
Degree project in
Communication Systems

Second level, 30.0 HEC
Stockholm, Sweden

L I S A N C H E N
a n d

T I N G T I N G S C H I L L E R S H I

 Targeted News in an Intranet

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

i

Targeted News in an Intranet

Lisan Chen
Tingting Schiller Shi

2013-10-29

Master Thesis Report

Examiner and academic adviser
Professor Gerald Q. Maguire Jr.

School of Information and Communication Technology (ICT)
KTH Royal Institute of Technology

 Stockholm, Sweden

Thesis project taking place at
How Solutions Stockholm AB

Stockholm, Sweden

 ii

Abstract

In SharePoint 2013, Microsoft added a social networking function in the
personal sites (My Site) of a user. In this version, a personal news feed has
been added which shows events regarding subjects the user follows, such as
document changes, user updates, tagged posts, and site activities. The
purpose of the thesis is to investigate whether or not it is possible to extend
the news feed function by adding an independent component as part of My
Site, to allow users to follow corporate news by choosing their categories of
interests.

A prototype of the component was implemented and it met most of the
objectives stated in the thesis. It is added to the default page of the user’s
My Site as a web part and it is able to retrieve and display news that matches
the user’s subscription. Although the web part still needs improvements in
both functionality and design, it still confirms that it is possible to extend
the current My Site news feed with such a component.

Since the students working on this thesis had no prior knowledge of
SharePoint or .NET development, the project brought new challenges, as the
students needed to learn how to work in a SharePoint environment and to
learn to use Microsoft Visual Studio for .NET development.

Keywords: SharePoint 2013, news feed, independent component, corporate
news, web part, My Site, Microsoft Visual Studio, .NET

iii

Sammanfattning

Microsoft har i SharePoint 2013 förbättrat användarnas personliga sidor
(My Site) genom att sammankoppla dem i ett socialt nätverk. I förbättringen
har ett personligt nyhetsflöde som visar händelser som användaren följer
tillagts. Denna rapport avser att undersöka möjligheten att utöka det
personliga nyhetsflödet med att lägga till en oberoende komponent i My
Site. Komponenten ska tillåta användarna att prenumerera på
företagsnyheter genom att välja bland olika nyhetskategorier.

En prototyp av komponenten implementerades och resultatet uppfyllde
de flesta kraven som ställdes i början av arbetet. Komponenten har lagts till
i användarens My Site som en webb del och hämtar automatiskt de senaste
företagsnyheterna som matchar användarens prenumeration. Den utvecklade
prototypen kan förbättras både i funktion och design, men har uppfyllt
behovet för denna rapport som avser att undersöka möjligheten att utöka det
personliga nyhetsflödet i My Site med en sådan komponent.

Eftersom projektmedlemmarna saknade förkunskaper i SharePoint och
.NET utveckling innebar projektet nya utmaningar. Studenterna lärde sig att
arbeta i SharePoint miljö samt i Microsoft Visual Studio för .NET
utveckling.

Nyckelord: SharePoint 2013, nyhetsflöde, oberoende komponent,
företagsnyheter, webbdel, My Site, Microsoft Visual Studio, .NET

 iv

Acknowledgements

We would like to thank our examiner and academic adviser Professor
Gerald Q. Maguire Jr. for the suggestions and feedback that we have
received during this period of time. His advices have been very
inspirational and helpful.

We would also like to thank Mattias Kjörk at HOW Solutions for this
great work experience and the opportunity to challenge ourselves in a new
field of work. Mostly, we would like to thank everyone at HOW Solutions
for their support and suggestions when we had problems proceeding with
the work.

Lastly, we would like to thank our families and friends for the never
ending support and encouragements, which helped us through the most
difficult times.

v

Table of contents

Abstract	
 ...	
 ii	

Sammanfattning	
 ...	
 iii	

Acknowledgements	
 ...	
 iv	

Table	
 of	
 contents	
 ...	
 v	

List	
 of	
 Figures	
 ..	
 ix	

List	
 of	
 Acronyms	
 and	
 Abbreviations	
 ...	
 x	

1	
 Introduction	
 ...	
 1	

1.1	
 General	
 Introduction	
 to	
 the	
 Area	
 ...	
 1	

1.2	
 Problem	
 Definition	
 ..	
 2	

1.3	
 Goals	
 ...	
 2	

1.4	
 Structure	
 of	
 the	
 Thesis	
 ...	
 3	

2	
 Background	
 ..	
 5	

2.1	
 Earlier	
 works	
 ...	
 5	

2.1.1	
 RSS	
 and	
 Atom	
 feed	
 readers	
 ...	
 5	

2.1.2	
 News	
 Rollup	
 Web	
 Part	
 ...	
 6	

2.1.3	
 RSS	
 Viewer	
 Web	
 Part	
 ...	
 7	

2.1.4	
 Virto	
 Social	
 Aggregator	
 Web	
 Part	
 ..	
 7	

2.1.5	
 Content	
 Query	
 Web	
 Part	
 ...	
 8	

2.1.6	
 Proactive	
 News	
 Module	
 ..	
 8	

2.2	
 Prerequisites	
 ...	
 9	

3	
 Microsoft	
 SharePoint	
 Architecture	
 &	
 Topology	
 	
 10	

3.1	
 Microsoft	
 SharePoint	
 Foundation	
 ..	
 10	

3.1.1	
 IIS	
 Web	
 Sites	
 and	
 Virtual	
 Directories	
 	
 10	

3.1.1.1	
 ISAPI	
 Extensions	
 and	
 ISAPI	
 Filters	
 ..	
 12	

3.1.1.2	
 Application	
 Pools	
 and	
 the	
 IIS	
 Worker	
 Process	
 	
 13	

3.1.2	
 ASP.NET	
 2.0	
 Framework	
 ..	
 15	

3.1.2.1	
 ASP.NET	
 Pages	
 ..	
 17	

3.1.2.2	
 HTTP	
 Request	
 Pipeline	
 ...	
 20	

3.1.3	
 Windows	
 SharePoint	
 Services	
 Integration	
 with	
 ASP.NET	
 ..	
 23	

3.1.3.1	
 Web	
 Applications	
 ...	
 23	

3.1.3.2	
 SPVirtualPathProvider	
 ..	
 25	

3.1.3.3	
 Advantages	
 and	
 disadvantages	
 of	
 Ghosted	
 &	
 Un-­‐Ghosted	
 Pages	
 .	
 28	

3.1.3.4	
 Virtual	
 Directories	
 Within	
 a	
 Web	
 Application	
 	
 29	

3.2	
 Microsoft	
 SharePoint	
 Topology	
 ..	
 29	

3.2.1	
 Web	
 Applications	
 ..	
 30	

 vi

3.2.1.1	
 Sharing	
 and	
 Isolation	
 ..	
 30	

3.2.1.2	
 Configurable	
 items	
 ...	
 30	

3.2.2	
 Site	
 Collections	
 ..	
 31	

3.2.2.1	
 Capacity	
 ..	
 31	

3.2.2.2	
 Sharing	
 and	
 isolation	
 ..	
 31	

3.2.2.3	
 Configurable	
 items	
 ...	
 32	

3.2.2.4	
 Administration	
 ...	
 32	

3.2.3	
 Sites	
 ...	
 33	

3.2.3.1	
 Capacity	
 ..	
 33	

3.2.3.2	
 Sharing	
 and	
 isolation	
 ..	
 33	

3.2.4	
 My	
 Site	
 ...	
 33	

3.2.4.1	
 My	
 Site	
 Architecture	
 ..	
 34	

3.2.5	
 SharePoint	
 Farms	
 ..	
 35	

3.2.6	
 Central	
 Administration	
 ..	
 35	

3.2.7	
 Administration	
 and	
 Security	
 ..	
 36	

3.2.8	
 Managed	
 Metadata	
 ...	
 36	

3.2.8.1	
 What	
 is	
 Managed	
 Metadata?	
 ...	
 36	

3.2.8.2	
 Benefits	
 of	
 using	
 Managed	
 metadata	
 ..	
 38	

4	
 Method	
 ..	
 40	

4.1	
 Tools	
 ..	
 40	

4.2	
 Project	
 method	
 ..	
 40	

4.3	
 Implementation	
 of	
 Corporate	
 News	
 Web	
 Part	
 	
 41	

4.3.1	
 Creating	
 and	
 adding	
 a	
 web	
 part	
 ..	
 41	

4.3.2	
 User	
 side	
 ..	
 42	

4.3.2.1	
 Administration	
 ...	
 42	

4.3.2.2	
 Implementation	
 of	
 web	
 part	
 ..	
 43	

4.3.3	
 Company	
 side	
 ..	
 43	

4.3.3.1	
 Administration	
 ...	
 44	

4.3.3.2	
 Implementation	
 of	
 web	
 part	
 ..	
 45	

5	
 Result	
 and	
 Analysis	
 ..	
 47	

5.1	
 Result	
 ..	
 47	

5.2	
 Analysis	
 ...	
 47	

5.2.1	
 Tools	
 and	
 administration	
 ...	
 48	

5.2.2	
 Project	
 methods	
 ..	
 48	

5.2.3	
 Corporate	
 News	
 Web	
 Part	
 ...	
 49	

5.2.3.1	
 Functionality	
 ...	
 49	

5.2.3.2	
 Design	
 ...	
 50	

5.2.4	
 Limitations	
 ...	
 51	

5.2.5	
 Other	
 solutions	
 ..	
 52	

5.2.5.1	
 Content	
 Query	
 Web	
 Part	
 ..	
 52	

5.2.5.2	
 Proactive	
 News	
 Module	
 ...	
 52	

5.2.5.3	
 SharePoint	
 App	
 ..	
 53	

6	
 Conclusions	
 and	
 Future	
 work	
 ...	
 55	

6.1	
 Conclusions	
 ...	
 55	

6.2	
 Future	
 work	
 ...	
 55	

6.2.1	
 Uncompleted	
 parts	
 ..	
 55	

 vii

6.2.2	
 Suggestions	
 for	
 future	
 work	
 ..	
 56	

6.3	
 Required	
 reflections	
 ..	
 56	

References	
 ...	
 58	

ix

List of Figures

Figure	
 1.	
 A	
 conversation	
 event	
 shown	
 as	
 a	
 newsfeed	
 in	
 My	
 Site	
 ...	
 2	

Figure	
 2.	
 Google	
 Reader	
 ..	
 6	

Figure	
 3.	
 News	
 Rollup	
 Web	
 Part	
 view	
 (Appears	
 here	
 with	
 the	
 permission	
 of	
 Amrein	

Engineering.	
 The	
 figure	
 originally	
 appeared	
 as	
 figure	
 AE	
 News	
 Rollup	
 Web	
 Part	
 on	
 [21].)	
 ..	
 7	

Figure	
 4.	
 The	
 relationship	
 between	
 ISAPI	
 extensions	
 and	
 ISAPI	
 filters	
 	
 13	

Figure	
 5.	
 The	
 relationship	
 between	
 http.sys	
 and	
 w3wp.exe	
 (Used	
 with	
 permission	
 from	

Microsoft.	
 The	
 figure	
 originally	
 appeared	
 as	
 figure	
 2-­‐2	
 in	
 [53].)	
 ...	
 14	

Figure	
 6.	
 The	
 relationship	
 between	
 ISAPI	
 and	
 ASP.NET	
 ...	
 16	

Figure	
 7.	
 The	
 relationship	
 between	
 a	
 master	
 page	
 and	
 content	
 pages	
 	
 18	

Figure	
 8.	
 Content	
 page	
 A	
 ...	
 19	

Figure	
 9.	
 Content	
 page	
 B	
 ...	
 19	

Figure	
 10.	
 Default	
 content	
 in	
 a	
 content	
 page	
 ..	
 20	

Figure	
 11.	
 The	
 HTTP	
 Request	
 Pipeline	
 and	
 its	
 components	
 (Used	
 with	
 permission	
 from	

Microsoft.	
 The	
 figure	
 originally	
 appeared	
 as	
 figure	
 2-­‐4	
 in	
 [54].)	
 ...	
 21	

Figure	
 12.	
 The	
 extended	
 HTTP	
 Request	
 Pipeline	
 with	
 custom	
 components	
 created	
 by	
 the	

Windows	
 SharePoint	
 Services	
 team	
 (Used	
 with	
 permission	
 from	
 Microsoft.	
 The	
 figure	

originally	
 appeared	
 as	
 figure	
 2-­‐5	
 on	
 [55].)	
 ..	
 24	

Figure	
 13.	
 SPVirtualPathProvider's	
 role	
 in	
 Windows	
 SharePoint	
 Services	
 (Used	
 with	

permission	
 from	
 Microsoft.	
 The	
 figure	
 originally	
 appeared	
 as	
 figure	
 2-­‐6	
 in	
 [56].)	
 	
 26	

Figure	
 14.	
 The	
 virtual	
 directories	
 observed	
 in	
 the	
 IIS	
 Manager	
 tool	
 (Used	
 with	
 permission	

from	
 Microsoft.	
 The	
 figure	
 originally	
 appeared	
 as	
 figure	
 2-­‐7	
 in	
 [57].)	
 	
 29	

Figure	
 15.	
 An	
 example	
 of	
 a	
 My	
 Site	
 home	
 page	
 ..	
 34	

Figure	
 16.	
 Global	
 term	
 set	
 and	
 custom	
 term	
 set.	
 Users	
 can	
 manually	
 add	
 terms	
 to	
 the	

empty	
 custom	
 local	
 term	
 set.	
 ..	
 37	

Figure	
 17.	
 Term	
 set	
 and	
 Enterprise	
 keyword	
 set.	
 ..	
 38	

Figure	
 18.	
 Scrum	
 board	
 ..	
 41	

Figure	
 19.	
 Creating	
 Visual	
 Web	
 Part	
 in	
 Visual	
 Studio	
 ..	
 42	

Figure	
 20.	
 Configuring	
 custom	
 user	
 property	
 using	
 CA.	
 ..	
 43	

Figure	
 21.	
 News	
 term	
 set	
 ...	
 44	

Figure	
 22.	
 Pages	
 library	
 with	
 custom	
 site	
 columns:	
 NewsTag	
 and	
 Department	
 	
 45	

Figure	
 23.	
 Creating	
 site	
 column	
 and	
 binding	
 it	
 with	
 global	
 term	
 set	
 	
 45	

Figure	
 24.	
 Corporate	
 News	
 web	
 part	
 view	
 ..	
 47	

Figure	
 25.	
 A	
 example	
 of	
 a	
 retrieved	
 news	
 item.	
 ..	
 51	

Figure	
 26.	
 Error	
 message	
 when	
 running	
 the	
 web	
 part.	
 ...	
 52	

 x

List of Acronyms and Abbreviations

AIIM Association for Information and Image Management
API Application Programming Interface

CA Central Administration
CSS Cascading Style Sheet

DLL Dynamic-Link Library
IIS Internet Information Services

IIS Internet Information Services
ISAPI Internet Server Application Programming Interface

MMS Managed Metadata Service
OATH Open Authentication

RSS Rich Site Summary
SA Service Application

SSP Shared Services Provider
WA Web Application

XML Extensible Markup Language
XSL Extensible Stylesheet Language

1

1 Introduction

This chapter gives a short introduction to the area, as well as a longer
definition of the problem addressed in this thesis project. This is followed
by a statement of the goals to be achieved within this thesis project and a
description of the general structure of the thesis.

1.1 General Introduction to the Area
SharePoint is a widely used multipurpose web application platform

developed by Microsoft. It specifically targets enterprises and over a third of
all organizations of the 674 survey responses by Association for Information
and Image Management (AIIM) members in 2011 [1] use SharePoint for
content management across the enterprise. Initially, SharePoint mainly
focused on intranet content and document management. However, the most
recent versions of SharePoint have more wide-ranging capabilities [2],
where in addition to intranet portals and document & file management,
SharePoint can also provide organizations with social networks, extranets,
collaborative services, websites, enterprise search, and business intelligence
services.

In SharePoint 2010 and SharePoint 2013, users have personal sites
called “My Site”. Compared with the earlier versions, SharePoint 2013 has
improved the users’ My Sites by interconnecting them in a social network.
Microsoft added various capabilities for social networking [3] in
SharePoint, such as news feeds, SkyDrive Pro, community sites, and task
list aggregation. A user can also choose to follow content or people of
interest on the intranet.

The news feed in My Site shows a list of the latest events. These events
consists of content the user has chosen to follow. As mentioned above, the
user can choose to follow specific people and/or content, such as
documents, tags, or sites which are available in the intranet. When a change
occurs in a document or when a new conversation starts, the event will be
shown in the user’s news feed. Figure 1 illustrates an activity in the news
feed of My Site using SharePoint 2013.

 2

Figure 1. A conversation event shown as a newsfeed in My Site

1.2 Problem Definition
The purpose of this thesis project is to investigate whether or not it is

possible to extend the news feed function in a SharePoint 2013 environment
by adding an optional news component to enable users to subscribe to
specific corporate news categories such as IT, business, or economy.

The component should also allow the company to add relevant metadata
to each news article, such as its news category and the name of a specific
department. If the news article is targeted towards all employees, then it
should be shown in all users’ feeds regardless of their subscriptions.

1.3 Goals
The generic goals of this thesis project are:

• Design and implement a prototype of the proposed
targeted news component.

• Demonstrate that the component shows news relevant to
the user.

The specific goals of this thesis project are:

• The component should be added as an independent part
of My Site.

• A user should be able to subscribe to their selected news
categories.

• The company should be able to add news articles to the
different categories.

 3

• If a news article is relevant to the user, for example if the
article targets the user’s department, then the article
should be visible via the news component.

1.4 Structure of the Thesis
Chapter 2 gives some background about existing solutions and a brief

review of general knowledge about the SharePoint architecture as needed to
fully understand this thesis. Chapter 3 describes the SharePoint foundation
and the existing services it was build upon. The method used in this thesis,
as well as the results and analysis is presented in Chapter 4 and Chapter 5
respectively. Chapter 6 shows the conclusion of this thesis followed by
suggestions for future work. A list of references can be found at the end of
the thesis.

5

2 Background

Along with the growth of news-related websites, more and more people
use tools in order to gather their news subscriptions in one place. This way,
users save time as they do not need to individually visit these separate
websites. Some existing solutions related to this project’s topic will be
briefly presented in section 2.1. An overview of the SharePoint architecture
is presented in section 2.2 and the prerequisites to understand this thesis is
given in section 2.3.

2.1 Earlier work
This section will present a selection of existing aggregation techniques

that are related to the topic of this project.

2.1.1 RSS and Atom feed readers
News feed readers are popular tools to subscribe to news via the

Internet. The number of news publishers who syndicate their site contents as
Rich Site Summary (RSS) or Atom feeds is growing rapidly [4]. RSS and
Atom are two different XML formats that are used for web feeds. Web
feeds allow software feed readers to receive web contents [5]. It does not
matter which format the publishers choose when publishing web contents,
since both formats serve the same function. The two formats are both simply
special types of web pages, which users subscribe to. Generally, news
stories are grouped by category (Business, Sports, etc.), where each
category is distributed as a different RSS or Atom feed. Using feed readers,
users can subscribe to news feeds in order to receive updates concerning
their selected category or categories of interest [6].

 Sites offering RSS or Atom feeds include Google News, Yahoo News,
and CNN. Various native feed readers are available for different platforms,
such as Amphetadesk (Microsoft Windows, Linux, Apple’s Mac OS),
FeedReader (Windows), and NewsGator (Windows Outlook). Other popular
web-based feed readers are My Yahoo, Bloglines [4], and NewsGator
Online Services [10]. Figure 2 shows an example of a web-based feed
reader, in this case Google Reader (Note: Google Reader was discontinued
1st July 2013 [20]).

 6

Figure 2. Google Reader

2.1.2 News Rollup Web Part
The purpose of using RSS and Atom feeds is similar to the purpose of

this project; to allow users to easily subscribe to and receive news updates.
Both types of feeds are used by a wide range of websites. Since this thesis
concerns developing a SharePoint news component, this section will give a
brief introduction of an existing SharePoint solution called News Rollup
Web Part.

In SharePoint, news can be published as announcements using
announcements lists. An announcements list is created by default when
creating a SharePoint site. The list appears as a web part (view) on the
user’s home page and it typically displays the five most recently published
announcements. Older announcements disappear from the web part, but they
are still accessible via the All Item view of the Announcements list [7].
Typically, web applications have at least one site collection, which is a
collection of SharePoint sites [8]. Users that have access to more than one
site in a site collection may want to follow several announcements lists, one
for each site. However, it can be time consuming and inefficient to view
each site individually. The News Rollup Web Part solves this problem by
displaying the most recent announcements of each site within the current
site collection. This approach provides better visibility of new
announcements from the announcement lists of the sites. Customization of
content layout is provided to allow users to make their own modifications,
such as defining the number of words and number of announcements to be
displayed, customizing layout using CSS, and showing or hiding the
author’s picture. As illustrated in Figure 3, the web part displays some small
amount of information about the announcements with links to the actual
announcement pages [9].

 7

Figure 3. News Rollup Web Part view (Appears here with the permission of Amrein
Engineering. The figure originally appeared as figure AE News Rollup Web Part on [21].)

2.1.3 RSS Viewer Web Part
As mentioned in section 2.1.1, using a RSS feed is a popular method

among news publishers when publishing information on the Internet.
Content in SharePoint (such as libraries, lists, and documents) can also be
syndicated as an RSS feed, thus a SharePoint user can subscribe to feeds
and get updates automatically using a feed reader. However, some
SharePoint users may want to view the feeds on a SharePoint site such as
My Site. Instead of using one of the regular feed readers mentioned in
section 2.1.1, users can add a RSS Viewer Web Part as a part of My Site. By
adding this web part, a user can view all subscribed RSS feeds directly on
My Site. The web part can display both external subscriptions (such as
sports news and weather reports) and content updates within the SharePoint
site collection. RSS Viewer offers convenience for those who prefer to view
all of the information from different sources via a single SharePoint page
[11].

2.1.4 Virto Social Aggregator Web Part
Similar to RSS Viewer, Virto Social Aggregator is a SharePoint web

part that combines RSS, Atom, blogs, and tweets into a single view. This
component is compatible with SharePoint 2007 and SharePoint 2010 and it
provides full user interface customization using XSL and CSS. Users can
customize the overall layout, feed item layouts, and stylesheet. In addition
to aggregation of feeds, the component offers additional features for Twitter
users allowing them to both read and post tweets right from SharePoint.
Open Authentication (OATH) protocol is supported by Virto Social
Aggregator and this method of authentication is accepted by Twitter, thus
the web part does not store the users’ accounts or passwords. SharePoint
administrators have the ability to give users access to these Twitter features
or prevent them from using these features [12].

 8

In the future, the developers of Virto Social Aggregator plan to add
integration with Facebook in order to allow users to get and post
information from their Facebook network. Another feature that will be
added is the support for approval workflow, which gives the possibility to
define an approval process for all posts [12].

2.1.5 Content Query Web Part
As presented in section 2.1.2, the News Rollup Web Part aggregates

announcements from several announcements lists within a site collection.
However, the aggregator does not filter the results to adapt to the users’
criteria, nor does it access information from other lists and libraries;
therefore the web part may not satisfy users who want to subscribe to more
specific information than is available from these announcements lists.

Intranets based on SharePoint typically use document libraries and lists
to share information among users. For example, a project group can create a
library or a list of common documents for the project’s team site. Only team
members and those that are given permission to access the site can access
the documents. Libraries and lists typically come with the site. Users can
either use the existing libraries and lists or to create new ones to share
information [13]. What if a user wants to subscribe to multiple lists and
libraries? And what if the user only wants to see the documents that were
modified by a specific user? The Content Query Web Part is a solution for
SharePoint which allows users to subscribe to documents in libraries and
lists throughout a site collection. Users can query all documents in a site
collection, in one site and all of its sub-sites, as well as in a single list or
library. Filters can be added to the queries to match the user’s criteria. The
user can also modify the results in several ways, such as grouping, sorting,
and limiting the number of results to be displayed. This web part shows the
most recent updated information that the user is authorized to see. The
queries are run whenever the browser refreshes, which in turn automatically
refreshes the query results [14].

2.1.6 Proactive News Module
Proactive provides a news module that targets news on SharePoint

intranets. The module targets relevant news contents to the relevant users
based on their properties such as divisions, departments, teams, and
individuals. This module gives users a personalized view of news when they
log onto the intranet [22].

The Proactive News Module provides a user-friendly tool to publish
news from many different news channels. Users are divided into groups that
subscribe to relevant news. A user can also decide which news channel to
subscribe to individually. The overall functions of the module are listed
below [22]:

 9

• Target relevant news to relevant group of audiences,
individual business units, and individuals.

• Publish news to different levels of the organization.

• Publish many different content types, such as text,
images, videos, etc.

• Users can comment on and rate news.

• Users can share news links with others.

• Users can subscribe to news and updates.

2.2 Prerequisites
This thesis is targeted to anyone interested in developing independent

components in SharePoint 2013. This thesis will only cover a small part of
the SharePoint environment. Readers of this thesis do not need any prior
knowledge of the SharePoint architecture. All of the relevant information
regarding SharePoint will be presented in this thesis.

 10

3 Microsoft SharePoint Architecture
& Topology

SharePoint is a very flexible platform that offers scalability, as it can be
run on a single machine or across hundreds of machines [15]. This chapter
aims to describe the foundation of Microsoft SharePoint and its logical
architecture and topology.

3.1 Microsoft SharePoint Foundation
This chapter will describe in detail how the foundation for Microsoft

SharePoint is composed. A description of Microsoft’s Internet Information
Services (IIS) and the ASP.NET Framework will be given in section 3.1.1
and 3.1.2 (respectively). Section 3.1.3 explains how the Windows
SharePoint Services are integrated with these other two components, thus
creating the foundation for Microsoft SharePoint.

3.1.1 IIS Web Sites and Virtual Directories
To understand the Microsoft SharePoint architecture, it is first necessary

to understand the basic concepts behind an IIS Web site and virtual
directories. Both Microsoft SharePoint and ASP.NET depend upon IIS 6.0
web server to handle incoming HTTP requests. In addition to handling
incoming HTTP requests, IIS also provides a management infrastructure to
start and run processes on the web server.

Each IIS Web site acts as an entry point into the IIS web server’s
infrastructure. IIS Web sites are configured to listen for and handle
incoming HTTP requests that meet certain criteria. For example, an IIS Web
site can be configured to handle requests coming over a certain IP address or
port number.

A default IIS Web site, Default Web Site is automatically created and the
IIS 6.0 web server is configured to listen for requests coming over TCP port
80 for all IP addresses supported by the web server. In addition to the
Default Web Site, other IIS Web sites can be created using the IIS
administration tools. As for any other IIS Web site, the Default Web Site
defines a specific URL space that follow the pattern:
http://www.Litwareinc.com/*1. An endless number of URLs can be created

1 This URL is for a fictional company named Litware Inc. and is the name used

throughout the Microsoft documentation for IIS.

 11

within this URL space, and IIS handles incoming requests for these URLs
by routing them towards the Default Web Site.

Every IIS Web site maps to a physical root directory within the web
server’s file system. IIS by default maps Default Web Site to the root
directory in C:\Inetpub\wwwroot. The incoming HTTP requests can
reference physical files in the root catalog defined by IIS. For example,
when a request comes for the page http://www.Litwareinc.com/page1.htm/,
IIS will respond by simply loading the content from the file
C:\Inetpub\wwwroot\page1.htm into memory and sends this content to the
client.

An important part of an IIS Web site is the ability to control whether
incoming requests require authentication, and which authentication
protocols should be used. For instance, a company can separate their
internal network from the external network by simply changing the
configuration for the IIS Web sites to be used for the internal network from
the configuration used for the external network. A company might use the
Default Web Site as its public Web site, i.e., as a website that can be
accessed by everyone. In this case, the IIS Web site is configured to allow
anonymous access and to support basic authentication. Other IIS Web sites
can be created for internal use in the company, and configured to forbid
anonymous access. In this case basic authentication is then replaced by
Integrated Windows authentication [23].

Beyond the possibilities to create IIS Web sites, IIS also supports
creation and configuration of virtual directories. A virtual directory is a
logical entity that defines a child URL space nested inside the parent URL
space. As with any IIS Web site, the virtual directory is also mapped to a
physical directory on the web server. What makes a virtual directory
different from a regular directory is that IIS provides greater flexibility to
define the location for the root directory of a virtual directory. For example,
a virtual directory within the Default Web Site with the URL space
http://www.Litwareinc.com/Products/ could be configured to have its root
directory in C:\WebApps\Site1 instead of the default
C:\Inetpub\wwwroot\Products.

IIS tracks all changes made in the IIS Web sites and virtual directories.
These changes are saved as entries in the IIS metabase located in the file
system of every front-end web server running IIS [23].

 12

3.1.1.1 ISAPI Extensions and ISAPI Filters
In the most straightforward routing scenarios, incoming requests are

mapped by IIS to a physical file in the root directory for the IIS Web site or
to a virtual directory. IIS supports the Internet Server Application
Programming Interface (ISAPI) programming model, which allows for
more sophisticated request routing scenarios. The ISAPI programming
model provides the possibility to configure an IIS Web site or virtual
catalog to trigger the execution of custom code on the web server with
incoming requests.

The original version of IIS introduced the ISAPI programming model.
This application programming interface (API) still offers the lowest level
for development of custom components for IIS. The ISAPI programming
model consists of two key component types: ISAPI extensions and ISAPI
filters.

An ISAPI extension is a component realized as Dynamic-Link Library
(DLL) that acts as an endpoint for an incoming request. The basic idea is
that IIS can map incoming requests to a set of endpoints that will trigger the
execution of code within the ISAPI extension DLL. The ISAPI extension
DLL needs to be installed on the web server and configured as an IIS Web
site or virtual directory. Configuration generally includes defining an
association between specific file extensions and ISAPI extensions. This is
done with the help of an IIS application map.

While the ISAPI extension acts as an endpoint, an ISAPI filter acts as an
interceptor. An ISAPI filter is installed and configured as an IIS Web site.
When an ISAPI filter is installed, it intercepts and processes all incoming
requests that target that specific IIS website. The basic task of ISAPI filters
is to process incoming requests before and after they are passed to the rest
of the IIS Web site. ISAPI filters are typically created to provide low level
functionality in an IIS Web site, for instance to provide custom
authentication and request logging.

An example scenario of how the ISAPI extensions and ISAPI filters
interact is depicted in figure 4.

 13

Figure 4. The relationship between ISAPI extensions and ISAPI filters

However, custom development of ISAPI components is not very popular

these days for several reasons. ISAPI components are hard to design,
develop, and debug since they need to be written in unmanaged C++ and
require complicated coding techniques for thread synchronization (amongst
other things). Most developers prefer to work on a level above the ISAPI,
where frameworks such as ASP and ASP.NET are available [23].

3.1.1.2 Application Pools and the IIS Worker Process
IIS offers a flexible infrastructure for management of the actual web

request processing using worker processes by utilizing application pools.
An application pool is a configurable unit that gives control over how IIS
maps the IIS Web sites and virtual directories to instances of the IIS worker
process. Instances of the worker process are launched with an executable
named w3wp.exe. This name in the following chapter refers to a worker
process.

The routing architecture of IIS is controlled through a device driver in
the kernel-level of the operating system named http.sys. This device driver
listens for incoming HTTP requests and using the information provided by
the IIS metabase routes requests to the correct instance of w3wp.exe. This
instance is part of the target application pool. When the http.sys determines
that the target application pool is missing an active instance of w3wp.exe, it
dynamically launches a new instance to process the request. Figure 5 shows

 14

the relationship between the kernel-level device driver http.sys and the
worker processes w3wp.exe.

Figure 5. The relationship between http.sys and w3wp.exe (Used with permission from
Microsoft. The figure originally appeared as figure 2-2 in [53].)

Every IIS Web site and virtual directory can be configured to run in its
own isolated application pool. Conversely, it is also possible to configure
multiple IIS Web sites and virtual directories to run in the same application
pool for greater efficiency. An important aspect to consider is the tradeoff
that exists between isolation and efficiency. Running multiple instances of
the worker process gives greater isolation between the applications, but
reduces the efficiency. Conversely, higher efficiency can be achieved by
mapping multiple IIS Web sites and virtual directories to fewer instances of
w3wp.exe, which in turn compromises their isolation.

Each application pool has an important setting known as the application
pool identity. The application pool identity is configured with a specific
Windows user account that is either a local account on the web server or a
domain account in an Active Directory directory service domain. When
http.sys starts a new instance of the w3wp.exe for a specific application pool,
it uses the application pool identity for initialization of a Windows security
token, which in turn is used as a process token. This setting is important
because it establishes the “run as” identity for code that is executed in the
worker process. As a result the code that executes in the worker process
executes as if it were being run by this specific account. It is this binding
between the account and the application pool that provides the isolation
when two different accounts are used for two different application pools.

By default IIS uses the identity of the local Network Service account
when an application pool is launched. However, it is possible to configure
the application pool identity to use any account. When Web sites based on
ASP.NET and Windows SharePoint Services are deployed it is
recommended to configure the application pool identity with a domain
account rather than a Network Service account. This is especially true in the

 15

case of a Web farm environment when the identity of an application pool
needs to be synchronized across multiple front-end web servers in the farm
[23].

3.1.2 ASP.NET 2.0 Framework
The ASP.NET Framework provide a new layer of functionality on top of

the IIS and ISAPI programming model. This framework provides the
convenience and possibility to develop applications in a managed language,
such as Microsoft Visual C# or Visual Basic. Additionally, the ASP.NET
Framework provides the developer with valuable and helpful abstractions,
for example data binding, navigation, state management and data caching.

The ASP.NET Framework is implemented as an ISAPI extension named
aspnet_isapi.dll. As described previously, an ISAPI extension acts as en
endpoint for incoming requests and it associates file extensions with specific
ISAPI extensions by using application maps. The basic configuration for
ASP.NET involves registration of application maps for common ASP.NET
file extensions such as .aspx, .ascx, .ashx, and .asmx. This configuration is
made on the same level as an IIS Web site or virtual directory. When IIS
sees an incoming request with one of these extensions, the request is
forwarded to the aspnet_isapi.dll, which passes control to the ASP.NET
Framework. How the ASP.NET Framework processes the requests depends
greatly on which extension the target has. The relationship between the
worker process and the ASP.NET DLL is shown in figure 6.

 16

Figure 6. The relationship between ISAPI and ASP.NET

The ASP.NET Framework executes code to process each request for

each IIS Web site and each virtual directory as an individual ASP.NET
application. An ASP.NET application is logically a root directory for a set
of files behind the application. This architecture promotes a very simple
x-copy [24] style of deployment of ASP.NET applications. Creating a new
virtual directory on the web server computer and copying the ASP.NET
application files to the specified root directory is all that is necessary to
deploy an ASP.NET application. However a lot more tedious work is
required in a Web farm environment, since the virtual directory creation and
file copying must be repeated on every front-end web server in the farm that
is to provide this ASP.NET application.

Each ASP.NET application can be individually configured by adding a
web.config file to the root directory. The web.config file is written in XML
and specifies the configuration of the elements that control the behavior of
several features in the ASP.NET Framework, for example compilation, state
management, and page rendering.

The ASP.NET Framework runs each ASP.NET application with a
certain level of isolation. This even applies to a scenario where multiple
ASP.NET applications have been configured to run on the same IIS
application pool. The ASP.NET Framework provides isolation between

 17

ASP.NET applications that run on the same instance of w3wp.exe by
loading each application into a separate .NET Framework AppDomain [24].

3.1.2.1 ASP.NET Pages
The ASP.NET page is one of the most appreciated concepts in the

ASP.NET Framework. Microsoft’s Visual Studio integrated development
environment provides the possibility to visually construct pages for
ASP.NET applications. Developers drag and drop server controls onto the
visual design surface in Visual Studio, and modify the properties of pages
and controls by utilizing standard property sheets. Additionally, the
ASP.NET Framework and Visual Studio makes it moderately easy to add
programming logic to pages by writing managed code, which executes in
response to events on the control-level and page-level.

Fundamentally, an ASP.NET application page is realized as an .aspx file
on the web server that is compiled into a DLL on request by the ASP.NET
runtime. The content of an .aspx file may not be very complex, but
compilation from an .aspx file to a DLL requires quite a bit of work (as will
be described below).

First, the .aspx file contains definitions of all of the server-side controls
and event handlers needed in the ASP.NET application. The .aspx file is
parsed to generate a Visual C# or Visual Basic source file. This Visual C# or
Visual Basic file contains a public class that inherits from the Page class
defined within the System.Web.UI namespace. This namespace is defined
inside the system.web.dll assembly. When the ASP.NET page parser
generates this Page-derived class, a control tree of the defined server-side
controls is built. The parser also adds the required code for hooking up the
event handlers.

The ASP.NET page parser builds a source file for the .aspx page, which
is then compiled into a DLL. The compilation happens automatically the
first time a request comes in for this .aspx page. Once the DLL has been
compiled by the ASP.NET runtime, this DLL can be used for all subsequent
requests targeting that specific .aspx page. The ASP.NET runtime checks
the date and time stamp on the .aspx file and retriggers the compilation
process to rebuild the DLL when an updated version of the source file is
found.

One reason for the immense popularity of the ASP.NET Framework is
the convenience of server-side controls the framework offers. Pages can
easily be composed with the help of out-of-the-box controls included in the
ASP.NET Framework, such as calendar control, validation controls, and
data binding controls. Another reason developers enjoys working with the
ASP.NET Framework is because it is relatively simple to develop custom
controls to use on ASP.NET pages.

When ASP.NET 2.0 was released in November 2005 [25], it introduced
the concept of master pages, a very effective approach to page templating.

 18

A master page is used across many different pages and it defines the
common elements used in these pages, such as the top banner as well as site
navigation controls. Every page linked to the master page makes use of the
layout designed in the master page. A page linked to the master page is
generally known as a content page in ASP.NET terminology. Figure 7
shows the relationship between a master page and its content pages.

Figure 7. The relationship between a master page and content pages

For example, assume that you create a master page with the HTML

layout shown in figure 7. The HTML layout consists of a top banner, a left
side navigation bar and two content placeholders. Next you create a site
collection named Colors with two content pages that utilize this master
page. The two content pages contain blue and yellow placeholder (as shown
in figure 7).

Figure 8 shows content page A where the top banner, left side
navigation, and Placeholder B are colored yellow while Placeholder A is
blue.

 19

Figure 8. Content page A

Comparing content page A with content page B depicted in figure 9, you

can see that the content pages share a layout, but that the top banner in
content page B is blue instead of yellow.

Figure 9. Content page B

Simply put, while the content pages inherit the HTML layout of the

master page, the content is entirely separate for each content page.

 20

A master page comes with definition of named placeholders, although
there is no requirement to replace each placeholder when a content page is
created. For this reason, the master pages can be created with placeholders
that contain default content. This default content will only be visible on the
content page if the placeholder is not included in the content page. If the
placeholder is included in the content page, the default content will
automatically be overwritten with the custom content.

Figure 10 shows a content page where every element except Placeholder
A has been replaced with blue content.

Figure 10. Default content in a content page

The person who creates a master page decides upon the name of the
placeholders, as well as which placeholder contains what default content.
This is important to know since each developer who is going to create
SharePoint content pages needs to use the master pages created by the
Windows SharePoint Services team when designing and creating content
pages. The developer must learn what placeholders the Windows SharePoint
Services team has defined and what content is replaceable [24].

3.1.2.2 HTTP Request Pipeline
For developers who prefer to work at a level under the

productivity-centered architecture for pages and server-side controls, the
HTTP Request Pipeline is available. The ASP.NET Framework provides the
developer with control similar to the ISAPI programming model. The
advantage of working with the HTTP Request Pipeline as compared to the
ISAPI programming model is that creating a component for the HTTP
Request Pipeline involves writing code in managed languages (such as
Visual C# and Visual Basic) rather than C++. Another advantage of coding

 21

for the HTTP Request Timeline is the availability of the APIs provided by
the ASP.NET Framework. Using these APIs is much easier than using the
ISAPI programming model.

The HTTP Request Pipeline contains three replaceable component
types: HttpHandler, HttpApplication, and HttpModule. The irreplaceable
fourth component HttpContext will be described later in this chapter. The
incoming requests are enqueued and assigned to a worker thread that
processes the request by interacting with each of the three component types
in the HTTP Request Pipeline. Figure 11 depicts the HTTP Request Pipeline
and the three replaceable components.

Figure 11. The HTTP Request Pipeline and its components (Used with permission from
Microsoft. The figure originally appeared as figure 2-4 in [54].)

The final destination of all requests is the endpoint, which is shown in
the HTTP Request Pipeline as an HttpHandler class. The HttpHandler class
implements the IHttpHandler interface. A developer can create and plug a
custom HttpHandler component into the HTTP Request Pipeline by adding
configuration elements to the web.config file.

In the HTTP Request Pipeline, the HttpApplication component is before
the HttpHandler component. In an application-based scenario, incoming
requests are always routed through the HttpApplication before reaching the
HttpHandler of the target application. This gives the HttpApplication the
ability to pre-process all requests before being forwarding them to the target
HttpHandler. The preprocessing stage can be divided into a series of events
defined inside the HttpApplication class, such as BeginRequest,
AuthenticateRequest, and AuthorizeRequest. A custom HttpApplication

 22

component can be created by simply creating a file named global.asax and
place it in the root directory of the ASP.NET application. This file defines
the behavior of the preprocessing stage. If a custom HttpApplication
component is not added, the HTTP Request Pipeline provides a default
component with default behavior.

The third and last of the replaceable component types in the HTTP
Request Pipeline is the HttpModule. The HttpModule and HttpApplication
component are similar in that both are designed to handle events defined by
the HttpApplication class. Both components are also processed before
control is shifted over to the HttpHandler classes. A developer can for
example, create a custom HttpModule component that handles the events
BeginRequest, AuthenticateRequest, and AuthorizeRequest. The HttpModule
class is defined with an interface, as with the HttpHandler and a custom
component can be created with the IHttpModule interface and plugged into
the HTTP Request Pipeline by adding configuration elements to the
web.config file.

Even though an HttpApplication component and an HttpModule
component work similarly, there are a few significant differences between
the two. For instance, unlike the HttpApplication component, the
HttpModule component is not limited to one component per application.
The web.config file for an ASP.NET application supports the use of several
different HttpModule components. Another difference is that HttpModule
components can be configured on the machine level. In fact, the ASP.NET
Framework comes with a set of HttpModule components that are
automatically configured on the machine level to provide ASP.NET
functionality. Examples of this functionality are Windows authentication
and output caching.

The last component discussed in the HTTP Request Pipeline is the
irreplaceable component HttpContext. When a request to send to the HTTP
Request Pipeline is initialized by ASP.NET, an object from the HttpContext
class is created and initialized with important contextual information.
Viewed from the perspective of time, the HttpContext object is created
before any custom code inside the HTTP Request Pipeline has a chance to
begin execution [24].

 23

3.1.3 Windows SharePoint Services Integration with
ASP.NET

The integration of Windows SharePoint Services and ASP.NET occurs at
the level of the IIS Web site. Each IIS Web site that hosts SharePoint sites
must first go through a one-time transformation process in which the IIS
Web site is configured to become a Web application. This transformation
process consists of adding IIS metabase entries and a web.config file,
specifically for Microsoft SharePoint, to the root directory of the hosting IIS
Web site. Once the transformation of the IIS Web site is complete, the
routing architecture of IIS and ASP.NET will be extended to properly route
incoming requests through the Windows SharePoint Services runtime code.

A detailed explanation on the configuration of a Web application will be
given in the next section of this chapter. However, before we dive into any
details, it is important to understand how the concept of Web applications
fits into the bigger picture of the Windows SharePoint Services architecture
from the perspective of manageability and scalability.

Creation of Windows SharePoint Services Web applications are
important tasks in the administration that require a certain level of
administrative privileges in the web server farm. When a Web application is
created, a large number of changes need to be made in the file system and
the IIS metabase in every front-end web server. These changes are made
automatically by the Windows SharePoint Service runtime across the
front-end web servers in a Web farm environment. Fortunately, the only
time this step of creating a Web application is required is when the
Windows SharePoint Services are initially installed and configured.

Once a Web application is created, there will be no need to modify the
file system or IIS metabase of the front-end web server when making
changes in the site’s collections. The architecture of Windows SharePoint
Services makes it possible to establish new sites and a site collection by
simply adding new entries to the configuration and content databases. This
aspect of the Windows SharePoint Services architecture gives major
management and provisioning advantages over ASP.NET. This
manageability becomes even more important in a web server farm
environment [26]. A more detailed explanation of how this is possible will
be given in section 3.1.3.2.

3.1.3.1 Web Applications
There are two primary ways to create a Windows SharePoint Services

Web application, using the Central Administration Application or the
command-line function in stsadm.exe. As mentioned earlier, converting an
existing IIS Web site on the web server can create a Web application. An
alternative way is to create a Web application from scratch. In this later
approach the creation of the IIS Web site occurs behind the scenes by
Windows SharePoint Services. In both cases, the configuration of the
hosting IIS Web site is made by Windows SharePoint Services through

 24

addition of an IIS application map and creation of several virtual directories.
Windows SharePoint Services also copies the files used in the HTTP
Request Pipeline, global.asax and web.config, to the root directory of the
hosting IIS Web site.

To guarantee that all incoming requests are initially routed to the
ASP.NET runtime, requires adding an IIS application map to each Web
application by Windows SharePoint Services. As mentioned in section 3.12,
the ASP.NET runtime only registers application maps for requests targeting
the well-known extensions .aspx, .ascx, .ashx, and .asmx. To avoid this
limitation, Windows SharePoint Services configures the hosting IIS Web
site with a wildcard application map to route all incoming requests i.e., not
only the well-known ASP.NET extensions, but also non-ASP.NET
extensions such as .doc, .docx and .pdf are routed to aspnet_isapi.dll.

Since all requests targeting a Web application in the SharePoint
environment are routed through the ASP.NET DLL, these requests are
initialized within an ASP.NET context. In the previous section, the
ASP.NET HTTP Request Pipeline was discussed in detail and as mentioned,
three of the component types are replaceable with custom configuration
elements. The Windows SharePoint Services team utilized standard
ASP.NET techniques to extend the HTTP Request Pipeline with several
custom components to control the processing behavior of incoming
requests. Figure 12 depicts the extended HTTP Request Pipeline are
configured by Windows SharePoint Services.

Figure 12. The extended HTTP Request Pipeline with custom components created by the
Windows SharePoint Services team (Used with permission from Microsoft. The figure
originally appeared as figure 2-5 on [55].)

As shown in figure 12, the HTTP Request Pipeline has been extended by

the Windows SharePoint Services with a custom HttpApplication object for
each Web application. The custom HttpApplication object utilizes the

 25

SPHttpApplication class that is deployed in the Microsoft.SharePoint.dll.
This class realizes the Windows SharePoint Services system assembly.

In addition to the custom HttpApplication component, the Windows
SharePoint Services architecture also integrates a custom HttpModule and a
custom HttpHandler component into the HTTP Request Pipeline.

SPRequestModule, the custom HttpModule created by the Windows
SharePoint Services team initializes various features of the SharePoint
Services runtime environment. By default in the Windows SharePoint
Services web.config file, the SPRequestModule is the first HttpModule that
responds to events occurring on the application-level in the HTTP Request
Pipeline in ASP.NET. Although the default web.config file was replaced by
Windows SharePoint Services, several of the standard HttpModule
components that come with the ASP.NET Framework remain in the new
web.config file. For instance, the components that deal with output caching
and different types of authentication are useful for Windows SharePoint
Services.

The last custom component SPHttpHandler created by the Windows
SharePoint Services team is configured to be the single endpoint for all
incoming requests. By extending the HTTP Request Pipeline, Windows
SharePoint Services has full control over the fundamental capabilities of the
ASP.NET Framework as well as every incoming request targeting a Web
application [26].

3.1.3.2 SPVirtualPathProvider
A major strength of Windows SharePoint Services running over

ASP.NET is the ability to create and customize pages within a site without
altering anything in the local file system of the front-end web server. This
functionality is made possible by storing the customized versions of the
physical .aspx and .master files in the content database. These entries in the
content database are retrieved when a request targeting this page is received.
The architectural details that make this possible will be explained further
later in this chapter.

Page customization in Windows SharePoint Services works by storing
customizations in the content database. Consider a simple example where
modification of the HTML layout in the home page (default.aspx) is done
using Microsoft Office SharePoint Designer. When saving a page using
SharePoint Designer, the entire contents of this customized page definition
is written to the content database by Windows SharePoint Services. Once
the data has been stored in the content database, Windows SharePoint
Services retrieves the contents of this customized page definition when a
request for this page arrives. The retrieved content will be passed to the
ASP.NET runtime for parsing.

A critical component that makes this possible is the virtual path
provider, a new type of pluggable component introduced in ASP.NET 2.0.

 26

The purpose of a virtual path provider is to hide the details of where page
files are stored from the ASP.NET runtime. A developer can create a virtual
path provider and design a custom component that retrieves the content of
ASP.NET file types from a remote location. This content can then be passed
along to the ASP.NET runtime for parsing without divulging the details of
where the physical file is located.

The virtual path provider SPVirtualPathProvider was created by the
Windows SharePoint Services team and integrated into the request-handling
infrastructure in the ASP.NET Web application through the
SPRequestModule. A Web application is initialized by the
SPRequestModule component, which contains the code to register the
SPVirtualPathProvider class with the ASP.NET Framework. The role
which SPVirtualPathProvider plays in the Windows SharePoint architecture
is shown in figure 13.

As shown in figure 13, an ASP.NET file (shown as “default.aspx”) is
retrieved from the content database by the SPVirtualPathProvider and then
passed to the ASP.NET page parser. The ASP.NET page parser receives
information about how the page should be parsed from a class named
SPPageParserFilter. This parser filter class collaborates with the
SPVirtualPathProvider. The SPPageParserFilter component controls how
the retrieved ASP.NET file should be processed, for example if it should be
compiled into a DLL or processed without being compiled.

Figure 13. SPVirtualPathProvider's role in Windows SharePoint Services (Used with
permission from Microsoft. The figure originally appeared as figure 2-6 in [56].)

 27

The SPVirtualPathProvider provides the foundation that supports page
customization in the Windows SharePoint Services architecture.
Additionally, it supports another key feature that optimizes the scalability of
the Windows SharePoint Services architecture: page ghosting. With page
ghosting, a server farm is able to scale out to thousands of pages across all
sites. These two optimizations provided by the SPVirtualPathProvider,
page customization and page ghosting, are both key factors in the scalability
of Windows SharePoint Services.

Consider a scenario where 100 new SharePoint sites are created using
the Blank Site template. The Blank Site template is used for creating blank
home pages [28]. These 100 sites across the farm are identical and none
require a customized version of the home page default.aspx. In this case,
copying the exact same page definition file into the content database a
hundred times is impractical and redundant. This can be avoided with page
ghosting. Since pages such as default.aspx are based on page templates that
reside in the file system of a front-end web server, Windows SharePoint
Services simply provisions an instance of the un-customized page based on
the default.aspx page template when requested. Instead of storing 100
copies of default.aspx in the content database, Windows SharePoint
Services utilizes the same page template as needed. A page template is
compiled into an assembly DLL that only needs to be loaded into a Web
application once by the IIS worker process during initialization. Page
ghosting provisions a page instance by processing a page template located in
the file system of the front-end web server.

Unfortunately, a modified page eliminates the possibility of page
ghosting. Instead, the SPVirtualPathProvider retrieves the customized
version of the page from the content database. In Windows SharePoint
terminology customized pages are referred to un-ghosted.

The SPVirtualPathProvider plays an important role in the Windows
SharePoint architecture because it determines whether a page has been
customized, and whether a page should be processed as ghosted or
un-ghosted. Furthermore, the details of ghosted and un-ghosted pages are
withheld from the ASP.NET runtime, which is a valuable aspect of
Windows SharePoint Services [26].

3.1.3.2.1 Page Parsing in Windows SharePoint Services 2.0
The older versions of Windows SharePoint Services were based on

ASP.NET 1.1. However, the previous version of ASP.NET did not have any
equivalent to the virtual path provider model. The Windows SharePoint
Services team solved that problem by creating their own .aspx page parser
for parsing un-ghosted pages after retrieving them from the content
database. Compared to the current ASP.NET page parser, the .aspx page
parser created by the Windows SharePoint Services team was simpler and
did not offer as many features, such as hosting user controls. The new
architecture in Windows SharePoint Services 3.0 introduced, among other

 28

things, the SPVirtualPathProvider and the ASP.NET page parser. These
two features should be considered the most significant architectural
improvements over the previous version, Windows SharePoint Services 2.0
[26].

3.1.3.3 Advantages and disadvantages of Ghosted & Un-Ghosted
Pages

Earlier in this chapter, the SPVirtualPathProvider component and the
principles of page ghosting and un-ghosting were introduced. The concept
of page ghosting is an optimization used to enhance the scalability of page
rendering and processing and has obvious advantages for scalability within
a web server farm. Another advantage of the SPVirtualPathProvider
component is the flexibility of page customization. When a user uses
Microsoft Office SharePoint Designer to customize a site page, a
customized version of the page definition is saved and stored in the content
database. Unfortunately, this flexibility in customization can have a negative
impact on performance and scalability. When a request for an un-ghosted
page arrives, the SPVirtualPathProvider must first retrieve the page
definition from the backend database server before passing it on to the
Microsoft ASP.NET page parser. The ASP.NET page parser must then
parse and load the page definition into memory before it can process the
page and return content to the user. Since every un-ghosted page definition
must be separately parsed and loaded into memory within the Web
application’s application pool, a Web application with thousands of un-
ghosted pages requires more memory than a Web application with only a
hundred un-ghosted pages.

Un-ghosted pages are not processed and compiled into an assembly
DLL using the standard ASP.NET model, but instead are parsed by the
ASP.NET page parser before being processed using the no-compile mode
feature that was introduced with ASP.NET 2.0. The reason why an .aspx
page is parsed in no-compile mode is because this can be more efficient and
scalable in certain scenarios, such as large Windows SharePoint Services
environments where the number of un-ghosted pages can reach up
thousands or tens of thousands.

No-compile pages have an advantage over compiled pages since the
Microsoft .NET Framework does not support unloading assembly DLLs
from memory. The closest equivalent to this process would be to recycle the
current Windows process or .NET AppDomain class. Unfortunately,
recycling involves unloading all DLLs from memory since there is no
ability to unload only those DLLs that have not been recently used.
Moreover, there is an upper limit on the number of assembly DLLs that can
be loaded into a .NET AppDomain.

Higher levels of scalability can be reached with no-compile pages since
there is no need to load new assembly DLLs or managed classes into
memory. Instead, the loading process with no-compile pages deals with

 29

control trees, which are more manageable for Windows SharePoint Services
than assembly DLLs. For instance, when Windows SharePoint Services has
finished processing an un-ghosted page, it can free up the memory by
unloading the page’s control tree. Another advantage of no-compile pages is
that it eliminates the compilation process. However, the disadvantage is that
if the page is accessed again it has to be reprocessed rather than simply
using the cached compiled version. So there is a question of what fraction of
pages are only accessed once. [38].

3.1.3.4 Virtual Directories Within a Web Application
During the conversion from an IIS Web site to a Web application,

several virtual directories, including the _controltemplates directory, the
_vti_bin directory, the _wpresources directory, and the _layouts directory,
are created by the Windows SharePoint Services. Figure 11 shows how the
virtual directories in a Web application can be examined using the IIS
Manager tool.

As shown in figure 14, the virtual directories are each mapped to a
physical directory on the file system in the path C:\Program Files\Common
Files\Microsoft Shared\web server Extensions. Several aspects of the
Windows SharePoint Services runtime use these virtual directories [26].

Figure 14. The virtual directories observed in the IIS Manager tool (Used with permission from
Microsoft. The figure originally appeared as figure 2-7 in [57].)

3.2 Microsoft SharePoint Topology
A detailed description of the foundation for Windows SharePoint

Services and how it operates behind the scenes was given in the previous
section. This section will discuss the top level of Windows SharePoint
Services. It will briefly touch on the subjects of Web applications and the
concept of site collections and sites. Following this is a description of a
specific site collection relevant to this thesis: My Site. The last part of this
chapter will focus on other parts of the SharePoint topology, such as central
administration, administration & security, and managed metadata.

 30

3.2.1 Web Applications
Web applications are the content containers at the top level of a

SharePoint farm, and generally the interface that a user utilizes for
interaction with SharePoint. Web applications are independent of each other
and can be restarted independently in the IIS application pool. As mentioned
earlier, Web applications are IIS Web sites that have been created and
configured as Web applications. The application maps and URLs associated
with Web applications are defined via the SharePoint central management
console, then replicated into the IIS configuration of every server in the
farm [1].

3.2.1.1 Sharing and Isolation
A unique domain name can be assigned to each Web application. The

use of unique domain names isolates this Web application from other Web
applications and helps to prevent cross-site scripting attacks [30].

3.2.1.2 Configurable items
There are three configurable items or settings that contribute to the

isolation and sharing in Web applications; Service applications, zones, and
policy for Web applications [30].

Service applications are services deployed on a farm. Service
applications provide resources that can be shared across sites within the
farm, or in some cases across multiple farms. To prevent the farm from
discontinuing operation in the event of a Service application failure, Service
applications are specifically designed to be as independent as possible. Each
Service application usually has its own configuration database and Active
Directory service account [17]. The CPU usage varies depending on the
Service application. Since SharePoint has to handle all user requests coming
from every enabled Web application and Service application in the farm,
CPU usage may reach 100% at times [18]. The search indexing Service
application, for example, can use 100% of RAM depending on the indexing
interval and the amount of data stored in the farm.

Zones are used when the administrator wishes to enforce different access
and policy conditions on a large group of users. Zones are realized by using
different URLs to access to the same Web application, but they represent
different Web sites in IIS. A Web application can be extended into five
different zones, each using one of the available zone names: Default,
Intranet, Internet, Custom, or Extranet. When a Web application is created,
it is created with the Default zone. Extending the Web application can create
other zones. Zones with the same named zones are generally coordinated
and configured to be used by the same group of users. Each zone can be
configured to use a separate authentication provider. Zones enable users to
share content across partner companies [30].

 31

A policy for Web applications allows the administrator to enforce
specific permissions on all content across one or more zones in the Web
application. This enables the administrator to set security policies for users
at the Web application level, and the permissions in this policy overrides
every other security settings that has been set for sites and content [30].

3.2.2 Site Collections
A set of Web sites that share the same owner and administration settings

are called a site collection in Windows SharePoint terminology [25]. Site
collections can be created and deployed either with or without hostnames,
although the first option is preferred in SharePoint 2013 [27]. Hostnames
simplify access to servers and sites for users by mapping an IP address to a
human-readable label commonly made up of letters and words [58]. For
example the deployment used in this thesis; Instead of accessing the My Site
site collection with an IP address on the Web farm servers, users can access
their personal sites by simply entering http://sp2013/my/ on the address
field. The address http://sp2013/my/ is an example of a hostname.

Site collection administrators can upgrade individual site collections to
enable new features on SharePoint Online 2013. An upgrade also makes
user interface improvements available on the site collection.

3.2.2.1 Capacity
The recommended maximum number of site collections implemented

per content database is fewer than 50,000 due to the limited availability of
ports for TCP/IP connections on a system. This recommendation was
specified to ensure acceptable performance, although the performance can
degrade at around 10,000 site collections. In order to provide additional
storage capacity and throughput, the site collections can be scaled out and
distributed across multiple database servers [27].

3.2.2.2 Sharing and isolation
Site collections introduce various sharing and isolation prospects as they

allow different levels of control over site features and settings [25,26].
Items that are stored in file systems, for example features in the virtual

directory _layouts, can be shared across site collections. However, there are
items that can only be shared within a site collection, such as [27]:

• Master pages,

• Page layouts,

• Images, and

• Site templates.
Apart from file isolation, permissions and navigations are also isolated

in a site collection in the following ways:

 32

• Permissions are inherited from the top-level site.

• A site collection cannot inherit permissions from another
site collection.

• Built-in navigation between site collections is not
available.

From SharePoint Server 2010 on, regardless of the number of site
collections or databases, search results are aggregated across site
collections. Depending on the user, the search is aggregated over the site
collections the user has permissions to.

However, even though permissions are applied to each individual site,
cross-site scripting attacks may still occur between sites within the domain
[27]. Fortunately, this problem can be prevented by installing a patch
provided by Microsoft [59].

3.2.2.3 Configurable items
There are a few items in both Windows SharePoint Server and site

collections that contributes to isolation and sharing. Several items in
Windows SharePoint Server contribute to both isolation and sharing. These
items are the site collection administrator, site template, and quota template.

A primary and secondary administrator can be set for the site
collections in the farm. These administrators hold the administrative
permissions to every site collection in the farm.

A site template determines which lists and features will be available on
the new site. The site template is not editable after site creation, although
many parts of the site can be customized.

The quota template can be applied to site collections to limit how much
storage can be used for the site collection. There are two templates provided
by Windows SharePoint Server: a quota template of 100 MB for a Personal
Site and a quota template of 2000 MB for Team Sites.

Additionally, there are two configurable items within a site collection
that also contribute to isolation and sharing; Site collection administrators
and permission level. These items become available after a site collection
has been created with the settings mentioned above.

Site collection administrators hold the permissions to administer the site
collection, and multiple users can be specified as administrators. Unlike user
accounts, group accounts cannot be specified as administrators, although
they can be added to permit access to site collections. Separate permission
levels can be set for both user and group accounts [27].

3.2.2.4 Administration
Since DNS entries are only required when creating host-named site

collections, the task of creating site collections can easily be automated or

 33

delegated to users in the farm. The team sites can be created either centrally
in using Central Administration or by activating the Self-Service Site
Management feature. The Self-Service Site Management feature allows users
to create their own site collections, and the My Site site collection is an
example of this [27].

3.2.3 Sites
A site is hosted inside a site collection and consists of one or more Web

pages and other items such as lists, documents, and libraries [25]. Typically,
a site has a home page, a starting point which users initially request. The
home page is interconnected with other pages in the site via hyperlinks.
Sites utilize a top-level hierarchy, with a Web site at the top. The top-level
Web site can contain one or more subsites, which in turn can contain more
subsites [31].

The use of a top-level site and subsites makes it possible to divide the
site content into separately manageable sites. This hierarchy makes it
possible to divide a site into a main working site for a team, with separate
individual working sites. The top-level hierarchy also allows an
administrator to set different levels of control on a site’s features and
settings [26].

3.2.3.1 Capacity
A guideline to maintain acceptable performance is to create less than

250 000 sites per site collection due to the limited availability of IP
addresses. It is possible to create a very large number of Web sites by
nesting subsites. However, this is undesirable since a large number of nested
subsites can greatly increase the time needed for an upgrade. Microsoft
recommends having at most 5000 sites within a site collection to maintain a
good operational state [31].

3.2.3.2 Sharing and isolation
Unlike site collections where there is no built-in navigation between site

collections, sites include built-in navigation between subsites within the site
collection.

Just as for site collections, separate sites are also vulnerable to cross-site
scripting attacks from other sites within the same domain [31].

3.2.4 My Site
My Site is a Web application that consists of a host site collection, an

individual site collection, and several Service Applications and features. My
Site is a part of the User Profile service application, and is enabled by
default by Windows SharePoint Server. The individual site collection is the
only part of the My Site infrastructure that a user may configure. The

 34

remaining parts of the infrastructure are configured once and shared by all
users within the organization [16].

Each user has their own individual site collection in the My Site Web
application. The individual site collection can be configured and
personalized. Social networking was introduced in Microsoft SharePoint
2007, and as mentioned in the introduction chapter, Microsoft added various
capabilities for social networking. Storage space for a user’s personal
documents is available under SkyDrive Pro, and the link Sites in the
personal home page enable quick access to Workspaces within the web
server farm. The My Site Web application also offers Microsoft Office
integration [32]. Figure 15 shows an example of a My Site home page.

Figure 15. An example of a My Site home page

The My Site Web application was improved in Microsoft SharePoint

2007 with the addition of Privacy Controls that enable users to toggle
permissions between three different levels; Managers, Colleagues, and
Everyone [33].

Although a user cannot customize the home page of their My Site, the
administrator is able to customize and add Web parts to the default layout of
a My Site home page. When a Web part is added to the default layout, the
Web part will be visible for all users in their individual home pages in My
Site [34].

3.2.4.1 My Site Architecture
A My Site host is automatically created when a Shared Services

Provider (SSP) is created. The location of the site collection is created in the
file system of the Web application, and all personal sites are stored in that
location. In most scenarios, the My Site site collection generally only has

 35

one location per deployment. An individual My Site is created if the user
profile information is available in the Active Directory Directory Services
and imported by the SSP [35].

In general, a user is limited to only one SSP, in other words one physical
My Site location. However, there are exceptions, for example when a My
Site deployment is geographically distributed, then a dedicated SSP is used
for each region. It is challenging to provide a predictable experience for
users in the case of a geographically distributed deployment with multiple
My Site locations and multiple SSPs. A solution to this is to use global
deployments with trusted locations where user profile information can be
replicated. Such a global deployment results in one set of personalized
content for each user being available across all locations and SSPs [36].

Global deployments essentially mean multiple deployments of SSPs. In
this approach, My Site is deployed across multiple SSPs. A global
deployment may be a preferred solution in some cases, for example when
there is poor network connectivity between a remote set of users and the
primary SSP. However, there are a few disadvantages to global deployments
in the form of lost functionality with respect to personalized links and
searching for people based on social distance. It is recommended to have a
good replication solution ready before enabling a global deployment as this
replication solution can save time [37].

3.2.5 SharePoint Farms
If a SharePoint server topology consist of more than one server that

share common resources, then it is generally known as a SharePoint farm.
Although a SharePoint farm normally runs independently, it is also possible
to provide and subscribe to functionality in another farm [15]. The
administrative settings and configurations of each farm are made in a central
configuration database. This database can be managed through Microsoft’s
task automation framework, Windows PowerShell, or through a Central
Administration website. Each server in the topology must directly
communicate with the central configuration database to configure its
services to match the requirements of the farm and to report issues regarding
server health, resource allocation, etc.

3.2.6 Central Administration
Central Administration is another default Web application in the

SharePoint Foundation. It is deployed at a central location and used to
perform administrative tasks in SharePoint. The Central Administration can
be divided into four different parts: Home page, Operations page,
Application Management page, and Shared Services Providers page [17].
The functions of these parts are:

 36

• The Home page contains a list of tasks the administrator
should complete, a complete list of servers deployed in
the farm topology, and complete list of available
resources.

• The Operations page contains links to pages where the
administrative tasks are performed, such as Topology
and Services, Security Configuration, etc.

• The Application Management page contains links to
pages where an administrator can create and manage
Web applications and Site Collections.

• The Shared Services Providers page contains a list of
links to SSPs. Clicking one of these links enables the
administrator to access the SSP’s administration home
page. An example of SSP is: User Profiles and My Sites.

3.2.7 Administration and Security
The security approach taken in SharePoint’s architecture is the

“least-privileges” execution permission practice. The main idea is to avoid
giving unnecessary privileges by granting just enough permission to users
without compromising the security in the Web farm environment [19].

 Because SharePoint utilizes a centralized management system, the
Central Administration usually runs on a single server, although it is
possible to deploy Central Administration on several servers for redundancy
[8]. The Web application provides an interface for other Web applications
and Service applications in the farm; it also provides a management
interface for Active Directory accounts. If the Central Administration goes
down, the farm can, usually be reconfigured on the Central Administration
server by using Windows PowerShell.

3.2.8 Managed Metadata
This section will present Managed Metadata in SharePoint, as well as

benefits of using managed metadata.

3.2.8.1 What is Managed Metadata?
Managed metadata is a hierarchical collection of defined terms that can

be used as attributes for items in SharePoint lists or libraries. A term is a
word that can be associated with an item in a SharePoint list or library. A
term set is a collection of terms. A SharePoint list column can be configured
to only contain terms from a specific term set [40].

Global term sets are created and stored in the Managed Metadata
Service (MMS) application and they are available for all site collections

 37

connected to a MMS instance. Local term sets are created within a site
collection when creating a site column in a SharePoint list or library. Unlike
global term sets, local term sets are only available to the specific site
collection that contains the added site column [41]. Figure 16 illustrates how
to bind a column to the different term sets.

Figure 16. Global term set and custom term set. Users can manually add terms to the empty
custom local term set.

There are two types of terms:

• Managed terms are predefined by authorized users and
they are often organized into a hierarchy.

• Enterprise keywords are words that have been added to
SharePoint list items and that are not selected from any
predefined term sets. Enterprise keywords are a
nonhierarchical term set called the keyword set.

Both types of terms are stored in the Managed term store, as shown in
Figure 17 [40].

 38

Figure 17. Term set and Enterprise keyword set.

3.2.8.2 Benefits of using Managed metadata
According to Microsoft, there are several benefits of using Managed

metadata [40]:

• Consistent use of terminology. Using Managed metadata
gives more consistent use of terms and enterprise
keywords that are added to the SharePoint items. Terms
can be predefined and they can be created by users or
only created by authorized users based on system
settings. Authorized users can also forbid users from
adding their own keywords to items and require them to
choose from existing enterprise keywords. By presenting
only term sets or enterprise keywords set from which
users can choose values, Managed metadata provides
better accuracy and a higher degree of confidence that
the provided data is correct and always valid.

• More relevant SharePoint search results. When items
have consistent attributes chosen from the existing term

 39

sets and enterprise keywords set, the search will provide
more accurate results.

• Dynamic metadata behaviour. When adding a new term
to a term set, all columns that map to the term set are
updated with the new set of values. Using terms
therefore helps to synchronise SharePoint items with
changes in business. For example, a term set contains a
list of terms that represents the names of different
products. When one of these product names needs to be
changed, one should simply edit the value of the
product’s term and it will automatically apply to all
columns that are mapped to the term set.

 40

4 Method

This chapter will present the tools and the methods used for this thesis
project and the methods used during the implementation of the web part.

4.1 Tools
The tools that were used during the thesis were:

• SharePoint Server 2013 VMware Player

• Microsoft Visual Studio Ultimate 2012
The SharePoint Server was used for administration and configuration of

the SharePoint service applications and sites. Visual Studio was used for
development of the web part. The company for which the students did this
thesis project had the above tools installed and ready for use when the thesis
project started.

4.2 Project method
During this thesis project, a light version of the agile method Scrum was

used to provide good organization and communication among the team
members (in this case the two students who are the authors of this thesis).
Tasks were prioritized and divided into small parts for the Scrum board (see
Figure 18). The board was updated weekly and the students made
summaries of the achievements and coming goals every two weeks. The
programming part was mostly done individually as the implementation was
divided into two parts. These two parts were User part and Company part.
The User part was implemented by Lisan Chen and the Company part was
implemented by Tingting Schiller Shi.

 41

Figure 18. Scrum board

4.3 Implementation of Corporate News Web
Part

The goal of the thesis was to implement a web part that retrieves and
shows an overview of corporate news that matches the user’s subscribed
news categories. To do this, a Corporate News Web Part was created and
added to the default page of My Site. The implementation of the web part
was divided into two parts: User part and Company part. The main objective
on the user side was to enable users to select the news categories they want
to subscribe to, while the company side focused on retrieving news contents
relevant to the user’s subscriptions. The following sections will give a more
detailed description of each step in the development of these two parts.

4.3.1 Creating and adding a web part
Since the parts were expected to operate in a SharePoint 2013

environment, the web part must be created as a SharePoint 2013 project.
The reason is that many features in SharePoint 2010 have been deprecated
in the later version. As a result, things that worked in the previous version
may not behave properly in the new one [42]. One problem occurred during
the creation of the project. It turned out that there was no option for creating
SharePoint 2013 projects in Visual Studio 2012. To solve this, the Microsoft

 42

Office Developer Tools for Visual Studio 2012 were installed in order to
extract the relevant project templates for use in Visual Studio [43]. Hence
the group Office/SharePoint was added to the New Project menu, in which a
SharePoint 2013 projects options now appeared.

As illustrated in Figure 19, the web part was created as a SharePoint
2013 Visual Web Part. The site used for debugging was set to
http://sp2013/my which is the user’s My Site page where the web part will
be added. Also the option Deploy as a farm solution was chosen over the
sandbox solution, since a sandbox solution has only a limited set of tools
that can be used. Unlike a farm solution, a sandbox solution is only
deployed with a specific site collection instead of for a whole farm; it also
lacks access to some file systems and namespaces that are useful for
developing web parts [44].

To add the created web part to My Site, the project was deployed and
added to default.aspx which is the content page linked to mysite.master.
This also the default My Site page which contains the news feed.

Figure 19. Creating Visual Web Part in Visual Studio

4.3.2 User side
The user side of the web part implementation consisted of one

administrative part and one coding part. The objective of the administrative
part was to enable users to subscribe to news categories via their user profile
in My Site. The coding part focused on retrieving the user defined news
categories from the users’ My Site.

4.3.2.1 Administration
In SharePoint user profiles, there is a default set of user properties which

provide information about a user. Administrators can add custom properties
to user profiles via CA in order to store additional information about the

 43

users [45]. One objective of this thesis project was to allow users to select
news categories to subscribe to. This was achieved by creating a custom
property News using the CA, adding the property to a section in the user
profile, and binding this property to a collection of news categories from
which a user is allowed to select values. The collection of news categories is
a hierarchical term set that consists of terms that represent the different
categories. Figure 20 shows how to bind a user property to a term set. A
more complete description of the term set will be presented in section
4.3.3.1.

Figure 20. Configuring custom user property using CA.

4.3.2.2 Implementation of web part
Once the News property was added, users can select those news

categories they want to subscribe to in their user’s profile. The web part also
needs to be able to automatically retrieve the values set in this property. The
property values were retrieved using the following classes:

• SPSite was set to http://sp2013/my which gets the
SPSite object that represents the My Site site collection.

• SPServiceContext was used to get the service context of
the site.

• UserProfileManager was used to initialize a user profile
config manager object by getting the current logged in
user’s id using SPContext.

• ProfileValueCollection was used to get the News
property values for the logged in user.

4.3.3 Company side
Similar to the user side, the company side also consisted of an

administrative part and a coding part. The administrative part focused on

 44

organizing of the published news and the coding part focused on selecting
news contents relevant for the user’s subscriptions.

4.3.3.1 Administration
When publishing news contents, the publisher chooses the news

categories that they wish to add to each news item. The categories should
also be accessible from the user side in order to allow users to select which
categories they wish to subscribe to. To organize the news articles, a
centralized collection of news categories was created in the Managed
Metadata Service application as a term set named News. This term set
contains a list of terms that represents news categories, such as Economy,
IT, etc. As the term set is hierarchical, sub terms can be added to each term.
As illustrated in Figure 21, the term IT has two subcategories, Software and
Hardware, which are the sub terms of the parent term IT. This way the
categories are organized in a centralized manner and the term set can be
accessed from both user side and company side. However, only authorized
users can add and edit terms in the term set.

Figure 21. News term set

Once the News term set was ready, it was possible to add news items
with these different categories. For this purpose, a custom site column was
added to the SharePoint library where the news articles were stored, in this

 45

case the Pages library (shown in Figure 22). This library was set to be
available to other sites and site collections through search. The site column
type was set to Managed Metadata and required the use of the News term set
from which the publisher selects the applicable news categories. Content
crawling is necessary to make contents searchable in SharePoint, hence a
full crawl was done to make the new site column searchable. This crawling
was done using the Search Service Application in CA.

Figure 22. Pages library with custom site columns: NewsTag and Department

Similar to the News term set, another term set Department was created.
As the name indicates the term set contains a collection of departments
within the company. A custom metadata site column bound to the
Department term set was added to the Pages library for news articles (see
Figure 23). The column was made searchable after a full crawl. A news
publisher is now able to tag new articles with department names.

Figure 23. Creating site column and binding it with global term set

4.3.3.2 Implementation of web part
As mentioned in section 4.3.2, the web part is able to get the values

stored in the user’s News property. The purpose of the web part is to select
news content that matches the retrieved user values. To get news content

 46

from the Pages library, the SPWeb and SPSite classes were used to get the
SPSite object that represents the current site collection, which in this case
represented the site collection Corporate News (where the news articles
were stored). The properties in the SPSiteDataQuery class were configured
as follows:

• The Webs property defines the scope, e.g. which web
sites to include in the query. In this case, the scope was
set to be Recursive, which includes the current web site
(Corporate News) and all its sub sites.

• The List property defines the lists and libraries to include
in the query. The lists template ID 850 was specified as
this is the template id for Pages libraries.

• The ViewFields property specifies the list of fields to
return, in this case the Title, Modified, and Page Content
fields. Note that the specified fields must be given as the
internal field name rather than the displayed field name.
The internal field names are found in the library settings
page of the Pages library.

• The Query property selects and sorts the relevant data to
return. The selected data was set to be news articles
tagged with news categories that matched the user’s
News property. The retrieved content was ordered based
upon the last modified time and date.

The properties above were set using XML code and they complete the
query with all the necessary parameters to retrieve the relevant news
contents. The contents were then displayed in a web part view which was
added to default.aspx that represents the home page of My Site (the result is
shown in Figure 24 on page 47).

47

5 Results and Analysis

This chapter will present our result and an evaluation of the work
process and the final web part.

5.1 Result
A simple prototype of the Corporate News Web Part was developed and

added to the user’s default page on My Site as illustrated in Figure 24. The
web part is able to get the relevant news contents by querying news items
using the values stored in the user’s News property. The web part is able to
display an overview of the news contents along with the links to the news
pages ordered by the modified time in the web part view.

Figure 24. Corporate News web part view

5.2 Analysis
The purpose of this thesis project was to investigate if it is possible to

extend the news feed in SharePoint 2013 My Site by adding a component
that enables users to subscribe to corporate news related to different
categories. The implementation met most of the goals specified in section
1.3. The result shows that it is possible to develop such a component.
However, the following goal was not met: If a news article targets the user’s
department, then the article should be visible via the news component.

This chapter will evaluate the final web part as well as the methods and
tools used during the project.

 48

5.2.1 Tools and administration
Since the students lacked prior knowledge of SharePoint and .Net

development, it was time consuming to learn how to use the tools listed in
section 4.1. However, the tools worked well for the purpose of this thesis
project. The students managed to learn the necessary parts of the tools,
specifically how to create and to add web parts to a SharePoint site, how to
configure and administer SharePoint sites and service applications, and to
understand the code structure in SharePoint Visual Web Part projects.

Most of the problems the students encountered were due to the
complexity of the SharePoint server. Although the solutions to most of the
problems turned out to be simple, it still took some time to find these
solutions. SharePoint is a large framework that consists of many
components. It is not a simple product that a person can install and start
using without any previous knowledge. One must invest time to study it,
especially if you want to get the most out of it. Instead of initially spending
time studying SharePoint, the students tried to immediately implement the
web part, which turned out to be rather difficult.

As mentioned in section 4.3.1, installation of additional tools was
required to be able to create SharePoint 2013 projects in Visual Studio 2012.
It took a lot of time for this installation to be successful. The students
followed several online tutorials without success before the final solution
was found. When creating the visual web part the first time, the sandbox
solutions approach was chosen which led to problems later during the
implementation. The students encountered problems such as invalid
namespaces and obsolete functions. A lot of time was wasted investigating
these problems without any progress. It turned out that choosing the
sandbox solution was the cause for most of these problems. As explained in
section 4.3.1, many features are not supported in sandbox solution, hence
the farm solution is recommended.

Although many problems encountered when using Visual Studio, it was
still a nice tool for developing the web part. The Visual Studio environment
is excellent for creating and debugging web parts [46]. Additionally, it is the
primary tool for all custom code and resource development for SharePoint
as it provides many features that make SharePoint development more
efficient [47].

5.2.2 Project methods
Using Scrum as the project method gave a better overall project

organization. Although the students did not manage to stay on track all the
time, the method still helped us to see things more clearly.

As for the programming part, the students initially tried to work
together. As more and more problems occurred, the work was divided into
two parts: user part and company part. This way, the students could study

 49

problems in different areas rather than both being stuck by the same
problem, hence increasing productivity.

5.2.3 Corporate News Web Part
This section will evaluate the functionality and the design of the

Corporate News Web Part.

5.2.3.1 Functionality
The fundamental functions needed for the web part are:

• A central collection of news categories should be
accessible from both users and publishers.

• A user should be able to specify one or more news
categories to subscribe to in their user profile of My Site.

• Publishers should be able to add news categories.

• The web part should be able to query news articles
related to the user’s news subscriptions.

• The web part should be able to display an overview of
the queried news contents on the user’s My Site default
page.

 The results showed that users could select multiple categories to
subscribe to in the News property. The web part could successfully retrieve
the values of the property and query for relevant news contents with them.
The news publisher could tag news articles with categories and departments
using the News and Department term sets in the Managed Metadata Service
application. The term sets not only connect the user side and the company
side, it also prohibits users and publishers from adding their own attributes
to items or to user properties. They are thus both required to select values
from existing term sets, which accoding to Microsoft gives more consistent
use of the terms on news items that in turn leads to more relevant search
results [40]. The returned news items from the query were ordered by their
last modified time showing the last modified item on top. The web part
could retrieve multiple news articles tagged with the same or with different
categories. It could also read multiple fields of each item, such as the Title,
Modified, and Page Content fields. The news contents were displayed in the
web part view on the default page of My Site (along with the links to the
pages for each news item). However, the web part still lacks the ability to
target news to users based on their departments. The student initially
thought that the implementation of this feature would be much alike the
news subscription feature. The implementation turned out to be rather
difficult and it required further investigation. Due to limited time, the
students did not manage to retrieve the property value from the user’s
Department property in the user’s profile. Hence the web part does not have

 50

any data to work with to query the relevant news contents. Another problem
that occurred at the end of the project was the query. It turned out that the
web part could not specify more than two news categories in the same
query. Thus if a user has subscribed to more than two categories, the web
part encounters errors. I turned out that the problem was due to the XML
tags in the query. Due to inexperience in XML coding, the tag <Or> was
used to query multiple categories. However, it turned out that this tag could
only allow two conditions, hence a query with a third category is not
possible. Due to detecting this problem late in the development process and
due to the project’s limited duration, further investigation is suggested as
part of future work.

Other functions that should be added to the web part include:

• The web part should be able to detect and eliminate
duplications in the retrieved news items.

• The web part should save all retrieved news articles in a
SharePoint list or library in the user’s My Site site
collection.

The functions above together with the realized functions should make
the final web part more organized and easier to use. In short, the basic
functions were realized, which enable us to show that the web part is
functional and that it is possible to extend the current news feed with this
additional component. However, the web part still needs a lot of
improvements in order to be fully usable for the SharePoint users.

5.2.3.2 Design
The design of the web part had very low priority. The web part is not yet

fully developed and the web part view only proves that the component
functions. The web part has the following basic design:

• The web part displays a link title to each retrieved news
article.

• The web part limits the number of the displayed news
items.

• The web part limits the length of each displayed news
item.

The current design is simple and easy to view. Figure 25 illustrates the
design of the rendering of a single news item. However, it still needs
improvements, such as:

• Displaying miniature images for news items.

• Adding a scrollbar to enable more news articles to be
shown via the web part view.

 51

• Organize the retrieved news items by dividing the view
into different parts which each displays different groups
of news contents.

Figure 25. A example of a retrieved news item.

5.2.4 Limitations
In summary, the Corporate News Web Part has the following

limitations:

• The web part cannot show news content based on the
user’s department.

• The web part cannot make a query with more than two of
the subscribed categories.

• Older news that does not fit in the web part view is not
saved.

• The design is simple and does not provide picture or
further organization of the displayed news contents.

There are several reasons to why the web part could not be fully
implemented. Many features that worked in SharePoint 2010 are not
functioning properly in 2013. When working with SharePoint 2013 projects
in Visual Studio, some reference and namespaces are different from those in
2010. A lot of functions are also deprecated. As SharePoint 2013 is still
new, there are few tutorials and documentations online for guidance. For
these reasons the students spent a lot of time investigating problems that are
new in 2013, but that would have been functional if they had used the earlier
version of SharePoint. The error messages received when running the web
part were unclear and didn’t give any hints about where the errors were in
the code (see for example the error message shown in Figure 26).

 52

Figure 26. Error message when running the web part.

5.2.5 Other solutions
The method used for implementation of the Corporate News Web Part

from scratch was not the only solution the students looked into. Other
alternative solutions are briefly described in the following sections.

5.2.5.1 Content Query Web Part
The Content Query Web Part was presented in section 2.1.5. The web

part is similar to the objective of the thesis; it aggregates and displays list
items within a site collection. Although it is close to what the project is
striving for, there were many features included that were unnecessary for
the purpose of this thesis project. The web part is able to query different list
types [48], while the implementation described in this thesis only deals with
one type of list: the Pages list. Also, the Content Query Web Part does not
automatically get the user’s subscriptions, which is an important function in
this thesis project. Furthermore, the web part was implemented for
SharePoint 2010 and this thesis project deals with SharePoint 2013, which
means a migration to the newer version of SharePoint is necessary. Many
functions in SharePoint 2010 are deprecated in the later version, which leads
to difficulties in migration of the web part. Rather than dealing with all
these problems that may lead to much complexity, and for learning purpose,
the students chose to implement the Corporate News Web Part from scratch
which gave them knowledge in SharePoint web part development.

5.2.5.2 Proactive News Module
The Proactive News Module mentioned in section 2.1.6 has all of

functionalities needed for this thesis project. The module is able to target
news to relevant departments and it allows individual users to subscribe to
news and updates [22]. However, the module seems to have a greater focus
on the publisher side than on the user side. Unlike the Corporate News Web
Part that focuses on users’ individual subscriptions, the News Module

 53

instead gives the publisher many choices in targeting the audience for their
news items. Although the many features of this module, the students wanted
to develop a web part from scratch adapting the needs of the company and
to increase their own knowledge in SharePoint development.

5.2.5.3 SharePoint App
In 2012, Microsoft introduced SharePoint Apps Model as an additional

feature in SharePoint 2013 to enable developers to create and add Apps to
SharePoint sites [49]. Apps have their back-end code run outside of
SharePoint on the host-web. These apps can be written using in many
languages (such as HTML, Javascript, ASP.NET, and PHP) using a variety
of development tools [50]. Unlike traditional web parts that are directly
installed onto SharePoint front-end servers, Apps are deployed on
SharePoint sites via an iFrame that points to the host-domain instead of the
SharePoint server domain. Not only does this reduce the server load, issues
such as style-sheet isolation, Javascript framework isolation, and potential
cross-site scripting also disappear. Apps can be published to Microsoft’s app
store and can be purchased by users before installation. Overall, apps seems
to be a better option than web part as it is secure, easy to develop, cloud
friendly and it can do almost everything a web part can do [49]. Although
there are many advantages that come with apps, the students chose the
traditional web part as the final solution due to some limitations of
SharePoint Apps [51]:

• Apps cannot access SharePoint server side code.

• Apps cannot access SharePoint components on other
sites.

• Apps cannot include anything that is not included in a
Sandboxed solution.

Since Sandboxed solutions are not preferred (as mentioned in section
4.3.1) and since the news component may need to access components from
other sites in the future, the web part was chosen as the final solution.

55

6 Conclusions and Future work

This chapter will give a final conclusion of the thesis as well as propose
future work.

6.1 Conclusions
The implemented web part meets most of the initial goals mentioned in

section 1.3. It was added to the default page of the user’s My Site and it is
able to get news relevant to the user’s subscription specified in the News
property. The publisher is able to tag news articles with news categories and
departments. However, the web part does not get the user’s Department
property and it can only read at most two values from News property at a
time. Although there is room for improvements in both functionality and
design, the web part proves that it is possible to extend the current My Site
news feed with a Corporate News Web Part, which was the purpose of this
thesis project.

The students gained both theoretical and practical knowledge in
SharePoint development, as well as experience in Visual Studio
environment. However, we also learned that one needs to invest time in
pre-studies before developing a new part for SharePoint due to the
complexity of SharePoint. With more knowledge in advance of starting the
implementation, the students would have worked more efficiently when
developing the web part.

6.2 Future work
This section will present the incomplete parts of the Corporate News

Web Part and suggest future work that could both improve this part and
extend it.

6.2.1 Uncompleted parts
A description of the missing functionalities is presented below in a

prioritised order (based upon the desired of our employer):

• The web part should be able to retrieve more than two
subscription values from the user’s News property.

 56

• The user’s Department property should automatically get
the user’s department specified in the Active Directory.

• The web part should be able to get the user’s Department
property.

• The web part should use the retrieved data of the user’s
Department property to query for relevant news contents.

6.2.2 Suggestions for future work
Some functions that are recommended to be added to the web part in

order to improve it are:

• The web part should be able to detect and delete
duplicates of news items.

• The web part should be able to save old news items in a
SharePoint list or library.

• The web part should be able to display a miniature image
for each retrieved news item.

• The web part view should be divided into group of
views. For example, one section for department news
and one for the subscribed categories. Furthermore, the
subscribed section could be divided into groups of
categories for better organization of the news items.

Some recommendations for those that follow with regard to the
implementation of the web part: invest time in studying SharePoint 2013
environment and try different things in SharePoint development in Visual
Studio. Since a lot of problems with namespaces and deprecated functions
occurred during our project, we learned to not strictly follow what is written
in online documentations and tutorials as most of them are for SharePoint
2010 development. Many problems can be solved easily in a similar way.
For example, the names of some functions have been replaced with different
but similar names in the newer version. The MSDN forum [52] is a good
place to look when difficulties occur.

6.3 Required reflections

Along with the growing amount of news published in corporate

environments such as corporate intranets, site administrators and publishers
want to organize the news contents in a non-demanding way in order to save
time and money. The Corporate News Web Part provides a simple
organization of news items and automatic aggregation of news contents
adapted to a user’s interests, making news reading easy and more time

 57

efficient for the end users. Although this does not give a direct impact
economically for the business, it increases the works efficiency of both
publishers and readers. As less time is spend on finding information
manually, the employers can work more efficiently creating better
productivity in the long term. The web part also provides better interaction
between publishers and users which gives a good social impact between
them, making information sharing more easily. From the ethical part of
view, the web part provides a more secure way of collecting information
online. Since the users do not need to go to different pages to look for the
desired content, the possibility to encounter viruses and malwares
minimizes.

With the suggested improvements (as mentioned in section 6.2), the web
part would enhance the social, ethical and economic benefits even more:

• The ability to target news to groups based on
departments, making it even easier for publishers to
spread news to the appropriate group of users.

• Even more organized news contents is desirable on the
user side, in order to make it easy for users to find what
they are looking for among the subscribed contents.

• Even better interaction between publishers and users is
desirable since the publishers can better target their news
to specific groups of users.

 58

References

 [1] D. Roe, “Report: A Third of Organizations Use SharePoint as an
Enterprise CMS,” CMSWire, 12-Oct-2011. [Online]. Available:
http://www.cmswire.com/cms/information-management/report-a-third-
of-organizations-use-sharepoint-as-an-enterprise-cms-013004.php.
[Accessed: 04-Apr-2013].

[2] FPweb.net, “Compare SharePoint 2010 and 2013 | SharePoint 2013
Cloud Hosting,” Fpweb.net. [Online]. Available:
http://www.fpweb.net/sharepoint-hosting/2013/compare-sharepoint-
2010-2013/. [Accessed: 04-Apr-2013].

[3] M. R. Gilbert, K. M. Shegda, G. Phifer, and J. Mann, “SharePoint
2010 Is Poised for Broader Enterprise Adoption | 1209350,” Gartner,
19-Oct-2009. [Online]. Available:
http://www.gartner.com/DisplayDocument?id=1209350. [Accessed:
04-Apr-2013].

[4] Attitude Group, “What Is RSS? RSS Explained -
www.WhatIsRSS.com,” Attitude Group Ltd. [Online]. Available:
http://www.whatisrss.com/. [Accessed: 29-Apr-2013].

[5] WebReference, “What is RSS? (and Atom?),” WebReference.
[Online]. Available: http://www.webreference.fr/defintions/rss-atom-
xml. [Accessed: 29-Apr-2013].

[6] A. Green, “Official Google Reader Blog: Powering Down Google
Reader,” Google Reader Blog. [Online]. Available:
zotero://attachment/111/. [Accessed: 02-May-2013].

[7] B. Liu, H. Han, T. Noro, and T. Tokuda, “Personal news RSS feeds
generation using existing news feeds,” in in Web Engineering,
Springer, 2009, pp. 419–433.

[8] Microsoft TechNet, “About announcements list - Windows SharePoint
Services - Office.com,” Microsoft Corporation. [Online]. Available:
http://office.microsoft.com/en-us/windows-sharepoint-services-
help/about-announcements-list-HA001161167.aspx. [Accessed: 02-
May-2013].

[9] Microsoft TechNet, “Logical architecture components (SharePoint
Server 2010),” Microsoft Corporation, 12-May-2012. [Online].
Available: http://technet.microsoft.com/en-us/library/cc263121.aspx.
[Accessed: 02-May-2013].

[10] Amrein Engineering, “Sharepoint News Roll Up Web Part,” Amrein

 59

Engineering AG. [Online]. Available:
http://www.amrein.com/apps/page.asp?Q=5798. [Accessed: 02-May-
2013].

[11] H. Tschabitscher, “NewsGator Online Services - RSS News Feed
Reader Review - About Email,” About.com. [Online]. Available:
http://email.about.com/cs/rssfeedreaders/gr/newsgator_ols.htm.
[Accessed: 02-May-2013].

[12] Microsoft TechNet, “Add RSS Feeds to your SharePoint site -
SharePoint Server - Office.com,” Microsoft Corporation. [Online].
Available: http://office.microsoft.com/en-us/sharepoint-server-
help/add-rss-feeds-to-your-sharepoint-site-HA010291095.aspx.
[Accessed: 02-May-2013].

[13] Virto Software, “Virto Social Aggregator Web Part for Microsoft
SharePoint 2007 and 2010,” Virto Software, 01-Aug-2012. [Online].
Available: http://www.virtosoftware.com/virto-rss-twitter-facebook-
aggregator-web-part-for-sharepoint.aspx#1. [Accessed: 02-May-2013].

[14] Microsoft TechNet, “Working with SharePoint lists, Part 1 - Windows
SharePoint Services - Office.com,” Microsoft Corporation. [Online].
Available: http://office.microsoft.com/en-001/windows-sharepoint-
services-help/working-with-sharepoint-lists-part-1-
HA001119988.aspx. [Accessed: 02-May-2013].

[15] Microsoft TechNet, “Display data from multiple lists with the Content
Query Web Part - SharePoint Designer - Office.com,” Microsoft
Corporation. [Online]. Available: http://office.microsoft.com/en-
us/sharepoint-designer-help/display-data-from-multiple-lists-with-the-
content-query-web-part-HA010174134.aspx. [Accessed: 02-May-
2013].

[16] Microsoft TechNet, “Conceptual Overview of SharePoint Foundation,”
Microsoft Corporation, May-2010. [Online]. Available:
http://msdn.microsoft.com/en-us/library/ee537319.aspx. [Accessed:
02-May-2013].

[17] Microsoft TechNet, “Plan for My Sites in SharePoint Server 2013,”
Microsoft Corporation, 15-Jan-2013. [Online]. Available:
http://technet.microsoft.com/en-us/library/cc262500.aspx. [Accessed:
02-May-2013].

[18] Microsoft TechNet, “Using Central Administration (Office SharePoint
Server),” Microsoft Corporation. [Online]. Available:
http://technet.microsoft.com/en-us/library/cc263312(v=office.12).aspx.
[Accessed: 02-May-2013].

[19] D. Holme, “SharePoint 2010: Least Privilege Service Accounts |
SharePoint content from SharePoint Pro,” SharePoint Pro, 14-Apr-
2011. [Online]. Available:
http://sharepointpromag.com/sharepoint/least-privilege-service-
accounts-sharepoint-2010. [Accessed: 02-May-2013].

[20] S. Sheppard, “Overlapped Recycling And SharePoint: Why SharePoint
Requires It - Steve Sheppard’s Blog - Site Home - MSDN Blogs,”

 60

Microsoft Corporation, 17-Dec-2007. [Online]. Available:
http://blogs.msdn.com/b/steveshe/archive/2007/12/17/overlapped-
recycling-and-sharepoint-why-sharepoint-requires-it.aspx. [Accessed:
02-May-2013].

 [21] Armrein Engineering Messaging&Groupware Solutions, “SharePoint
News Rollup Web Part”, 2011, Copyright 2011 by Armrein
Engineering Messaging&Groupware Solutions. Available:
http://www.amrein.com/pic/appli/NewsRollupPictures.gif. [Accessed:
04-Apr-2013]. Appears with permission of Amrein Engineering.

[22] ProActive, ‘ProActive A/S - Target different audiences on your
corporate intranet with News Module for SharePoint’, ProActive A/S,
19-August-2013. [Online]. Available:
http://www.proactive.dk/en/Losninger/ProSolutions/NewsModule.aspx
. [Accessed: 19-August-2013].

[23] Microsoft Technet, ‘Chapter 2: SharePoint Architecture (Part 1 of 2)’,
Microsoft Corporation, 19-August-2013. [Online]. Available:
http://msdn.microsoft.com/en-
us/library/bb892189(v=office.12).aspx#WSS3Inside_IIS. [Accessed:
19-August-2013].

[24] Microsoft Technet, ‘Chapter 2: SharePoint Architecture (Part 1 of 2)’,
Microsoft Corporation. [Online]. Available:
http://msdn.microsoft.com/en-
us/library/bb892189(v=office.12).aspx#WSS3Inside_ASP. [Accessed:
19-August-2013].

[25] Wikipedia, ‘ASP.NET - Wikipedia, the free encyclopedia’, Wikipedia.
[Online]. Available:
http://en.wikipedia.org/wiki/ASP.NET_3.5#Versions. [Accessed: 19-
August-2013].

[26] Microsoft Technet, ‘Chapter 2: SharePoint Architecture (Part 1 of 2)’,
Microsoft Corporation. [Online]. Available:
http://msdn.microsoft.com/en-
us/library/bb892189(v=office.12).aspx#WSS3Inside_Integration.
[Accessed: 19-August-2013].

[27] Microsoft Technet, ‘Logical architecture components (SharePoint
Server 2010)’, Microsoft Corporation. [Online]. Available:
http://technet.microsoft.com/en-us/library/cc263121.aspx#section8.
[Accessed: 20-August-2013].

[28] Microsoft Office, ‘Introduction to sites, workspaces, and pages -
Windows SharePoint Services - Office.com’, Microsoft Corporation.
[Online]. Available: http://office.microsoft.com/en-001/windows-
sharepoint-services-help/introduction-to-sites-workspaces-and-pages-
HA010021413.aspx. [Accessed: 20-August-2013].

[29] Microsoft Technet, ‘Host-named site collection architecture and
deployment (SharePoint 2013)’, Microsoft Corporation. [Online].
Available: http://technet.microsoft.com/en-us/library/cc424952.aspx.
[Accessed: 20-August-2013].

 61

[30] Microsoft Technet, ‘Logical architecture components (SharePoint
Server 2010)’, Microsoft Corporation. [Online]. Available:
http://technet.microsoft.com/en-us/library/cc263121.aspx#section4.
[Accessed: 20-August-2013].

[31] Microsoft Technet, ‘Logical architecture components (SharePoint
Server 2010)’, Microsoft Corporation. [Online]. Available:
http://technet.microsoft.com/en-us/library/cc263121.aspx#section9.
[Accessed: 20-August-2013].

[32] R. Wuhrman, ‘SharePoint My Site 101, slide 2’, slideshare. [Online].
Available: http://www.slideshare.net/rwuhrman/sharepoint-my-site-
101. [Accessed: 20-August-2013].

[33] R. Wuhrman, ‘SharePoint My Site 101, slide 11’, slideshare. [Online].
Available: http://www.slideshare.net/rwuhrman/sharepoint-my-site-
101. [Accessed: 20-August-2013].

[34] Microsoft Office, ‘Modify pages on My Site - SharePoint Server -
Office.com’, Microsoft Corporation. [Online]. Available:
http://office.microsoft.com/en-001/sharepoint-server-help/modify-
pages-on-my-site-
HA001160705.aspx?CTT=5&origin=HA001160556. [Accessed: 20-
August-2013].

[35] R. Wuhrman, ‘SharePoint My Site 101, slide 17’, slideshare. [Online].
Available: http://www.slideshare.net/rwuhrman/sharepoint-my-site-
101. [Accessed: 20-August-2013].

[36] R. Wuhrman, ‘SharePoint My Site 101, slide 18’, slideshare. [Online].
Available: http://www.slideshare.net/rwuhrman/sharepoint-my-site-
101. [Accessed: 20-August-2013].

[37] R. Wuhrman, ‘SharePoint My Site 101, slide 19’, slideshare. [Online].
Available: http://www.slideshare.net/rwuhrman/sharepoint-my-site-
101. [Accessed: 20-August-2013].

[38] Microsoft Technet, ‘Chapter 3: Pages and Design (Part 1 of 2)’,
Microsoft Corporation. [Online]. Available:
http://msdn.microsoft.com/en-
us/library/bb964680(v=office.12).aspx#WSS3Inside3_Fundamentals.
[Accessed: 20-August-2013].

[39] Microsoft Technet, ‘Logical architecture components (SharePoint
Server 2010)’, Microsoft Corporation. [Online]. Available:
http://technet.microsoft.com/en-us/library/cc263121.aspx#section2.
[Accessed: 20-August-2013].

[40] Microsoft Technet, ‘Managing Enterprise Metadata in SharePoint
Server 2010 (ECM)’, Microsoft Corporation. [Online]. Available:
http://msdn.microsoft.com/en-us/library/ee559337(v=office.14).aspx.
[Accessed: 20-August-2013].

[41] A. Connell, ‘Andrew Connell, MVP SharePoint Server - SharePoint
2010 Managed Metadata - Global vs. Local Term Sets’, Andrew
Connell. [Online]. Available:
http://www.andrewconnell.com/blog/SP2010-Managed-Metadata-

 62

Global-vs-Local-Term-Sets. [Accessed: 20-August-2013].
[42] Microsoft Technet, ‘Changes from SharePoint 2010 to SharePoint

2013’, Microsoft Corporation. [Online]. Available:
http://technet.microsoft.com/en-us/library/ff607742.aspx. [Accessed:
20-August-2013].

[43] T. Quinlan, ‘Setting up Visual Studio 2012 for SharePoint 2013
development offline - Tim Quinlan - MSFT - Site Home - MSDN
Blogs’, MSDN Blog. [Online]. Available:
http://blogs.msdn.com/b/timquin/archive/2013/01/22/setting-up-visual-
studio-2012-for-sharepoint-2013-development-offline.aspx. [Accessed:
20-August-2013].

[44] S. Pegg, ‘SharePoint Sandbox Solutions: The Good, The Bad, and The
Ugly | Pentalogic Technology’, Pentalogic Technology. [Online].
Available: http://blog.pentalogic.net/2012/07/sharepoint-sandbox-
solutions-the-good-the-bad-and-the-ugly/. [Accessed: 20-August-
2013].

[45] Microsoft Office, ‘Add and edit user profile properties - SharePoint
Online for enterprises - Office.com’, Microsoft Corporation. [Online].
Available: http://office.microsoft.com/en-001/office365-sharepoint-
online-enterprise-help/add-and-edit-user-profile-properties-
HA102772741.aspx. [Accessed: 20-August-2013].

[46] Microsoft Technet, ‘A Developer’s Introduction to Web Parts’,
Microsoft Corporation. [Online]. Available:
http://msdn.microsoft.com/en-us/library/dd583154(v=office.11).aspx.
[Accessed: 20-August-2013].

[47] Microsoft Technet, ‘SharePoint Development in Visual Studio’,
Microsoft Corporation. [Online]. Available:
http://msdn.microsoft.com/en-us/library/ee330921.aspx. [Accessed:
20-August-2013].

[48] Microsoft Technet, ‘How to: Display Custom Fields in a SharePoint
Content By Query Web Part (ECM)’, Microsoft Corporation. [Online].
Available: http://msdn.microsoft.com/en-us/library/ms497457.aspx.
[Accessed: 20-August-2013].

[49] P. Katz, ‘SharePoint 2013’s App Model vs. SharePoint Web Parts’,
LimeLeap. [Online]. Available:
http://go.limeleap.com/community/bid/256364/SharePoint-2013-s-
App-Model-vs-SharePoint-Web-Parts. [Accessed: 20-August-2013].

[50] K. Kapoor, ‘One of the big new features of SharePoint 2013 is
“apps”’, BrightStarr. [Online]. Available:
http://www.brightstarr.com/sharepoint-2013-apps. [Accessed: 20-
August-2013].

[51] N. B. Bachir, ‘Apps for sharepoint 2013’, SlideShare. [Online].
Available: http://www.slideshare.net/nordinebenbachir/apps-for-
sharepoint-2013. [Accessed: 20-August-2013].

[52] Microsoft Technet, ‘MSDN forums’, Microsoft Corporation. [Online].
Available: http://social.msdn.microsoft.com/Forums/en-US/home.

 63

[Accessed: 20-August-2013].
[53] Microsoft Technet, ‘IC73000.gif (GIF Image, 610 × 235 pixels)’,

Microsoft Corporation. [Online]. Available:
http://i.msdn.microsoft.com/dynimg/IC73000.gif. [Accessed: 20-
August-2013].

[54] Microsoft Technet, ‘IC165428.gif (GIF Image, 415 × 247 pixels)’,
Microsoft Corporation. [Online]. Available:
http://i.msdn.microsoft.com/dynimg/IC165428.gif. [Accessed: 20-
August-2013].

[55] Microsoft Technet, ‘IC24470.gif (GIF Image, 535 × 246 pixels)’,
Microsoft Corporation. [Online]. Available:
http://i.msdn.microsoft.com/dynimg/IC24470.gif. [Accessed: 20-
August-2013].

[56] Microsoft Technet, ‘IC61430.gif (GIF Image, 508 × 321 pixels)’,
Microsoft Corporation. [Online]. Available:
http://i.msdn.microsoft.com/dynimg/IC61430.gif. [Accessed: 20-
August-2013].

[57] Microsoft Technet, ‘IC30429.gif (GIF Image, 875 × 262 pixels)’,
Microsoft Corporation. [Online]. Available:
http://i.msdn.microsoft.com/dynimg/IC30429.gif. [Accessed: 20-
August-2013].

[58] M. Torrisi, ‘DNS 101: What Is A Hostname? | Dyn Blog’, Dyn, 27-
August-2012. [Online]. Available: http://dyn.com/blog/what-is-a-
hostname-dns-ip-address/. [Accessed: 22-September-2013].

[59] Heise Media UK Ltd, ‘Microsoft issues warning about XSS hole in
SharePoint - The H Security: News and Features’, The H Security, 30-
April-2010. [Online]. Available: http://www.h-
online.com/security/news/item/Microsoft-issues-warning-about-XSS-
hole-in-SharePoint-990812.html. [Accessed: 22-October-2013].

 64

Appendices

Appendix A: Organization

Common:

• Abstract

• Sammanfattning

• References

• Appendices
Lisan:

• Introduction

• Microsoft SharePoint Architecture & Topology
Tingting:

• Background

• Method

• Result and Analysis

• Conclusions and Future Work

• Section 3.2.7 Managed Metadata

 65

Appendix B: Code

VisualWebPart1.ascx.cs
using System;

using System.ComponentModel;

using System.Text;

using System.Collections;

using System.Web.UI.WebControls.WebParts;

using Microsoft.Office.Server.UserProfiles;

using Microsoft.SharePoint;

using Microsoft.SharePoint.Client;

using Microsoft.SharePoint.Client.Search.Query;

using Microsoft.SharePoint.Utilities;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Data;

using System.Xml;

namespace VisualWebPartProject5.VisualWebPart1

{

 [ToolboxItemAttribute(false)]

 public partial class VisualWebPart1 : WebPart

 {

 // Uncomment the following SecurityPermission

attribute only when doing Performance Profiling using

 // the Instrumentation method, and then remove the

SecurityPermission attribute when the code is ready

 // for production. Because the SecurityPermission

attribute bypasses the security check for callers of

 // your constructor, it's not recommended for

production purposes.

 66

 //

[System.Security.Permissions.SecurityPermission(System.Securi

ty.Permissions.SecurityAction.Assert, UnmanagedCode = true)]

 protected override void OnInit(EventArgs e)

 {

 base.OnInit(e);

 InitializeControl();

 }

 protected void Page_Load(object sender, EventArgs e)

 {

 // Get SPSite and service context from string

 string strUrl = "http://sp2013/my";

 SPSite site = new SPSite(strUrl);

 SPServiceContext serviceContext =

SPServiceContext.GetContext(site);

 // Initialize user profile config manager object

 UserProfileManager upm = new

UserProfileManager(serviceContext);

 string username =

Microsoft.SharePoint.SPContext.Current.Web.CurrentUser.LoginN

ame;

 string sAccount = username;

 UserProfile u = upm.GetUserProfile(sAccount);

 ProfileValueCollectionBase pvc =

u.GetProfileValueCollection("News");

 string value = "";

 IEnumerator iter = pvc.GetEnumerator();

 while (iter.MoveNext())

 {

 value += (String)iter.Current + " ";

 67

 }

 string noLastSpace = value.Substring(0,

value.Length - 1);

 string[] categories = noLastSpace.Split(' ');

 /*Get news content*/

 SPSite site2 = new

SPSite("http://sp2013/pub/how/nyheter-och-

media/corporatenews");

 SPWeb web = site2.OpenWeb();

 SPSiteDataQuery query = new SPSiteDataQuery();

 query.Lists = "<Lists ServerTemplate=\"850\" />";

//850 for page template.

 query.ViewFields = "<FieldRef Name=\"Title\"

Nullable='TRUE' Type=\"Text\"/>";

 query.ViewFields += "<FieldRef Name=\"Modified\"

Nullable='TRUE'/>";

 query.ViewFields += "<FieldRef

Name=\"PublishingPageContent\" Nullable='TRUE'/>";

 query.ViewFields += "<FieldRef Name=\"FileRef\"

Nullable='TRUE'/>";

 query.ViewFields += "<FieldRef Name=\"NewsTag\"

Nullable='TRUE'/>";

 query.ViewFields += "<FieldRef

Name=\"Department\" Nullable='TRUE'/>";

 query.Query = "<Where><Or>";

 int i = 0;

 txtBox2.Text = categories.Length.ToString();

 while(i<=categories.Length-1){

 68

 query.Query += "<Eq><FieldRef

Name='NewsTag'/><Value Type='Text'>"+categories[i] as

string+"</Value></Eq>";

 i++;

 }

 query.Query += "</Or></Where><OrderBy>" +

 "<FieldRef Name='Modified'/>" +

 "</OrderBy>";

 query.Webs = "<Webs Scope=\"Recursive\" />";

 DataTable dt = web.GetSiteData(query);

 if (dt.Rows.Count != 0)

 {

 txtBox.Text = "";

 DataRowCollection rows = dt.Rows;

 int rowIndex = rows.Count-1;

 int lastIndex = rowIndex;

 while (rowIndex >= 0) {

 DataRow row = rows[rowIndex];

 string pubURL = row["FileRef"] as string;

 string friendlyURL =

pubURL.Substring(pubURL.IndexOf("#") + 1);

 string url =

"http://sp2013/"+friendlyURL;

 string pubContent =

row["PublishingPageContent"] as string;

 string shortContent = "";

 if (pubContent.Length > 200)

 {

 shortContent =

pubContent.Substring(0, 200);

 }

 69

 else

 {

 shortContent = pubContent;

 }

 txtBox.Text += "<p><a href=" + url +

">" + row["Title"] as string + " ";

 txtBox.Text += " <i>Last modified: " +

row["Modified"] as string + "</i>";

 txtBox.Text += shortContent + "... " +

"Read more</p>";

 if ((lastIndex - rowIndex) ==4)

 {

 rowIndex = -1;

 }

 else

 {

 rowIndex--;

 }

 }

 }

 else

 {

 txtBox.Text = "Table empty.";

 }

 }

 }

}

 70

VisualWebPart1.ascx
<%@ Assembly Name="$SharePoint.Project.AssemblyFullName$" %>

<%@ Assembly Name="Microsoft.Web.CommandUI, Version=15.0.0.0,

Culture=neutral, PublicKeyToken=71e9bce111e9429c" %>

<%@ Register Tagprefix="SharePoint"

Namespace="Microsoft.SharePoint.WebControls"

Assembly="Microsoft.SharePoint, Version=15.0.0.0,

Culture=neutral, PublicKeyToken=71e9bce111e9429c" %>

<%@ Register Tagprefix="Utilities"

Namespace="Microsoft.SharePoint.Utilities"

Assembly="Microsoft.SharePoint, Version=15.0.0.0,

Culture=neutral, PublicKeyToken=71e9bce111e9429c" %>

<%@ Register Tagprefix="asp" Namespace="System.Web.UI"

Assembly="System.Web.Extensions, Version=4.0.0.0,

Culture=neutral, PublicKeyToken=31bf3856ad364e35" %>

<%@ Import Namespace="Microsoft.SharePoint" %>

<%@ Register Tagprefix="WebPartPages"

Namespace="Microsoft.SharePoint.WebPartPages"

Assembly="Microsoft.SharePoint, Version=15.0.0.0,

Culture=neutral, PublicKeyToken=71e9bce111e9429c" %>

<%@ Control Language="C#" AutoEventWireup="true"

CodeBehind="VisualWebPart1.ascx.cs"

Inherits="VisualWebPartProject5.VisualWebPart1.VisualWebPart1

" %>

<asp:Label runat="server" ID="txtBox"></asp:Label>

<asp:Label runat="server" ID="txtBox2"></asp:Label>

www.kth.se

TRITA-ICT-EX-2013:207

