 photons in the  direction.
Data averaging. The signals we detect are small enough that an uncorrelated
sample may, in a single shot, produce a scattering signal as large as the ones
produced by samples with AFM correlations. To obtain a reliable measurement
of S, we average at least 40 in situ shots to obtain I, and at least 40 time-of-flight
shots to obtain Io..

We estimate the expected variance on S, by considering a randomly ordered
sample in which e™®+2(s.), is equal to +1 or —1 with equal probability. S, can be
written as

2
xR 2(02)
Sp= e Ry 2\ 2/
> =

n

which is equivalent to the square of the distance travelled on an unbiased random
walk with step size 1 / V/N. The mean and standard deviation can then be readily
calculated: S, =1and y/Var(S,) = V/2, where Var(S,) denotes the variance of the

random variable S,. With a standard deviation that is larger than the mean value, a
considerable number of shots needs to be taken in order to obtain an acceptable

error in the mean. The standard error of the mean for 40 shots will be

1/2/40=0.22, consistent with what we obtain in the experiment (see Fig. 4).
Numerical calculations. DQMC and numerical linked-cluster expansion (NLCE)
calculations are used to obtain the local values of the thermodynamic quantities in
our trap, including the density, entropy, and the spin structure factor. DQMC
calculations for arbitrary chemical potential (and hence density) can be obtained
reliably down to temperatures slightly above the Néel temperature for a given U /¢
<9. For stronger interactions, intermediate values of n become inaccessible to
DQMC owing to the sign problem, in which case we rely on the NLCE to obtain
values of the thermodynamic quantities for arbitrary chemical potential down to
temperatures as low as T/t = 0.40.

DQMC results for a 6 X 6 X 6 lattice were obtained with the methodology
described in refs 7 and 32. Inverse temperature discretization At = /L, where
f=1/T and L = 20ft, is sufficiently small that Trotter corrections are substan-
tially less than statistical error bars. DQMC data were obtained with 1,000 sweeps
through the lattice for equilibration, and between 5,000 (small U and high T) and
200,000 (large U and low T) sweeps for measurements. Finite-size effects were
assessed by comparing DQMC results for 6 X 6 X 6 and 8 X 8 X 8 lattices. Dif-
ferences are only appreciable when the spin structure factor per lattice site, s, > 5.
The local value of s, is always less than 4 in calculations shown here, so DQMC
results in a 6 X 6 X 6 lattice are sufficient for the comparison with theory.

In NLCEs, an extensive property of the lattice model per site in the thermodyn-

amic limit is expressed in terms of contributions from finite clusters that can be
embedded in the lattice. NLCEs use the same basis as high-temperature expan-
sions, however, properties of clusters are calculated via exact diagonalization, as
opposed to a perturbative expansion in powers of the inverse temperature®**. The
site-based NLCE for the Hubbard model* is implemented here for a 3D lattice and
carried out to the eighth order for all thermodynamic quantities, except for S,
where due to the reduced symmetry, only seven orders were obtained. Within its
region of convergence (T/t 2 1.5 for any n and U), NLCE results do not contain
any systematic or statistical errors. The convergence region extends to much lower
T/t at n=1 and generally improves by increasing the interaction strength. At
lower T/t, we take advantage of numerical resummations, such as Euler and
Wynn transformations™, to obtain an estimate. The NLCE provides a fast tool,
which, given the value of U/t, generates results on a dense temperature and chem-
ical potential grid in a single run.
Local density approximation. The local density approximation, which has been
previously shown to agree well with ab initio DQMC simulations of the trapped
Hubbard Hamiltonian®®, was used to calculate the trap profiles of the different
thermodynamic quantities. The spin structure factor Sy is obtained from the trap
profile of the spin structure factor per lattice site as

1

So= N J spd’r
For the numerical calculations we set T'and p; local values of U/t, T/t, and the local
chemical potential pi/t are calculated using the known trap potential. The local
values of the thermodynamic quantities are then obtained by interpolation from
NLCE and DQMC results for a homogeneous system calculated in a (U/t, T/t, pu/t)
grid. Radial profiles for the local value of U/t, T/t, and pi/t along a body diagonal of
the lattice were used and spherical symmetry assumed.
Entropy. In Fig. 4 we compare the experimental results at various Up/f, with
calculations at constant T. Since ultracold atoms are isolated systems, a constant
value of the overall entropy per particle S/(Nkg) may be more appropriate. We find
that over the range 10 < Uy/to < 15, where AFM correlations are largest, S/(Nkg)
does not vary significantly with Uy/to, at constant T (Extended Data Fig. 6). This
implies that we do not expect adiabatic cooling for stronger interactions'*”, and
thus the curves at constant T are suitable to describe the experimental data.
Code availability. The codes used for DQMC and NLCE calculations are available
by request from the authors.
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Extended Data Figure 1 | Compensated optical lattice. a, Schematic of the
compensated optical lattice set-up. Along each axis, the radial confinement of
the lattice is compensated with a repulsive compensation beam which is
combined with the lattice beam using a dichroic mirror. The compensation
beam co-propagates with the lattice beam but is not retroreflected; instead a
dichroic mirror before the retro-reflection mirror is used to direct the
compensation beam to a beam dump. b, The local value of the lattice depth v
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(black line; right-hand y axis) is shown as a function of distance from the centre
along a body diagonal of the lattice. Owing to the finite extent of the lattice
beams, v varies across the density profile of the cloud. The density n, calculated
for Uy/ty = 11.1 at T/t, = 0.60, is shown (blue line; left-hand y axis). ¢, The
inhomogeneity in v results in spatially varying Hubbard parameters ¢ (blue line;
left-hand y axis) and U/t (black line; right-hand y axis).
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Extended Data Figure 2 | Atom number for the data in Fig. 4. Atom number
N which maximizes S, as a function of Uy/t,. We control N by adjusting the
depth of the dimple trap. Using a linear calibration between the depth of

the dimple trap and the final atom number, we obtain the value of N
corresponding to the data in Fig. 4. The error bars correspond to the s.e.m. of
the dimple depths used in at least 40 in situ and 40 time-of-flight realizations of
the experiment, corresponding to the data in Fig. 4. The line is a third-order
polynomial fit, which is used to interpolate the value of N for numerical
calculations shown in Fig. 4.
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Extended Data Figure 3 | Round-trip temperature measurements.
Measurement of the round-trip /T versus hold time #, in a compensated
lattice with vy = 7E, and g, = 3.7E,. The duration of the loading ramps is
not included in #,. The scattering length is 326a,, which corresponds to
Uy/ty = 12.5. Error bars are the s.e.m. of six independent realizations. The
temperature in the dimple trap before loading into the lattice is

T/Ty = 0.04 = 0.02.

©2015 Macmillan Publishers Limited. All rights reserved



LETTER

5 — , : :
é I7r0
410 I 1
N&) 4 TOO
= e}
w 3¢t |
*g Q
5] A
v L 4
22 b X
O
|V
11 ]
a
0 L " N L
0 250 500 750
ty (ms)

Extended Data Figure 4 | Bragg signal decay with hold time. a, Detected
counts (from CCD camera) versus f,, measured for momentum transfer Q = &
for an in situ sample (I, green circles) and after decay of the Debye-Waller
factor (I, blue triangles). For longer hold times, the Bragg-scattered intensity
I decays to match I, reflecting the absence of AFM correlations in a sample
at higher T. b, The spin structure factor S, corresponding to the scattered
intensities shown in a. For these measurements the scattering length is 2004y,
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corresponding to Up/ty = 7.7 in a 7E, deep lattice. The compensation is

o = 4.05E,, different from that used for the data in Fig. 4. The increased
compensation requires a larger atom number to realize an n = 1 shell in the
cloud. The atom number used here is 2.6 X 10> atoms. The duration of the
Bragg probe is 2.7 s for these data. Error bars in a are the s.e.m. of at least 5
measurements for I and at least 10 measurements for I . Error bars in b are
obtained from the s.e.m. of the measured intensities and equation (2).
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Extended Data Figure 5 | Detected counts for measurement of spin
structure factor in Fig. 4. a, Detected counts versus Uy/t,, measured for
momentum transfer Q = 7 for an in situ sample (I, green circles), and after
decay of the Debye-Waller factor (I, blue triangles). As Uy/t, increases we use
a larger atom number to optimize the Bragg signal. I, and I both increase
with Up/t, owing to the larger N, but I,4 shows an additional enhancement
due to the presence of AFM correlations. b, Detected counts versus Up/to,
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measured for momentum transfer Q = @ for an in situ sample (Igo, green
circles), and after decay of the Debye-Waller factor (Ig., blue triangles). For
0 = O most of the dependence for both the in situ and time-of-flight intensities
is due to the changing N. Error bars in both a and b are the s.e.m. of at least 40
measurements. The overall count rate is higher for Q = @ owing to the different
collection efficiency and gain settings of the CCD camera.
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Extended Data Figure 6 | Entropy per particle at constant T. Overall entropy
per particle S/(Nkg) as a function of Uy/t, for the calculations at various T/t
shown in Fig. 4 (lines are guides to the eye). For the lowest temperatures,
S/(Nkg) does not vary significantly over the range of Uy/t, covered by the
experiment, justifying the treatment at constant T. A value of S/(Nkg) =~ 0.76 is
obtained for the temperature determined from the data in Fig. 4.
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