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Summary

The paradigmatic shift occurred in biology that led first to high-throughput experimental
techniques and later to computational systems biology must be applied also to the analysis
paradigm of the relation between local models and data to obtain an effective prediction
tool. In this work we introduce a unifying notational framework for systems biology mod-
els and high-throughput data in order to allow new integrations on the systemic scale like
the use of in silico predictions to support the mining of gene expression datasets. Using
the framework, we propose two applications concerning the use of system level models to
support the differential analysis of microarray expression data. We tested the potentialities
of the approach with a specific microarray experiment on the phosphate system in Sac-
charomyces cerevisiae and a computational model of the PHO pathway that supports the
systems biology concepts.

1 Introduction

The systems biology concept [12] that is now becoming crucial in the computational mod-
elling field, received the definitive incentive with the success of the “globalists” over the “lo-
calists” [9]. A major motivation for the shift from the local study of biochemical pathway to
the genomic scale analysis of interaction networks was the developing of massively-parallel
and high-throughput techniques [4] which made available a huge amount of unstructured gene-
specific or protein-specific data. A consequence of this paradigmatic shift is the need of inte-
grative tools for combining the quantitative and structural information with the functional one.
In particular, there is the need to integrate high-throughput expression data and computational
systems biology modelling.

One of the most important and widely used high-throughput techniques is the microarray tech-
nology, applied for example in [5] to detect the genes related to the phosphate accumulation
and polyphosphate metabolism in Saccharomyces cerevisiae. The identification of genes that
show significant changes in expression associated with experimental variables of interest on a
microarray is called differential analysis of gene expression data [6, 16] and it is not a trivial
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task because the high-throughput datasets are large, extremely noisy, possibly with missing or
corrupted expression values and subject to biological bias. As a consequence the differences in
gene expression caused by the experimental variables can be at least partially hidden by other
undesirable sources of variations. Therefore the set of differentially expressed genes is usually
quite large since it contains a lot of non-regulated genes that need to be removed. So the inter-
pretation of this set is a hot topic in research mainly because its typical high cardinality prevents
the functional profiling and the validation of each gene singularly. Some authors addressed the
problem through literature profiling [3] or Gene Ontology-based tools [10, 14].

Computational modelling of biological phenomena [1] combines representations of complex
biochemical systems with the possibility to quantitatively reproduce and predict their behaviour.
The sophistication reached by computers and programming languages permits one to effec-
tively simulate the models allowing in silico predictions at the level of intricate metabolic and
signalling pathways like in [7, 8]. Even though the complexity of these models can be very
high, they still describe local aspects of biochemical systems. The paradigmatic shift in the
dimensions and complexity of the models relies on modelling formalisms that natively handle
high parallelism and incremental model construction [17, 15]. An example of application of
these formalisms is the PHO pathway model presented in [19] in which we model and simulate
the phosphate systems in Saccharomyces cerevisiae with the stochastic π-calculus, a language
that support compositionality (the ability of building models incrementally). The high expres-
sivity power of the π-calculus process algebra and the level of abstraction of the model, that is
different from basic chemical reactions in order to handle partial specification of the pathway,
make an automatic translation of the model to an analytical model with elementary reactions
not straightforward. However this drawback is amply compensated by the compositional op-
erator of the algebra that can be applied on local models to obtain a compositional model that
reaches the systems biology level. Although the system level modelling of simple microorgan-
isms is still more theoretical than effective, the potentialities of the in silico approach in this
context are extremely promising for the biological community [11].
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Figure 1: Relation between local models and data and between systemic model and high-
throughput data. Each local model Mx with the corresponding parameters Px can be tuned and
validated with data (Datax) produced by specific experiments (Expx). The systems biology model,
built composing the local sub-models, have new possibilities of integration with high-throughput
data. The + symbol stands for the abstract compositional operator of the models.

The relation between data, local models, high-throughput data and compositional models is
complex, and Figure 1 tries to schematize its main characteristics. In general, a model has a
biological valence only if there are experimental data for the same biological aspect. Typical
relations between data and models are parameter estimation, model validation and output data
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interpretation. When the biological description is not on a system level, there is a one-to-one
relation between a local model and the possibly available data that permits in silico simulations
and thus biological predictions (schematized in Figure 1 with the double arrows between each
local model and each dataset derived from specific experiments). However, high-throughput
data are not suitable for tuning and validating local pathway models because data at the ge-
nomic scale are not specific for each local pathway and are affected by a large number of
sources of uncertainty. With the introduction of computational systems biology, the relation
between compositional models and high-throughput data need to be explored (schematized in
Figure 1 by the big double arrow between the compositional model and the high-throughput
dataset derived from high-throughput experiment). For example, such analysis highlights the
relation between the PHO pathway model [19] and the genic expression data on the phosphate
metabolism in Saccharomyces cerevisiae [5]. Therefore, as the shift from biology to systems
biology is a paradigmatic change, also this new relation needs new analysis paradigms and
tools to understand how to handle some critical aspects such as: (i) the uncertainty and dimen-
sionality of the high-throughput data, (ii) the computational weight of the models that makes
too many replicas of in silico predictions not realistic, (iii) the management and comparison
of dependent and independent variables in both techniques, (iv) the mutual assessment of the
reliability of the techniques in case of partial disagreement between measures and simulations
and (v) the combination of large datasets produced by completely different techniques and
namely with different statistical properties. For reaching these purposes a necessary step is the
development of a general framework able to provide a formal means to represent this relation.

In this paper, we investigate the possibility that the expression information obtained with in
silico simulations of system level models could support the differential microarray analysis.
This approach is possible assuming to have a reasonable large model built in a compositional
way, thus permitting the independent validation of each pathway with biological data and it is
complementary to other knowledge-based mining methods. We define a unifying notational
framework for the experimental high-throughput data and in silico high-throughput expression
values obtained with a computational model for allowing integrations of the two approaches.
The model indirectly reflects the state of the art of the biological knowledge, so the framework
allows the biological information to be included in the process of microarray expression min-
ing with the prediction potentialities of the systems biology models. The first application we
propose in the framework aims to remove from the set of regulated genes those genes that the
model predicts as normal to be regulated in the specific conditions. In this way the experi-
menter can focus only on the genes with potentially more relevant biological information. We
effectively test the introduced approach and the first application to the microarray experiment
of [5] using the PHO pathway model [19]. Even if this model is not on the genomic scale, it
highlights the utility of the methods and confirms that, as the compositional models scale up
to the system level, our approach can give a systematic support to the the analysis of regulated
genes in microarray experiments. The second application tackles the problem of the genes
that are regulated by dependent and non directly controllable conditions that crowd the set of
differentially expressed genes, possibly hiding genes regulated only by the direct and desired
experimental conditions. This application is based on the in silico prediction of the effects on
gene expression of the dependent variables only. Moreover, the framework and the two pro-
posed applications can suggest which are the aspects that need new software tools to be handled
properly in the integrative perspective.

The paper is organized as follows: Section 2 introduces the unifying notational framework for
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microarray and in silico gene expression experiments. Section 3 focuses on the specialization of
the framework for microarray differential analysis proposing some measures for quantifying the
level and the precision of the integration. Section 4 describes the two specific application based
on the framework and in Section 5 we discuss the possibility of developing general software
tools in this context. The running example based on the microarray work of [5] and the PHO
pathway model [19] is discussed step by step in the sections.

2 A unifying notational framework

We define a framework to formally specify the microarray experiments and the model-based
estimation of gene expression in order to allow integrations of the two approaches. We focus
on Affymetrix oligonucleotide chips [13] as far as the microarray technology is concerned, even
though the framework can be adapted to cDNA chips1. We apply the framework to the running
example which has a simple experimental design; however, in general, there are no particular
limitations on the application to more complex designs.

2.1 Microarray experiments and microarray dataset

An Affymetrix microarray experiment consists in the absolute quantification of the expression
profiles of a set of genes. The parameters of a microarray experiment are essentially the con-
trolled independent variables with their levels, and the measured dependent variables. Formally,
the parameters are qµA = (GµA, C,M, P ) where:

GµA is the set of genes that are spotted on the microarray2.

C = {(V1, l1), . . . , (Vk, lk)} is the set of k different conditions applied on the chip. A condition
Ci with 1 ≤ i ≤ k is a pair (Vi, li) where Vi is an independent variable controlled by the
experimenter and li ∈ R is a real value assigned to the variable. Hereafter, we assume that
the set of k independent variables V = {V1, . . . , Vk} can be retrieved from the experiment
with the function IV (qµA) = V .

M = {(Vk+1,mk+1), . . . , (Vn,mn)} is the set of n− k different measured dependent variables
of the chip. A dependent measured parameters Mi with k + 1 ≤ i ≤ n is a pair (Vi,mi)
where Vi is a dependent measured variable and mi ∈ R is the value assigned to the
variable. Hereafter we assume that the set of dependent variables VD = {Vk+1, . . . , Vn}
can be retrieved with the function DV (qµA) = VD and that V ∩ VD = ∅.

P represents the information regarding the experiment. It should contains the parameters that
are not variable and that are sufficient to reproduce the experiment in a rigorous way. P
may contain the sample used, the extract preparation and labeling, the procedure and pa-
rameters for the hybridization and instruments information. In general it can contains all
the information of the MIAME standard [2] not handled by the other defined parameters.

1The cDNA chips, in fact, can be modelled as the combinations of two Affymetrix chips reflecting the expres-
sion of Cy3- and Cy5-labeled probes, like in the case of the microarray experiment of the running example.

2Note that it is not always trivial to associate a gene to each spot on the microarray if an oligonucleotide
microarray chip is used.
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The cDNA chip used in [5] (FODB are the initials of the authors) for the expression profiling
between low and high phosphate conditions can be seen as two Affymetrix experiments

FODBµA,Cy3 = (GFODB
µA , {(Pi, 0.2mM)}, ∅, P FODB)

FODBµA,Cy5 = (GFODB
µA , {(Pi, 10mM)}, ∅, P FODB)

Where GFODB
µA is the set of genes considered in the experiment (approximatively 6400 distinct

DNA sequences, available in the additional materials of [5]), Pi is the phosphate concentra-
tion, and P FODB contains an exhaustive description of the experimental parameters that allows
experimental reproduction. The only experimental independent variable is the phosphate con-
centration IV (FODBµA,Cy3) = IV (FODBµA,Cy5) = Pi which assumes two different values
in the two chips. The work does not measure any dependent variables so M = ∅ and conse-
quently DV (qµA) = ∅.

For a specific microarray experiment we can define a function reflecting the experimental pro-
cedure that promotes the biochemical reactions on the chip and results in values of absolute
expression detected by the instruments. This function for a microarray experiment qµA =
(GµA, C, M, P ) has the form ExprqµA

: G 7→ R and associates to a gene g ∈ GµA a value
reflecting its expression. All genes spotted on the microarray and the corresponding expression
values are included in a dataset called EqµA

, defined as EqµA
= {(g, ExprqµA

(g)) | g ∈ GµA}.

The dataset of the microarray experiment of our example is EFODBµA
and is available in the ad-

ditional materials of [5] with the relative quantification between FODBµA,Cy3 and FODBµA,Cy5

since a cDNA technology is used.

2.2 The in silico model-based simulation of expression experiments

Here we propose how to simulate in silico an experiment to obtain a dataset of expression
profiles. The model can be viewed as a set of metabolic and signalling pathways interacting
with each others. In particular, the prerequisites for a model to be suitable in this context are: (i)
The model must consider the gene transcription and allow the quantification of gene expression
during the simulations. (ii) The model must have a genomic scale; it is not necessary to have
a comprehensive model of all the genes of the cell, but the number of considered genes must
be comparable to number of genes spotted on a microarray chip. (iii) The model must allow in
silico experiments that accepts as inputs the environment conditions (like concentrations of the
nutrients, temperature, pH, etc.) as independent variables.

The PHO model we use to test the framework, matches the first and the last conditions. The
genomic scale, instead, is not respected, and so the model is not suitable for real large-scale
microarray mining, but it can still test the usefulness and quality of the approach. Moreover,
the used modelling language support the incremental development, and so the model can be
extended to other pathways influencing more genes. Obviously, the choice of the values of the
model parameters (e.g. reaction rates and species concentrations) should be independent from
the data of the microarray experiments whose analysis we want to support with the model.

In the definition of the microarray experiment we have the controllable conditions, the depen-
dent variables and the parameters; the intuition is that they match the input requirements of an
in silico simulation of a sufficient large subset of the biological network of a cell. So, similarly
to the microarray experiment we can give the definition of the parameters of a model-based in
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gene expr. (molecules/sec)
PHO2 0.05
PHO4 0.06
PHO81 1.31
PHO5 2.08

(a)

gene expr. (molecules/sec)
PHO2 0.05
PHO4 0.06
PHO81 0.63
PHO5 0.28

(b)

Figure 2: The datasets of the in silico PHO pathway experiment. EqSBP
m,lp

(a) reflects the low phos-
phate conditions, while EqSBP

m,hp
(b) reflects the high phosphate conditions. The expression levels are

in terms of molecules per second.

silico expression experiment as qm = (Gm, C,M, P ), where C, M and P are the conditions,
the measured parameters and the experimental information as defined for qµA, while Gm is the
set of genes for which the model is able to estimate the expression profile.

The simulated expression experiments described in [19] (SBP are the initials of the authors, lp
and hp denote low and high phosphate conditions) of the reference microarray work [5], are

SBPm,lp = (GSBP
m , {(Pi, 0.2mM)}, ∅, P SBP ) SBPm,hp = (GSBP

m , {(Pi, 10mM)}, ∅, P SBP )

with the same definition given for FODBµA,Cy3 and FODBµA,Cy5 except for P SBP which
is the in silico correspondent of P FODB and GSBP

m which contains very few genes with re-
spect to GFODB

µA since the used model has not a genomic scale. In particular we have that
GSBP

m = {PHO2,PHO4,PHO81,PHO5}. The expression of a gene can be seen as the result
of a particular instance of the model that is simulated with the particular inputs. So, with a
conceptual analogous of the microarray expression function, for every qm there exists an inten-
sionally defined function that associates a real value to each gene as follows: Exprqm : G 7→
R. Exprqm reflects the simulated biochemical reactions occurring in a living cell, whereas
ExprqµA

reflected the biochemical reactions occurring in the microarray experiment prepa-
ration. Exprqm and ExprqµA

can be seen as in silico estimation and high-throughput mea-
sure of the real gene expression in a living cell. The corresponding dataset for Exprqm is
Eqm = {(g, Exprqm(g)) | g ∈ Gm}.

Figure 2 shows the datasets of the in silico PHO pathway experiment (EqSBP
m,lp

and EqSBP
m,hp

).
Notice that the in silico expression datasets and the microarray ones adopt different expression
quantification: an absolute value reflecting the intensity level of the spots the firsts, the rate of
new molecules the seconds.

3 Differential analysis of microarray gene expression data

The main objective in gene expression analysis is the detection of the genes that are differen-
tially expressed (or regulated) between two biological samples denoted as sample 1 and sam-
ple 2 (a concept relative to one of the sample will be denoted with the corresponding apex)
with some experimental differences. In differential analysis the classification of the genes is
made with complex statistical techniques that analyse the entire distribution of gene expres-
sions [6, 20].
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We define the following microarray experiments:

q1
µA = (GµA, C1,M1, P )

q2
µA = (GµA, C2,M2, P )

with
IV (q1

µA) = IV (q2
µA) and

DV (q1
µA) = DV (q2

µA)
(1)

q1
µA and q2

µA can differ only in the level of the dependent and independent variables.

The set RµA ⊆ GµA represents the genes that are regulated between the two microarray exper-
iments q1

µA and q2
µA which reflect the differences between conditions C1 and C2 and between

the measured dependent variables M1 and M2. In the formalism defined for the microarray
experiments this set can be detected by a class of functions called δµA that, in general, takes
two datasets and returns the genes that are regulated3: RµA = δµA(Eq1

µA
, Eq2

µA
). In the PHO

microarray experiment [5], the δµA is based on the two-fold derepression ratio, and the set of
regulated genes RFODB

µA , calculated as δµA(EFODBµA,Cy3
, EFODBµA,Cy5

), is

RFODB
µA = {PHO5,PHO11,PHO12,PHO8,PHO84,PHO89,PHO86,PHO81,SPL2,PHM1,

PHM2,PHM3,PHM4,PHM5,PHM6,PHM7,PHM8,HOR2,CTF19,HIS1} (2)

The same procedure can be applied to the expressions retrieved from the in silico simulations.
The experiments are defined maintaining the same conditions of the microarray experiment:

q1
m = (Gm, C1,M1, P )

q2
m = (Gm, C2,M2, P )

with
IV (q1

m) = IV (q2
m) and

DV (q1
m) = DV (q2

m)
(3)

On q1
m and q2

m we can now apply the classification function δm which is, in general, different
from δµA because the assumptions on the distribution of the expression dataset of a microarray
and of in silico experiment can differ. The set of regulated genes with the in silico approach is
denoted with Rm ⊆ Gm and computed with a δm function of the form Rm = δm(Eq1

m
, Eq2

m
).

This formula, in the case of the PHO pathway model, is RSBP
m = δm(EqSBP

m,lp
, EqSBP

m,hp
). Applying

a simple δm function that detects the genes that show some expression difference in the two
datasets shown in Figure 2, the set of regulated genes for the in silico prediction is RSBP

m =
{PHO81,PHO5}.

In ideal conditions we should have RµA = Rm (and Gm = GµA), but in a scenario where
all kind of systematic and random errors can occur the GµA, Gm, RµA and Rm sets are all
potentially different. We further discuss the subsets of RµA which is the set of genes we want
to “clean”, distinguishing the cases Gm ⊆ GµA, Gm ≡ GµA and GµA ⊆ Gm. Since the
microarray chips can handle almost the whole genome while the computational models are still
far from it (as in our case), we focus on the first case represented in Figure 3:

RµA \Gm contains the microarray regulated genes which are not considered in the computa-
tional model. The genes in this set are those whose investigation can potentially increase
the biological knowledge and improve the model. For the running example we have
RFODB

µA \GSBP
m = {PHO11,PHO12,PHO8,PHO84,PHO89,PHO86,SPL2,PHM1,PHM2,PHM3,

PHM4,PHM5,PHM6,PHM7,PHM8,HOR2,CTF19,HIS1}
R = RµA ∩Rm represents the set of genes that are regulated in both approaches. In the exam-

ple RPHO = {PHO81,PHO5}
3The δµA as used here accepts two expression datasets, but it can be generalised to consider two sets of

expression data in presence of experimental designs with replicas.
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GµA

RµA

Gm

RmR Rc

C0

Figure 3: Representation of the possible intersections between GµA (the set of genes with a spot
on the microarray), Gm (the set of genes considered in the model), RµA (the set of microarray
regulated genes) and Rm (the set of in silico regulated genes) assuming Gm ⊆ GµA.

Rc ⊆ R contains, for definition, the genes of the model that are regulated in a consistent way
with respect to the regulations detected by the microarray:

Rc =



g ∈ RµA ∩Rm

∣∣∣
Exprq1

µA
(g)

Exprq2
µA

(g)
' Exprq1

m
(g)

Exprq2
m
(g)



 (4)

The expression comparison operator (') is not precisely defined since different levels of
consistency can be considered4. Also the comparison of the expression ratios is not the
only comparison technique [20]. The set of the genes that are regulated consistently (with
a over- or under-expressed comparison) between RFODB

µA and RSBP
m of our example is

RPHO
c = {PHO81,PHO5} (5)

(RµA ∩Gm) \Rm contains the genes regulated in the microarray but not in the in silico sim-
ulations. The mismatch can be due to errors, or to the lack of biological information on
which the model is constructed. In the running example (RFODB

µA ∩GSBP
m ) \RSBP

m = ∅
C0 = (GµA ∩Gm) \ (RµA ∪Rm) the set of constitutive (i.e. not regulated) genes in both mi-

croarray and in silico experiments. In the running example CPHO
0 = {PHO2,PHO4}

Rm \R the set of genes that are regulated only in the in silico experiments. In our example
RSBP

m \RPHO = ∅.

GµA ≡ Gm

RµA RmR RcC0

GµA©¼Gm

RµA RmR RcC0

Figure 4: Representation of GµA, Gm, RµA and Rm assuming Gm ≡ GµA and GµA ⊆ Gm.

The cases Gm ≡ GµA and GµA ⊆ Gm are represented in Figure 4. Both cases are nowadays
not realistic and they foresee the scenarios of genome wide modelling and synthetic biology
modelling respectively. The main differences with the Gm ⊆ GµA case are that RµA \Gm = ∅
and that in the GµA ⊆ Gm case there is the Rm \ GµA set of the genes considered in the
computational model but not on the microarray chip.

4The most restrictive is the =, while the less restrictive is an operator that check if the gene is over or under
expressed (expression ratio different from 1) in both approaches, but other intermediate operators can be defined.
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3.1 Accuracy and coverage measures

From a methodological point of view, for the consistently regulated genes Rc and the consis-
tently costitutive genes C0, the modelling approach agrees with the microarray one, while the
genes in R \Rc, (RµA ∩Gm) \R and (Rm ∩GµA) \R represent an incongruence between the
approaches. With these sets we define the following measures of accuracy and coverage:

A =
|Rc|+ |C0|
|GµA ∩Gm| × 100 Cov =

|GµA ∩Gm|
|GµA| × 100 Cove =

|RµA ∩Gm|
|RµA| × 100 (6)

The accuracy A measure the level of mutual reliability of computational modelling (and indi-
rectly of the biological knowledge) and of microarray expression data. Cov is the chip coverage
and it reflects the coverage level of the model with respect to the microarray chip. It is an a
priori quantification of the percentage of the genes in the microarray chip that are also consid-
ered in the model. However, a low chip coverage does not implies that the approach is useless
because the microarray regulated genes can be highly covered by the model even if the chip
is poorly covered. So another coverage measure, that we call experimental coverage (Cove),
is introduced. The Cove can be calculated only when both the microarray and the in silico
experiment are performed and it is referred only to a single experiment, but it is a more ac-
curate evaluation of the experimental quality. Moreover, minimizing the chip coverage after
maximizing the experimental coverage, gives the same results of a complete chip coverage, but
it requires a much lower computational effort for the in silico experiments. In any case, the
coverage and the accuracy must be considered together for evaluating the overall quality of the
approach for a performed experiment.

Observing on the running example that |RPHO
c | = 2, |CPHO

0 | = 2, |GFODB
µA ∩ GSBP

m | =
|GSBP

m | = 4, |GFODB
µA | = 6400, |RFODB

µA | = 20 and |RFODB
µA ∩ GSBP

m | = 2, the introduced
measure are: APHO = 100%, CovPHO = 0, 0625% and CovPHO

e = 10%.

This means that the model predicts the expression profiles consistently with the microarray
experiment, but the coverage is very low as we expected since the model is local. The relatively
high experimental coverage means that the model fits at least partially the pathways whose
genes are interested in the regulation.

4 Prospective applications in microarray differential analysis

The set of genes detected with the microarray differential analysis whose regulation is in rela-
tion with a specific condition, can be very large and so hard to analyse. The applications we
propose here are based on the described framework and are intended to be applied on the set of
regulated genes in order to detect the most informative genes before further analysis.

4.1 Removing the genes regulated in the in silico predictions

The set of regulated genes can include many genes that are already indirectly known to be
related with the experimental conditions. The removing of these genes allows the biologist to
focus only on the really unknown genes. The idea is to use computational models, built on the
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current biological knowledge, to predict the genes that will be regulated in a specific microarray
experiment and remove them from the microarray experimental results.

The aim of this application is to filter out from the regulated genes of the microarray experiment
(RµA), those genes that the model suggests to be regulated (Rm). We would remove directly
the genes in Rm from the genes in RµA. In other words the set of really interesting genes Rint

would be Rint = RµA \ Rm. In presence of errors and approximations, this definition is no
more acceptable mainly because the uncertainty on Rm. We need a more robust definition of
the set of genes that can be safely removed from the microarray regulated ones. So instead of
subtracting from RµA the Rm set, we subtract the genes that are regulated in a consistent way
in both approaches, i.e. the Rc set as defined in (4). So Rint = RµA \Rc.

Returning to the example, this definition is RPHO
int = RFODB

µA \ RPHO
c where the RFODB

µA and
RPHO

c are computed as shown in (2) and (5). The resulting set of really interesting genes is

RPHO
int = {PHO11,PHO12,PHO8,PHO84,PHO89,PHO86,SPL2,PHM1,PHM2,PHM3,

PHM4,PHM5,PHM6,PHM7,PHM8,HOR2,CTF19,HIS1} (7)

Our application has filtered out from the set of microarray regulated genes of [5] two genes
(PHO5 and PHO81) predicted by the computational model [19]. So we have reduced the number
of genes that represent new biological information suggesting that this application is useful.

The genes considered in the model are only 4, and the two that have been removed from RPHO
int

are those that the model predicts sensitive to different phosphate metabolism. So, as the ac-
curacy measure (APHO = 100%) suggests, the model predictions are in this case the more
desirable ones with respect to the very low coverage. We can conclude that this application
can be a helpful tool for a biologists, especially in the cases where the microarray experiment
detects an high number of regulated genes and the computational model has a reasonable good
experimental coverage in addition to the accuracy.

4.2 Removing the genes regulated by the non controlled variables

The definition of the microarray experiment includes the notion of controlled conditions and
dependent not-directly controlled variables. Obviously, the effects of the dependent variables
in terms of regulated genes cannot be detected in isolation or separated from the independent
variable effects within the same microarray experiment. However, if biological knowledge on
the effects of the dependent variables is available, it is possible to incorporate this in a model.
The idea is to estimate in silico the genes that are regulated because of the dependent variables
in order to remove them from the set of microarray regulated genes. Note that the values of the
dependent variables included in the specification of the in silico gene expression experiments
are those measured contextually with the microarray experiment. Since, as seen, the microarray
experiment of [5] does not provide any dependent variables, we cannot test this conceptual
application with our running example.

Consider the following three microarray experiments5:

qµA = (G,C, M, P ) qcntr
µA = (G,Ccntr,M cntr, P ) qh

µA = (G,C,M cntr, P )

5In this subsection we assume that G = GµA ≡ Gm, without losing generality.
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with IV (qµA) = IV (qcntr
µA ) = IV (qh

µA) and DV (qµA) = DV (qcntr
µA ) = DV (qh

µA). The first
two chips are a microarray experiment (qµA) and the relative control chip (qcntr

µA ), while the
third (qh

µA) is a hypothetical variation of the microarray chips in which the actual values of
dependent variable are replaced with the control ones. Notice that the experiment qh

µA cannot
be really performed since the values of the independent variables C force the values of the
dependent controlled variables to be M and not M cntr. Suppose one applies a δµA function in
the following way:

RµA = δµA(EqµA
, Eqcntr

µA
) RV

µA = δµA(Eqh
µA

, Eqcntr
µA

) RVD
µA = δµA(EqµA

, Eqh
µA

)

RµA is the standard set of genes that are regulated because of the differences between levels
of the independent and dependent variables between the two chips, RV

µA contains the genes
that are regulated only by the independent variables (since qh

µA and qcntr
µA have the same values

of dependent variables M cntr), and RVD
µA represents the genes that are regulated only by the

dependent variables (since qµA and qh
µA have the same values of the independent variables C).

RV
µA is the set of genes that the experimenter would have because it is not influenced by the

dependent variables, but it is not possible to obtain because the qh
µA chip is only hypothetical.

Under the assumption that the sets of genes regulated by the dependent and independent vari-
ables are disjoint, the set of genes regulated by the independent variables in the microarray
experiment RV

µA could be estimated subtracting from the regulated genes RµA those genes that
are regulated because of the dependent variable RVD

µA. So

RV
µA = RµA \RVD

µA (8)

but also RVD
µA is not possible to obtain, since it needs the hypothetical qh

µA chip.

However, in this framework we have the possibility to estimate expression experiments with the
computational model. In particular, all the following experiments can be performed in silico:

qm = (G,C, M, P ) qcntr
m = (G,Ccntr,M cntr, P ) qh

m = (G,C, M cntr, P )

With these in silico experiments it is possible to detect the gene regulated only by the in-
dependent (RV

m) and only by the dependent variables (RVD
m ): RV

m = δm(Eqh
m
, Eqcntr

m
) and

RVD
m = δm(Eqm , Eqh

m
). The direct approximation of RV

µA with RV
m is useless because in this

way we rely only on the model, losing the information of the microarray experiment.

The idea for integrate the microarray and the in silico data consists in filtering out from the set
of microarray regulated genes those genes that are regulated because of the dependent variables,
substituting RVD

µA with RVD
m in (8): RV

µA ' RµA \RVD
m . If a gene is regulated both because of the

independent and because of the dependent variables, the estimation of RV
µA will not include that

gene. For this reason is necessary to assure that the independent variables V and the dependent
variables VD regulate two different set of genes meaning that the influence on gene regulation
of the two set of variables is disjoint.

Definition 4.1 V and VD are disjoint with respect to the gene regulation (or ge-disjoint) if and
only if for every possible values associated to the variables the following holds: RV

µA ∩RVD
µA =

∅ ∧ RV
m ∩RVD

m = ∅
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(a) (b)

µA chips Model m

µA exp. des. m exp. des.

qµA qm

EqµA Eqm

RµA Rm

Rint

δµA δm

µA chips Model m

µA exp. des. m exp. des.

qµAqcntr
µA qm qcntr

m qh
m

EqµAEqcntr
µA

EqmEqcntr
m

Eqh
m

RµA RV
mR

VD
m
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µA

δµA δm

Experimental
design

Experiments
& simulations

Gene expr.
measurement

Regulated
genes det.

Integration

Figure 5: The modules interested by the application for removing the in silico regulated genes (a)
and by the application for removing the genes regulated by non controlled variables (b).

This definition is too restrictive because it is impossible to directly obtain RV
µA and RVD

µA. How-
ever, the definition can be made less strict for an effective application if we have an high ac-
curacy and a good confidence in the quantitative estimation of gene expression of the model.

Definition 4.2 V and VD are ge-disjoint, if and only if for every possible values associated to
the variables the following holds: RV

m ∩RVD
m = ∅

The complete definition for removing from the set of regulated genes of a microarray, the genes
that are regulated only by the dependent variables, is RV

µA ' RµA \RVD
m if RV

m ∩RVD
m = ∅.

If V and VD are not ge-disjoint (or if it is not possible to show it), we can partition VD in two
subsets V ′

D, V ′′
D ⊂ VD with V ′

D∩V ′′
D = ∅ and V ′

D∪V ′′
D = VD such that V ′

D and V are ge-disjoint.
We can still remove some genes from RµA, and precisely the genes regulated because of V ′

D.

So in the cases where it is possible to show that the set of independent variables (or a subset) are
ge-disjoint from the set (or from a subset) of the dependent measured variables, we can remove
all (or some of) the genes that are not directly regulated by the experimental conditions.

5 From a conceptual to a software framework

Our notational framework can be a guide for the development of software tools for supporting
analyses that combine the two fields of the microarray technology and the system level mod-
elling and simulation of biological networks. While for the first a lot of bioinformatics tools
have been developed for every aspect of the technology, the second still needs research in order
to make the development and the simulation of systems biology models effective.

Our conceptual framework assumes to have a computational model and microarray chips and
can actively act on different phases: the experimental design, the experiments and simulations,
the gene expression measurement, the regulated genes detection and the integration of regu-
lated genes. The first application (Figure 5.a) concerns only the manipulation of the regulated
genes belonging to microarray and in silico experiments designed with the same conditions,
while the second (Figure 5.b) interests also the design, requiring some experiments with partic-
ular settings of the dependent and independent conditions. Other applications can regard also
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other phases, and for this reason we discuss the availability of implemented software or formal
specification for each phase.

Experimental design In-depth studies have been done to make microarray experiments max-
imally informative, given the effort and the resources [21, 22]. In this work we assume
that an in silico simulated microarray experiment has the same abstract behaviour of the
real one; for this reason all the designs reported in literature can be applied also to the
simulated case. However, some improvements can be done relying on the fact that once
the model is developed the simulation cost is much lower than the microarray experi-
mental one. Moreover some hybrid designs are possible integrating in the same design
simulated and real microarray experiments.

Experiments and simulations The microarray experimental procedure has reached a good
level of standardization [2]. Instead, the possible sources of variability in the computa-
tional simulation rely on model errors and approximations in the simulation algorithm;
however, both problems regard in general the computational modelling of biological sys-
tems, while the simulation procedure is intrinsically standard.

Gene expression measurement The output of a microarray experiment is obtained with the
optical scan of the array and the analysis of the resulting image. Software tools for this
operation are available. Both microarray output after scanning and in silico expression
results, needs normalization procedures to make meaningful comparisons of expression
levels. For microarray experiments, statistical methods are available [18], while for the
in silico simulations specific normalization procedures must be developed because the
distribution of the expression can be different from the microarray ones. Since in silico
microarray outputs are not available, more precise discussions cannot be done, but it is
reasonable to adapt some microarray techniques with specific parameters and thresholds.

Regulated genes detection Statistical techniques for δµA are available and implemented [20].
δm, instead, was never developed, but the tuning of some δµA functions is reasonable,
considering also that the in silico simulations are not affected by the random experimental
error and by approximation in the optical scanning of the chip and so they are less noisy.

Integration of regulated gene sets The integration of the set of regulated genes are normal
operations on sets and can thus be easily implemented.

6 Conclusions

The traditional use of biological models concerns the parameters estimation and the qualitative
and quantitative description of not directly observable and high level behaviours. After the
paradigmatic shift of systems biology there is the need to integrate high-throughput data and
the in silico results of genomic-scale compositional models. In this work we propose a frame-
work that allows the use of systems biology models to support analysis of high-throughput
data, whose final goal is to compare the current biological knowledge with new genomic ex-
periments. The comparison aims to discover unknown aspects of complex and wide biological
networks allowing to focus further investigations only on that very specific subnetworks. The
overall procedure is somehow recursive since the new discoveries reached starting from the
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model suggestions, permits improvements of the biological knowledge from which it is possi-
ble to construct more precise models.

We introduced a unifying notational framework for representing the microarray experiments
and the in silico simulations of gene expression. The notation was specialized in the context of
differential gene expression analysis. Then, we proposed two prospective applications of our
conceptual framework with the purpose of supporting the mining of regulated genes detected
with microarray expression data. Reference to the real example of the stochastic π-calculus
PHO pathway model [19] and of the PHO microarray experiment of [5], was systematically
made. The same example, though not with a genomic scale model, was also applied to the first
application in which we were able to remove two genes from the set of regulated genes of the
microarray experiment, thus obtaining encouraging results and highlighting the utility of the
approach. The second application, instead, pointed out how it is possible for a computational
model to predict the genes regulated by the dependent measured variables only, in order to focus
on the genes regulated by the independent variables. Finally we discuss for each phase, namely
the experimental design, the experiments and simulations, the gene expression measurement,
the regulated genes detection and the integration of regulated genes, which are the aspects that
need further investigation to obtain an effective software framework.

To our best knowledge, this is the first attempt to tackle directly the problem of integration
of computational systems biology modelling and high-throughput expression data. Currently,
genomic-scale models are not yet available, but as the model size grows reaching the systems
biology level the impact of our integration can be very important for bringing together biologi-
cal knowledge and high-throughput experimental research.

References

[1] J.M. Bower and H. Bolouri. Computational Modeling of Genetic and Biochemical Net-
works. MIT Press, 2001.

[2] A. Brazma, P. Hingamp, J. Quackenbush, G. Sherlock, P. Spellman, C. Stoeckert, J. Aach,
W. Ansorge, C.A. Ball, et al. Minimum information about a microarray experiment
(miame)-toward standards for microarray data. Nat Genet, 29(4):365–71, 2001.

[3] D. Chaussabel and A. Sher. Mining microarray expression data by literature profiling.
Genome Biol, 3(10):research0055.1–0055.16, 2002.

[4] M.B. Eisen, P.T. Spellman, P.O. Brown, and D. Botstein. Cluster analysis and display of
genome-wide expression patterns. Proc. Natl. Acad. Sci. USA, 95:14863–14868, 1998.

[5] G.R. Fink, N. Ogawa, J. DeRisi, and P.O. Brown. New components of a system for phos-
phate accumulation and polyphosphate metabolism in saccharomyces cerevisiae revealed
by genomic expression analysis. Mol Biol Cell, 11(12):4309–4321, 2000.

[6] G.W. Hatfield, S. Hung, and P. Baldi. Differential analysis of dna microarray gene expres-
sion data. Mol Microbiol, 47(4):871–877, 2003.

[7] A. Hoffmann, A. Levchenko, M.L. Scott, and D. Baltimore. The ikappa b-nf-kappa b sig-
naling module: Temporal control and selective gene activation. Science, 298(5596):1241,
2002.

Journal of Integrative Bioinformatics, 5(1):87, 2008 http://journal.imbio.de

doi:10.2390/biecoll-jib-2008-87 14

http://journal.imbio.de/


[8] C.Y.F. Huang and J.E. Ferrell Jr. Ultrasensitivity in the mitogen-activated protein kinase
cascade. Proc Natl Acad Sci USA, 93:10078–10083, 1996.

[9] S. Huang. Back to the biology in systems biology: What can we learn from biomolecular
networks? Brief Funct Genomic Proteomic, 2(4):279, 2004.

[10] P. Khatri and S. Draghici. Ontological analysis of gene expression data: current tools,
limitations, and open problems. Bioinformatics, 21(18):3587–3595, 2005.

[11] H. Kitano. Computational systems biology. Nature, 420(6912):206–210, 2002.

[12] H. Kitano. Systems biology: A brief overview. Science, 295(5560):1662–1664, 2002.

[13] D.J. Lockhart, H. Dong, M.C. Byrne, M.T. Follettie, M.V. Gallo, M.S. Chee,
M. Mittmann, C. Wang, M. Kobayashi, H. Horton, et al. Expression monitoring by hy-
bridization to high-density oligonucleotide arrays. Nat Biotech, 14:1675–1680, 1996.

[14] P. Pavlidis, J. Qin, V. Arango, J.J. Mann, and E. Sibille. Using the gene ontology for
microarray data mining: A comparison of methods and application to age effects in human
prefrontal cortex. Neurochem Res, 29(6):1213–1222, 2004.

[15] M. Peleg, I. Yeh, and R.B. Altman. Modelling biological processes using workflow and
petri net models. Bioinformatics, 18(6):825–837, 2002.

[16] M.S. Pepe, G. Longton, G.L. Anderson, and M. Schummer. Selecting differentially ex-
pressed genes from microarray experiments. Biometrics, 59(1):133–142, 2003.

[17] C. Priami and P. Quaglia. Modelling the dynamics of biosystems. Brief Bioinform,
5(3):259–269, 2004.

[18] J. Quackenbush. Microarray data normalization and transformation. Nat Genet, 32:496–
501, 2002.

[19] N. Segata, E. Blanzieri, and C. Priami. Stochastic π-calculus modelling of multisite phos-
phorylation based signaling: in silico analysis of the pho4 transcription factor and the pho
pathway in saccharomyces cerevisiae. Technical Report TR-08-2007, Microsoft Research
- University of Trento Centre for Computational and Systems Biology, 2007.

[20] V.G. Tusher, R. Tibshirani, and G. Chu. Significance analysis of microarrays applied to
the ionizing radiation response. Proc Natl Acad Sci USA, 98(9):5116–5121, 2001.

[21] Y.H. Yang and T. Speed. Design issues for cdna microarray experiments. Nat Rev Genet,
3(8):579–588, 2002.

[22] S.O. Zakharkin, K. Kim, T. Mehta, L. Chen, S. Barnes, K.E. Scheirer, R.S. Parrish, D.B.
Allison, and G.P. Page. Sources of variation in affymetrix microarray experiments. BMC
Bioinformatics, 6(214):1471–2105, 2005.

Journal of Integrative Bioinformatics, 5(1):87, 2008 http://journal.imbio.de

doi:10.2390/biecoll-jib-2008-87 15

http://journal.imbio.de/

	Introduction
	A unifying notational framework
	Microarray experiments and microarray dataset
	The in silico model-based simulation of expression experiments

	Differential analysis of microarray gene expression data
	Accuracy and coverage measures

	Prospective applications in microarray differential analysis
	Removing the genes regulated in the in silico predictions
	Removing the genes regulated by the non controlled variables

	From a conceptual to a software framework
	Conclusions



