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Preface

Since the advent of optical communications, a great technological effort has
been devoted to the exploitation of the huge bandwidth of optical fibers. Start-
ing from a few Mb/s single channel systems, a fast and constant technological
development has led to the actual 10 Gb/s per channel dense wavelength di-
vision multiplexing (DWDM) systems, with dozens of channels on a single
fiber. Transmitters and receivers are now ready for 40 Gb/s, whereas hundreds
of channels can be simultaneously amplified by optical amplifiers.

Nevertheless, despite such a pace in technological progress, optical com-
munications are still in a primitive stage if compared, for instance, to radio
communications: the widely spread on-off keying (OOK) modulation format
is equivalent to the rough amplitude modulation (AM) format, whereas the
DWDM technique is nothing more than the optical version of the frequency di-
vision multiplexing (FDM) technique. Moreover, adaptive equalization, chan-
nel coding or maximum likelihood detection are still considered something
“exotic” in the optical world. This is mainly due to the favourable charac-
teristics of the fiber optic channel (large bandwidth, low attenuation, channel
stability, ...), which so far allowed us to use very simple transmission and
detection techniques. ‘

But now we are slightly moving toward the physical limits of the fiber and,
as it was the case for radio communications, more sophisticated techniques
will be needed to increase the spectral efficiency and counteract the transmis-
sion impairments. At the same time, the evolution of the fechniques should be
supported, or better preceded, by an analogous evolution of the theory. Look-
ing at the literature, contradictions are not unlikely to be found among different
theoretical works, and a lack of standards and common theoretical basis can be
observed. As an example, the performance of an optical system is often given
in terms of different, and sometimes misleading, figures of merit, such as the
error probability, the Q-factor, the eye-opening and so on. Under very strict hy-
potheses, there is a sort of equivalence among these figures of merit, but things
drastically change when nonlinear effects are present or different modulation
formats considered.






This depiction of optical communications as an early science is well re-
flected by the most known journals and conferences of this area, where techno-
logical and experimental aspects usually play a predominant role. On the other
hand, this book, namely Optical Communications Theory and Techniques, is
intended to be a collection of up-to-date papers dealing with the theoretical
aspects of optical communications. All the papers were selected or written
by worldwide recognized experts in the field, and were presented at the 2004
Tyrrhenian International Workshop on Digital Communications. According to
the program of the workshop, the book is divided into four parts: )

Information and Communication Theory for Optical Communications. This
first part examines optical systems from a rigorous information theory point
of view, addressing questions like “what is the ultimate capacity of a given
channel?”, or “which is the most efficient modulation format?”.

Coding Theory and Techniques. This part is concerned with the theory and
techniques of coding, applied to optical systems. For instance, different for-
ward error correction (FEC) codes are analyzed and compared, taking explic-
itly into account the non-AWGN (Additive White Gaussian Noise) nature of
the channel.

Characterizing, Measuring, and Calculating Performance in Optical Fiber
Communication Systems. This part describes several techniques for the exper-
imental measurement, analytical evaluation or simulations-based estimation of
the performance of optical systems. The error probability in the linear and
nonlinear regime, as well as the impact of PMD or Raman amplification are
subject of this part.

Modulation Formats and Detection. This last part is concerned with the
joint or disjoint use of different modulation formats and detection techniques to
improve the performance of optical systems and their tolerance to transmission
impairments. Modulation in the amplitude, phase and polarization domain are
considered, as well as adaptive equalization and maximum likelihood sequence
estimation.

Each paper is self contained, such to give the reader a clear picture of the
treated topic. Furthermore, getting back to the depiction of optical communi-
cations as an early science, the whole book is intended to be a common basis
for the theoreticians working in the field, upon which consistent new works
could be developed in the next future.

ENRICO FORESTIERI
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SOLVING THE NONLINEAR SCHRODINGER
EQUATION
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Abstract: Some simple recursive methods are described for constructing asymptotically
exact solutions of the nonlinear Schrodinger equation (NLSE). It is shown that
the NLSE solution can be expressed analytically by two recurrence relations
corresponding to two different perturbation methods.

Key words:  optical Kerr effect; optical fiber nonlinearity; nonlinear distortion; optical fiber
theory.

1. INTRODUCTION

The nonlinear Schrodinger equation governs the propagation of the optical
field complex envelope v(z,t) in a single-mode fiber [1]. Accounting for group |
velocity dispersion (GVD), self-phase modulation (SPM), and loss, in a time
frame moving with the signal group velocity, the NLSE can be written as

ov 2y o

o '%2—%55 — il - 5o, )
where + is the Kerr nonlinear coefficient [1], « is the power attenuation con-
stant, and (3 is the GVD parameter (83 = —A2D/(2mc), A being the reference
wavelength, ¢ the light speed, and D the fiber dispersion parameter at A). Let-
ting v(2,t) £ e **/%u(z,t), we can get rid of the last term in (1), which

becomes 5 8, 0%
U P07 N 2
a9z g g e “Julu. 2)
Exact solutions of this equation are typically not known in analytical form,
except for soliton solutions when o = 0 [2-4]. Given an input condition
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u(0,t), the solution of (2) is then to be found numerically, the most widely
used method being the Split-Step Fourier Method (SSFM) [1]. Analytical
approximations to the solution of (2) can be obtained by linearization tech-
niques [5~12], such as perturbation methods taylored for modulation instabil-
ity (or parametric gain) [5-8] or of more general validity [9, 10], small-signal
analysis [11], and the variational method [12]. An approach based on Volterra
series [13] was recently shown to be equivalent to the regular perturbation
method [9]. However, all methods able to deal-with an arbitrarily modulated
input signal, provide accurate approximations either only for very small input
powers or only for very small fiber losses, with the exception of the enhanced
regular perturbation method presented in [9] and the multiplicative approxi-
mation introduced in [10], whose results are valid for input powers as high as
about 10 dBm. We present here two recursive expressions that, starting from
the linear solution of (2) for v = 0, asymptotically converge to the exact solu-
tion for -y # 0, and revisit the multiplicative approximation in [10], relating it
to the regular perturbation method.

2. AN INTEGRAL EXPRESSION OF THE NLSE

In this Section we will obtain an integral expression of the NLSE which, to
our knowledge, is not found in the literature. Letting

flz,t) £ e *|u(z, t)|2u(z, t) 3)
and taking the Fourier transform! of (2), we obtain
ou e, .
5 = “]‘§W2U - JvF, @)
which, by the position :
U(z,w) & e_jﬂ2w22/2Y(z,w) , (5)
becomes oy
. i Baw? z
vy — gyl R ©)
Integrating (6) from 0 to z leads to
Y(sw) = Y(O) = g7 [ P ARG 0L, @)
0

and, taking into account (5), we have

U(z,w) = Uo(z,w) — j7 / et O PG w)dC ®)
1]

I'The Fourier transform with respect to time t of a function z(z, t) will be denoted by the same but capital
letter X (z,w), such that X (z,w) = F{z(z,t)}, and z(z,t) = F~1{X (2, w)}.
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where Up(z,w) = U(0,w)e™3P22"/2 i5 the Fourier transform of the solution
of (2) for v = 0. Letting now H(z,w) £ exp(—jBaw?2/2), so that h(z,t) =
F~Y{H(z,w)}, and antitransforming (8) by taking into account (3), gives

u(z,t) = uo(z,t) — jv z [lu(¢ )Pu(¢,1)] ® h(z = ¢, 0)e™¢d¢ (9)
0

where ® denotes temporal convolution, and uo(z,t) = u(0,t) ® h(z,t) is the
signal at 2 in a linear and lossless fiber.

3. A FIRST RECURRENCE RELATION
CORRESPONDING TO A REGULAR
PERTURBATION METHOD

According to the regular perturbation (RP) method [9], expanding the opti-
cal field complex envelope u(z, t) in power series in y

U(Z,t) = Z7kuk(z»t) (10
k=0

and substituting (10) in (9), after some algebra we obtain

00 00 z n k
Z’quk = Z’YHI [—j/o (Zzui“k—iuz—k) ® h(z — g,t)ewcng
k=1

n=0 k=0 i=0
(D

where we omitted the arguments (z,t) for the uy’s appearing on the left side,
and (¢, t) for those on the right side. By equating the powers in v with the -
same exponent, we can recursively evaluate all the uy’s

z [n—1 k
Up = —j/ (Z Zuiuk_iu;_k) ®h(z = t)e %d¢, n>1. (12)
0

k=0 i=0

As an example, the first three uy’s turn out to be

ll

wo= =i [ (o) & bz — ¢ e,
0
uy = —j/ (2|u0|2u1 + ugu’{) ® h(z — C,t)e'aCdC,
0

z
uz = wj/ (2]u0|2u2 + ugug + 2|u1|2u0 + u%u(‘;) ® h(z — ¢, t)e"acdg‘.
0
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Turning again our attention to (9), we note that it suggests the following recur-
rence relation

vo(z,t) = wup(z,t) (13)
e1(2,8) = uolzt) — /0 [lon (¢, £)20a(C, )] ® h(z — ¢, t)e=SdC

and it is easy to see that

lim v, (z,t) = u(zt) (14)
n—o0
as it can be shown that
1 0Fu,(z,t)
—];)-! —-Bjy—l—c———’y:o:uk(z,t), OSk:STL (15)

This means that the rate of convergence of (13) is not greater than that of (10)
when using the same number of terms as the recurrence steps, i.e., it is poor [9].
We will now seek an improved recurrence relation with an accelerated rate of
convergence to the solution of (2).

4. AN IMPROVED RECURRENCE RELATION
CORRESPONDING TO A LOGARITHMIC
PERTURBATION METHOD

As shown in [10], a faster convergence rate is obtained when expanding in
power series in <y the log of u(z, t) rather than u(z, t) itself as done in (10). So,
we try to recast (9) in terms of log u(z, t), and to this end rewrite it as

z

[[w(¢, ) Pu(¢,t)] ® h(z — ¢, t)e™%dC .
(16)

u(zt) —uolnt) _
uo(z,t) uO(zat) 0

Using now the expansion

U u—1ug 1 fu—ug 2 g U — Uy 3
log — = - = +zl—] —... amn
Up Uug 2 (%3] 3 UQ

we replace the term (u — ug)/ug in (16), obtaining
u Jv [ 1 /u—ug 2 1 /u- ug 3
log — = —> [u u]®he'acd(———< ) +»< ) -
UuQ uo Jo 2 ug 3 ug
(18)

where, for simplicity, we omitted all the function arguments. So, the sought
inproved recurrence relation suggested by (18) is

vg = U (19)
] z o Up — U
S Unexp{%}/() [[vnl?vn] ® h(z — ¢, £)e™¢dC — 0}

Vo
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where we used again (17) to obtain the right side of the second equation. Also
in this case lim, . vn(2,t) = u(z,t), as it can be shown that the power series
in v of log v, (2, t) coincides with that of log u(z,t) in the first n terms.

Notice that v} (2, t) evaluated from (19) coincides with the first-order multi-
plicative approximation in [10], there obtained with a different approach. The
method in [10] is really a logarithmic perturbation (LP) method as the solution
u(z,t) is written as

u(z,t) = ug(z, t)e“j'yﬂ(z’t), 9 =g + 91 + 720 + ... (20)

and Jo(z,t), ¥1(2,t) are evaluated by analytically approximating the SSFM
solution. The calculation of J,,(z, t) becomes progressively more involved for
increasing values of n, but that method is useful because it can provide an
analytical expression for the SSFM errors due to a finite step size [10].

We now follow another approach. Letting

AN .
'lpn(z1 t) - “]'19”_.1(2, t) ) (21)
such that

u(z,t) = uo(z,t) exp (vih1(z, 1) + V?¥a(z, 1) + Vba(z,t) +...), (22

for every n, 1,(2,t) can be easily evaluated in the following manner. The
power series expansion of u(z,t) in (22) is

ug eXp (Z ’ykd)k> = ug Z ;1; (Z 7k¢k>
i=0

k=1 k=1

Il
"4
S
ey
—t
+
[~e
TN
NE
>3
s
N—
2
)
| S
~
N/

where

Pnk = 24)

0

1

n—1

Z Omk—1Pn—m otherwise
m=k—1

Equating (10) to (23), and taking into account that ¢, ;1 = v,, we can recur-
sively evaluate the 1,,’s as

Vn== ) T (25)
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Thus, from the n-th order regular perturbation approximation we can construct
the n-th order logarithmic perturbation approximation. As an example we have

Uy
¢1 =T
ug

CE B

1/)2 - uo 2¢17

u 1
Y3 = —3~¢11/)2-51/1:13,
Up

I S PR B B
Py = ” Y193 2% 2?1?1% 24</J1-

So, once evaluated the uy’s from (12), we can evaluate the i’s from (25)
and then u(z,t) through (22), unless ug(z,t) is zero (or very small), in which
case we simply use (10) as in this case u(z, t) is also small and (10) is equally
accurate.

S. COMPUTATIONAL ISSUES

The computational complexity of (12), (13) and (19) is the same, and at first
glance it may seem that a n-th order integral must be computed for the n-th
order approximation. However, it is not so and the complexity only increases
linearly with n. Indeed, the terms depending on z can be taken out of the
integration and so all the integrals can be computed in parallel. However,
only for n < 2 these methods turn out to be faster than the SSFM because
of the possibility to exploit efficient quadrature rules for the outer integral,
whereas the inner ones are to be evaluated through the trapezoidal rule as, to
evaluate them in parallel, we are forced to use the nodes imposed by the outer
quadrature rule.

Although (12), (13), (19), and (22) hold for a single fiber span, they can
also be used in the case of many spans with given dispersion maps and per-
span amplification. Indeed, one simply considers the output signal at the end
of each span as the input signal to the next span [9, 10]. We would like to point
out that even if the propagation in the compensating fiber is considered to be
linear, (19) or (22) should still be used for the total span length L, by simply
replacing z with the length of the transmission fiber Ly in the upper limit of
integration and with L in all other places.

2This is apparent when performing the integrals in the frequency domain, but is also true in the time domain
as h(z — ¢,t) = h(z,t) @ h(—¢,t) when h(£,t) is the impulse response of a linear fiber of length £
(h(—¢, t) simply corresponds to a fiber of length ¢ and opposite sign of dispersion parameter).



Solving the Nonlinear Schridinger Equation 9

6. SOME RESULTS

To illustrate the results obtainable by the RP and LP methods, we considered
an x 100 km link, composed of n 100 km spans of transmission fiber followed
by a compensating fiber and per span amplification recovering all the span loss.
The transmission fiber is a standard single-mode fiber with o = 0.19 dB/km,
D = 17 ps/nm/km, v = 1.3 W lkm™!, whereas the compensating fiber has
o = 0.6 dB/km, D = —100 ps/nm/km, y = 5.5 W~km™?, and a length such
that the residual dispersion per span is zero.

In Table 1 we report the minimum order of the RP and LP methods necessary
to have a normalized square deviation (NSD) less than 1073, The NSD is
defined as
lussim (2,t) — up(z,t)[* dt

[ lussrm (z,8)|* dt

where ugspa(2,t) is the solution obtained by the SSFM with a step size of
100 m, up(z,t) is either the RP or LP approximation, and the integrals extend
to the whole transmission period, which in our case is that corresponding to a
pseudorandom bit sequence of length 64 bits. The input signal format is NRZ
at 10 Gbl/s, filtered by a Gaussian filter with bandwidth equal to 20 GHz.

NSD = / (26)

Table 1. Minimum order of the RP and LP methods necessary to achieve NSD < 1072 for a
given input peak power and number of spans.

3dBm 6 dBm 9dBm 12 dBm

Spans RP LP RP LP RP LP RP LP
1 1 1 1 1 1 1 2 1
2 1 1 1 1 2 1 3 2
3 1 1 1 1 2 1 3 2
4 1 1 1 1 2 1 3 2
5 1 1 2 1 2 1 3 2
6 i 1 2 1 2 1 3 2
7 1 1 2 1 2 2 3 2
8 i 1 2 1 3 2 3 2
9 1 1 2 1 3 2 3 3
10 1 1 2 1 3 2 4 4

It can be seen that the LP method requires a lower order than the RP method
to achieve the same accuracy when the input peak power P, increases beyond
6 dBm and the number of spans execeeds 4. As an example, Fig. 1 shows the
output intensity for an isolated “1” in the pseudorandom sequence when the
input peak power is 12 dBm and the number of spans is 5, showing that, in
this case, 3rd-order is required for the RP method, whereas only 2nd-order for
the LP method. As a matter of fact, until 12 dBm and 8 spans, the 2nd-order
LP method suffices for a NSD < 10~3. However, for higher values of P,
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Figure 1. Output intensity for an isolated “1” with P;, = 12 dBm and 5 spans.

and number of spans, i.e., when moving form left to right along a diagonal in
Table 1, the two methods tend to become equivalent, in the sense that they tend
to require the same order to achieve a given accuracy.

This can be explained by making the analytical form (19) of the NLSE so-
lution explicit. Indeed, doing so we can see that the nonlinear parameter -y
appears at the exponent, and then at the exponent of the exponent, and then at
the exponent of the exponent of the exponent, and so on. So, the LP approxi-
mation has an initial advantage over the RP one, but when orders higher than 3
or 4 are needed, this initial advantage is lost and the two approximations tend
to coincide.

7. CONCLUSIONS

We presented two recurrence relations that asymptotically approach the so-
lution of the NLSE. Although they represent an analytical expression of such
solution, their computational complexity increases linearly with the recursion
depth, making them not practical for a too high order of recursion. Neverthe-
less, for practical values of input power and number of spans, as those used in
current dispersion managed systems, the second-order LP method can provide
accurate results in a shorter time than the SSFM (we estimated an advantage
of about 30% for approximately the same accuracy). Furthermore, we believe
that these expressions can have a theoretical value, for example in explaining
that the RP and LP methods are asymptotically equivalent, as we did.
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TECHNIQUES FOR DWDM SYSTEMS*

Invited Paper

Joseph M. Kahn' and Keang-Po Ho?

1Stanford University, Department of Electrical Engineering, Stanford, CA 94305 USA, e-mail:
Jjmk@ee.stanford.edu; 2 National Taiwan University, Institute of Communication Engineering
and Department of Electrical Engineering, Taipei 106, Taiwan, e-mail: kpho @ cc.ee.ntu.edu.tw

Abstract: Various binary and non-binary modulation techniques, in conjunction with ap-
propriate detection techniques, are compared in terms of their spectral efficien-
cies and signal-to-noise ratio requirements, assuming amplified spontaneous emis-
sion is the dominant noise source. These include (a) pulse-amplitude modula-
tion with direct detection, (b) differential phase-shift keying with interferometric
detection, (c) phase-shift keying with coherent detection, and (d) quadrature-
amplitude modulation with coherent detection.

Key words:  optical fiber communication; optical modulation; optical signal detection; dif-
ferential phase-shift keying; phase-shift keying; pulse amplitude modulation;
heterodyning; homodyne detection.

1. INTRODUCTION

Currently deployed dense wavelength-division-multiplexed (DWDM) sys-
tems use binary on-off keying (OOK) with direct detection. In an effort to
improve spectral efficiency and robustness against transmission impairments,
researchers have investigated a variety of binary and non-binary modulation
techniques, in conjunction with various detection techniques. In this paper,
we compare the spectral efficiencies and signal-to-noise ratio (SNR) require-
ments of several modulation and detection techniques. We assume that ampli-
fied spontaneous emission (ASE) from optical amplifiers is the dominant noise

*This research was supported at Stanford University by National Science Foundation Grant ECS-0335013
and at National Taiwan University by National Science Council of R.0.C. Grant NSC-92-2218-E-002-034.
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source. We do not explicitly consider the impact of other impairments, such
as fiber nonlinearity (FNL), chromatic dispersion (CD), or polarization-mode
dispersion (PMD).

The information bit rate per channel in one polarization is given by

Ry = RsRclogy M, (1

where R, is the symbol rate, R, < 1 is the rate of an error-correction en-
coder used to improve SNR efficiency, and M is the number of transmitted
signals that can be distinguished by the receiver. For an occupied bandwidth
per channel B, avoidance of intersymbol interference requires R; < B [1]. If
the channel spacing is A f, the spectral efficiency per polarization is

Ry, RsR.logy M < BR_ logy M

SAFTT AF ST Af @

S

Our figure of merit for spectral efficiency is logy M, the number of coded bits
per symbol, which determines spectral efficiency at fixed R;/Af and fixed
R.. Binary modulation (M = 2) can achieve spectral efficiency up to 1 b/s/Hz,
while non-binary modulation (M > 2) can achieve higher spectral efficiencies.

Non-binary modulation can improve tolerance to uncompensated CD and
PMD, as compared to binary modulation, for two reasons [2, 3]. At a given
bit rate R, non-binary modulation can employ lower symbol rate R, reduc-
ing signal bandwidth B, thus reducing pulse spreading caused by CD. Also,
because non-binary modulation employs longer symbol interval 1/R,, it can
often tolerate greater pulse spreading caused by CD and PMD.

P, P, P.S,
. % g D I> Demodulator
Transmitter e
Detector
S -
—

N, spans

Figure 1.  Equivalent block diagram of multi-span system.

In comparing SNR efficiencies, we consider the reference system shown
in Fig. 1. The system comprises N4 fiber spans, each of gain 1/G, and each
followed by an amplifier of gain G. The average transmitted power per channel
is P, while the average power at the input of each amplifier is P, = F;/G. We
assume that for all detection schemes, ASE dominates over other noise sources,
thereby maximizing the receiver signal-to-noise ratio (SNR) [4]. At the output
of the final amplifier, the ASE in one polarization has a power spectral density
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(PSD) given by
Seq = Na(G - D)ngphv = (G — )nhv, 3)

where ngp is the spontaneous emission noise factor of one amplifier, and we
define the equivalent noise factor of the multi-span system by Neg = Nangy.

At the input of the final amplifier, the average energy per information bit
is By = P./Ry. At the output of the final amplifier, the average energy per
information bit is GE, = GP,. /R, = P,/Ry, identical to the average trans-
mitted energy per information bit. Our figure of merit for SNR efficiency is the
value of the received SNR per information bit GE}, /S, required to achieve an
information bit-error ratio (BER) P, = 10~%. This figure of merit indicates
the average energy that must be transmitted per information bit for fixed ASE
noise, making it appropriate for systems in which transmitted energy is con-
strained by FNL. Defining the average number of photons per information bit
at the input of the final amplifier n, = Ej,/hv, and using (3), the figure of merit
for SNR efficiency is

GEb____(G)ﬂ%ﬂ,_ @

b
Seq G-1)ng neg

which is equal to the receiver sensitivity at the final amplifier input divided by
the equivalent noise factor of the multi-span system.

The modulation techniques described below can be employed with various
elementary pulse shapes, including non-return-to-zero (NRZ) or return-to-zero
(RZ), and with various line codes, such as duobinary or carrier-suppressed
RZ. In the absence of fiber nonlinearity, with proper CD compensation and -
matched filtering, the elementary pulse shape and line code do not affect the
spectral efficiency and SNR figures of merit considered here.

2. DIRECT DETECTION OF PAM

When used with direct detection, M -ary pulse-amplitude modulation (PAM)
encodes a block of logs M bits by transmitting one of M intensity levels.
Henry [5] and Humblet and Azizoglu [6] analyzed the performance of 2-PAM
(OOK) with optical preamplification and direct detection. In order to achieve
P, = 1079, 2-PAM requires ny/ne, = 38 with single-polarization filtering
and ny/ne, = 41 with polarization diversity.

We are not aware of an exact performance analysis of M-PAM for M > 4.
Neglecting all noises except the dominant signal-spontaneous beat noise, at
each intensity level, the photocurrent is Gaussian-distributed, with a variance



16 « Joseph M. Kahn and Keang-Po Ho

proportional to the intensity. Setting the M — 1 decision thresholds at the geo-
metric means of pairs of adjacent levels approximately equalizes the downward
and upward error probabilities at each threshold. In order to equalize the error
probabilities at the M — 1 different thresholds, the M intensity levels should
form a quadratic series [7]. Assuming Gray coding, the BER is given approxi-
mately by

Q

P 1 0 3logy M GE,
b logy M (2M —1)(M —1) S,
_ 1 3log, M Ty
= g M° <\/(2M DL =) neq) ‘ ®

For M = 2, (5) indicates that n,/n., = 36 is required for P, = 10~2, which
is lower by 0.2 dB than the exact requirement ny/ne, = 38. For M > 4, (5)
indicates that the SNR requirement increases by a factor (3logy M)/[(2M —
1)(M — 1)], corresponding to penalties of 5.5, 10.7 and 15.9 dB for M = 4,
8, 16, respectively. To estimate SNR requirements of M-PAM with single-
polarization filtering, we assume the exact requirement ny/n., = 38 for M =
2, and add the respective penalties for M = 4, 8, 16.

3. INTERFEROMETRIC DETECTION OF DPSK

Both M-ary phase-shift keying (PSK) and differential phase-shift keying
(DPSK) use signal constellations consisting of M points equally spaced on a
circle. While M-PSK encodes each block of logy M bits in the phase of the
transmitted symbol, M-DPSK encodes each block of logy M bits in the phase
change between successively transmitted symbols [1].

For interferometric detection of 2-DPSK, a Mach-Zehnder interferometer
with a delay difference of one symbol compares the phases transmitted in suc-
cessive symbols, yielding an intensity-modulated output that is detected by a
balanced optical receiver. In the case of M-DPSK, M > 4, a pair of Mach-
Zehnder interferometers (with excess phase shifts of 0 and w/2) and a pair of
balanced receivers are used to determine the in-phase and quadrature compo-
nents of the phase change between successive symbols.

Tonguz and Wagner [8] showed that the performance of DPSK with opti-
cal amplification and interferometric detection is equivalent to standard differ-
entially coherent detection [1]. 2-DPSK requires ny/ne, = 20 with single-
polarization filtering and np/n.q = 22 with polarization diversity to achieve
P, = 1079 [8]. The performance of M-DPSK for M > 4 with single-
polarization polarization filtering is described by the analysis in [1].
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4. COHERENT DETECTION OF PSK AND QAM

In optical communications, “coherent detection” has often been used to de-
note any detection process involving photoelectric mixing of a signal and a lo-
cal oscillator [9]. Historically, the main advantages of coherent detection were
considered to be high receiver sensitivity and the ability to perform channel de-
multiplexing and CD compensation in the electrical domain [9]. From a current
perspective, the principal advantage of coherent detection is the ability to de-
tect information encoded independently in both in-phase and quadrature field
components, increasing spectral efficiency. This advantage can be achieved
only by using synchronous detection, which requires an optical or electrical
phase-locked loop (PLL), or some other carrier-recovery technique. Hence,
we use the term “coherent detection” only to denote synchronous detection,
which is consistent with its use in non-optical communications [1].!

In ASE-limited systems, the sensitivity of a synchronous heterodyne re-
ceiver is equivalent to a synchronous homodyne receiver provided that the ASE
is narrow-band-filtered or that image rejection is employed [10]. Most DWDM
systems use demultiplexers that provide narrow-band filtering of the received
signal and ASE, in which case, image rejection is not required for heterodyne
to achieve the same performance as homodyne detection.

Both homodyne and heterodyne detection require polarization tracking or
polarization diversity. Our analysis assumes tracking, as it requires fewer pho-
todetectors. Coherent system performance is optimized by using high ampli-
fier gain G and a strong local-oscillator laser, so that local-oscillator-ASE beat
noise dominates over receiver thermal noise and other noise sources [4]. This
corresponds to the standard case of additive white Gaussian noise [1].

M-ary PSK uses a constellation consisting of M points equally spaced on a
circle. In the case of uncoded 2- or 4-PSK, the BER is given by [1]

_ 2GEy \ 2y,
n-o ) -o(E).

where the Q function is defined in [1]. Achieving a BER 107 requires Np/Neg =
18. The BER performance of M-PSK, M > 4 is computed in [1].

M -ary quadrature-amplitude modulation (QAM) uses a set of constellation
points that are roughly uniformly distributed within a two-dimensional region.
In the cases M = 22™ (M = 4, 16, ...), the points are evenly arrayed in a

'We do not consider heterodyne or phase-diversity homodyne detection with differentially coherent (delay)
demodulation of DPSK, since the interferometric detection scheme described in Section 3 is mathematically
equivalent [8] and is easier to implement. Likewise, we do not consider heterodyne or phase-diversity
homodyne detection with noncoherent (envelope) demodulation of PAM, since the direct detection scheme
described in Section 2 is mathematically equivalent [8] and is more easily implemented.
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Figure 2. Spectral efficiency vs. SNR requirement for various techniques.
Table 1. Comparison of modulation and detection schemes. Numbers given represent the

values of GEy/Seq = N /neq (photons/bit) required for P, = 10~°. Numbers in parenthesis

are the corresponding values of 10log,,(GEy/Seq) = 10logq (16 /Teeq)-

o B e L
2 1 18 (12.6) Not applicable 20(13.0) | 22(13.4) 38 (15.8) 41 (16.1)
4 2 18 (12.6) 18 (12.6) 31(14.9) ? 134 (21.3) ?

8 3 41(16.2) 29 (14.6) 83 (19.2) ? 443 (26.5) ?

16 4 119 (20.8) 45 (16.6) 240 (23.8) ? 1472 31.7) ?

2™ x 2™ square, while in the cases M = 2?™+1 (M = 8, 32, ...), the points
are often arranged in a cross. The BER performance of M-QAM is computed
in [1].

5. DISCUSSION

Fig. 2 and Table 1 compare the spectral efficiencies and SNR requirements
of the various modulation and detection techniques described above. We ob-
serve that for M > 2, the SNR requirement for PAM increases very rapidly,
while the SNR requirements of the other three techniques increase at a more
moderate rate. Note that for large M, the SNR requirements increase with
roughly equal slopes for PAM, DPSK and PSK, while QAM exhibits a dis-
tinctly slower increase of SNR requirement. This behavior can be traced to
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Table 2. Comparison of detection techniques. Shading denotes an advantage.

Attribute Direct interferometric Coherent

Maximum degrees of freedom per polarization 1 1

Signal-to-noise requirement for binary modulation 0dB
(relative to 2-PAM with direct detection) (2-PAM)
Signal-to-noise requirement for quaternary +5.5dB

modulation (relative to 2-PAM with direct detection) (4-PAM)

Electrical filtering can select WDM channel

Chromatic dispersion is linear distortion, making
electrical compensation more effective

Local oscillator laser required at receiver

Polarization control or diversity required

the fact that PAM, DPSK and PSK offer one degree of freedom per polariza-
tion (either magnitude or phase), while QAM offers two degrees of freedom
per polarization (both in-phase and quadrature field components). Based on
Fig. 2, at spectral efficiencies below 1 b/s/Hz per polarization, 2-PAM (OOK)
and 2-DPSK are attractive techniques. Between 1 and 2 b/s/Hz, 4-DPSK and 4-
PSK are perhaps the most attractive techniques. At spectral efficiencies above
2 b/s/Hz, 8-PSK and 8- and 16-QAM become the most attractive techniques.

Table 2 compares key attributes of direct, interferometric and coherent de-
tection. The key advantages of interferometric detection over direct detection
lie in the superior SNR efficiency of 2- and 4-DPSK as compared to 2- and
4-PAM. Coherent detection is unique in offering two degrees of freedom per
polarization, leading to outstanding SNR efficiency for 2- and 4-PSK, and still -
reasonable SNR efficiency for 8-PSK and for 8- and 16-QAM. Coherent de-
tection also enables electrical channel demultiplexing and CD compensation.
Coherent detection requires a local oscillator laser and polarization control,
which are significant drawbacks.

Laser phase noise has traditionally been a concern for optical systems using
DPSK, PSK or QAM. Interferometric detection of DPSK can be impaired by
changes in laser phase between successive symbols. In coherent detection of
PSK or QAM, a PLL (optical or electrical) attempts to track the laser phase
noise, but the PLL operation is corrupted by ASE noise. Linewidth require-
ments for 2-DPSK, 2-PSK and 4-PSK are summarized in Table 3. At a bit
rate R, = 10Gb/s, the linewidth requirements for 2-DPSK and 2-PSK can
be accommodated by standard distributed-feedback lasers. 4-PSK requires a
much narrower linewidth, which can be achieved by compact external cavity
lasers [14].
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Table 3. Laser linewidth requirements for various modulation and detection techniques, as-
suming a 0.5 dB penalty. For interferometric detection, transmitter has linewidth Av, while for
coherent detection, each of the transmitter and local oscillator has linewidth Av.

Modulation Detection Av/Ry Av for Ry = 10 Gb/s | Reference
2-DPSK Interferometric 3.0x1073 30 MHz [11]
4-DPSK Interferometric ? ?

2-PSK Coherent 8.0 x 1074 8 MHz [12]}
4-PSK Coherent 2.5 x 10~3 250 kHz [13]
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Abstract: We show that for optical transmission systems based on duobinary line-coding,
in general the optimum receiver is not based on the optical filter matched to
transmitted pulse-shape. In general, the receiver optical filter must be optimized
for each transmitted pulse within the ISI conditions imposed by the duobinary
line-coding. In order to achieve such a result, we have derived the expression of
the parameter K to be maximized with the purpose to decide the optimal filter
for each pulse-shape.
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limit; optical filters.

1. INTRODUCTION

The duobinary format was first proposed in the 60’s for radio communica-
tions [1]. Its high spectral efficiency was the aspect that made it attractive in
that context. Later, duobinary was overcome by multilevel schemes that could
reach an even higher bandwidth efficiency. Duobinary has recently re-emerged
in the field of optical communications. Different implementations have been
proposed, among which [2-5]. Comprehensive review papers on the advan-
tages and disadvantages of the use of optical duobinary have been published,
such as [6]. It has been pointed out that duobinary, besides a high bandwidth
efficiency, also features a very high resilience to fiber chromatic dispersion.

Regarding the sensitivity performance of duobinary, diverging opinions ex-
ist. In [2] it was shown that a specific receiver performed in back-to-back
equally well with either conventional IMDD or duobinary, suggesting a simi-
lar performance of the two formats. A more commonly acknowledged notion is



22 A G. Bosco, A. Carena, V. Curri, and P. Poggiolini

: Precoder
Bt |
sequence H ;

|__Encoder |

ASE noise
source
T_ 40T
T SplD) J'\ N Optical | s, (1) ! > Decision
X ~D T) g :":(ef’) y ™ device

R

Figure 1. Duobinary transmitter architecture (top) and analyzed back-to-back system layout
(bottom).

that duobinary may have a sensitivity penalty with respect to IMDD. In [7] we
presented a rigorous analysis of the ASE-noise-limited, back-to-back sensitiv-
ity performance of duobinary, showing that the quantum limit [8] of duobinary
is at least 0.91 dB berter than that of IMDD.

After briefly recalling the derivation of such fundamental limit in Section
2, we focus on the pulse dependence of the bit-error rate which is a pecu-
liar characteristic of duobinary transmission. In communication theory it has
been shown that the optimum coherent receiver for intensity modulation sys-
tems is based on a filter matched to the transmitted pulse [9]. In general,
this is valid also for optical systems based on intensity-modulation direct-
detection (IMDD), even though a quadratic detector is used to perform optical-
to-electrical conversion of the signal [10]. In this case the matched filter is
the band-pass optical filter preceding the photodetector. In this work, we con-
sider a simple use-case based on rectangular pulses and filter responses, and
demonstrate that when choosing duobinary line-coding the matched-filter as-
sumption is not valid in general. Moreover, we define the parameter K to be
maximized in order to obtain the optimal receiver filter for a given pulse shape.
For this parameter we report the analytical expression that can be used for any
pulse-shape.

2. QUANTUM LIMIT FOR DUOBINARY

The duobinary TX structure (shown in Fig. 1) that can be found in early pa-
pers [11,12] and in textbooks [9] is composed by a precoder, which transforms
the information bit sequence a,, into a new bit sequence pn, = a,®p,—1, Where
the symbol @ represents a logical xor operation, followed by the processing:
b, = 2p, — 1. The bipolar sequence b, € {—1,1} is then used to create the
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transmitted signal:

STX(t) = v/ Psav Y _ bou(t — nT) 2oty (1)

where Pg,, is the average power of s7x(t). u(t) is the normalized trans-
mission pulse (with unitary power), T is the inverse of the bit-rate Rp and
¥y is the complex unit vector defining the polarization of the modulated sig-
nal. This signal can be either received using a coherent receiver or through
direct-detection.

In optical communications, duobinary transmission is typically obtained
taking advantage of the Mach-Zehnder modulator phase properties and of nar-
row electric filtering: it is called PSBT [4]. On the receiver side, a standard
IMDD receiver is employed. We analyzed an optical duobinary system limited
by ASE noise in back-to-back configuration as shown in Fig. 1. In [7], the
duobinary application to optical communications has been analyzed showing
that the received optical signal spx (t) after the optical filter at the optimum
sampling instant can be written as:

SRX (topt) = {\/ngm,cnm(O) + npp(t)} ﬁp + nop(t) Do (2)

where ¢, = 0if b, # b, (ie., ap, = 0)and ¢, = +2if b, = b,_; (i.e.,
an = 1). nop(t) 0, is the noise component on the polarization orthogonal to
the modulated signal. Note that the received pulse z(t) must comply with the
duobinary ISI condition, i.e., z(0) = 2(T") # 0 and z(nT') = 0 Vn # 0, 1.

The received optical signal is then converted to the decision electric signal
by the photodetector. After photodetection, the noise component affecting the
electrical signal at the optimum sampling instant can be modeled as a 4-degree
of freedom Chi-square random process [7], with variance parameter:

9 NO +oo
0% = ——

2 Jewo

|Hrx (f)* df 3)

and non-centrality parameter s> = 0if b, # b,_; (ie., a, = 0) and s2 =
4Ps,0,2?(0) if by = by_1 (€., a, = 1). Hrx(f) is the frequency response
of the receiver optical filter and Ny is the one-side power spectral density of
ASE noise before optical filtering, that in practical systems is set by the overall
amount of noise introduced by the in-line optical amplifiers.

Accordingly to these characteristics of the decision signal and using the the-
ory reported in [9], the expression for the Bit-Error-Rate (BER) for an optical
duobinary system can be analytically written as:

2
BER:%{6“¢(1+¢)+1~Q2( gﬁ%@,\/@)}, )
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where Q5 is the Marcum Q function of order 2 and ¢ is the decision threshold,
that must be optimized for every value of the ratio Ps 4y2%(0)/0%. In any
case, it can be shown that, independently of the value of ¢, minimization of
BER corresponds to maximization of the first argument of the Marcum Q2
function. This argument is in fact strictly related to the optical signal-to-noise

ratio (OSNR):

2 . 2%(0)
P (0) © _ 160SNR oy 1 (5)
o [T |Hpx (f)I12df
where
PS',av
OSNR = 522 (6)

3. PULSE SHAPE DEPENDENCE OF BER

The analytical expression of the BER of optical duobinary is similar to that
of IMDD [7], except now the first argument of the Q2 depends on the pulse
x(t). This result means that, contrary to IMDD, for a given OSNR, different
duobinary pulses may yield different BERs.

To appreciate this, we first assume the transmitted pulse u(2) to be a rectan-
gular pulse of duration 7', i.e., the simplest and most typical NRZ pulse. z(¢)
turns out to be a triangular pulse: z(t) = 1—|t/T —1/2|for t € [-T/2,3T/2]
and z(t) = 0 for t outside [-T'/2,3T/2]. We get z(0)/x(T'/2) = 1/2 which,
by comparing it to the results presented in [7], shows that there is a penalty
with respect to IMDD of exactly 3 dB.

We then select the duobinary pulse with the smallest possible bandwidth

occupation [9, 11]:

o~

= @

Now we have z(0)/z(T/2) = /4 and the resulting OSNR for BER= 10~°
is 16.2, or 12.09 dB, with a gain with respect to IMDD of 0.91 dB. This result
sets a new quantum limit of 32.4 photons per bit for a conventional optical
direct-detection RX.

Between the two considered pulses there is a penalty of almost 4 dB, which
shows that the choice of pulse shape is very critical for duobinary. At present,
we have not been able to prove that the pulse yielding the lowest possible BER
is (7), though we have not been able to find a better performing pulse either.

As a general consideration, we can say that, for any value of OSNR, the best
pulse shape (t) and the best optical filter shape Hgx (f) are a unique couple

e

COS (T

z(t) =
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~es
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Figure 2. Contour plot of K as a function of both the normalized pulse duration of the
transmitted pulse (7., /T") and of the receiver optical filter impulse response (7}, /T')

and are the ones which maximize the ratio:

Ko 2 RSu0hexT2-vi
S\ Hpx (f)2df S \hpx (t)2at

It means that, unlike what happens in standard IMDD systems [10], the
optimum receiver for duobinary is based on the pulse-filter pair that maximizes
the parameter K.

In order to demonstrate that, in general, the optimum filter is not the one
matched to the transmitted pulse shape, we have analyzed the behavior of the-
parameter K in a simple scenario for which analytical evaluations are straight-
forward. We assumed that both the transmitted pulse and the receiver optical
filter impulse response have a rectangular shape with duration 7', and T}, re-
spectively. It is important to remark that, in order to comply with the duobi-
nary ISI condition previously reported, T, and T}, must satisfy the following
two constraints [9]:

1. T, + T < 3T (otherwise z(nT") # 0 for some n # 0, 1);
2. Ty + Ty, > T (otherwise z(0) = z(T) = 0).

For each possible pair (T, 7} ), the value of K has been analytically evaluated
for the considered scenario. Fig. 2 shows the contour plot of the parameter K
as a function of the normalized duration of the transmitted pulse T, /T and of
the receiver optical filter impulse response T3, /1. Regions where T, + T, < T
and T\, + T}, > 3T do not satisfy the duobinary ISI condition.
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Figure 3. Plot of the optimum normalized impulse response duration (1% /T') as a function
the normalized duration of the transmitted pulse(7, /T).
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Figure 4. Plot of the optimum value of the parameter K as a function of T, /T (solid line).
Dotted line refers to the maiched filter (sub-optimum) condition. Results reported as black dots
are obtained through numerical simulation based on error counting.
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The thick solid line corresponds to the case of optical filter matched to the
transmitted pulse. Maximum values of K, i.e., optimal configurations, corre-
spond to the two pairs (Ty,/T = 1, T},/T = 2) and (T,,/T = 2, T./T = 1),
which do not belong to the matched filter category. It demonstrates that, in
general, the optical matched filter is not the optimum for optical systems using
duobinary line-coding. Similar counterexamples can be derived for other pulse
and filter shapes.

Fig. 3 and Fig. 4 show as solid lines the optimum normalized filter duration
T5/T and the optimum value of K as a function of T, /T, respectively. In
Fig. 4, the dotted line refers to the matched filter condition: it can be noted
that whenever a matched filter setup is a possible choice (i.e., in case 0.5 <
T./T < 1.5 so that the duobinary ISI condition is satisfied) there is always
a better filtering option based on a narrower filter (longer impulse response
duration).

As further verification, numerical simulations based on brute-force error-
counting have been carried out: results are shown in Fig. 4 through black dots.
A perfect agreement with the analytical results confirms the previous state-
ments.

4. CONCLUSIONS

We have shown that for optical transmission systems based on duobinary
line-coding, in general the optimum receiver is not based on the optical filter
matched to transmitted pulse-shape. In general, the receiver optical filter must
be optimized for each transmitted pulse within the ISI conditions imposed by
the duobinary line-coding. In order to achieve such a result, we have derived
the expression of the parameter K to be maximized with the purpose to decide
the optimal filter for each pulse-shape.
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Abstract: In this paper, we study the theoretical limits of optical communication channels
affected by chromatic dispersion. By using as a metric the energy transfer ratio,
we find the optimal transmitted pulse shape that allows minimizing the impact
of dispersion, together with an interesting definition of the dispersive channel
equivalent bandwidth. This paper, though mainly theoretical, tries to approach
using a rigorous formalism a problem that is currently receiving large interest,
i.e., the optimization of the transmitter for a dispersion-limited optical system.

Key words:  optical fiber communication; chromatic dispersion; intersymbol interference;
energy transfer ratio.

1. INTRODUCTION

A large amount of theoretical and experimental work has recently focused
on finding efficient modulation formats for the so-called “dispersion-limited”
optical channel [1], i.e., for an optical link mainly limited by fiber chromatic
dispersion. In this paper, we try to approach the problem using a rigorous
theoretical formalism, by solving, under a suitable metric discussed below,
the problem of the optimization of the transmitted input pulse which leads to
the minimization of intersymbol interference (ISI) at the receiver. The paper is
mainly theoretical, and allows to define an interesting equivalent bandwidth for
the disperion-limited channel. Anyway, it is also open to practical application,
as mentioned in a previous paper [2].
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2.  MATHEMATICAL ASSESSMENT OF THE
PROBLEM

Being interested in dispersion-limited systems, we focus on a fiber transmis-
sion model which includes first order chromatic dispersion only, neglecting all
other transmission impairments. Thus, we consider the well-known chromatic
dispersion transfer function [1]:

Hp(f) = 73 0017 (1)

where [y = -§\7?_—% is the chromatic dispersion parameter, being D the fiber

chromatic dispersion (usually expressed in ps/nm/km), and Ap and fo the laser
central wavelength and frequency, respectively, while L is the fiber length. As
commonly accepted, we will indicate as accumulated dispersion the quantity
BaL in ps? or equivalently DL in ps/nm. We neglect higher order dispersion,
such as fs.

In order to simplify the expressions, we introduce the Normalized Disper-
sion Index (NDI) ~,! defined as:

v = —28,LR? ()

where R = 1/Tp is the system bit rate (being T'p the bit duration). The ~y
parameter is quite useful in simplifying the equations, normalizing them to the
system bit rate R or the bit duration Tg. In fact, using this notation, the transfer
function and inpulse response become [1]: '

Hp(f)ze”<%) — hp(t) = Me"%(i’%y. (3)
T/

so that both time and frequency can be normalized to the bit rate R and bit
duration T'g. We assume that the transmitted binary digital signal (complex
envelope optical field) is in the form: z(t) = Y¥2° o - sin(t — kTg) where
sin(t) is the complex envelope of the transmitted pulse for a single bit, and
oy, assumes the values 0 and 1 for a standard OOK modulation. Since the
channel is linear and time invariant (LTI}, the resulting pulse at the fiber output
is Sout(t) = sin(t) * hp(t). The goal of our paper is the optimization of the
input pulse s;,(t) under the following assumptions:

e The input pulse s;,(t) is strictly time-limited to the interval:

IThe v parameter has already been used by other authors, such as [1], this -y should not be confused with
the optical fiber nonlinear Kerr coefficient.
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As a particular case, we have T}, = Tp for a standard memoryless
transmitter, but we will show that the case T, > T'g, corresponding to
a transmitter with memory, is extremely interesting in extending the dis-
persion limit. In particular, we will assume T3, = Tiner, - T5, Where the
(integer) parameter n,,,, is the transmitter memory. The extension of
our results to a modulation with memory is the main new result of this
paper with respect to our previous paper on the same topic [2]. Using
modulation with memory, the pulse transmitted for each individual bit
has a duration that extends beyond the one bit window, an approach that
is typical in line coding, such as duobinary [1]. As a practical example,
a system working at 10 Gbit/s (T'g = 100 ps) with n,,e,, = 4 will use
pulses at the transmitter side with a duration T}, = 400 ps. The particu-
lar case 7pem = 1 corresponds to a standard, memoryless modulation.
For nynem > 1, it should be noted that the signal coming out of the trans-
mitter is affected by ISI. Anyway, line coding is usually associated with
a propagation channel that, under suitable conditions, reduces or cancels
the amount of ISI present at the transmitter. For instance, optical duobi-
nary can be interpreted as line coding with n,,e,,, = 2. In fact, the re-
sulting duobinary signal at the transmitter output is strongly affected by
ISI, giving rise to a 3-level eye diagram. In the duobinary case, the ISI
at the transmitter is anyway cancelled by the direct-detection receiver,
which converts the 3-level ISI-affected signal into a standard 2-level sig-
nal without ISI. In general, in line coding or modulation with memory,
a controlled amount of ISI is created at the transmitter in order to have
some kind of advantage at the receiver.

e We chose as optimization criterion the maximization of the energy trans-
fer from the input time window [ to an output time window:

J = [~Tout/2, +Tout/2 S

More specifically, we introduce the input and output energies:
Ein = / lsin ()2 dt and  Epuy = / sow®Pdt (6)
I J

and we maximize over s;,(t) the Energy Transfer Ratio (ETR), defined

as:
Eaut
in '
The pulses s;,(t) resulting from the optimization process proposed here
will be indicated as “optimal pulses” in the rest of the paper.

e The criterion we have chosen is particularly relevant for the case T,,,; =
T’g, if we assume symbol-by-symbol detection for a binary memoryless

ETR = @)




32 ‘ Roberto Gaudino

receiver (i.e., a receiver taking decision on single received bits). The
concentration of the output pulse energy over a T'g time window is ef-
fective in both minimizing ISI (which is the goal of our paper) and in
increasing the signal to noise ratio at the decision instant for any “rea-
sonable” digital receiver. In fact, the criterion is “exact” for an ideal op-
tical integrate&dump receiver, since in this case the decision sample is
directly proportional to the signal energy over a T'g time window. Any-
way, as we we have shown in [2], it proves a extremely good criterion for
realistic optical receiver structures. We notice that, for nem > 1, we
are considering a somehow non-intuitive system where ISI is strongly
present at the transmitter side, but then ISI is reduced, or even cancelled
at the receiver side by the propagation over the dispersive channel.

e We will showed in [2] that the ETR (for T,,; = Tg) for realistic optical
receivers should typically be above 90% to give a penalty due to ISI in
the 1-2 dB range. As a consequence, we will conventionally define in
the rest of the paper the “dispersion limit” as the amount of accumulated
dispersion for a given bit rate that results in an ETR = 90%.

2.1 The fundamental parameters and equations

The ETR optimization problem over a generic LTI system is a canonical
problem that was studied in the past [3, 4] and can be reduced to the opti-
mization of a quadratic functional in s;,(t), with a quadratic constraint. For
a generic filter impulse response, it leads to the following Fredholm integral
equation of the second kind:

/ K1, 0) sim (1) dtt = X 6n(v) ®
!
where the kernel of the integral equation is:
K(u,v) = / hp(z — u) hp(z —v) dz ©)
J

and where the optimal solution is given by the eigenfunction corresponding to
the maximum eigenvalue A, which is equal to the ETR (7) [3].

This problem has been solved in the literature for several types of band-
limited and standard low-pass filters [3-5]. In this paper, we solve it (for the
first time to our knowledge) considering the fiber dispersive transfer function
(1) as the band-limiting filter. In this case, replacing (3) in (9), by straigthfor-
ward calculations, the kernel can be expressed as:

K(u,v) = n [T"’“(“ — ”)] : (10)

vl T3
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2.2 The closed form solution

The integral equation (8), with the kernel (10), can be solved by looking for
a solution in the form s4,,(t) = a(t) - e7%®), where a(t) and ¢(t) are real func-
tions of time. This separates the two input pulse contributions that are usually
called amplitude modulation and phase modulation (or chirp). In particular,
we look for a solution of the form:

sint) = at) - 3 (15) 1

This “guess” was originally driven by the observation of the numerical results
obtained in [2], and proved to be exact, as shown in the following. By writing

the kernel as K(u, v) = Kr(u,v) - exp [-j <y§%§’3)] where:
B

. 1 . Tout(u —_ ’U)
Kr(u,v) = p— - sin [ [’Y}Tf; :l (12)

and by substituting (11) into (8), the phase terms vanish and the resulting inte-
gral equation simplifies to:

‘/IICR(u,v) a(u) du = A a(v) (13)

This is thus the fundamental integral equation that allows solving our opti-
mization problem. It turns out that exactly the same integral equation results
from the ETR pulse optimization over an ideal low-pass filter with bandwidth
W and J = [—o00,+00]. This is a very fortunate case, since the ideal low-
pass filter problem received a lot of attention in the past, in the framework of
fundamental works on communications theory, and it was fully analyzed and -
analytically solved in [5]. It leads to an integral equation with kernel:

sin[2nW (u — v)] ‘

m(u — v) (14)

Krp(u,v) =

Thus, the integral equation (13) is mathematically equivalent to the ideal low-
pass case. A full treatment of these results can be found in [6], [7], or in [8],
where the expression of the result in terms of Prolate Spheroidal functions
is given. In particular, it turns out that the solution corresponding to the the
maximum eigenvalue of (13) corresponds to the one maximizing the ETR. By
direct comparison between the kernels (12) and (14), we observe that we have
the following equivalence among parameters:

Tout Tout
2nW = ——— W= (15)
Iyl T3 2 |y TR
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Figure 1. Optimal pulses for 7tmem = 1 and v values ranging from 0.1 to 0.3 in 0.05 steps.
Time is normalized to Tp.
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Figure 2.  ETR vs. vy for nmem = 1,2,3,4.

The availability of a closed form solution is, in our opinion, the most impor-
tant result of this paper, not only because it gives the optimal pulse expressed
through prolate spheroidal functions [5], but even more because it leads to the
interesting results we illustrate in the following Section. We show in Fig. 1 the
resulting optimal pulses for nmem = 1 and 7y values ranging from 0.1 to 0.3 in
0.05 steps, while we show in Fig. 2 the ETR vs. « for different n,,¢,,, values.

3. OPTIMAL CHIRP AND CHANNEL EQUIVALENT
BANDWIDTH

The previous results lead to the following important considerations:
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1. The optimal pulses have a phase modulation given by ¢(t) = :ftTE’f or
B

equivalently, ¢(t) = "'2‘[%17 This expression gives the optimal chirp for

pulses launched over a dispersive channel. Interestingly, this result was

already found in [1] using a totally different approach for which anyway

optimality was not proven.

2. Provided that the pulse chirp is chosen to be optimal, the dispersive chan-
nel is totally equivalent, at least in the ETR sense, to an ideal low-pass

filter with bandwidth:
Tout . 1 Tout
= ————5 orequivalently W = ——- 16
2r|y| T3 4 Y wigl s 19

This result can be usefully interpreted as a definition of the equivalent
bandwidth of the dispersive channel which, to our knowledge, was never
given before in a rigorous form. We note here that dispersive channel
transfer function (1) has a peculiar expression that render most of the
common bandwidth definitions totally useless, since |Hp(f)]2 = 1,Vf.
For instance, the commonly used noise equivalent bandwidth is infinite,
and the 3-dB bandwidth is meaningless.

3. In the ideal low-pass problem with kernel (14), it can be shown that the
ETR depends only on WTj,, and the function ETR = f (WT;y,) is mono-
tonically increasing, asymptotically reaching ETR = 1 for WT},, — +o0
[5]. If we fix to the limiting value ETR = 0.9 (a 90% energy transfer),
the condition WTj,, > 0.675 must be satisfied [5]. In our case, using

(16), the ETR is a function of —2-%']%% only. If we fix T, = Tg and
B

Tin = Numem - T, we have that the ETR is only a function of nyem /||

4. In order to have ETR = 0.9, for 7mem = 1, we have the condition |y| < -
0.236, or equivalently, introducing (2),

0.1179
R? < i
= |BoL|

This last equation can be interpreted as the theoretical upper bound to the
maximum bit rate that can be achieved over the dispersive optical chan-
nel with limited ISI (i.e. ETR = 0.9) and for the memoryless modulator
(Mmem = 1).

5. From another point of view, if we need to transmit over a fiber with
arbitrary bit rate and dispersion, we can always obtain a limited ISI con-
dition (e.g., ETR > 0.9) provided that we accept a Memory Nyper, at the
transmitter given by:

Nmem > 4.241 [y| = nNpem > 8.482|8, L|R? . (18)

7
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Table 1. Maximum acceptable accumulated dispersion values (in terms of DL in ps/nm) for
10 and 40 Gbit/s system for a given memory nimem.

4.

[ nmem | 10Gbit/s | 40 Gbit/s |
1 928 ps/nm 58 ps/nm
2 1856 ps/nm | 116 ps/nm
3 2785 ps/nm | 174 ps/nm
4 3713 ps/nm | 232 ps/nm

This is a novel and important result, stating that, we can limit ISI pro-
vided that the modulator memory 7., is sufficiently large, and optimal
pulses are used. Table 1 reports the amount of accumulated dispersion
that, according to (18), can be tolerated for a 10 and 40 Gbit/s system
for different n,,em.

The result expressed in (18) also states that the dispersive channel, for
arbitrary values of dispersion, allows an arbitrarily high bit-rate, pro-
vided that n,,.n, is sufficiently large and, obviously, that optimal pulses
are used. Practically, this means that for high dispersion, the optimal
pulses are compressed by the channel from an input duration 7, - T
to an output duration close to T,,; = Tg.

CONCLUSION

We have approached the problem of the optimization of the transmitted
pulse in a dispersion-limited optical channel using a rigorous approach. We
believe that our work, though mainly theoretical, can give a useful insight on
the problem on optical line coding, and be a good complement of the approach
followed in papers such as [1].
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Abstract: We study multiple-access Poisson channels with multiple receivers. Each trans-
mitter sends a sequence of modulated symbols, which may also be affected by
inter-symbol interference. We derive some new formulas for the channel capac-
ity, for the cases of both independent and coordinated transmission. We also
provide some numerical results on the additional power required for efficient
transmission due to the various sources of interference.
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1. INTRODUCTION

A Poisson channel models an optical communication channel in which the
fundamental impairment is shot noise. A signal is observed through a sequence
of arrivals in a detector, and the arrivals follow a (random) Poisson process.
Their position, which we also call arrival instants, counts, or time stamps, are
known with arbitrarily good precision.

We shall study multiple-input multiple-output (MIMO) Poisson channels.
A total of L signals are transmitted, denoted by A7 (¢), with 1 < ! < L. These
signals experience static mixing with coefficients by H,,,1 <1 < L,1 <
r < R; the mixing coefficients are real positive numbers, H;, > 0. The
SIgnals are detected by an array of R elements, each of them detecting a signal

Ar(t) = Zl 1 Hip AT (t). The arrival times at receiver r are denoted by 7.

Sect. 2 presents the capacity of an unconstrained MIMO channel, Wthh

corresponds to an ideal, non-dispersive, infinite-bandwidth system.
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Some constraints typical of a practical optical channel are imposed in Sec-
tion 3, where closed-form bounds to the capacity are presented and computed.
Following standard practice, the signals are modulated with On-Off Keying

(OOK), and are given by:
N-1

A(t) =) Awi(n)h(t —nT — A;). (1)

n=0

With no loss of generality, we assume the following: A; is the energy for
the “on” symbol; w;(n) € {0,1} are the modulation symbols; A(t) in the
modulation pulse, real-valued, positive and of area 1; A; is the relative delay
of channel %; a total of N symbols are transmitted. Note that dispersion is
modelled as inter-symbol interference. Fig. 1 depicts the sequences transmitted
in a system with two input channels.

n AT
I N e
Al ™= [ M)
By =T[2 |
/2 T 3/ o ” ‘

Figure 1. Transmitted signals: 2 OOK parallel channels.

2. UNCONSTRAINED MIMO POISSON CHANNEL

We extend the formula for single-input single-output (SISO) Poisson chan-
nel [1] with the following: ;
THEOREM 1: For a Poisson channel with R receiver lines, the mutual infor-
mation between the input intensity A(t) = ((A1(t), ..., Ar(t)), and the output
7= (11,...,TR) is given by:

IMEiT) = }RZ / Brno{¢(®) } - Eryn {s () }dt, @
r=1

where (z) £ zlog(x), By, () {-} is the expectation over a past I,(t, ) from
instant t seen at receiver r, and \.(t) is defined as the expected value of the
projection from the past 1,(t,r).

Note that the past I,(t,) is arbitrary, and need not be the causal ordering

of time. The proof can be found in Appendix 2. The proof is constructive,
and also provides a capacity-achieving input distribution. Similar to the SISO
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channel (see Kabanov [1], Davis [2] and Wyner [3, 4]), a simple two-valued
signal, such that all L signals are simultaneously active or inactive, is enough
to achieve capacity. The distribution of the on and off states can be found
in [3, 4]. If the signal duration is made ever smaller, all available degrees of

freedom are used.

3. CONSTRAINED MIMO POISSON CHANNELS

In presence of modulation, we calculate the capacity per channel use, having
defined a channel use as a symbol interval of duration 7":

C =sup lim —}—I(A(t);z). 3)
A2) N—+00
In practice, the limit will be truncated to a small value of N, and we shall
assume that convergence in N has been achieved.

Even though (2) is a closed formula, it is not easily applicable to situations
with bandwidth limitations, inter-symbol interference, and dispersion. The
expectation operator Ey_(,y{-} is not easily tractable. Lapidoth and Moser
[5] have recently calculated upper and lower bounds for the SISO discrete-
time Poisson channel. They approximate the differential entropies in Eq. (4)
by using some properties of Poisson rv. We are, however, interested in the
continuous-time channel, for which their approximations fail.

An alternative route starts at the expression with the differential entropies
(for a proof, see Appendix 2):

I(A(); 1) = h(z) — h(z|A(2)), @
' R R
= h(1) + Ey, iy ¥ (A (1)) pdt — Ey sy { - (t)}dt.
;/A(){( )} ;/Au{ }(5)_

Our calculations of the channel capacity will nevertheless involve several
approximations:

e All symbols w;(n) are iid (no space-time coding). This is equivalent to
having equiprobable signals A(t).

e Instead of the exact arrival times 7, we use the number of arrivals. We par-
tition the time axis in disjoint intervals, and count the number of arrivals
in each, which we denote by k;, and k for the whole partition. Due to the
data processing inequality this may in general decrease the mutual infor-
mation, as there may be information in the arrival instants. Appendix 2
elaborates on the relationship between the differential entropy h(r) and
the entropy H (k), and the conditions under which they are equivalent.

Taken together, we obtain a lower bound to the channel capacity. Furthermore,
as we are interested in symmetric situations, all users are assumed identical;
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this implies in particular that there information rates and energies are identical.
A simple upper bound is then obtained by considering the single-user capacity:
the presence of other users cannot increase the average amount of information
that can be transmitted.

Fig. 2 shows the capacity, measured in bits per symbol period (T'), for an
OOK scheme, and estimated with the equations presented above. The pulses
have a length equal to T}, as indicated in the plot, so that they may overlap
with each other, a model for dispersion. The capacity is estimated in bits per
symbol period, so that the maximum is 2, as there are two input channels. The
channel matrix has a flat spatial response, H;, = 0.5,],r = 1,2. The second
user has a delay Ay = T'/2. Note that the model also corresponds to a situation
with a single user corrupted by ISI. For comparison purposes, we also report
the unconstrained capacity, and show the losses incurred by binary modulation,
and then by multiple-access effects.

Capacity for MIMO Poisson Channel
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Figure 2. Capacity with OOK, from exact calculations and from simulations.

APPENDIX

The proof presented here is based on simple information-theoretic arguments, and as such
differs from previous ones [1], which made use of martingales.
We start by stating two lemmas that will be used later. The proofs are sketchy, thanks to their

simplicity.
LEMMA 2: Letn be a Poisson random variable with parameter )\, where X is itself randomly

distributed in an interval 0, A}, A — 0, with a density p(\). The conditional entropy H{n|\)
is given by:

H(n|A) = / PO (A — A log A)dA = EX — Ew()) (A1)
by
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with EX = fOA Ap(A) dA, and Y(z) = zlogz.

PROOF: As A — 0, we can safely disregard second-order terms in A. The Poisson
distribution tends to a Bernoulli variable, with only two possible values, 0 and 1. From the
definition of entropy, in the limit A — 0, and disregarding second order terms we obtain the
desired expression. B

LEMMA 3: Letn be a Poisson random variable with parameter X, where X is itself randomly
distributed in an interval [0, A], A — O, with a density p()). The entropy H(n) is given by:

H(n) = EA - EXlog EA = EX — (E)) (A2)

with EX = [ Ap(A) d), and 4(z) = zlog .

PROOF: The same approximations mentioned in the proof of Lemma 2 are needed here. ®
Now we are in position of proving Theorem 1:

PROOF: Letus divide the observation interval I = (to, to+T') in M disjoint cells of length
A each. M depends on T  and A so as to satisfy MA = T Each cell is centered at a point t,,,
1 £ m < M. This creates a lattice of M x R observation cells, M for each of the R receivers.
Let us denote a cell with I(m, r), with the obvious meaning for the indices 7 and 7.

1. The input in interval I(m, r) is given by [,, Ar(t) dt ~ Ar(tm)A. Let us denote the input
inthe cell /(m, r) by Ar(tm), and the set of all inputs by A2 U2 (Ar(t1),..., Ar(tm)).

2. The output is the number of arrivals n(m,r) in I(m,r), and is Poisson distributed with
parameter A,(tm)A. For M large enough, and a fixed tx, the number of arrivals is
Bernoulli distributed along the receivers. Let us define n(m, r) as the number of arrivals
in the cell I(m,r),andn 2 JE_ (n(1,7),...,n(M,r)).

The mutual information between the input intensities A(t) and the arrivals 7 is now given by:

R R
I(A(); 1) = Mlin;wz(u Ar(ta), - Ac(tm); [ ni(n 1), . n(r, M) (A3)
r=1 =1
= yim IQin) = lim H(n)- H(nl}) (A4

Let us start with the conditional entropy H(n|)). For a given intensity A, the outputs are
conditionally independent. We apply Lemma 2 to each of these terms:

R M
H(mA) =3 3" Ex ey H(n(m,r) M (tm)) (A.5)
7==1m=1
R1 M
B (E{/\,(tm)} A E{0(tn)) w(A))
r=1m=1

R M
X [ A ARt dhelin) (A6

Let us now go back to the term H (n). We now define the past as the set of all cells coming
before I(m, ), and denote it with I (m, 7)". For the time being we leave the ordering arbsitrary.

! Any ordering would be valid, and that natural need not be followed.
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We can decompose it as a sum:

H(n) = Z Z EnntetatmnH (n(m, )| n(I)) A7)

r=1m=1

From the memoryless property of the Poisson process, the sequence (n(I »1€la(m,r)) —
Ar(tm) — n(m, r) forms a Markov chain, so that we can define an a posteriori probability

Pa(Ar(tm)| (1))
Pa(Ar(tm) | n(I)) ép(n(])lz\r(tm)),’ Iely(m,r) (A.8)

We now define an equivalent A, (tm), as the expected value of the estimate of A () from
the past, and whose density is given by pa (Ar(tm)| n(I))p(Ar(tm)):

Seltn) = [ o, PO ) P (e ) (D) M (tr) A (1) (9)
ke tm
We now invoke Lemma 3 to calculate the value of H (n(m, )| n(I)):

H(n(m,r)|n(I)) = Ar(tm) — b (Ar(tm)) (A.10)

This allows us to rewrite Eq. (A.7) in a more convenient form:

R M
H(n) = Z Z Eony1eta(mmH(n(m, )| n(I)) (A1D)
r=1m=1
R M ) .
Z Z Eonretaim,r (A,.(tm) A~ Ar(tm) 1/)(A))
r=1m=1
R M )
=2 > Eathtetatmm®(Ae(tm)) A (A.12)
r=1msz=1

We now exploit the fact that by construction,

En(n), Ieln(m.)Ar(tm) = (A.13)

= Ennyretaim,n A )P('\r(tm)) Pa(Ar(tm)[n(1)) Ar(tm) dAr(tm) (A.14)

r{tm

:/(: )(E"(”‘IE’“(""TW"'(’\’(t"‘M"U)))P(/\r(tm)))\r(tm)d/\r(tm) (A.15)

=/ . )l-p()\r(tm)) Ae(tm) dAr(tm) = E{Ar(tm)}. (A.16)

Common terms vanish in Eqs. (A.6) and (A.12), and the mutual information is given by:

I(m) = Z Z B { A9 (A tm)) } - Z Z Eniiteromn{ 89 (n(tn)) },

r=1m=1 r=1m=1
(AT

Note that if there is no statistical correlation among Ar(tm), the past will not give extra information on
the present, and the a posteriori probability will be irrelevant.
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where the last equality follows from the same reasoning as in Eqgs. (A.13)~(A.16). Finally, in
the limit M — 400, the summation becomes an integral, and we obtain

AT Z / Ex, o { M+ (t) log (1 (1)) dt—z / E,(,),a(”){ () og (A (1)) .
(A.18)

I, (t, r) is the continous-time ordering derived from the discrete equivalent I, (m, ).
B

APPENDIX B

THEOREM 4: For a given channel intensity AMt), defined in a time interval (to,to + T,
the entropy of the observed sequence of arrival times T is given by:

h(zIA(E)) = /t ) dt — /t A log At dt. (B.1)

PROOF:  Starting with the definition of entropy, and using the well-known expression for
the probability Pr(r|A(t)) = e™* []_, A(r:), we get:

h(zIA(t)) = }: / —A H A(T:) 10g< —A H A(m:) ) dr, (B.2)

where we group the terms in the sum so that each 7 consists of k arrivals. Let this contribution
to the entropy be denoted by . By symmetry, the partition of the interval (to, to + A)* is such
that it covers an area exactly 1/k! of the total area of the original interval. We thus obtain

hi(TIA(t)) = “"/ /TM AMri) - ,\(rk)< A+Zlog/\'r, )dﬁ - dry
= e A 1 / / Alr) -~ /\('rk)( A+ Z log A( T,)) dry--

(B.3) .
After some more calculations, we obtain
he =e LA ,\dk""l 1,\,\
k=e g ) (r)dr} — Z og A(Ti) (1) - AM(mx) d71 - -
1 1 k~1
= e"AFA’c+1 - e-AHk(./ A7) dr) (/ A(r)log A(T) d’r) (B4)
R TS | k-1
=e k!A e ——————-—~—(k__1)!A Ar. (B.5)
where A = [ A(r)drand Ay, & [ A(7)log A(T) d7. Putting all terms together:
Al e N LA k=1
h(z]A(E)) th (zIA(t)) _kzo A ;e o= )A AL
= Ae“"eA —Ape et = A - AL (B.6)
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APPENDIX C

PROPOSITION 5: Let the signal intensity A(t) be biecewise-constant, with the points of
change (discontinuity) denoted byti,i=0,...,6¢ may be infinite for a countable number of
discontinuities. Each interval is then of the form [t, tLiy1)s let us define At; & titv1 — t;. Let
k denote a vector with the number of arrivals at each interval, and T the corresponding arrival
times. The probabilities Pr(z|A(t)) and Pr (EIX()) are linked via the Sollowing equation:

¢
k;!
Pr(z|A(t)) = Pr(k])\(t)) —. (C.1
“imo AL
PROOF: The signals A(t) are constant in each interval [ti,tig1), so that the A(7y) is a
function of the interval number only. If we now integrate over all possible arrival sequences
compatible with a given vector k, we obtain

T & IG5 M) (as)
- - j == 1 7 ®
Pr(k|A(t)) = / e [T M) dr = =2 11 --J—T.._._ (C.2)
r i=1j=1 i=1
Using the constantness property, we obtain the desired equation by grouping terms. [}

PROPOSITION 6: Under the assumptions of Proposition 5 the entropies h(t) and H (k)
are related via the following equation.

£
k;!
h(z) = = 3 Pr(k) log (Pr@ 11 At,ﬂ.) €3
k i=0 i
¢ kol
=H(k)~ ) Pr(k) 3 log R (C.4)
k =0 i

PROOF:  Note that the extra factor in Eq. (C.1) does not depend on the signal A(t), but
only on the instants ¢;, so that the same constant of proportionality holds for total probabilities
Pr(z) =33, Pr(z]/\(t)).

We can again decompose the integration over 7 in terms for fixed k. For fixed k, all the
compatible terms % do not depend on time, and the integral of Pr(r®)]og Pr(r®) s very
easy, that of a constant. We now exploit that this integral gives the same proportionality term as
Proposition 5, and simple calculations yield now Eq. (C.4). =
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Abstract: The purpose of this project is to improve the techniques of Quantum Cryptogra-
phy, to realize a Quantum Key Distribution (QKD) in free space with an orbiting
satellite using nowadays technology. With this experiment we characterize the
properties of a single photon communication channel from an orbiting satellite
in space to a ground based station. We used the facilities of the ASI laser rang-
ing station MLRO (Matera) and the satellite for geodesy Lageos I, equipped
with corner-cube retroreflectors, to simulate a single photon transmission from

an orbiting satellite.

Key words:  optical communication; quantum cryptography; quantum communication; space
! technology.

1. INTRODUCTION

Quanturn mechanics provides powerful tools that form one of the corner-
stones of scientific progress, and which are indispensable for nowadays tech-
nology. The most important areas where the applications of Quantum mechan-
ics will be crucial in the next future are the new developments in modern com-
munication and information-processing technologies, namely Quantum Com-
munication, Quantum Teleportation with entangled states and Quantum Com-
putation. Quantum Cryptography is the most promising application of Quan-
tum Communication in every day’s life of the next future, together with Quan-
tum Teleportation [1-4]. Here the fundamental properties of quantum mechan-
ics are used to enhance the power and potential of today’s communication and
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security systems, providing a secure alternative to the conventional encryp-
tion methods that will resist also quantum computer attacks. While Quantum
Teleportation and Quantum Computation mainly utilize entanglement between
two or more particles, Quantum cryptography can also be performed even with
single quantum particles.

Single photon communication

Single photon communication allows an ideally secure generation and dis-
tribution of a cryptographic key between two distant parties. Quantum Key
Distribution (QKD) in fact uses the fundamental laws of quantum mechanics
that describe the transmission of quantum states of the light [5-7]. The dis-
tribution of the cryptographic key must be secure against the attack of a third
party that tries to acquire information with an eavesdropping technique. The
vital advantage quantum mechanics provides lies in the impossibility that an
eavesdropper (Eve) can intercept the secret key, made up of individual quanta,
without revealing her presence to Alice, the sender and Bob, the receiver, since
such interception unavoidably alters and destroys the quantum state of the pho-
ton. An attack may be made by Eve who secretly attempts to determine the
key intercepting the travelling photons from Alice to Bob. By performing a
sequence of measurements on these quanta, Alice and Bob determine the key
they will use to encrypt their message. This aspect derives directly from the
laws of quantum mechanics and it is also known as “No-cloning theorem”,
which states that it is not possible to duplicate a generic single quantum state
without measuring it, thus without perturbing it in an irreversible way. The
measurement on a quantum state in fact has not the meaning of revealing in-
formation coded in the quantum state, as it happens for the classical case. The
sender Alice builds the cryptographic key with a sequence of single quanta
prepared in different complementary quantum states. The easiest way is the
use of the polarization states associated to single photons. The sender Al-
ice randomly prepares the state of a photon and sends it to the receiver Bob,
He then establishes the cryptographic key by independently performing a se-
quence of random polarization measurements on the photons. Both Alice and
Bob will independently generate two random sequences of “0”s and “1”’s cor-
responding to the different outcomes of their polarization measurements. The
cross-correlation of the random sequences and the protocol chosen by Alice
and Bob will generate the quantum key. The two major protocols are those by
Bennett and Brassard [8] and Bennett [9] (see [10] for a review). The applica-
tion of space and astronomical technologies to Quantum Communication will
make possible the realization of a future quantum cryptography-based network
of Satellites and ground stations which will guarantee a completely secure,
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global, long-range communication system: a novel field which will disclose
entirely new ways of exchanging information between distant observers.

2. THE Q-SPACE PROJECT

The theoretical properties of quantum information and the feasibility of
quantum communication in practical situations have been already elucidated
by many experiments carried out in laboratories on the ground.

Our experiment points out the fundamental advantages to be obtained by us-
ing a Space system, advantages that could lead to a deeper understanding of the
theory and to novel utilisation. The aim of this experiment is to realize the first
quantum communication from satellite to ground with single photons. This
link is realized with the Matera Laser Ranging Observatory (MLRO) in con-
junction with an existing retroreflecting satellite such as Lageos [11]. A laser
beam, collimated by MLRO, will illuminate the retroreflectors onboard Lageos
and simulate the transmission of single photons from satellite to ground. After
the retroreflection, the detection and characterization of the quantum state as-
sociated to each photon through MLRO itself will simulate the QKD process.
In this experiment we simulate Alice, the sender, located on the satellite and
Bob, the receiver, in the ground station.

2.1 Description of the experimental setup

2.1.1 Properties of MLRO laser ranging system.  The laser ranging
station is equipped with a 1.5 meter mirror telescope with astronomical quality
optics, Cassegrain configuration /212, long Coudé. The beam divergence is
"diffraction limited" and can be tuned in a continuous way from around 1" to
20". The alt-azimuth mount is capable of a tracking velocity of 20 deg/sec in
azimuth and 5 deg/sec in elevation, with a tracking accuracy of 1 arcsec RMS.
The MLRO laser is an active hybrid ND:YAG configured to emit 40 ps fast
pulses in the wavelength of 532 nm with an impulse of 100 mJ/pulse in the
monochromatic setup. The averaged estimated number of photons per pulse is
~5x10'7. The clock of the laser system is 10 Hz, with a range timing accuracy
better than 2 ns, which is too slow to realize a quantum key with single photons
from the satellite. This immediately requires, that the pulse rate of the laser is
increased by many orders of magnitude. At 10 Hz pulse rate, it would require
30 days to capture 1 single event for the best case.

2.1.2 Properties of the retroreflecting targets. Here the ground based
station MLRO acts as photon source for the orbiting Alice. To simulate Alice
on the satellite, we will use mainly the Laser GEOdynamics Satellite 1 LA-
GEOS 1 (ASI/NASA), a spherical-shape satellite for geodesy equipped with
corner-cube retroreflectors, diameter 60 cm, with perigee height of 5900 km.
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The satellite is equipped with 426 retroreflectors built in such a way to send
most of the signal back to the same direction of the incident light. Each retrore-
flector is essentially a cylindrical piece of glass having a 3.8 cm in diameter and
a 3-surface reflecting corner.

2.13 The quantum transceiver. ~ We use the laser ranging facility of
MLRO to center the satellite with high precision and its optical transmission
line for our optical transmission/receiver device, the Quantum transceiver Q).

lambda/4 polarizing beamsplitter
M3 N =
off{axis " &
/ pinhole A pulsed
detector laser
M2, flat

Figure 1. Schematic of the Quantum transceiver.

QT is equipped with a weaker, but higher repetition rate laser, able to real-
ize a quantum key distribution. The laser is a Nd:YAG laser with a passive Q-
switching and integrated second harmonic generator, centered at 532 nm, with
repetition rate of 17 kHz, which emits about 10!2 photons per shot. The trans-
mission and receiving line have the same optical paths, and use the polarization
of light to discriminate the outgoing and incoming signals. The transmission is
realized by opportunely polarized collimated pulses, focalized onto a pinhole,
and expanded to the exit pupil diameter of the MLRO telescope by the off-axis
parabola. After the retroreflection from the satellite, the beam passes again
through a pinhole is recollimated with a lens, and directed by the polarizing
beamsplitter to the detector, a Si-APD photon counter. To reduce the noise due
to the light background (atmosphere, celestial sources, environmental, etc. )
we choose a very small field of view, centered on the satellite position, with
radius 1.4 to 2.2 arcsec. An additional improvement is given by the insertion
of a narrowband filter with 0.15 nm of FWHM in the optical path to the detec-
tor and the time-tagging, obtained by setting up a set of time-windows, where
to look for a positive detection by calculating the time of flight of laser pulse.
This would allow us to label each possible photon reflected from the satellite,
even if embedded in the background light, with a certain, finite, probability of
success.
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3. CATCHING THE PHOTON
31 Orbital fit and the link budget equation

The time of flight of the photons retroreflected by the satellite is varying
in time, during the motion of the satellite itself. To determine exactly the set
of coincidences for the time-tagging, we performed a polynomial fit obtaining
only a few ns RMS difference between measured and fitted range points.
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Figure 2.  Lageos 1: time of flight of a photon (from 40 to 58 ns) vs time.

A better determination of the time of flight can be obtained with Geodyn II
(NASA/GSFC) program [5], with an actual error of 5-6 mm RMS in the posi- .
tion of the satellite. The post fit radial residuals for a good pass observed by
MLRO is less than 1 cm RMS (often less than 5 mm RMS) for all targets. We
now consider how to achieve single photon transmission from the satellite and
single photon reception at the MLRO station by calculating the energy budget
of the retroreflected light to choose the right energy to be transmitted. The
returned energy is given by the link budget equation, which gives the num-
ber of reflected photons and then the number of photoelectrons, depending on
different situations during the observation.

A 1)\’ —
Nphe = Tq Er FI; nr GT 0sat (W) Ar IR TA Tc
here ), is the detector quantum Efficiency, 7 the transmit path efficiency, ng
receive-path efficiency, At the receiving aperture area of the telescope, T4 the
atmospheric transmission, T, cloud transmission, Er the laser energy pulse,
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0sat the satellite backscattering cross section and G the transmit gain. A quite
comprehensive description of the link budget calculation is given by Degnan
[12]. The link budget is function of R=4, R being the distance of the satellite
from the earth (another way of expressing it, is by using the square of the
beam divergence D). The main limiting factor of the efficiency is the size of
the retroreflectors, which are only 3.8 cm in diameter. Furthermore, since the
satellite is not stabilized, the retroreflectors must have some beam spreading.
Taking now into account the effective area and the diffraction effects of the
Lageos retroreflectors and of MLRO telescope, the total efficiency would then
be about 10716-1013, j.e., 0.0001-0.1 retroreflected photons per pulse.

3.2 Atmospheric seeing problems

The Earth’s turbulent atmosphere causes stars to “twinkle” and their inten-
sity undergo rapid fluctuations. This also happens for the signal sent by Alice
on the satellite.
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Figure 3. Power Spectrum of Arcturus from 3 to 55 Hz.

The measured probability distributions for the arrival of the photons in time
arise from a combination of the atmospheric fluctuations with the Poisson dis-
tribution of the photon counts. Previous studies on the analysis of atmospheric
intensity scintillation of stars [13] show that the time distribution of the photon
counts is quite complicated, which cannot easily fit neither with a Poissonian
nor a Lognormal distribution. We characterized the effects due to the seeing,
and the eventual loss in the transmission, by measuring the intensity of some
test stars with our transceiver. In our power spectrum analysis of the signal
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of Arcturus, a Bootis, we find two peaks below 10 Hz, which can be ascribed
to the guiding of the telescope. The effects of seeing, due to the atmospheric
turbulence tilt of the wavefront, are in the peaks seen at higher frequencies.

3.3 Acquisition from ground targets

The calibration of our instrument was obtained by measuring the return sig-
nal from a selected ground target (corner cube), located at 42.25 m, i.e., with
a time of flight of 150.92 ns for each photon. We obtained 100% of returns.
In Fig. 4 we report the log of the number of the returned signal counts from
50000 pulses vs. the difference between the expected time of flight and the
actual arrival time within 10 ns.

_Window width 10ns
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Figure 4.  Logplot of the measured returns ffom a fixed target and difference between the time
of flight and the detected time.

The main central peak contains almost all the returns and its width is caused
by the non perfect regularity in the sequence of the laser pulses due to the Q-
switching mechanism of the laser; the other peak on the right is negligible, and
can be caused by electronics bouncing. The data acquisition and analysis from
orbiting satellites are now in progress.

4. CONCLUSIONS

The first simple experiments made during the realization of the Matera-
LAGEOS link, show that with nowadays technology the realization of a quan-
tum cryptography link is feasible, without requiring much extra equipment,
which can then serve as the basis for future large scale projects using dedi-
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cated space systems. This will be probably the first in the world experiment
of such kind. This application represents the “quantum leap” that will trans-
form a classical optical communication channel in a quantum channel, where
it is possible to implement secure communication protocols based on Quantum

Cryptography.
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Abstract: We propose an encryption method obtained combining low-light optical com-
munication, in the limit of quantum key distribution (QKD) techniques, and
classical cryptography with pre-shared key. We present a toy-application to the
telemetric data transmission Formula 1 racing.
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1. INTRODUCTION

The recent method proposed to create and distribute securely a quantum en-
cryption key to send secure messages takes its vital inspiration from the basic
laws of quantum mechanics. Quantum cryptography started with the studies by
Bennett and Brassard in 1980s and by Bennett in 1992 [1,2] as a new method
for generating and distributing secure cryptographic keys using the properties
of Quantum Mechanics. In contrast to existing methods of classical key distri-
bution (CKD), quantum key distribution, QKD bases its security on the laws
of nature. The impossibility of cloning or measuring a quantum state without
inducing an irreversible collapse of its wavefunction ensures the build-up of a
secure encryptographic key distribution between two parties. For a review see
e.g. [3]. Similar experiments [4, 5] illustrated the feasibility of quantum en-
cryption in practical situations. Free-space QKD was first realized [6, 7] over
a small distance of 32 cm only with a point-to-point table top optical path, and
recently improved in atmospheric transmission distances of 75 m [8] in day-
light and 1 km [9] in nighttime over outdoor folded paths, where the quanta
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of light were sent to a mirror and back to the detector. A daylight quantum
key distribution had been realized over a distance of 1.6 km by Buttler et al.
[5]. Recently Aspelmeyer et al. realized a quantum key distribution over the
Danube using entangled photons [10]. Several groups have also demonstrated
QKD over multi-kilometer distances of optical fiber [11-17] and recently real-
ized a version of the experiment “in the real world”, in which Alice and Bob
were connected with 1.45 km of optical fiber sharing entangled photons. The
average raw key bit rate was found to be about 80 bits/s after error correction
and privacy amplification. idQuantique, MagiQ technologies and NEC realized
commercial applications of secure quantum key distribution [18-20]. MagiQ
technologies guarantee, for example, a fast-generating quantum key rate of 10
keys per second. The field is now sufficiently mature to be commercially im-
plemented and to be a tool in fundamental research beyond the foundations of
quantum mechanics and basic physics [21, 22].

2. QKD TO UPDATE A “MOTHER KEY”

In this paper we suggest a simple procedure to aid the classical crypto-
graphic methods with Quantum Cryptography, when the environmental con-
ditions and/or the requirements of obtaining a long key in a short time strongly
play against QKD. This procedure will increase, time-by-time, with the one-
time-pad methods of Quantum Cryptography, the global security of the scheme.
This method was studied to improve the security of bi-directional telemetry of
race cars in view of possible, future, quantum computer attacks.

A classical cryptographic scheme can be reduced to three main quantities:
m the message, k the key and ¢ the code, with the corresponding random
variables M, K and C that describe their statistical behaviours. The encod-
ing C = Code(M,K) and the decoding M = Dec(C,K) are suitable deterministic
processes which are described by a set of instructions 7 that require a compu-
tational effort that depends both on the length of the cryptographic key and on
the chosen protocol. Even if modern classical encryption protocols, based on
the computational complexity of their encoding algorithms, still resist to the
attacks made with nowadays technology, they will become vulnerable in the
next future to the attacks of quantum computers, e.g. with Shor’s algorithm
(for a review, see [23]).

This problem will be avoided with a fast-generating QKD scheme that will
change the key with a rate much faster than the computational time needed to
break the code, without giving enough time to the cracker to get the encoded in-
formation. In environmental conditions with high bit error rate the application
of this procedure will become more and more difficult giving more chances to
the cracker to break the code.
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We propose a simple thought experiment, in a noisy environment, as alter-
native to realize a secure fast encryption in real time using an ancillary key &k’
obtained via QKD, to update a classical pre-shared cryptographic key k with a
simple change, such as bit shift or another more complex cyphertext method.
k, the mother cryptographic key, can be previously securely loaded in a secure
environment.

The updating process of k is a simple encryption of k itself with k’, and the
new key thus obtained, k” = Cod(K,K’), s.t. length(k”) = length(k), is used to
encrypt new messages. k' has a randomly variable length that depends on the
efficiency the of QKD process: length(k’) < length(k).

This method will be less and less useful in the limit of the ideal case, i.e.
when length(k’) = length(k). This satisfies the prescriptions of a perfect se-
cure scheme for the encryption of k, and the space of obtainable new keys is
the space of the messages M =K, H =K' and the space of generated codes is
given by the new key k”. In this limit we have the classical, safest, encryption
procedure: the key has the same length as the message to be sent but it is also
the case in which the methods of QKD are fully applicable.

In the worst case, if a run of the QKD updating process does not have suc-
cess and k' = @, is the null set, the map Cod becomes the identity map and
k" =k, ensuring that the message will be in any case encrypted by the previous
key.

The two encryption methods, classical and quantum, are combined together
to increase the security of the transmission. The intrinsic weakness of the
classical key distribution between two distant parties, can be aided by the im-
possibility of a third-party eavesdropping with QKD, while the failures due to
the non-optimal environmental conditions which usually play against QKD in
the building quickly a key in real time, are supported by previously selected
cryptograms and CKD with a pre-shared key.

A possible application is the realization of a secure communication of tele-
metric data between two parties in relative motion. An example is a key ex-
change between an airplane and a ground station or between a race car and the
Box. Real-time telemetric data transmission needs in fact an immediate and
secure encoding process, which cannot be easily guaranteed at the moment
using only QKD.

3. TOY-APPLICATION IN F1 RACING

Here we studied the possible application of this method to encrypt the teleme
try of a race car during a Grand Prix. Alice is located at the Box, while Bob is
driving the car. Alice and Bob initially share a secret classical cryptographic
key k with length N exchanged before the race, and choose a classical protocol
to realize a secure communication such as DES, 3DES or AES. The Quantum
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Cryptographic Key &’ obtained by exchanging single-photon pulses from the
box line to the car during a passage close to the box has the purpose to give
to the on-board computer only information to start cyphertext methods on the
mother Key.

The immediate advantage is that with this method we can, in principle, real-
ize quite a secure encryption only adopting a mother key 256 bit long, reducing
the additional computational requirements to the onboard electronics.

To realize a single-photon QKD from the box to the car in a race track we
also have to satisfy some precise requirements:

1. Strong weight constrains: no mechanically moving parts to realize po-
larization swapping no laser devices mounted into the car.

2. The usual procedure of Quantum key authentication utilizes the resources
onboard the car and is convenient to embed them inside the telemetric

data.
3. Data transmission must be classically encrypted even in the case of QKD
failure.

4. The laser must works in non-visible light at 1550nm, and this procedure
is safe for the driver: each pulse is in fact made with a very faint source,
ideally from 0.1 to 1 photon per shot as required by QKD.

In the simplest case, the car is equipped with a set of passive detectors device
realized with single-photon detectors, polarizers and fiber-injection optics as
in the figure. The noise due to the environmental light is screened by a nar-
rowband filter centred at the laser’s wavelength of about 1550 nm. Each of the
polarizers has different orientations, according with the chosen QKD protocol.

During each passage Alice tracks the car and tells Bob via radio to switch
on the electronic control that will activate each of its detectors in a random se-
quence, which will realize Bob’s polarization swapping. Alice sends a random
sequence of polarized photon pulses. Alice and Bob will publicly announce
their keys via telemetry and will decide whether to encrypt k.

With a commercial LiNbO3 modulator, Alice can produce ideally a ran-
dom sequence of polarization swapping with a clock rate up to the GHz rate.
Previous experiments showed a clock rate up to 1-MHz [5] for daylight QKD.

In the simplest case, the tracking could be realized by a fixed direction
beam-expander, and the car, passing through the region illuminated by Alice’s
laser would capture some photons to realize the quantum key. With an angular
beam width of 0.5° Bob obtains a laser beam expanded up to 20 cm at about
20 m of distance. This would need a fast and efficient QKD process. In fact,
for a car travelling at 100 m/s at a distance of 20 m, the beam crossing time is
the order the millisecond, which means that we would need 1 MHz of photon
counting independently from its polarization state, to build a 256 bit key at
each passage.
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With a GHz modulator and a laser attenuation to 0.1-1 photons/pulse (as
required by single-photon QKD) the total detection efficiency needed is 1/100.
The emission of radiation by the car and the track at that specific wavelength
can is considered almost constant within the tracking time.

A further step would be the application of adaptive optics to improve the
pointing of Alice’s source to Bob.

We could think to extend this procedure of cryptographic key updating also
to the case in which the quantum communication channel is replaced with a
faint source of polarized photons, even if low-light optical communication is
in principle different from QKD.

4. CONCLUSIONS

We proposed a study of feasibility for a method of mixed quantum and clas-
sical cryptography with an application to race car telemetry encryption in real
time. This method would guarantee the presence of a cryptographic key for a
secure telemetry also when the quantum channel is affected by strong noise.
We proposed to extend this procedure also when the distribution of the auxil-
iary key is realized with low-light optical communication.
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Figure 1.  Scheme of the device onboard Bob’s car.



58 F. Tamburini, S. Andreoli and T. Occhipinti

REFERENCES

(1] C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin

" tossing,” in Proc. IEEE International Conference on Computers, Systems, and Signal Pro-
cessing, (Bangalore, India), pp. 175-179, Dec. 1984.

[2] C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev.
Lett., vol. 68, no. 21, pp. 3121-3124, 25 May 1992 .

{31 N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod.
Phys., vol. 74, no. 1, pp. 145-195, Jan. 2002. )

[4] R. J. Hughes, W. T. Buttler, P. G. Kwiat, S. K. Lamoreaux, G. L. Morgan, J. E. Nord-
holt, and C. Glen Peterson, “Practical quantum cryptography for secure free-space commu-
nications,” Preprint: quant-ph/9905009, Available: http://arxiv.org/abs/quant-ph/9905009,
1999.

{51 W.T. Buttler, R. J. Hughes, S. K. Lamoreaux, G. L. Morgan, J. E. Nordholt, and C. Glen
Peterson, “Daylight quantum key distribution over 1.6 km,” Preprint: quant-ph/0001088,
Available: http://arxiv.org/abs/quant-ph/0001088, 2000.

(6] C.H. Bennett, F. Bessette, G. Brassard, L. Salvail, J. A. Smolin, “Experimental quantum
cryptography,” in Advances in Cryptology - EUROCRYPT *90, Workshop on the Theory
and Application of of Cryptographic Techniques, Aarhus, Denmark, May 21-24, 1990, Pro-
ceedings, (1. B. Damgérd, ed.), ser. Lecture Notes in Computer Science, vol. 473, pp. 253-
2635, Springer, 1991.

{7] C.H. Bennett, F. Bessette, G. Brassard, L. Salvail and J. Smolin, “Experimental quantum
cryptography,” J. Cryprology, vol. 5, no. 1, pp. 3-28, 1992.

[8] B.C. Jacobs and J. D. Franson, “Quantum cryptography in free space,” Opt. Lert., vol. 21,
no. 22, pp. 18541856, 1996.

(91 W.T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan,
J. E. Nordholt, C. G. Peterson, and C. M. Simmons, “Practical free-space quantum key
distribution over 1 km,” Phys. Rev. Lett., vol. 81, no. 15, pp. 3283-3286, Oct. 1998.

[10] M. Aspelmeyer, H. R. Bohm, T. Gyatso, T. Jennewein, R. Kaltenbaek, M. Lindenthal, G.
Molina-Terriza, A. Poppe, K. Resch, M. Taraba, R. Ursin, P. Walther, A. Zeilinger, “Long-
distance free-space distribution of quantum entanglement,” Science, vol. 301, no. 5633,
pp. 621-623, Aug. 2003.

[11} 1. D. Franson, and H. Iives, “Quantum cryptography using optical fibers,” Appl. Opt.,
vol. 33, no. 14, pp. 2949-2954, 1994,

{12} C. Marand, and P. D. Townsend, “Quantum key distribution over distances as long as 30
km,” Opt. Lext., vol. 20, no. 16, pp. 1695-1697, 1995.

[13] R. J. Hughes, G. G. Luther, G. L. Morgan, C. G. Peterson, C. M. Simmons, “Quan-
tum cryptography over underground optical fibers,” in Advances in Cryptology - CRYPTO
'96, 16th Annual International Cryptology Conference, Santa Barbara, California, USA,
August 18-22, 1996, Proceedings, ser. Lecture Notes in Computer Science, vol. 1109,
pp. 329-342, Springer, 1996.

{14] A. Muller, H. Zbinden, and N. Gisin, “Quantum cryptography over 23 km in installed
under-lake telecom fibre,” Europhys. Lett., vol. 33, no. 5, pp. 335-339, 1996.

[15] R.J. Hughes, W. T. Buttler, P. G. Kwiat, G. G. Luther, G. L. Morgan, I. E. Nordholt, C.
Glen Peterson, C. M. Simmons, “Secure communications using quantum cryptography,”
in Proc. SPIE, vol. 3076, pp. 2-11, 1997.

[16] R. J. Hughes, G. L. Morgan, and C. Glen Peterson, “Quantum key distribution over a
48 km optical fibre network,” J. Mod. Opt., vol. 47, no. 2/3, pp. 533-547, 2000.




Quantum-Aided Classical Cryptography with a Moving Target 59

[17] A.Poppe, A. Fedrizzi, T. Loruenser, O. Maurhardt, R. Ursin, H. R. Boechm, M. Peev, M.
Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, A. Zeilinger, “Practical quantum key
distribution with polarization-entangled photons,” Preprint: quant-ph/0404115, Available:
http://arxiv.org/abs/quant-ph/0404115, 2004.

{18] idQuantique SA (Geneve, Switzerland), http://www.idquantique.com

[19] Magiq technologies (Sommerville, USA), http://www.magigtech.com

[20] NEC Ltd. (Tokyo, Japan), http://www.nec.com

[21]) F. Tamburini, C. Barbieri, S. Ortolani, and A. Bianchini, “Futuristic applications of quan-
tum EPR states,” in Proc. Italian Astronomical Society, vol. 74, no. 2, 2002.

[22] F Tamburini and C. Barbieri, “Futuristic applications of quantum information and com-
munication,” in Proc. Futuristic Space Technologies, ASI workshop, 2002.

[23] D. Bouwmeester, A. Ekert, and A. Zeilinger (eds.), The Physics of Quantum Information,
Springer, 2000.




