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ABSTRACT 
 

Repositories of motion captured (MoCap) data can be reused 
for human motion analysis in physical medicine, 
biomechanics and animation related entertainment industry. 
MoCap data expressed as a matrix Mm x n can be subject to 
tampering from shuffling of its elements or change in 
element values due to motion editing operations. Tampering 
of archived motion data intentionally or due to 
machine/human errors, may result in loss of research, money 
and effort. The paper proposes singular value decomposition 
(SVD) based methodology for tamper proofing motion data. 
This tamper proofing methodology extracts reference 
patterns in the form of right and left singular vectors of 
motion data matrix M. These patterns are used to verify and 
trace the pattern of tampering. The use of first Eigen vectors 
for tamper detection reduces storage and computation 
complexities to O (m + n) and makes the solution scalable.  

 
1. INTRODUCTION 

 
The advent of Motion Capture systems such as Vicon [16] 
has brought in applications like 
• Physical Medicine and Rehabilitation: Analyzing 

different body segments/joints for different motions aid 
in better diagnosis of the problem(s) that a patient might 
be facing. 

• Biomechanics and Physiology: Researchers 
investigating the interplay of bone and muscle in leg 
movement benefit from the 3D map of human body 
motions. 

• Reusability in Animation: Motion captured data is 
reusable and it can help build entertainment related 
animations, by using software such as Motion Builder 
[8].  

 

• Quantifying the effects: of certain diseases such as the 
effect of spasticity on knee movements.  
 
These applications can benefit from having a large 
repository of 3D human motions. Motion data archived in a 
repository can be subject to tampering due to malicious 
actions or human/machine related faults. The tampering of 
motion data may result in loss, in terms of valuable 
information, money, and time spent for recording. 
Moreover, incorrect information can be misleading from the 
application's perspective.  
 
MoCap data is multi-attribute, and can be described as Mm x n 
matrix (see Figure 1 and Figure 2) (for the comma separated 
value (.csv) format of Vicon IQ [16]), with columns 
representing rotational and positional data of skeleton joints, 
and rows representing the changing values over time. The 
varying lengths of frames make the data bulky. Adversaries 
can use motion editing techniques [16] such as motion 
cropping, mapping and concatenation to tamper data. These 
techniques alter the trajectory of joints by changing values 
or shuffling rows, columns, row elements, and column 
elements. There could be combination of these attacks or it 
could be a random attack. The tampering methodology 
should be capable of verifying and tracing the pattern of 
such kind of attacks. 

  
 

Figure 1. Motion Data representation 
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Figure 2. Motion Data Representation I matrix format with 

positional information 
 
Tampering can be avoided by using tamper proofing 
mechanism, such as fragile watermarking. Fragile 
watermarking [2-13] can be achieved by embedding a 
watermark inside a target data. Tampering is recognized 
whenever during an extraction process, a sub-part of the 
embedded watermark is found corrupt. The sub-part points 
to the spatial location of corruption and serves as an 
evidence for tampering. Watermarking techniques alter the 
original data, resulting in distortion, which eventually can 
alter the meaning of the data. Recent research in 
watermarking motion data [14, and 15] uses private 
watermarking schemes for copyright protection. These 
schemes are private and are storage inefficient (not 
scalable), since the original data has to be stored for tamper 
verification. Therefore, in order to achieve tamper proofing, 
we need to design a novel scheme that can detect errors, 
without distorting the original data, and must be storage 
efficient. 
 
1.1 Proposed Approach 
 
The paper proposes singular value decomposition (SVD) 
based tamper proofing scheme. The scheme is not a 
watermarking methodology, as it does not incorporate 
information hiding. The idea is to extract the reference 
patterns using SVD, and use them for tamper proofing. The 
reference patterns are recognized as right and left Eigen 
vectors of the SVD of a motion data matrix M.  During the 
detection process, we take the SVD of the target matrix M′ 
and compare its left and right Eigen vectors with that of M. 
The proposed method is shown to verify and trace the 
pattern of attacks, such as row tampering, column 
tampering, row-column tampering, and random attack. 
 
The reference patterns are Eigen vectors with non-zero 
Eigen values. This helps in reducing the size of information 
required to be stored for verification, and as a result makes 
the solution scalable. The use of Eigen vectors and 
thresholds help us determine the exact position in M that has 
been tampered. Experimental results aptly demonstrate the 
effectiveness of our approach.  
 
The rest of the paper is organized as follows: 
Section 2 discusses the attack patterns and methods 
developed using SVD to verify and trace these patterns. In 
addition, we suggest ways to optimize the methodology and 
advantages over watermarking are mentioned. Section 3 
gives experimental proof of the attacks and helps visualize 

the advantage of the proposed technique. The paper ends 
with Sections 4 describing the future work and conclusion. 
Table 1, gives a list of notations used in the paper. 
 

RT Row tampering 
RS Row shuffling 

RES Row element shuffling 
CT Column tampering 
CS Column shuffling 

CES Column element shuffling 
RCT Row column tampering 

 
Table 1. Table of Notations 

 
2. TAMPER PROOFING METHODOLOGY 

 
The tamper proofing methodology is applied on MoCap data 
(.csv format) acquired from Vicon IQ [16] (120 frames/sec). 
As discussed earlier, this data can be expressed as a matrix 
Mm x n (m > n), where columns represent the joints of the 
human skeleton. The joints are represented as rotational and 
translational information, with varying values per frame 
(row). The attacks on a matrix M can be categorized as 
follows: 
• Row tampering (RT) attacks: This attack is restricted 

to row tampering only, such that column elements of M 
stay invariant. Mathematically, if A is modified to using 

row tampering then Amxn ≠ Bmxn such that U a (k, i) = 

 b (k, i), for all i (1 ≤ i ≤ n), and U a (j, k) ≠  b 

(j, k), for j (1 ≤ j ≤ m). This attack can be realized either 
by column element shuffling (CES) or row shuffling 
(RS). CES exchanges the row elements, and does not 
alter the column element set. RS does not alter column 
elements, but shuffles the rows. These attacks are 
further categorized as combinations of {CES}, {RS}, 
{CES, RS}. 
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• Column tampering (CT) attacks: This attack is 
restricted to column tampering only, such that rows 
elements of M stay invariant. Mathematically, if A is 
modified to B using column tampering then Amxn ≠ Bmxn 

such that U a (i, k) = U  b (i, k), for all i (1 ≤ i ≤ m), 

and a (k, j) ≠  b (k, j), for j (1 ≤ j ≤ n). This 

attack can be realized either by row element shuffling 
(RES) or column shuffling CS. RES exchanges the 
column elements, and does not alter the row element 
set. CS does not alter row elements, but shuffles the 
columns. These attacks are further categorized as 
combinations of {CS}, {RES}, {RES, CS}. 
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• Combined row-column tampering (RCT) attacks: 
This attacks results in tampering of row and column 
element set, such that element set of A and B are the 



same. The tampering can be due to combinations of row 
and column tampering attacks.  

• Random Attacks: This kind of attacks result by adding 
random noise signals to motion data. This attack is 
different from the above attacks, since the element set 
of A and B is not similar. In other words it is a 
combination of row and column tampering, such that 
element set of A ≠ element set of B. 

 
The above attack patterns will result in joint motions 
following different patterns from their original. Since human 
body motion is described by motion information of joints, it 
will change as a consequence of the above attacks. The 
paper develops a singular value decomposition (SVD) based 
tamper proofing technique to handle such attacks.  
 
2.1 Background on SVD  
 
As proved in [1], any real m × n matrix M has a SVD (M) = 
U.S.VT, where U = [u1, u2 … um] є Rm×m and V = [v1, v2 . . . 
vn] є Rn×n are two orthogonal matrices, and S is a diagonal 
matrix with diagonal entries being the singular values of M: 
s1 ≥ s2 ≥ . . . ≥ s min (m, n) ≥ 0, where s1 is significantly larger 
than other Eigen values. Column vectors ui and vi are the ith 
left and right singular vectors of M respectively. The left 
singular vectors have length equal to the number of time 
frames, that vary with each individual motion data file. The 
right singular vector has a constant length depending on the 
number of joints considered. The singular values of matrix 
M are unique, and the singular vectors corresponding to 
distinct singular values are uniquely determined up to the 
sign, or a singular vector can have opposite signs.  

 
 

Figure 3. Geometric structure of a matrix exposed by its SVD 
 

SVD exposes the geometric structure of a matrix M. It has 
orthogonal bases. It transforms the matrix from one vector 
space to another. The components of SVD quantify the 
resulting change between the underlying geometry of these 
spaces. Along the direction of the first right singular vector, 
the row vectors in M have the largest variation, and along 
the second right singular vector direction, the point variation 
is the second largest, and so on. The singular values reflect 
the variations along the corresponding right singular vectors. 
Figure 1 illustrates a 10 x 2 matrix (2D (x, y)) with first and 
second right singular vectors V1 and V2 (orthogonal vectors). 
The 10 points in the matrix have different variations along 

different directions; hence have the largest variation along 
V1. We observe that elements of the matrix M can be 
expressed using a set of linear combination of elements of 
the matrices U, V and S.  
The SVD (M) = U.S.VT = U. (S.VT) = {M (i, j)} where 1 ≤ i ≤ 
m, 1 ≤ j ≤ n, m > n. M (i, j) can be expressed as follows: 
M (i, j) = [U(i, 1) U(i, 2) ... U(i, m)] [S1.V(j, 1) S2.V(j, 2) ... 
Sn.V (j, n) 0 0 … 0] T 

 
The tamper proofing mechanism consists of extraction 
phase and detection phase. During the extraction phase 
reference pattern are extracted from matrix M. The second 
phase is the detection phase, where attacks are detected. We 
take SVD (M) = U.S.VT, and for non-zero Eigen values S 
store the corresponding left and right Eigen vectors U and V. 
Here V and U are the reference patterns that will be used to 
identify and trace the attack pattern. 
 
2.2 SVD Based Detection 
 
Once the attack has been identified it traces the pattern used 
for the attack. The tamper detection process can be realized 
as follows: 
 
Step1: SVD (M′) = U′.S′.V′T
Step2: DiffU = U′ – U, DiffV = V′ – V 
Step3:  if DiffU and DiffV are zero matrices 
                  No tampering; 
              Else If (DiffV is zero matrix only) 
                  RS attack or CES attack or {RS, CES} attack; 
              Else If (DiffU is zero matrix only) 
                  CS or RES or {CS, RES}; 
              Else 
                  Random attack or RCT; 
 
In the above checking process we consider vector till k, 
since first k Eigen values are non-zero. The remaining (n- k) 
Eigen values are zero and their contribution to M is 
insignificant. The process of tamper detection is done by 
taking considering the difference (DiffU and DiffV) between 
Eigen vector matrix of M and M′.  
 
The above steps can be understood as verification of attack 
and tracing the attack pattern. The following subsection 
discusses the reasons behind the verification and tracing of 
attacks: 
 
2.2.1 Verification and tracing of Row Tampering (RT) 
attacks 
The following theorem, an extension of the theorem 
mentioned in [1], helps us prove that row tampering is 
related to change in left Eigen vector only.  

Theorem 1: Given matrix Amxn ≠ Bmxn such that a (k, i) 

= U  b (k, i), for all i (1 ≤ i ≤ n), and U a (j, k) ≠ U  b 
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(j, k), for j (1 ≤ j ≤ m), then SVD (A) = U1.S.VT and SVD (B) 
= U2.S.VT. 
Proof: Given SVD (A) = U.S.VT, the right singular vector V 
can be determined from AT.A = V.S2.VT. Let C = AT.A, where 

c (i, j) =  a (k, i).a (k, j) => the condition U a (k, i) = 

 b (k, i), for all i (1 ≤ i ≤ n), and a (j, k) ≠  b (j, 

k), for j (1 ≤ j ≤ m) makes no difference to C. As a result, V 
and S are same for A and B. However since A ≠ B => SVD 
(A) = U

∑
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1.S.VT and SVD (B) = U2.S.VT  
 
As a consequence of the above result, we can assume that 
whenever there is a row tampering attack, there is a change 
in left Eigen vector of matrix M. The following theorem 
helps us realize that it is possible to trace the rows of M 
where the tampering has occurred.                                                                                                            Theorem 4: If B is derived from A, by column tampering a 

set of columns {c 
Theorem 2: If B is derived from A, by row tampering a set 
of rows {ri: 1 ≤ i ≤ m}, then rows of left Eigen vectors of A 
and B are different by the same set {ri: 1 ≤ i ≤ m}.  
Proof: For a given matrix A, with SVD (A) = U.S.VT, U can 
be determined from A.V = U. S. It can be easily be shown 

that u (i, j) = sj
-1 ∑

=

n

k 1
(a (i, k). u (k, j)). By Theorem 1, we 

know that V1 = V2 and S1 = S2. If rows of A {ri: 1 ≤ i ≤ m} 
are tampered => Set of rows {ri: 1 ≤ i ≤ m} will be different 
for the left vectors of A and B. 
 
So, by theorem 2 we can say that the non-zero rows of DiffU 
= |U – U′| will indicate the set of rows {ri: 1 ≤ i ≤ m} that 
were tampered. Since rows of U change in the same pattern 
as modified M, it is possible to trace the presence of RS. 
DiffU will point out the rows that have been shuffled. The 
shuffle pattern can be identified by sorting the left Eigen 
vectors, and observing the mapping between the rows of the 
sorted vectors. In case of a CES, DiffU will point out the 
rows, but not the exact shuffled column elements. Hence, it 
is not possible to trace a CES or {CES, RS} as opposed to 
RS.                                                                                                                      2.2.3 Verification and tracing of Row-Column 

Tampering (RCT) attacks 
 
2.2.2 Verification and tracing of Column Tampering (CT) 
attacks 
The following theorem helps us prove that column 
tampering is related to change in right Eigen vector only. 

Theorem 3: Given matrix Amxn ≠ Bmxn such that U a (i, k) 

= U  b (i, k), for all i (1 ≤ i ≤ m), and U a (k, j) ≠ U  b 

(k, j), for j (1 ≤ j ≤ n), then SVD (A) = U.S.V
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= U.S.V2
T. 

Proof: Given SVD (A) = U.S.VT, the right singular vector U 
can be determined from A.AT = U.S2.UT. Let C = A.AT, 

where  c (i, j) = ∑  a (i, k).a (j, k) => the condition  U a 

(i, k) = U  b (i, k), for all i (1 ≤ i ≤ m), and U a (k, j) ≠ 

 b(k, j), for j (1 ≤ j ≤ n) makes no difference to C. As a 

result, U and S are same for A and B. However since A ≠ B 
=> SVD (A) = U.S.V

=

n
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T and SVD (B) = U.S.V2

T. 
 
As a consequence, we can assume that whenever there is a 
column tampering attack, there is a change in right Eigen 
vector of matrix M. The following theorem helps us realize 
that it is possible to trace the columns of M where the 
tampering has occurred.                                                                                 
 

i: 1 ≤ i ≤ n}, then rows of right Eigen 
vectors of A and B are different by the same set {ci: 1 ≤ i ≤ 
n}. 
Proof: For a given matrix A, with SVD (A) = U.S.VT, V can 
be determined from UT. A = S.VT. It can easily be shown that 

v (i, j) = si
-1 ∑

=

n

k 1
(u (k, j). a (k, i)). By Theorem 3, we know 

that U1 = U2 and S1 = S2. If a set of columns of A {ci: 1 ≤ i ≤ 
n} are tampered => similar set of rows {ci: 1 ≤ i ≤ m} will 
be different for the right Eigen vectors of A and B.                                      
 
So, by theorem 4, we can say that the non-zero rows of 
DiffV = |V – V′ | will indicate the set of rows {ci: 1 ≤ i ≤ m} 
that were tampered. Since rows of V change in the same 
pattern as modified M, it is possible to trace the presence of 
CS. DiffV will point out the rows that have been shuffled. 
The shuffle pattern can be identified by sorting the right 
Eigen vectors, and observing the mapping between the rows 
of the sorted vectors. In case of a RES, DiffV will point out 
the rows, but not the exact shuffled row elements. Hence, it 
is not possible to trace a RES or {RES, CS} as compared to 
CS. 
 

As seen from Theorem 1 and 3, left and right Eigen vectors 
help us realize the presence of attacks. Therefore, we can 
intuitively say that a combination of row and column tamper 
attacks will affect the right and left Eigen vectors of A. As a 
result we get non-zero DiffU and DiffV and can verify the 
presence of a row-column attack.  
 
Row and column tampering can occur in any order and any 
number of times. Say, we have row tampering (RT) order 
<rt1, rt2… rtn> and column tampering (CT) order <ct1, ct2 … 
ctn>. Row column tampering occurs such that order of rti 
and cti is not compromised. For such cases, theorem 5 helps 



us prove that it is possible to determine final outcome of 
<rt1, rt2… rtn> and <ct1, ct2 … ctn>.  
 
Theorem 5: Given row tampering (RT) and column 
tampering (CT) pattern, the order of application of 
tampering to a matrix is independent of the resultant matrix.  
Proof: Given matrix A where SVD (A) = U1S1V1

T. By 
theorem 1 RT on A results in B where SVD (B) = U2S1V1

T. 
By theorem 3, CT on A results in matrix D where SVD (D) 
= U1S1V2

T. We have two orders of attack <RT, CT> and 
<CT, RT>. 
Case <RT, CT>: By theorem 1, RT on matrix A will result 
in B, such that SVD (A) = U1S1V1

T, SVD (B) = U2S1V1
T. 

Since the row information is invariant, then by theorem 3 
CT on matrix B will result in matrix C, such that SVD (C) = 
U2S1V2

T

Case <CT, RT>: By theorem 3, CT on matrix A will result 
in B, such that SVD (A) = U1S1V1

T, SVD (B) = U1S1V2
T. 

Since the column information is invariant, then by theorem 1 
RT on matrix B will result in matrix C, such that SVD (C) = 
U2S1V2

T. Since both the cases give the same result, we can 
say that the order of application of tampering to a matrix is 
independent of the resultant matrix.                                                                                                                             
 
As observed above, the order of application of RT and CT 
are independent of each other, the net resultant left and 
Eigen vectors of the final matrix are same as those 
corresponding to row tampering order <rt1, rt2… rtn> and 
column tampering order <ct1, ct2 … ctn> applied to M. If RT 
and CT corresponded to row and column shuffling only, 
then it is possible to predict the shuffling pattern. In other 
cases we restricted to finding the columns and rows where 
attacks took place.  In such cases we assume that the attack 
to be a random attack and can trace the pattern of attack as 
shown in subsection 2.2.4. 
 
2.2.4 Verification and tracing of Random Attack 
Values of M (i, j) are changed randomly. By equation 1, any 
change in the jth column elements of M is reflected in the jth 
row of V, and any change in the ith row of M is reflected in 
the ith row of U. As a result, we have both DiffU and DiffV 
non-zero. Therefore, the indication that DiffU (i, k) and 
DiffV (j, p) change is non-zero, points that M (i, j) has 
changed due to random attack. The elements changed in M 
will give us the random attack used to tamper motion data. 
 
2.3 Optimizations 
 
The number of non-zero Eigen values determines the 
number of computations involved in tamper detection and 
information required for tamper detection. This will be 
significant while considering the case for scalability. The 
following discussion describes the optimizations that can be 
considered to aid scalability and reduce computations. 
 
It can be observed from equation 1, the contribution of left 
Uk and right Vk  vectors to the matix M is determined by 

their corresponding Eigen value sk. As observed in section 
2.1 the Eigen values can be ordered as s1 ≥ s2 ≥ . . . ≥ s min (m, 

n) ≥ 0, where s1 is significantly larger than other values. This 
implies the contribution of V1 and U1 is significant as 
compared to other vectors. Therefore any change (M′ – M) 
will be reflected in DiffU1 and DiffV1. If we keep only the 
first left and right Eigen vectors, we can save computations 
and storage as follows: 
• Computation Reduction: Initially we had n left and 

right Eigen vectors for comparison. We have m 
elements in left vector and n elements in right vector. 
As a result, we have O (n (m + n)) comparisons.  By 
restricting it to first vectors, we now have O (m + n) 
comparisons. Therefore we save computations are O ((n 
-1) (m + n)).  

• Storage Reduction: When we are storing U and V for n 
Eigen vectors, then storage required is O (n (m + n)). 
However, once we use first Eigen vectors storage is 
reduced to O (m + n). The reduction is identified as O 
((n – 1) (m + n)).  

 
2.4 Advantages 

The advantages of the scheme are described as follows: 
 
2.4.1. Computational and Storage Advantages over Private 
Watermarking 
Private fragile watermarking schemes use the original 
matrix M to extract the watermark. This will require the O 
(m.n) original data to be stored in the databases and during 
computations analysis of O (mn) elements in (M – M′).  The 
proposed methodology used O (m) first left Eigen vector and 
O (n) first right Eigen vector. As a result it used only O (m + 
n) space and requires analysis of O (m + n) elements. 
Therefore, we save space and computations by O (m.n – m – 
n). Since m > n (see section 2.1), for motion data we can 
have large reduction in space. 
 
2.4.2 Better Accuracy over Existing Error Detection 
Methods 
Error detection is a well studied topic with techniques [10] 
such as cyclic redundancy check (CRC), parity bit checking, 
and checksums. Schemes such as CRC and checksum are 
storage efficient and faster than our proposed scheme, as 
they do not require O (m + n) space. However, they are not 
capable of locating the errors in the matrix. Therefore, the 
proposed scheme is more efficient in terms of accuracy of 
error detection. 
 

3. EXPERIMENTS AND DISCUSSION 
 
All the experiments are carried out on angular motion data 
(Euler angles). This data was obtained in a .csv format 
created by Vicon IQ [16] MoCap system (Motion Capture 
facility at University of Texas at Dallas). The data consists 
of joint information of a skeleton, expressed in terms of 
rotational (Euler angles) and translational (co-ordinates) 



data. The motion clip used in these experiments can be 
expressed as 225 x 57 matrix, where frames = 225 and 19 
skeleton joint rotational data (3 Euler angles) values.  
 
3.1. Analysis of Attack Patterns  
 
Attack patterns can be detected in automatically by our 
technique, and this detection can be visualized in this 
subsection. In Figure 4, CS and RES attack can be perceived 
on a joint. It shows the original trajectories for a joint, and 
also the attacked data for the same. It can be seen that one of 
the angles is shuffled with some other column, resulting in 
totally different data. This causes the joint to behave 
abnormally. The spikes in the figure depict the row element 
shuffling attacks, which can be seen in case of all the three 
angles. Figure 6 shows the effect on first right singular 
vector due to CS and RES attacks. The circled parts are the 
change in values due to row element shuffle (RES) attack. 
The other changing values are due to a column shuffle 
attack. The left singular vectors remain unchanged in these 2 
cases as seen in Figure 8. 

 
Figure 5 shows one Euler angle over the entire time duration 
before and after a RS and CES attack. The spikes (circled 
values) represent the CES attack. Figure7 shows the first left 
singular vectors before and after the attack (circled spikes 
represent CES values). The first right singular vectors do not 
change during a RS and CES attack, as observed in Figure 9. 
 
Random attack affects left and right Eigen vectors. These 
effects can be visualized Figure 10 and Figure 11. Figure 10 
corresponds to the comparison of first right Eigen vectors. 
Figure 11 shows first left Eigen vectors of original and 
attacked data. The dissimilarity between the Eigen vectors 
serve as evidence for tamper detection.  
 

4. CONCLUSION  
 
The paper proposed singular value decomposition (SVD) 
based technique to detect tampering of archived motion 
data. It has been shown that this method is capable of 
verifying and tracing the attack patterns on motion data 
matrix Mm x n. The proposed scheme supports addition of 
copyright based watermarks. The information and 
computation required for tamper detection for a (m x n) 
matrix is reduced from O (m.n) to O (m + n), making the 
solution scalable.   
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