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METRISABILITY OF TWO-DIMENSIONAL

PROJECTIVE STRUCTURES

Robert Bryant, Maciej Dunajski & Michael Eastwood

Abstract

We carry out the programme of R. Liouville [19] to construct
an explicit local obstruction to the existence of a Levi–Civita con-
nection within a given projective structure [Γ] on a surface. The
obstruction is of order 5 in the components of a connection in a
projective class. It can be expressed as a point invariant for a
second order ODE whose integral curves are the geodesics of [Γ]
or as a weighted scalar projective invariant of the projective class.
If the obstruction vanishes we find the sufficient conditions for the
existence of a metric in the real analytic case. In the generic case
they are expressed by the vanishing of two invariants of order 6 in
the connection. In degenerate cases the sufficient obstruction is of
order at most 8.

1. Introduction

Recall that a projective structure [7, 22, 12] on an open set U ⊂ R
n is

an equivalence class of torsion free connections [Γ]. Two connections Γ

and Γ̂ are projectively equivalent if they share the same unparametrised
geodesics. This means that the geodesic flows project to the same foli-
ation of P(TU). The analytic expression for this equivalence class is

(1.1) Γ̂c
ab = Γc

ab + δcaωb + δcbωa, a, b, c = 1, 2, ..., n

for some one-form ω = ωadx
a. A basic unsolved problem in projec-

tive differential geometry is to determine the explicit criterion for the
metrisability of projective structure, i.e. answer the following question:

• What are the necessary and sufficient local conditions on a con-
nection Γc

ab for the existence of a one form ωa and a symmetric
non-degenerate tensor gab such that the projectively equivalent
connection

Γc
ab + δcaωb + δcbωa
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is the Levi-Civita connection for gab. (We are allowing Lorentzian
metrics.)

We shall focus on local metrisability, i.e. the pair (g, ω) with det (g)
nowhere vanishing is required to exist in a neighbourhood of a point
p ∈ U . This problem leads to a vastly overdetermined system of partial
differential equations for g and ω. There are n2(n + 1)/2 components
in a connection, and (n+ n(n+1)/2) components in a pair (ω, g). One
could therefore naively expect n(n2 − 3)/2 conditions on Γ.

In this paper we shall carry out the algorithm laid out by R. Liouville
[19] to solve this problem when n = 2 and U is a surface. (Let us stress
that the ‘solution’ here means an explicit criterion, given by vanishing
of a set of invariants, which can be verified on any representative of [Γ].)
In the two-dimensional case the projective structures are equivalent to
second order ODEs which are cubic in the first derivatives. To see it
consider the geodesic equations for xa(t) = (x(t), y(t)) and eliminate
the parameter t between the two equations

ẍc + Γc
abẋ

aẋb = vẋc.

This yields the desired ODE for y as a function of x

(1.2)
d2y

dx2
= Γ1

22

(dy
dx

)3
+(2Γ1

12−Γ2
22)

(dy
dx

)2
+(Γ1

11−2Γ2
12)

(dy
dx

)
−Γ2

11.

Conversely, any second order ODEs cubic in the first derivatives

(1.3)
d2y

dx2
= A3(x, y)

(dy
dx

)3
+A2(x, y)

(dy
dx

)2
+A1(x, y)

(dy
dx

)
+A0(x, y)

gives rise to some projective structure as the independent components
of Γc

ab can be read off from the As up to the equivalence (1.1). The
advantage of this formulation is that the projective ambiguity (1.1) has
been removed from the problem as the combinations of the connection
symbols in the ODE (1.2) are independent of the choice of the one form
ω. There are 6 components in Γc

ab and 2 components in ωa, but only
4 = 6 − 2 coefficients Aα(x, y), α = 0, ..., 3. The diffeomorphisms of U
can be used to further eliminate 2 out of these 4 functions (for example
to make the equation (1.3) linear in the first derivatives) so one can
say that a general projective structure in two dimensions depends on
two arbitrary functions of two variables. We are looking for invariant
conditions, so we shall not make use of this diffeomorphism freedom.

We shall state our first result. Consider the 6 by 6 matrix given in
terms of its row vectors

(1.4) M([Γ]) = (V,DaV,D(bDa)V)

which depends on the functions Aα and their derivatives up to order five.
The vector field V : U → R

6 is given by (3.21), the expressions DaV =
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∂aV−VΩa are computed using the right multiplication by 6 by 6 ma-
trices Ω1,Ω2 given by (A53) and ∂a = ∂/∂xa. We also make a recursive
definition DaDbDc...DdV = ∂a(DbDc...DdV)− (DbDc...DdV)Ωa.

Theorem 1.1. If the projective structure [Γ] is metrisable then

(1.5) det (M([Γ])) = 0.

There is an immediate corollary

Corollary 1.2. If the integral curves of a second order ODE

(1.6)
d2y

dx2
= Λ

(
x, y,

dy

dx

)
,

are geodesics of a Levi-Civita connection then Λ is at most cubic in
dy/dx and (1.5) holds.

The expression (1.5) is written in a relatively compact form using
(V,Ω1,Ω2). All the algebraic manipulations which are required in ex-
panding the determinant have been done using MAPLE code which can
be obtained from us on request.

We shall prove Theorem 1.1 in three steps. The first step, already
taken by Liouville [19], is to associate a linear system of four PDEs for
three unknown functions with each metrisable connection. This will be
done in the next Section. The second step will be prolonging this linear
system. This point was also understood by Liouville although he did not
carry out the explicit computations. Geometrically this will come down
to constructing a connection on a certain rank six real vector bundle
over U . The non-degenerate parallel sections of this bundle are in one
to one correspondence the metrics whose geodesics are the geodesics
of the given projective structure. In the generic case, the bundle has
no parallel sections and hence the projective structure does not come
from metric. In the real analytic case the projective structure for which
there is a single parallel section depends on one arbitrary function of
two variables, up to diffeomorphism. Finally we shall obtain (1.5) as
the integrability conditions for the existence of a parallel section of this
bundle. This will be done in Section 3.

In Section 4 we shall present some sufficient conditions for metrisabil-
ity. All considerations here will be in the real analytic category. The
point is that even if [Γ] is locally metrisable around every point in U ,
the global metric on U may not exist in the smooth category even in the
simply-connected case. Thus no set of local obstructions can guarantee
metrisability of the whole surface U .

Theorem 1.3. Let [Γ] be a real analytic projective structure such
that rank (M([Γ])) < 6 on U and there exist p ∈ U such that rank
(M([Γ])) = 5 and W1W3 −W

2
2 6= 0 at p, where (W1,W2, ...,W6) spans
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the kernel of M([Γ]). Then [Γ] is metrisable in a sufficiently small
neighbourhood of p if the rank of a 10 by 6 matrix with the rows

(V,DaV,D(aDb)V,D(aDbDc)V)

is equal to 5. Moreover this rank condition holds if and only if two rel-
ative invariants E1, E2 of order 6 constructed from the projective struc-
ture vanish.

We shall explain how to construct these two additional invariants
and show that the resulting set of conditions, a single 5th order equa-
tion (1.5) and two 6th order equations E1 = E2 = 0 form an involutive
system whose general solution depends on three functions of two vari-
ables. In the degenerate cases when rank(M([Γ])) < 5 higher order
obstructions will arise (We shall always assume that the rank ofM([Γ])
is constant in a sufficiently small neighbourhood of some p ∈ U .): one
condition of order 8 in the rank 3 case and one condition of order 7 in
the rank 4 case. If rank (M([Γ])) = 2 there is always a four parameter
family of metrics. If rank (M([Γ])) < 2 then [Γ] is projectively flat in
agreement with a theorem of Koenigs [16]. In general we have

Theorem 1.4. A real analytic projective structure [Γ] is metrisable
in a sufficiently small neighbourhood of p ∈ U if and only if the rank of
a 21 by 6 matrix with the rows

Mmax =
(
V,DaV,D(aDb)V,D(aDbDc)V,D(aDbDcDd)V,D(aDbDcDdDe)V

)

is smaller than 6 and there exists a vector W in the kernel of this matrix
such that W1W3 −W

2
2 does not vanish at p.

The signature of the metric underlying a projective structure can be
Riemannian or Lorentzian depending on the sign of W1W3 −W

2
2 . In

the generic case described by Theorem 1.3 this sign can be found by
evaluating the polynomial (4.28) of degree 10 in the entries of M([Γ])
at p.

In Section 5 we shall construct various examples illustrating the ne-
cessity for the genericity assumptions that we have made. In Section 6
we shall discuss the twistor approach to the problem. In this approach a
real analytic projective structure on U corresponds to a complex surface
Z having a family of rational curves with self-intersection number one.
The metrisability condition and the associated linear system are both
deduced from the existence of a certain anti-canonical divisor on Z. In
Section 7 we shall present an alternative tensorial expression for (1.5)
in terms of the curvature of the projective connection and its covariant
derivatives. In particular we will shall show that a section of the 14th
power of the canonical bundle of U

det (M)([Γ]) (dx ∧ dy)⊗14
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is a projective invariant. The approach will be that of tractor calculus
[10].

In the derivation of the necessary condition (1.5) we assume that
the projective structure [Γ] admits continuous fifth derivatives. The
discussion of the sufficient conditions and considerations in Section 6
require [Γ] to be real analytic. We relegate some long formulae to the
Appendix.

We shall finish this introduction with a comment about the formalism
used in the paper. The linear system governing the metrisability prob-
lem and its prolongation are constructed in elementary way in Sections
2–3 and in tensorial tractor formalism in Section 7. The resulting ob-
structions are always given by invariant expressions. The machinery of
the Cartan connection could of course be applied to do the calculations
invariantly from the very beginning. This is in fact how some of the
results have been obtained [2]. The readers familiar with the Cartan
approach will realise that the rank six vector bundles used in our paper
are associated to the SL(3,R) principal bundle of Cartan. Such read-
ers should beware, however, that the connection Da that we naturally
obtain on such a vector bundle is not induced by the Cartan connec-
tion of the underlying projective structure but is a minor modification
thereof, as detailed for example in [11]. Various weighted invariants on
U , like (1.5), are pull-backs of functions from the total space of Cartan’s
bundle.

Acknowledgements. The second author is grateful to Jenya Ferapon-
tov, Rod Gover, Vladimir Matveev and Paul Tod for helpful discussions.
He also thanks BIRS in Banff and ESI in Vienna for hospitality where
some of this research was done.

2. Linear System

Let us assume that the projective structure [Γ] is metrisable. There-
fore there exist a symmetric bi-linear form

(2.7) g = E(x, y)dx2 + 2F (x, y)dxdy +G(x, y)dy2

such that the unparametrised geodesics of g coincide with the integral
curves of (1.3). The diffeomorphisms can be used to eliminate two
arbitrary functions from g (for example to express g in isothermal co-
ordinates) but we shall not use this freedom.

We want to determine whether the four functions (A0, ..., A3) arise
from three functions (E,F,G) so one might expect only one condition on
the As. This heuristic numerology is wrong and we shall demonstrate in
Section 4 that three conditions are needed to establish sufficiency in the
generic case. (Additional conditions would arise if we demanded that
there be more than one metric with the same unparametrised geodesics.
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In our approach this situation corresponds to the existence of two in-
dependent parallel sections of the rank six bundle over U . The corre-
sponding metrics were, in the positive definite case, found by J. Liou-
ville (the more famous of the two Liouvilles) and characterised by Dini.
They are of the form (2.7) where F = 0, E = G = u(x) + v(y) up to
diffeomorphism. Roger Liouville whose steps we follow in this paper
was a younger relative of Joseph and attended his lectures at the Ecole
Polytechnique.)

We choose a direct route and express the equation for non-parametr-
ised geodesics of g in the form (1.3). Using the Levi-Civita relation

Γc
ab =

1

2
gcd

(∂gad
∂xb

+
∂gbd
∂xa

−
∂gab
∂xd

)

and formulae (1.2), (1.3) yields the following expressions

A0 =
1

2

E∂yE − 2E∂xF + F∂xE

EG− F 2
,

A1 =
1

2

3F∂yE +G∂xE − 2F∂xF − 2E∂xG

EG− F 2
,

A2 =
1

2

2F∂yF + 2G∂yE − 3F∂xG− E∂yG

EG− F 2
,

A3 =
1

2

2G∂yF −G∂xG− F∂yG

EG− F 2
.(2.8)

This gives a first order nonlinear differential operator

(2.9) σ0 : J1(S2(T ∗U)) −→ J0(Pr(U))

which carries the metric to its associated projective structure. This
operator is defined on the first jet space of symmetric two-forms as it
depends on the metric and its derivatives. It takes its values in the affine
rank 4 bundle Pr(U) of projective structures whose associated vector
bundle Λ2(TU)⊗ S3(T ∗U) arises as a quotient in the exact sequence

0 −→ T ∗U −→ TU ⊗ S2(T ∗U) −→ Λ2(TU)⊗ S3(T ∗U) −→ 0.

This is a more abstract way of defining the equivalence relation (1.1).
We will return to it in Section 4. The operator σ0 is homogeneous of
degree zero so rescaling a metric by a constant does not change the
resulting projective structure.

Following Liouville [19] we set

E = ψ1/∆
2, F = ψ2/∆

2, G = ψ3/∆
2, ∆ = ψ1ψ3 − ψ2

2

and substitute into (2.8). This yields an overdetermined system of four
linear first order PDEs for three functions (ψ1, ψ2, ψ3) and proves the
following

Lemma 2.1 (Liouville [19]). A projective structure [Γ] corresponding
to the second order ODE (1.3) is metrisable on a neighbourhood of a
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point p ∈ U iff there exists functions ψi(x, y), i = 1, 2, 3 defined on a
neighbourhood of p such that

ψ1ψ3 − ψ2
2

does not vanish at p and such that the equations

∂ψ1

∂x
=

2

3
A1ψ1 − 2A0ψ2,

∂ψ3

∂y
= 2A3ψ2 −

2

3
A2ψ3,

∂ψ1

∂y
+ 2

∂ψ2

∂x
=

4

3
A2ψ1 −

2

3
A1ψ2 − 2A0ψ3,

∂ψ3

∂x
+ 2

∂ψ2

∂y
= 2A3ψ1 −

4

3
A1ψ3 +

2

3
A2ψ2(2.10)

hold on the domain of definition.

This linear system forms a basis of our discussion of the metrisability
condition. It has recently been used in [5] to construct a list of met-
rics on a two-dimensional surface admitting a two-dimensional group of
projective transformations. Its equivalent tensorial form, applicable in
higher dimensions, is presented for example in [11]. We shall use this
form in Section 7.

Here is a way to ‘remember’ (2.10). Introduce the symmetric projec-
tive connection ∇Π with connection symbols

(2.11) Πc
ab = Γc

ab −
1

n+ 1
Γd
daδ

c
b −

1

n+ 1
Γd
dbδ

c
a

where in our case n = 2. Formula (1.1) implies that the symbols Πc
ab

do not depend on a choice of Γ is a projective class. They are related
to the second order ODE (1.3) by

Π1
11 =

1

3
A1, Π1

12 =
1

3
A2, Π1

22 = A3,

Π2
11 = −A0, Π2

21 = −
1

3
A1, Π2

22 = −
1

3
A2.

The projective covariant derivative is defined on one-forms by ∇Π
aφb =

∂aφb − Πc
abφc with natural extension to other tensor bundles. The Li-

ouville system (2.10) is then equivalent to

(2.12) ∇Π
(aσbc) = 0,

where the round brackets denote symmetrisation and σbc is a rank 2
symmetric tensor with components σ11 = ψ1, σ12 = ψ2, σ22 = ψ3.

We shall end this Section with a historical digression. The solution to
the metrisability problem has been reduced to finding differential rela-
tions between (A0, A1, A2, A3) when (2.8), or equivalently (2.10), holds.
These relations are required to be diffeomorphism invariant conditions,
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so we are searching for invariants of the ODE (1.3) under the point
transformations

(2.13) (x, y) −→ (x̄(x, y), ȳ(x, y)).

The point invariants of 2nd order ODEs have been extensively studied
by the classical differential geometers in late 19th and early 20th cen-
tury. The earliest reference we are aware of is the work of Liouville
[18, 19], who constructed point invariants of 2nd order ODEs cubic in
the first derivatives (it is easy to verify that the ‘cubic in the first de-
rivative’ condition is itself invariant under (2.13)). The most complete
work was produced by Tresse (who was a student of Sophus Lie) in his
dissertation [23]. Tresse studied the general case (1.6) and classified all
point invariants of a given differential order. The first two invariants
are of order four

I0 = Λ1111, I1 = D2
xΛ11−4DxΛ01−Λ1DxΛ11+4Λ1Λ01−3Λ0Λ11+6Λ00,

where

Λ0 =
∂Λ

∂y
, Λ1 =

∂Λ

∂y′
, Dx =

∂

∂x
+ y′

∂

∂y
+ Λ

∂

∂y′
.

Strictly speaking these are only relative invariants as they transform
with a certain weight under (2.13). Their vanishing is however invariant.
Tresse showed that if I0 = 0, then I1 is linear in y′. This is the case
considered by Liouville. To make contact with the work of Liouville we
note that I1 = −6L1 − 6L2y

′ where the expressions

L1 =
2

3

∂2A1

∂x∂y
−

1

3

∂2A2

∂x2
−
∂2A0

∂y2
+A0

∂A2

∂y
+A2

∂A0

∂y

−A3
∂A0

∂x
− 2A0

∂A3

∂x
−

2

3
A1
∂A1

∂y
+

1

3
A1
∂A2

∂x
,

L2 =
2

3

∂2A2

∂x∂y
−

1

3

∂2A1

∂y2
−
∂2A3

∂x2
−A3

∂A1

∂x
−A1

∂A3

∂x

+A0
∂A3

∂y
+ 2A3

∂A0

∂y
+

2

3
A2
∂A2

∂x
−

1

3
A2
∂A1

∂y
(2.14)

were constructed by Liouville who has also proved that

Y = (L1dx+ L2dy)⊗ (dx ∧ dy)

is a projectively invariant tensor.
The following result was known to both Tresse and Liouville

Theorem 2.2 (Liouville [18], Tresse [23]). The 2nd order ODE (1.6)
is trivialisable by point transformation (i.e. equivalent to y′′ = 0) iff
I0 = I1 = 0, or, equivalently, if Λ is at most cubic in y′ and Y = 0.

We note that the separate vanishing of L1 or L2 is not invariant.
If both L1 and L2 vanish the projective structure is flat is the sense
described in Section 7.
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3. Prolongation and Consistency

Proof of Theorem 1.1. The obstruction (1.5) will arise as the compat-
ibility condition for the system (2.10). This system is overdetermined,
as there are more equations than unknowns. We shall use the method of
prolongation and make (2.10) even more overdetermined by specifying
the derivatives of ψi, i = 1, 2, 3 at any given point (x, y, ψi) ∈ R

5, thus
determining a tangent plane to a solution surface (if one exists)

(x, y) −→ (x, y, ψ1(x, y), ψ2(x, y), ψ3(x, y)).

(Another approach more in the spirit of Liouville [19] would be to elim-
inate ψ2 and ψ3 from (2.10) to obtain a system of two 3rd order PDEs
for one function f := ψ1

(∂3x)f = F1, ∂y(∂
2
x)f = F2,

where F1, F2 are linear in f and its first and second derivatives with
coefficients depending on Aα(x, y) and their derivatives (the coefficient
of (∂2y)f in F1 is zero). The consistency ∂y(∂x)

3f = ∂x∂y(∂x)
2f gives

a linear equation for ∂x(∂y)
2f . Then ∂x(∂y)

2∂xf = (∂y)
2(∂x)

2f gives
an equation for (∂y)

3f . After this step the system is closed: all third
order derivatives are expressed in terms of lower order derivatives. To
work out further consistencies impose ∂x(∂y)

3f = (∂y)
3∂xf which gives

(when all 3rd order equations are used) a second order linear PDE for
f . We carry on differentiating this second order relation to produce
the remaining second order relations (because we know all third order
derivatives), then the first order relations and finally an algebraic rela-
tion which will constrain the initial data unless (1.5) holds.)

For this we need six conditions, and the system (2.10) consist of four
equations. We need to add two conditions and we choose

(3.15)
∂ψ2

∂x
=

1

2
µ,

∂ψ2

∂y
=

1

2
ν,

where µ, ν depend on (x, y). The integrability conditions ∂x∂yψi =
∂y∂xψi give three PDEs for (µ, ν) of the form

(3.16)
∂µ

∂x
= P,

∂ν

∂y
= Q,

∂ν

∂x
−
∂µ

∂y
= 0,

where (P,Q) given by (A55) are expressions linear in (ψi, µ, ν) with
coefficients depending on Aα and their (x, y) derivatives.

The system (3.16) is again overdetermined but we still need to pro-
long it to specify the values of all first derivatives. It is immediate that
the complex characteristic variety of the system (2.10) is empty, so the
general theory (see Chapter 5 of [3]) implies that, after a finite num-
ber of differentiations of these equations (i.e., prolongations), all of the
partials of the ψi above a certain order can be written in terms of lower
order partials, i.e., the prolonged system will be complete. Alternatively,
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the Liouville system written in the form (2.12) is one of the simplest
examples covered by [1] in which the form of the prolongation is easily
predicted. In any case no appeal to the general theory is needed as it is
easy to see that completion is reached by adding one further equation

(3.17)
∂µ

∂y
= ρ,

where ρ = ρ(x, y) and imposing the consistency conditions on the system
of four PDEs (3.16, 3.17). This leads to

(3.18)
∂ρ

∂x
= R,

∂ρ

∂y
= S,

where R,S given by (A55) are functions of (ρ, µ, ν, ψi, x, y) which are
linear in (ρ, µ, ν, ψi). After this step the prolongation process is finished
and all the first derivatives have been determined. The final compati-
bility condition ∂x∂yρ = ∂y∂xρ for the system (3.18) yields

(3.19)
∂R

∂y
−
∂S

∂x
+ S

∂R

∂ρ
−R

∂S

∂ρ
= 0.

All the first derivatives are now determined, so (3.19) is an algebraic
linear condition of the form

(3.20) V ·Ψ :=

6∑

p=1

VpΨp = 0,

where

Ψ = (ψ1, ψ2, ψ3, µ, ν, ρ)
T

is a vector in R
6, and V = (V1, ..., V6) where

V1 = 2
∂L2

∂y
+ 4A2L2 + 8A3L1,

V2 = −2
∂L1

∂y
− 2

∂L2

∂x
−

4

3
A1L2 +

4

3
A2L1,

V3 = 2
∂L1

∂x
− 8A0L2 − 4A1L1,

V4 = −5L2, V5 = −5L1, V6 = 0(3.21)

and L1, L2 are given by (2.14) . We collect the linear PDEs (2.10, 3.15
3.16, 3.17, 3.18) as

(3.22) dΨ+ΩΨ = 0,

where

Ω = Ω1 dx+Ω2 dy

and (Ω1,Ω2) are 6 by 6 matrices with coefficients depending on Aα

and their first and second derivatives (A53). Now differentiate (3.20)
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twice with respect to xa = (x, y), and use (3.22). This yields six linear
conditions

V ·Ψ = 0,(3.23)

(DaV) ·Ψ := (∂aV −V Ωa) ·Ψ = 0,

(DbDaV) ·Ψ :=

(∂b∂aV − (∂bV) Ωa − (∂aV) Ωb −V (∂bΩa −ΩaΩb)) ·Ψ = 0

which must hold, or there are no solutions to (2.10). Therefore the
determinant of the associated 6 by 6 matrix (1.4) must vanish, thus
giving our first desired metrisability condition (1.5). We note that the
expression (DbDaV) · Ψ in (3.23) is symmetric in its indices. This
symmetry condition reduces to VF = 0 (where F is given by (A54))
and holds identically.

The expression det (M([Γ])) is 5th order in the derivatives of connec-
tion coefficients. It does not vanish on a generic projective structure,
but vanishes on metrisable connections (2.8) by construction. This ends
the proof of Theorem 1.1. q.e.d.

In the next Section we shall need the following generalisation of the
symmetry properties of (3.23). Let DaW = ∂aW −WΩa, where W :
U → R

6. Then

[Da,Db]W = (WF )εab =W6Vεab,

where ε00 = ε11 = 0, ε01 = −ε10 = 1. Thus

DaDbV = D(aDb)V, DaDbDcV = D(aDbDc)V+ εabLcV, ... ,

Da1Da2 ...DakV = D(a1Da2 ...Dak)V + o(k − 2)(3.24)

where o(k−2) denotes terms linear in D(a1Da2 ...Dam) where m ≤ k−2.
Thus we can restrict ourselves to the symmetrised expressions as the
antisymmetrisations do not add any new conditions.

4. Sufficiency conditions

It is clear from the discussion in the preceding Section that the condi-
tion (1.5) is necessary for the existence of a metric in a given projective
class. It is however not sufficient and in this Section we shall establish
some sufficiency conditions in the real analytic case. We require the real
analyticity in order to be able to apply the Cauchy–Kowalewski Theo-
rem to the prolonged system of PDEs. In particular Theorem 4.1 which
underlies our approach in this Section builds on the Cauchy–Kowalewski
Theorem.

Let us start off by rephrasing the construction presented in the last
Section in the geometric language. The exterior differential ideal I
associated to the prolonged system (3.22) consists of six one-forms

(4.25) θp = dΨp + ((Ωa)pqΨq) dx
a, p, q = 1, ..., 6 a = 1, 2.
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Two vector fields annihilating the one-forms θp span the solution surface
in R

8. The closure of this ideal comes down to one compatibility (3.20).
We now want to find one parallel section Ψ : U → E of a rank six vector
bundle E→ U with a connection D = d+Ω. Locally the total space of
this bundle is an open set in R

8.
Differentiating (3.22) and eliminating dΨ yields FΨ = 0, where

F = dΩ+Ω ∧Ω = (∂xΩ2 − ∂yΩ1 + [Ω1,Ω2])dx ∧ dy

= Fdx ∧ dy

is the curvature of D. Thus we need

(4.26) FΨ = 0,

where F = F (x, y) is a 6 by 6 matrix given by (A54). We find that this
matrix is of rank one and in the chosen basis its first five rows vanish
and its bottom row is given by the vector V with components given
by (3.21). Therefore (4.26) is equivalent to (3.20). We differentiate the
condition (4.26) and use (3.22) to produce algebraic matrix equations

FΨ = 0, (DaF )Ψ = 0, (DaDbF )Ψ = 0, (DaDbDcF )Ψ, ...

where DaF = ∂aF + [Ωa, F ]. Using the symmetry argument (3.24)
shows that after K differentiations this leads to n(K) = 1+2+3+ ...+
(K + 1) linear equations which we write as

FKΨ = 0,

where FK is a n(K) by 6 matrix depending on As and their derivatives.
We also set F0 = F .

We continue differentiating and adjoining the equations. The Frobe-
nius Theorem adapted to (4.26) and (3.22) tells us when we can stop
the process.

Theorem 4.1. Assume that the ranks of the matrices FK ,K =
0, 1, 2, ... are maximal and constant. (This can always be achieved by
restricting to a sufficiently small neighbourhood of some point p ∈ U .)
Let K0 be the smallest natural number such that

(4.27) rank (FK0
) = rank (FK0+1).

If K0 exists then rank(FK0
) = rank(FK0+k) for k ∈ N and the space of

parallel sections (3.22) of d+Ω has dimension

S([Γ]) = 6− rank(FK0
).

The first and second derivatives of (4.26) will produce six independent
conditions on Ψ, and these conditions are precisely (3.23). Thus the
necessary metrisability condition (1.5) comes down to restricting the
holonomy of the connection D on the rank six vector bundle E.
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We shall now assume that (1.5) holds and use Theorem 4.1 to con-
struct the sufficient conditions for the existence of a Levi–Civita con-
nection in a given projective class. First of all there must exist a vector
W = (W1, ...,W6)

T in the kernel ofM([Γ]), such that W1W3− (W2)
2 6=

0. This will guarantee that the corresponding quadratic form (if one
exists) on U is non-degenerate. It is straightforward to verify in the
case when M([Γ]) has rank 5 as then kernel (M([Γ])) is spanned by
any non-zero column of adj (M([Γ])) where the adjoint of a matrix M
is defined by M adj(M) = det (M) I. The entries of adj (M([Γ])) are
determinants of the co-factors of M([Γ]) and thus are polynomials of
degree 5 in the entries ofM([Γ]) so

(4.28) P ([Γ]) =W1W3 − (W2)
2

is a polynomial of degree 10 in the entries ofM([Γ]).

Definition 4.2. A projective structure for which (1.5) holds is called
generic in a neighbourhood of p ∈ U if rankM([Γ]) is maximal and equal
to 5 and P ([Γ]) 6= 0 in this neighbourhood.

In this generic case Theorem 4.1 and Lemma 2.1 imply that there will
exist a Levi–Civita connection in the projective class if the rank of the
next derived matrix F3 does not go up and is equal to five. We shall see
that this can be guaranteed by imposing two more 6th order conditions
on [Γ].

Proof of Theorem 1.3. First note that, in the generic case, the three
vectors

V, Va := ∂aV−V Ωa, a = 1, 2

must be linearly independent or otherwise the rank ofM([Γ]) would be
at most 3. Now pick two independent vectors from the set

Vab := (∂b∂aV− (∂bV) Ωa − (∂aV) Ωb −V (∂bΩa −ΩaΩb))

such that the resulting set of five vectors is independent. Say we have
picked V00 and V11. We now take the third derivatives of (3.20) with
respect to xa and use (3.22) to eliminate derivatives of Ψ. This adds
four vectors to our set of five and so a priori we need to satisfy four
six order equations to ensure that the rank does not go up. However
only two of these are new and the other two are derivatives of the 5th
order condition (1.5). Before we shall prove this statement examining
the images of linear operators induced from (2.9) on jet spaces let us
indicate why this counting works. Let Vab...c denote the vector in R

6

annihilating Ψ (in the sense of (3.20)) which is obtained by eliminating
the derivatives of Ψ from ∂a∂b...∂c(V ·Ψ) = 0. We have already argued
in (3.24) that the antisymmetrising over any pair of indices in Vab...c

only adds lower order conditions. Thus we shall always assume that
these expressions are symmetric. We shall also set V0 = Vx,V1 = Vy.
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Our assumptions imply that

(4.29) Vxy = c1V + c2Vx + c3Vy + c4Vxx + c5Vyy

for some functions c1, ..., c5 on U . The two six order conditions

(4.30) E1 := det




V

Vx

Vy

Vxx

Vyy

Vxxx




, E2 := det




V

Vx

Vy

Vxx

Vyy

Vyyy




,

have to be added for sufficiency. Now differentiating (4.29) w.r.t x, y
and using Vxyy = Vyyx,Vxyx = Vxxy (which hold modulo lower order
terms), implies that Vxyy and Vxyx are in the span of {V,Vx,Vy,Vxx,
Vyy,Vxxx,Vyyy} and no additional conditions need to be added. This
procedure can be repeated if instead Vyy belongs to the span of {V,Vx,
Vy,Vxx,Vxy}.

Now we shall present the general argument. Consider the homoge-
neous differential operator (2.9). It maps the 1st jets of metrics on U to
the 0th jets of projective structures. Differentiating the relations (2.8)
prolongs this operator to bundle maps

(4.31) σk : Jk+1(S2(T ∗U)) −→ Jk(Pr(U))

from (k + 1)-jets of metrics to k-jets of projective structures. It has at
least one dimensional fibre because of the homogeneity of σ0. The rank
of σk is not constant as we already know that the system (2.8) (or its
equivalent linear form (2.10)) does not have to admit any solutions in
general but will admit at least one solution if the projective structure is
metrisable. The table below gives the ranks of the jet bundles of metrics
and projective structures, the dimensions of the fibres of σk and finally
the image codimension. The number of new conditions on [Γ] arising at
each step is denoted by a bold figure in the column co-rank(kerσk).

k rank(Jk+1(S2(T ∗U))) rank(Jk(Pr(U))) rank(kerσk) co-rank(kerσk)

−1 3 − − −

0 9 4 5 0

1 18 12 6 0

2 30 24 6 0

3 45 40 5 0

4 63 60 3 0

5 84 84 1 1 = 1

6 108 112 1 5 = 3 + 2

7 135 144 1 10 = 6 + 6− 2
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There is no obstruction on a projective structure before the order 5
so σk are onto and generically submersive for k < 4. At k = 5 there
has to be at least a 1-dimensional fiber, so the image of the derived
map can at most be 83-dimensional at its smooth points. In fact, we
have shown that there is a condition there, given by (1.5), so it must
define a codimension 1 variety that is generically smooth. When the
matrix M([Γ]) has rank 5, the equation (1.5) is regular, so it follows
that, outside the region where (1.5) ceases to be a regular 5th order
PDE the solutions of this PDE will have their k-jets constrained by the
derivatives of (1.5) of order k− 5 or less. This shows that, at k = 6, the
6-jets of the regular solutions of (1.5) will have codimension 3 in all 6-
jets of projective structures, i.e., they will have dimension 112−3 = 109.
However, we know that the image of the 7-jets of metric structures can
have only dimension 108 − 1 = 107. Thus, the 6-jets of regular metric
structures have codimension 2 in the 6-jets of regular solutions of (1.5).
That is why there have to be two more 6th order equations

(4.32) E1 = 0, E2 = 0.

The image in 6-jets has total codimension 5, i.e., it is cut out by a 5th
order equation and four 6th order equations. However, two of the 6th
order equations are obviously the derivatives of the 5th order equation.
The next line shows that, at 7th order, the image has only codimension
10, which means that there must be 2 relations between the first deriva-
tives of the 6th order equations and the second derivatives of the 5th
order equation which implies that the resulting system of three equa-
tions is involutive. This ends the proof of Theorem 1.3. q.e.d.

The analysis of the non-generic cases where the rank ofM([Γ]) < 5 is
slightly more complicated. The argument based on the dimensionality of
jet bundles associated to (4.31) breaks down as the PDE detM([Γ]) = 0
is not regular and does not define a smooth co-dimension 1 variety in
J5(Pr(U)).

Let S([Γ]) be the dimension of the vector space of solutions to the
linear system (2.10). Some of these solutions may correspond to degen-
erate quadratic forms on U but nevertheless we have

Lemma 4.3. If S([Γ]) > 1 then there are S([Γ]) independent non-
degenerate quadratic forms among the solutions to (2.10).

Proof. Let us assume that at least one solution of (2.10) gives rise
to a quadratic form which is degenerate (rank 1) everywhere. We can
choose coordinates such that this solution is of the form (ψ1, 0, 0). The
statement of the Lemma will follow if we can show that there is no other
solution of the form (φ(x, y)ψ1, 0, 0) where φ(x, y) is a non-constant
function. The Liouville system (2.10) is readily solved in this case to
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give

A1 =
3

2

1

ψ1

∂ψ1

∂x
, A2 =

3

4

1

ψ1

∂ψ1

∂y
, A3(x, y) = 0

with A0 unspecified. Thus for a given projective class the only freedom
in this solution is to rescale ψ1 by a constant. q.e.d.

Proof of Theorem 1.4. We shall list the number and the order of
obstructions one can expect depending on the rankM([Γ]).

• If rankM([Γ]) < 2 the projective structure is projectively flat as
L1 = L2 = 0, and the second order ODE is equivalent to y′′ = 0
by Theorem 2.2. This is obvious if rankM([Γ]) = 0 as then V = 0
and formula (3.21) gives L1 = L2 = 0. If rankM([Γ]) = 1 then

(4.33) ∂aV −VΩa = γaV

for some γa. Using the expressions (A53) for Ωa and the formula
(3.21) yields

VΩa = (∗, ∗, ∗, ∗, ∗, 5La)

where ∗ are some terms which need not concern us and La are the
Liouville expressions (2.14). Combining this with (4.33) yields
L1 = L2 = 0.
• If rankM([Γ]) = 2 then

(4.34) V + c1Vx + c2Vy = 0

for functions c1, c2 at least one of which does not identically van-
ish. Differentiating this relation and using the fact that Vab ∈
span{V,Va} we see that no new relations arise and so the system
is closed at this level. In this case there exists a four dimensional
family of metrics compatible with the given projective structure.
• If rankM([Γ]) = 3 we have to consider two cases. If {V,Vx,Vy}
are linearly independent then reasoning as above shows that fur-
ther differentiations do not add any new conditions. The other
possibility is that {V,Vx,Vxx} or {V,Vy ,Vyy} are linearly inde-
pendent. Let us concentrate on the first case (or swap x with y if
necessary). Taking further x derivatives may increase the rank of
the resulting system, but the y derivatives will not yield any new
conditions as can be seen by mixing the partial derivatives and
using

c0V+ c1Vx + c2Vy = 0,

which is a consequence of the rank 3 condition.
Let us assume that the rank increases to 5 by adding two vectors

Vxxx,Vxxxx (otherwise the system is closed with rank 3 or 4).
The rank will stay 5 if one further differentiation does not add
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new conditions. Thus the first and only obstruction in this case is
of order 8 in the projective structure

(4.35) det




V

Vx

Vxx

Vxxx

Vxxxx

Vxxxxx




= 0.

• The analogous procedure can be carried over if rank(M([Γ])) = 4.
Assuming that the four linearly independent vectors are {V,Vx,
Vy,Vxx} leads to one obstruction of order 7

det




V

Vx

Vxy

Vxx

Vxxx

Vxxxx




= 0.

This completes the proof of Theorem 1.4. q.e.d.

As a corollary from this analysis we deduce the result of Koenigs [16]

Theorem 4.4. [16] The space of metrics compatible with a given
projective structures can have dimensions 0, 1, 2, 3, 4 or 6.

Our approach to the Koenigs’s theorem is similar to that of Krug-
likov’s [17] who has however constructed an additional set of invariants
determining whether a metrisable projective structure admits more than
one metric in its projective class.

5. Examples

It is possible that the determinant (1.4) vanishes and the projective
structure [Γ] is non metrisable either because the further higher order
obstructions do not vanish, or because a solution to the Liouville system
(2.10) is degenerate as a quadratic form on TU . It can also happen when
the projective structure fails to be real analytic.

In this section we shall give four examples illustrating this.

5.1. The importance of 6th order conditions. Consider a one pa-
rameter family of homogeneous projective structures corresponding to
the second order ODE

d2y

dx2
= c ex + e−x

(dy
dx

)2
.
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For generic c the matrixM([Γ]) has rank six and the 5th order condition
(1.5) holds if ĉ = 48c− 11 is a root of a quartic

(5.36) ĉ4 − 11286 ĉ2 − 850968 ĉ − 19529683 = 0.

The 6th order conditions (4.32) are satisfied iff

3 ĉ5 + 529 ĉ4 + 222 ĉ3 − 2131102 ĉ2 − 103196849 ĉ − 1977900451 = 0,

ĉ3 − 213 ĉ2 − 7849 ĉ − 19235 = 0.

It is easy to verify that these three polynomials do not have a common
root. Choosing ĉ to be a real root of (5.36) we can make the 5th order
obstruction (1.5) vanish, but the two 6th order obstructions E1, E2 do
not vanish.

5.2. The importance of the non-degenerate kernel. This example
illustrates why we cannot hope to characterise the metrisability condi-
tion purely by vanishing of any set of invariants.

Let f be a smooth function on an open set U ⊂ R
2. Consider a

one-parameter family of metrics

gc = c exp (f(x, y))dx2 + dy2, where c ∈ R
+.

The corresponding one-parameter family of projective structures [Γc] is
given by the ODE

d2y

dx2
=
c

2

∂f

∂y
exp (f) +

1

2

∂f

∂x

(dy
dx

)
+
∂f

∂y

(dy
dx

)2
.

The 5th order obstruction (1.5) and 6th order conditions E1, E2 of course
vanish. Moreover rankM([Γc]) = 5 for generic f(x, y).

Now take the limit c = 0. The obstructions still vanish and rank
M([Γ0]) = 5 but [Γ0] is not metrisable. This is because one can select

a 3 by 3 linear subsystem M̃0 φ = 0, where φ = (ψ1, ψ2, µ)
T , from the

6 by 6 system (3.22). The 3 by 3 matrix M̃0 can be read off (3.22).

For generic f the determinant of M̃0 does not vanish and so there does
not exist a parallel section Ψ of (3.22) such that ψ1ψ3 − ψ

2
2 6= 0. For

example f = xy gives rankM([Γ0]) = 5 and

det (M̃0) =
3xy

4
−

9

2
.

This non-metrisable example fails the genericity assumption P ([Γ]) 6=
0 where P ([Γ]) is given by (4.28). The kernel ofM([Γ0]) is spanned by
a vector (0, 0, 1, 0, 0, 0)T and the corresponding quadratic form on TU
is degenerate.
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5.3. The importance of real analyticity. This example illustrates
why we need to work in the real analytic case to get sufficient conditions.
We shall construct a simply connected projective surface in which every
point has a neighbourhood on which there is a metric compatible with
the given projective structure, but there is no metric defined on the
whole surface that is compatible with the projective structure.

Consider a plane U = R
2 with cartesian coordinates (x, y). Take two

constant coefficient metrics on the plane that are linearly independent,
say, g+ and g−. Now consider a modification of g− in the half-plane
x < −1 such that the modified g− is the only global metric that is com-
patible with its underlying projective structure. Similarly, consider a
modification of g+ on the half-plane x > 1 such that the modified g+
is the only global metric that is compatible with its underlying projec-
tive structure. The two projective structures agree (with the flat one)
in the strip −1 < x < 1, so let the new projective structure be the
one that agrees with that of modified g− when x < 1 and with the
modified g+ when x > −1. This final projective structure will have
compatible metrics locally near each point (sometimes, more than one,
up to multiples), but will not have a compatible metric globally. Thus,
metrisability cannot be detected locally in the smooth category.

5.4. One more degenerate example. Take Γ2
11 = A(x, y) and set all

other components of Γa
bc to zero. Equivalently, take A1 = A2 = A3 =

0, A0 = −A(x, y) (the case A0 = A1 = A2 = 0 is also degenerate and
can be obtained by reversing the role of x and y). For this degenerate
case the Liouville relative invariant [19]

ν5 = L2(L1∂xL2 − L2∂xL1) + L1(L2∂yL1 − L1∂yL2)

+A3(L1)
3 −A2(L1)

2L2 +A1L1(L2)
2 −A0(L2)

3

vanishes.
The matrixM([Γ]) in (1.4) has rank five and its determinant vanishes

identically. In this case we can nevertheless analyse the linear system
(2.10) directly without even prolonging it. We solve for

ψ2 = −(1/2)yα(x) + β(x), ψ3 = α(x),

where α and β are some arbitrary functions of x, and cross-differentiate
the remaining equations to find

(5.37) 2β
′′

− yα
′′′

+ 2(∂xA)α− 2(∂yA)β + (3A + y∂yA)α
′ = 0.

Now assume further that 5∂2yA+y∂
3
yA 6= 0, ∂3yA 6= 0 and perform further

differentiations to eliminate α, β from (5.37) and to find the necessary
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metrisable condition for A(x, y)

7(∂3yA) (∂
4
yA) (∂x∂

3
yA)− 5(∂x∂

3
yA) (∂

5
yA) (∂

2
yA)− 6(∂x∂

4
yA) (∂

3
yA)

2

+6(∂5yA) (∂x∂
2
yA) (∂

3
yA)− 7(∂4yA)

2 (∂x∂
2
yA)

+5(∂x∂
4
yA) (∂

4
yA) (∂

2
yA) = 0.(5.38)

The obstruction (5.38) is of the same differential order as the 6 by 6
matrix (1.4), and we checked that it arises as a vanishing of a determi-
nant of some 5 by 5 minors of (1.4) (which factorise in this case with
(5.38) as a common factor).

We have pointed out that further genericity assumptions for A were
needed to arrive at (5.38). To construct an example of non-metrisable
projective connection where these assumptions do not hold consider the
first Painlevé equation [15]

d2y

dx2
= 6y2 + x,

for which both (1.5) and (5.38) vanish. However equation (5.37) implies
that α(x) = β(x) = 0 so no metric exists in this case. We would have
reached the same conclusion by observing that in the Painlevé I case
rank(M)([Γ]) = 3 and verifying that the 6 by 6 matrix in the 8th order
obstruction (4.35) has rank 5. This obstruction therefore vanishes but
the corresponding one-dimensional kernel is spanned by (1, 0, 0, 0, 0, 0)T

and the corresponding solution to the linear system (2.10) is degenerate.
In [13] it was shown that the Liouville invariant ν5 vanishes for all six

Painlevé equations, and we have verified that our invariant (1.5) also
vanishes. The metrisability analysis would need to be done on a case
by case basis in a way analogous to our treatment of Painlevé I.

6. Twistor Theory

In this Section we shall give a twistorial treatment of the problem,
which clarifies the rather mysterious linearisation (2.10) of the non-
linear system (2.8).

In the real analytic case one complexifies the projective structure, and
establishes a one-to-one correspondence between holomorphic projective
structures (U, [Γ]) and complex surfaces Z with rational curves with self-
intersection number one [14]. The points in Z correspond to geodesics
in U , and all geodesics in U passing through a point u ∈ U form a
rational curve û ⊂ Z with normal bundle N(û) = O(1). Here O(n)
denotes the nth tensor power of the dual of the tautological line bundle
O(−1) over P(TU) which arises as a quotient of TU −{0} by the Euler
vector field. Restricting the canonical line bundle κZ of Z to a twistor
line û = CP

1 gives

κZ = T ∗(û)⊗N∗(û) = O(−3)
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since the holomorphic tangent bundle to CP
1 is O(2). If U is a com-

plex surface with a holomorphic projective structure, then its twistor
space Z is P(TU)/Dx, where Dx is the geodesic spray of the projective
connection (2.11)

Dx = za
∂

∂xa
−Πc

abz
azb

∂

∂zc
(6.39)

=
∂

∂x
+ ζ

∂

∂y
+ (A0 + ζA1 + ζ2A2 + ζ3A3)

∂

∂ζ
.

Here (xa, za) are coordinates on TU and the second line uses projective
coordinate ζ = z2/z1. This leads to the double fibration

U ←− P(TU) −→ Z.

All these structures should be invariant under an anti-holomorphic in-
volution of Z to recover a real structure on U . This works in the real
analytic case, but can in principle be extended to the smooth case using
the holomorphic discs of LeBrun-Mason [20].

Now if the projective structure is metrisable, Z is equipped with a
preferred section of the anti-canonical divisor line bundle κZ

−2/3 [6, 20].
The zero set of this section intersects each rational curve in Z at two
points. The pullback of this section to TU is a homogeneous function of
degree two σ = σabz

azb, where za are homogeneous coordinates on the
fibres of P(TU) → U , and σab with a, b = 1, 2 is a symmetric 2-tensor
on U .

This function Lie derives along the spray (6.39) and this gives the
overdetermined linear system as the vanishing of a polynomial homoge-
neous of degree 3 in za: The condition Dx(σ) = 0 implies the equation
(2.12) which is equivalent to (2.10).

We can understand the equation (2.12) using any connection Γ in a
projective class instead of the projective connection ∇Π. To see it we
need to introduce a concept of projective weight [10]. First recall that
the covariant derivative of the projective connection acting on vector
fields is given by ∇aX

c = ∂aX
c + Γc

abX
b and on 1-forms by ∇aφb =

∂aφb − Γc
abφc. Let ǫab = ǫ[ab] be a volume form on U . Changing a

representative of the projective class yields

(6.40) ∇̂aǫbc = ∇aǫbc − 3 ωaǫbc.

Let E(1) be a line bundle over U such that the 3rd power of its dual
bundle is the canonical bundle of U . The bundles E(w) = E(1)⊗w have
a flat connection induced from [Γ]. It changes according to

∇̂ah = ∇ah+ w ωah

under (1.1), where h is a section of E(w).



486 R. BRYANT, M. DUNAJSKI & M. EASTWOOD

Definition 6.1. The weighted vector field with projective weight w
is a section of a bundle TU ⊗ E(w).

This definition naturally extends to other tensor bundles. Now we
shall choose a convenient normalisation of [Γ]. For any choice of ǫab we
must have ∇aǫbc = θaǫbc for some θa. We can change the projective
representative with ωa = θa/3 and use (6.40) to set θa = 0 so that ǫab is
parallel. Let us assume that such a choice has been made. We shall use
the volume forms to raise and lower indices according to za = ǫbaz

b, za =
zbǫ

ba. The residual freedom in (1.1) is to use ωa = ∇af where f is any
function on U . If ∇aǫbc = 0 then

(6.41) ∇̂aǫ̂bc = 0, if ǫ̂ab = e3f ǫab.

Thus if h ∈ E(w) is a scalar of weight w and we change the volume form
as in (6.41) then we must rescale

h −→ ĥ = ewfh

with natural extension to other tensor bundles. Thus ǫab has weight −3.

Let us now come back to equation (2.12) where the Πs are replaced
by components of some connection in [Γ]

∇(aσbc) = 0.

If we change the representative of the projective class by (1.1) with
ωa = ∇af the equation Dx(σ) = 0 stays invariant if

σab −→ σ̂ab = e4fσab.

This argument shows that the linear operator

σab −→ ∇(aσbc)

is projectively invariant on symmetric two-tensors with weight 4. Now
σab := ǫacǫbdσcd is a section of S2(TU)⊗ E(−2) and satisfies

(6.42) ∇aσ
bc = δbaµ

c + δcaµ
b

for some µb. The Liouville lemma 2.1 implies that if σab satisfies this
equation then gab = (det σ)σab is a metric in the projective class.

The expression (6.42) is the tensor version of the first prolongation
of the linear system (2.10). In the next section we shall carry over
the prolongation in the invariant manner and express the 5th order
obstruction (1.5) as a weighted projective scalar invariant.
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7. An Alternative Derivation

In this section, we use the approach of [11] to derive the obstruction
detM([Γ]) of Theorem 1.1. One advantage of this approach is that
(1.5) may then be written in terms of the curvature of the connection
and its covariant derivatives for any connection in the given projective
class. The symmetric form σab used in this Section is proportional to the
quadratic form (2.7) and the objects (µa, ρ) are related but not equal to
(µ, ν, ρ) defined by (3.15) and (3.17) from Section 3. Similarly the 6 by
6 matrix (7.47) is related but not equal toM([Γ]) given by (1.4). This is
because the choices made in the prolongation procedure leading (7.44)
are different than those made in Section 3. The resulting obstructions
(1.5) and (7.48) do not depend on these choices and are the same up to
a non-zero exponential factor.

Let Γ ∈ [Γ] be a connection in the projective class. Its curvature is
defined by

[∇a,∇b]X
c = Rc

abdX
d

and can be uniquely decomposed as

(7.43) Rc
abd = δcaPbd − δ

c
bPad + βabδ

c
d

where βab is skew. In dimensions higher than 2 there would be another
term (the Weyl tensor) in this curvature but dimension in 2 it vanishes
identically.

If we change the connection in the projective class using (1.1) then

P̂ab = Pab −∇aωb + ωaωb, β̂ab = βab + 2∇[aωb].

The Bianchi identity implies that βab is closed and so locally it is clear
that we can always choose a connection in our projective class with
βab = 0 (in fact, this also true globally on an oriented manifold). The
residual freedom in changing the representative of the equivalence class
(1.1) is given by gradients ωa = ∇af, where f is a function on U .

Now Pab = Pba and the Ricci tensor of Γ is symmetric. The Bianchi
identity implies that Γ is flat on a bundle of volume forms on U . Thus
the normalisation of ∇a may, equivalently, be stated as requiring the
existence of a volume form ǫab such that

∇aǫ
bc = 0.

Locally, such a volume form is unique up to scale: let us fix one. This
is the normalisation used in the previous Section.

The linear system and its prolongation developed in §2 and §3 is
assembled in [11] into a single connection on a rank 6 vector bundle over
U . Specifically, sections of this bundle comprise triples of contravariant
tensors (σab, µa, ρ) with σab being symmetric. The connection is given
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by

(7.44)




σbc

µb

ρ




∇a7−→




∇aσ
bc − δbaµ

c − δcaµ
b

∇aµ
b − δbaρ+Pacσ

bc

∇aρ+ 2Pabµ
b − 2Yabcσ

bc



,

where Yabc = 1
2(∇aPbc − ∇bPac), the Cotton tensor. The following is

proved in [11].

Theorem 7.1. The connection ∇a is projectively equivalent to a
Levi–Civita connection if and only if there is a covariantly constant
section (σab, µa, ρ) of the bundle with connection (7.44) for which σab is
non-degenerate.

It is also shown in [11] how the rank 6 bundle itself and its connection
(7.44) may be viewed as projectively invariant. In any case, obstructions
to the existence of a covariantly constant section may be obtained from
the curvature of this connection, which we now compute.

∇a∇b




σcd

µc

ρ


 = ∇a




∇bσ
cd − δcbµ

d − δdbµ
c

∇bµ
c − δcbρ+ Pbdσ

cd

∇bρ+ 2Pbcµ
c − 2Ybcdσ

cd


 =




∇a(∇bσ
cd − δcbµ

d − δdbµ
c)− δca(∇bµ

d − δdbρ+Pbeσ
de)

∇a(∇bµ
c − δcbρ+ Pbdσ

cd)− δca(∇bρ+ 2Pbdµ
d − 2Ybdeσ

de)

∇a(∇bρ+ 2Pbcµ
c − 2Ybcdσ

cd) + 2Pac(∇bµ
c − δcbρ+ Pbdσ

cd)




+




−δda(∇bµ
c − δcbρ+ Pbeσ

ce)

Pad(∇bσ
cd − δcbµ

d − δdbµ
c)

−2Yacd(∇bσ
cd − δcbµ

d − δdbµ
c)




=




∇a∇bσ
cd − δcaPbeσ

de − δdaPbeσ
ce + ⋆⋆

∇a∇bµ
c − δcaPbdµ

d + (∇aPbd)σ
cd + 2δcaYbdeσ

de + ⋆⋆

∇a∇bρ+ 2(∇aPbc)µ
c − 2(∇aYbcd)σ

cd + 2Yabdµ
d + 2Yacbµ

c + ⋆⋆




where ⋆⋆ denotes expressions that are manifestly symmetric in ab. Also
notice that

(∇[aPb]d)σ
cd+2δc[aYb]deσ

de = δcdYabeσ
de+2δc[aYb]deσ

de = 3δc[aYbd]eσ
de = 0,

and that

Y[abc] = 0 =⇒ Yacb − Ybca = Yabc.

Therefore,

(7.45) (∇a∇b −∇b∇a)




σcd

µc

ρ




=




0

0

10Yabcµ
c − 4(∇[aYb]cd)σ

cd



.
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Denoting the triple (σab, µb, ρ) by Σα, we are seeking a section Σα of
our rank 6 bundle so that ∇aΣ

α = 0 and have found the explicit form
of the evident necessary condition (∇a∇b − ∇b∇a)Σ

α = 0. We may
rewrite our necessary condition as ǫab∇a∇bΣ

α = 0. Notice, however,
that there is only one non-zero entry on the right hand side of (7.45).
Our necessary condition analogous to (3.20) becomes

(7.46) ΞαΣ
α = 0

for

Ξα ≡




0

5Ya

Zab



, where Yc ≡ ǫ

abYabc and Zcd ≡ −2ǫ
ab∇aYb(cd) = ∇(cYd).

Evidently, the quantity Ξα is a section of a rank 6 bundle dual to
our previous one. Its sections consist of triples of covariant tensors
(κ, λa, τab) with τab being symmetric and it inherits a connection dual
to the previous one. Specifically,




κ

λb

τbc




∇a7−→




∇aκ+ λa

∇aλb + 2τab − 2Pabκ

∇aτbc − Pa(bλc) + 2Ya(bc)κ



,

where 


κ

λb

τbc







σbc

µb

ρ



≡ κρ+ λbµ

b + τbcσ
bc

is the dual pairing. By differentiating our necessary condition for ∇aΣ
γ

= 0 we obtain

ΞγΣ
γ = 0 (∇aΞγ)Σ

γ = 0 (∇(a∇b)Ξγ)Σ
γ = 0.

Since Σα is supposed to be a non-zero section, it follows that the 6× 6
matrix

(7.47)







0

5Yc

Zcd



, ∇a




0

5Yc

Zcd



, ∇(a∇b)




0

5Yc

Zcd







must be singular. Its determinant is the obstruction from Theorem 1.1.
We compute

∇a




0

5Yc

Zcd




=




5Ya

5∇aYc + 2Zac

∇aZcd − 5Pa(cYd)



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and

∇a∇b




0

5Yc

Zcd




=




5∇aYb + 5∇bYa + 2Zba

∇a(5∇bYc + 2Zbc) + 2∇bZac − 10Pb(aYc) − 10PacYb

∇a(∇bZcd − 5Pb(cYd))− 5Pa(c∇|b|Yd) − 2Pa(cZ|b|d) + 10Ya(cd)Yb




so

∇(a∇b)




0

5Yc

Zcd




=




12Zab

5∇(a∇b)Yc + 4∇(aZb)c − 5PabYc − 15Pc(aYb)

∇(a∇b)Zcd − 5(∇(aPb)(c)Yd) − 5Pc(a∇b)Yd − 5Pd(a∇b)Yc
−Pc(aZb)d − Pd(aZb)c + 10Y(aYb)(cd)



.

To compute the determinant of the 6× 6 matrix (7.47) we may use the
following.

Lemma 7.2. Let ǫab denote the skew form in two dimensions nor-
malised as

ǫ00 = 0 ǫ01 = 1 ǫ10 = −1 ǫ11 = 0.

Then the determinant of the 6× 6 matrix



0 P0 P1 Q00 Q01 Q11

R0 S00 S01 T000 T001 T011
R1 S10 S11 T100 T101 T111
U00 V000 V001 X0000 X0001 X0011

U01 V010 V011 X0100 X0101 X0111

U11 V110 V111 X1100 X1101 X1111




is ǫabǫcdǫef ǫghǫijǫklǫmnǫpq

(7.48)




QgiSmpTnjkUacVdeqXbfhl −
1
6PpRmSnqXacgiXbehkXdfjl

− 1
2PpSmqTnjlUceXadgkXbfhi −

1
2PpTmgiTnjkUacVdeqXbfhl

+ 1
2PpRmTngiVacqXdejkXbfhl −

1
2QgiRmSnpVacqXdejkXbfhl

− 1
2QgiRmTnjkVacpVdeqXbfhl −

1
4QgiSmpSnqUacXdejkXbfhl

− 1
4QgiTmjkTnhlUacVdepVbfq




where Qab = Q(ab), Tcab = Tc(ab), Ucd = U(cd), Vcda = V(cd)a, and
Xcdab = X(cd)(ab).
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Proof. A tedious computation. q.e.d.

Every tensor Q,S, T, ... in this expression is constructed using one
ǫab. Thus counting the total number of ǫabs shows that the determinant
has a total projective weight −42 in a sense of Definition 6.1 which also
means that it represents a section of the 14th power of the canonical
bundle of U .

To summarise, we have proved the following alternative formulation
of Theorem 1.1.

Theorem 7.3. Suppose that ∇a is a torsion-free connection in two-
dimensions and that ǫbc is a volume form such that ∇aǫ

bc = 0. Define
the Schouten tensor Pab by (7.43) and

Yabc ≡
1
2(∇aPbc −∇bPac) Yc ≡ ǫ

ab∇aPbc Zab ≡ ∇(aYb).

Let

Pa ≡ 5Ya Qab ≡ 12Zab Rc ≡ 5Yc Sca ≡ 5∇aYc + 2Zac

Tcab ≡ 5∇(a∇b)Yc + 4∇(aZb)c − 5PabYc − 15Pc(aYb)

Ucd ≡ Zcd Vcda ≡ ∇aZcd − 5Pa(cYd)

Xcdab ≡ ∇(a∇b)Zcd − 5(∇(aPb)(c)Yd) − 5Pc(a∇b)Yd − 5Pd(a∇b)Yc
−Pc(aZb)d − Pd(aZb)c + 10Y(aYb)(cd)

and define D(Γ) by the formula (7.48). If ∇a is projectively equivalent
to a Levi–Civita connection, then D(Γ) = 0.

In addition to giving an explicit formula for D(Γ), there are several
other consequences of this theorem, which we shall now discuss. We
have found that

D(Γ) = det




0 Pa Qab

Rc Sca Tcab
Ucd Vcda Xcdab




where

Qab = Q(ab), Tcab = Tc(ab), Ucd = U(cd), Vcda = V(cd)a, Xcdab = X(cd)(ab)

and the precise meaning of determinant is given by Lemma 7.2. Though
it makes no difference to the determinant and seemingly gives a more
complicated expression, it is more convenient to write

D(Γ) =
1

4320
det Θ̄ where Θ̄ ≡




0 12Pa Qab

30Rc 12Sca Tcab − 5PabRc

30Ucd 12Vcda Xcdab − 5PabUcd


 ,

where the underlying matrix is evidently obtained by column operations
from the previous one. The reason is that this matrix better transforms
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under projective change of connection. Specifically, if we write

Θ̄ =




0 P̄a Q̄ab

R̄c S̄ca T̄cab
Ūcd V̄cda X̄cdab


 ,

then under the change in connection

∇̂aφb = ∇aφb − ωaφb − ωbφa

induced by (1.1), we find

(7.49) ̂̄Θ =




0 P̃a Q̃ab − P̃(aωb)

R̃c S̃ca − 2R̃cωa T̃cab − S̃c(aωb) + R̃cωaωb

Ũcd Ṽcda − 2Ũcdωa X̃cdab − Ṽcd(aωb) + Ũcdωaωb




where
(7.50)

Θ̃ =




0 P̃a Q̃ab

R̃c S̃ca T̃cab
Ũcd Ṽcda X̃cdab


 =




0 P̄a Q̄ab

R̄c S̄ca − 2ωcP̄a T̄cab − 2ωcQ̄ab

Ūcd − ω(cR̄d) V̄cda − ω(cS̄d)a + ωcωdP̄a X̄cdab − ω(cT̄d)ab + ωcωcQ̄ab


.

Notice that Θ̃ is obtained from Θ̄ by column operations and then ̂̄Θ is

obtained from Θ̃ by row operations. It follows that determinant does

not change, i.e. D(Γ̂) = D(Γ) is a projective invariant (from the for-
mula (7.48) it is already apparent that D(Γ) is independent of choice of
coördinates). Thus we use the notation D([Γ]).

The argument following the formula (4.31) shows that there is only
one obstruction to the metrisability at order 5 so detM([Γ]) = 0 iff
D([Γ]) = 0. Thus

detM([Γ])(dx ∧ dy)⊗14

is indeed a projective invariant as claimed in the Introduction.
A more invariant viewpoint on these matters is as follows. The for-

mula (7.44) is for a connection on an invariantly defined vector bundle,

denoted by E(BC) in [11]. It arises from a representation of SL(3,R)
and the connection (7.44) is closely related (but not equal to) the pro-
jective Cartan connection induced on bundles so arising. The bundle is
canonically filtered with composition series

EAB = Ebc(−2) + Eb(−2) + E(−2)

as detailed in [11]. Strictly speaking the quantity Ξγ is not a section
of the dual bundle E(CD) but rather the projectively weighted bundle
E(CD)(−5) with composition series

E(CD)(−5) = E(−3) + Ec(−3) + E(cd)(−3)
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and Θ̄ is then obtained by applying the invariantly defined ‘splitting
operator’

E(−5) ∋ ξ 7→




30ξ

12∇aξ

∇(a∇b)ξ − 5Pabξ


 ∈ E(AB)(−7)

coupled to the projectively invariant connection (7.44). The upshot
is that Θ̄ is an invariantly defined section of E(CD)(AB)(−7). Indeed,

the formulae (7.49) and (7.50) giving ̂̄Θ in terms of Θ̄ are precisely
how sections of E(CD)(AB) or E(CD)(AB)(−7) transform under projective
change. Consequently, the obstruction D(Γ) is an invariant of projective
weight −42.

8. Outlook

In the language of Cartan [7, 4], the general 2nd order ODE (1.6)
defines a path geometry, and the paths are geodesics of projective con-
nection if the ODE is of the form (1.3). In this paper we have shown
under what conditions the paths in this geometry are unparametrised
geodesics of some metric. In case of higher dimensional projective struc-
tures the link with ODEs is lost, but nevertheless one could search for
conditions obstructing the metrisability in a way analogous to what we
did in Section (7). The results will have a different character, how-
ever, owing to the presence of the Weyl curvature which will modify
the connection (7.44) as explained in [11]. The first necessary condition
analogous to (1.5) occurs already at order 2. Specifically, it is shown
in [11] that the curvature of the relevant connection in n dimensions is
given by

(∇a∇b −∇b∇a)




σcd

µc

ρ




=




W c
abeσ

de +W d
abeσ

ce + 2
nδ

c
[aW

d
b]efσ

ef + 2
nδ

d
[aW

c
b]efσ

ef

∗

∗




where W c
abd is the Weyl curvature and ∗ denotes expressions that we

shall not need. Since we are searching for covariant constant sections
with non-degenerate σcd, in particular it follows that the linear trans-
formation σef 7→ Ξcd

abefσ
ef where

(8.51) Ξcd
abef :=W c

ab(eδ
d
f) +W d

ab(eδ
c
f) +

2
nδ

c
[aW

d
b](ef) +

2
nδ

d
[aW

c
b](ef)

is obliged to have a non-trivial kernel. Regarding Ξcd
abef as a matrix rep-

resenting this linear transformation, it should have n(n+ 1)/2 columns
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accounting for the symmetric indices ef . In its remaining indices it is
skew in ab, symmetric cd, and trace-free. These symmetries specify an
irreducible representation of GL(n,R) of dimension (n2 − 1)(n2 − 4)/4,
which we may regard as the number of rows of the matrix Ξcd

abef . Notice
that when n = 2 this matrix is zero but as soon as n ≥ 3 it has more
rows than columns (for example, it is a 10 × 6 matrix in dimension 3).
We claim that having a non-trivial kernel is a genuine condition and
therefore an obstruction to metrisability. For this, we need to show
that Ξcd

abef can have maximal rank even when it is of the special form

(8.51) for some W c
abd having the symmetries of a Weyl tensor, namely

(8.52) W c
abd = −W c

bad, W c
[abd] = 0, W a

abd = 0.

Choose a frame and, for n ≥ 3, consider the particular tensor W c
abd

having as its only non-zero components (no summation)

W 1
121 = −W

1
211 = 3(n2 − n− 1) W 2

122 = −W
2
212 = 3

W 3
123 = −W

3
213 = −(n− 1)(2n + 3) W c

12c = −W
c
21c = −(n− 1), ∀c ≥ 4

W 3
132 = −W

3
312 = −(n

2 − n− 3) W c
1c2 = −W

c
c12 = n+ 2, ∀c ≥ 4

W 3
231 = −W

3
321 = n(n+ 2) W c

2c1 = −W
c
c21 = 2n+ 1, ∀c ≥ 4.

It is readily verified that the symmetries (8.52) are satisfied. Form
the corresponding Ξcd

abef according to (8.51) and consider Ξcd
12ef . Being

symmetric in cd and ef , we may regard it as a square matrix of size
n(n+1)/2 and it suffices to show that this matrix is invertible. In fact,
it is easy to check that it is diagonal with non- zero entries along its
diagonal.

The twistor analysis of Section (6) suggest that there is some analogy
between the metrisability problem we studied in two dimensions and ex-
istence of (possibly indefinite) Kähler structure in a given anti-self-dual
(ASD) conformal class c in on a four-manifold M . A Kähler struc-

ture corresponds to a preferred section of anti-canonical divisor κB
−1/2,

where κB is the canonical bundle of the twistor space [21] B (a com-
plex three-fold with an embedded rational curve with normal bundle
O(1) ⊕O(1)). Not all ASD structures are Kähler and the existence of
the divisor should lead to vanishing of some conformal invariants con-
structed out of the ASD Weyl tensor (to the best of our knowledge they
have never been written down. If one adds the Ricci flat condition, some
of the invariants are known and can be expressed in terms of the Bach
tensor).

These two constructions (ASD+Kähler in four dimensions and pro-
jective + metrisable in two dimensions) are linked in the following way:
every ASD structure in (2, 2) signature with a conformal null Killing vec-
tor induces a projective structure on a two-dimensional space U of the
β surfaces (null ASD surfaces) in M . Conversely any two-dimensional
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projective structure gives rise to (a class of) ASD structures with null
conformal symmetry [8, 6]. Consider B to be a holomorphic fibre bun-
dle over Z with one dimensional fibres, where Z is the twistor space of
(U, [Γ]) introduced in Section 6.

Let û ⊂ Z be rational curve in Z corresponding to u ∈ U . The
three-fold B will be a twistor space of an ASD conformal structure if
B restricts to O(1) on each twistor line û ⊂ Z. If Z corresponds to a
metrisable projective structure then the divisor σ lifts to a section of
κB

−1/2, thus giving a (2, 2) Kähler class. If the conformal Killing vector
is not hyper-surface orthogonal the local expression for the conformal
class is

c = dza ⊗ dx
a −Πc

ab zc dx
a ⊗ dxb,

where Πc
ab are components of the projective connection (2.11). The

conformal Killing vector is a homothety za/∂za. This formula for c

is equivalent to a special case of expression (1.3) in [8] after a change
of coordinates and a conformal rescaling (set za = (−zet, et) and take
G = z2/2 + γ(x, y)z + δ(x, y) for certain γ, δ in [8]). It is a projectively
invariant modification of the Riemannian extensions of spaces with affine
connection studied by Walker [24]. The conformal class c is conformally
flat iff [Γ] is projectively flat, i.e. its Cotton tensor vanishes. This in
turn is equivalent to the vanishing of the Liouville expressions (2.14).

The metrisable projective structures will therefore give rise to (2,
2) ASD Kähler metric with conformal null symmetry. Ultimately, the
metrisability invariant (1.5) in two dimensions will have its counterpart:
a conformal invariant in four dimensions. Some progress in this direction
has been made in [9].

Appendix

The connection D = d+Ω1dx+Ω2dy on the rank six vector bundle
E→ U is

Ω1 =




−2
3A1 2A0 0 0 0 0

0 0 0 −1
2 0 0

−2A3 −2
3A2

4
3A1 0 1 0

(Ω1)41 (Ω1)42 (Ω1)43 −1
3A1 −3A0 0

0 0 0 0 0 −1

(Ω1)61 (Ω1)62 (Ω1)63 (Ω1)64 (Ω1)65 (Ω1)66




,
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(A53) Ω2 =




−4
3A2

2
3A1 2A0 1 0 0

0 0 0 0 −1
2 0

0 −2A3
2
3A2 0 0 0

0 0 0 0 0 −1

(Ω2)51 (Ω2)52 (Ω2)53 3A3
1
3A2 0

(Ω2)61 (Ω2)62 (Ω2)63 (Ω2)64 (Ω2)65 (Ω2)66




.

Let V1, ..., V6 be given by (3.21). The curvature of D is

F = dΩ+Ω ∧Ω = F dx ∧ dy =

(A54)




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

V1 V2 V3 V4 V5 V6




dx ∧ dy.

The matrix elements of the connection are

(Ω1)41 = −
4

3
∂xA2 + 4A0A3 +

2

3
∂yA1,

(Ω1)42 = −2∂yA0 +
2

3
∂xA1 + 4A2A0 −

4

9
(A1)

2,

(Ω1)43 = 2∂xA0 − 4A0A1,

(Ω1)61 = −
4

3
∂x∂yA2 −

20

3
A0A2A3 +

2

3
(∂y)

2A1 + 4A3∂yA0

−2A0∂yA3 −
16

9
A2∂xA2 +

8

9
A2∂yA1,

(Ω1)62 =
2

3
∂x∂yA1 −

4

3
A1∂yA1 + 2A0∂yA2 − 2(∂y)

2A0

+4A2∂yA0 + 4A3∂xA0 + 6A0∂xA3

+
8

9
A1∂xA2 +

4

3
A0A1A3 −

4

3
A0(A2)

2,

(Ω1)63 = 2∂x∂yA0 +
2

3
A0∂xA2 −

4

3
A2∂xA0 − 4A1∂yA0

−
4

3
A0∂yA1 +

8

3
A0A1A2 + 4A3(A0)

2,

(Ω1)64 =
4

3
∂xA2 − ∂yA1 + 5A0A3,

(Ω1)65 =
1

3
∂xA1 − 4∂yA0 + 3A2A0 −

2

9
(A1)

2,

(Ω1)66 = −
1

3
A1,
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(Ω2)51 = −2∂yA3 − 4A3A2,

(Ω2)52 = 2∂xA3 −
2

3
∂yA2 + 4A1A3 −

4

9
(A2)

2,

(Ω2)53 =
4

3
∂yA1 −

2

3
∂xA2 + 4A0A3,

(Ω2)61 = −2∂x∂yA3 − 4A2∂xA3 −
4

3
A3∂xA2 +

2

3
A3∂yA1

−
4

3
A1∂yA3 − 4A0(A3)

2 −
8

3
A1A2A3,

(Ω2)62 = 2(∂x)
2A3 −

4

3
A2∂xA2 −

4

3
A0A2A3 −

2

3
∂x∂yA2

+4A1∂xA3 + 4A0∂yA3 + 6A3∂yA0

+
4

3
A3(A1)

2 + 2A3∂xA1 +
8

9
A2∂yA1,

(Ω2)63 = −
2

3
(∂x)

2A2 +
8

9
A1∂xA2 + 4A0∂xA3 − 2A3∂xA0

−
16

9
A1∂yA1 +

4

3
∂x∂yA1 +

20

3
A0A1A3,

(Ω2)64 = 4∂xA3 −
1

3
∂yA2 + 3A1A3 −

2

9
(A2)

2,

(Ω2)65 = ∂xA2 −
4

3
∂yA1 + 5A0A3,

(Ω2)66 =
1

3
A2.

The prolongation formulae are

P = −(Ω1)41 ψ1 − (Ω1)42 ψ2 − (Ω1)43 ψ3 − (Ω1)44 µ− (Ω1)45 ν,

Q = −(Ω2)51 ψ1 − (Ω2)52 ψ2 − (Ω2)53 ψ3 − (Ω2)54 µ− (Ω2)55 ν,

R = −(Ω1)61 ψ1 − (Ω1)62 ψ2 − (Ω1)63 ψ3

−(Ω1)64 µ− (Ω1)65 ν − (Ω1)66 ρ,

S = −(Ω2)61 ψ1 − (Ω2)62 ψ2 − (Ω2)63 ψ3

−(Ω2)64 µ− (Ω2)65 ν − (Ω2)66 ρ.(A55)
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