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Abstract

We study vortices for solutions of the perturbed Ginzburg-Landau equations ∆u +
1
ε2 u(1−|u|2) = fε where fε is estimated in L2. We prove upper bounds for the Ginzburg-
Landau energy in terms of ‖fε‖L2 , and obtain lower bounds for ‖fε‖L2 in term of the
vortices when these form “unbalanced clusters” where

∑
i d2

i 6= (
∑

i di)
2.

These results will serve in Part II of this paper [S1] to provide estimates on the energy-
dissipation rates for solutions of the Ginzburg-Landau heat-flow, which allow to study
various phenomena occurring in this flow, among which vortex-collisions; allowing in
particular to extend the dynamical law of vortices passed collisions.

1 Introduction and statement of the main results

1.1 Presentation of the problem

In this paper, we study the forced Ginzburg-Landau equation

(1.1)

{
∆u +

u

ε2
(1− |u|2) = fε in Ω

u = g (resp. ∂u
∂ν = 0) on ∂Ω.

where fε is a forcing right-hand side which is given in L2(Ω). Here Ω is a two-dimensional
domain, assumed to be smooth, bounded and simply connected, and u is a complex-valued
function, assumed to satisfy either one of the boundary conditions

(1.2) u = g on ∂Ω

with g a fixed regular map from Ω to S1, in which case we also assume that Ω is strictly
starshaped with respect to a point; or

(1.3)
∂u

∂ν
= 0 on ∂Ω
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in which case no further assumption is made. This equation with fε = 0 is the standard
Ginzburg-Landau equation, which has been intensively studied, in the asymptotic limit ε → 0,
in particular since the work of Bethuel-Brezis-Hélein [BBH].

Our motivation for studying the L2 perturbed equation, which we will develop in Part II
of this paper [S1], is to study the two-dimensional parabolic Ginzburg-Landau equation:

(1.4)





∂tu

|log ε| = ∆u +
1
ε2

u(1− |u|2) in Ω× R+

u(., 0) = u0
ε in Ω,

with the same boundary conditions as above. However, the results we present here have an
interest of their own and can be read independently of Part II.

The Ginzburg-Landau heat flow is an L2 gradient-flow (or steepest descent) for the
Ginzburg-Landau functional

(1.5) Eε(u) =
1
2

∫

Ω
|∇u|2 +

(1− |u|2)2
2ε2

.

This energy functional is a simplified version (without magnetic field) of the Ginzburg-
Landau model of superconductivity. Such functionals also appear in other models from
physics: for superfluidity, nonlinear optics, Bose-Einstein condensates; and the complex-
valued function u, called “order parameter”, plays the role of a condensed wave-function.

In this model, the interesting objects are the vortices, or zero-set of the complex-valued
function u carrying a topological degree: since u is complex-valued, it can have a nonzero
integer degree around each of its zeroes. Vortices can also be seen as having a “core”, where
|u| is small, of characteristic lengthscale ε; and a “tail” where |u| is close to 1, but the phase
of u still carries a lot of energy; they can be clearly extracted in the asymptotic limit ε → 0.

Vortices in the Ginzburg-Landau model have been the object of intense studies, generally
in the asymptotic limit ε → 0 where they become point singularities, in particular since
the work of [BBH] on (1.5), under the assumption Eε(u) ≤ C|log ε| (bounding the possible
number of vortices); refer also to [SS2] for the analysis of the full model with magnetic field.
In both cases, some Γ-convergence type results were obtained.

A very precise description of the vortices and of the energy of (nonminimizing) solutions
of the Ginzburg-Landau equation, i.e. (1.1) with fε ≡ 0, was given by Comte and Mironescu
in [CM1, CM2]. We are interested here in generalizing these results, and in studying how
much the situation can differ from the fε ≡ 0 case. Since we are interested in studying vortex-
collisions for solutions of (1.4), we focus on understanding static situations where vortices are
very close to each other. We will characterize “pathological vortex situations” for (1.1) as
those for which we have a group of vortices which are far from the others, and degrees di and
(
∑

i di)2 6=
∑

i d
2
i in the group, which we call an “unbalanced cluster of vortices”.

We study the equation (1.1) with an L2-perturbation term because (1.4) is precisely an
L2 gradient flow for (1.5) and thus for uε solving (1.4), we have

− d

dt
Eε(uε(x, t)) = |log ε|

∫

Ω

∣∣∣∣∆uε +
1
ε2

uε(1− |uε|2)
∣∣∣∣
2

.

Thus, if we write that (1.4) holds with fε = ∂tuε
|log ε| , we precisely have that |log ε|‖fε‖2

L2(Ω) is
the energy-dissipation rate for solutions of (1.4). This will be crucially used in Part II [S1]
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and this motivates our need for estimates, in particular lower bounds, on ‖fε‖L2 . If ‖fε‖L2

is large, then the energy dissipates fast in the flow (1.4), thus decreasing to a point which
allows to rule out certain configurations (for example if Eε decreases so much that Eε ≤ C
then there can be no more vortices). On the other hand, if fε is small, then (1.1) can be seen
as a small perturbation of the Ginzburg-Landau equation

(1.6)
{ −∆u = 1

ε2 u(1− |u|2) in Ω
u = g or ∂u

∂ν = 0 on ∂Ω,

for which a number of qualitative facts about vortices is known. The idea is thus to use this
alternative in a quantitative way, in order to deduce from the static study information on
vortex-collisions or other pathological situations in the dynamics.

More precisely, it is known that if u is a solution of Ginzburg-Landau in the plane, with
vortices (ai, di) then we must have

(1.7)

(∑

i

di

)2

=
∑

i

d2
i

equivalent to the fact that
∑

i 6=j didj = 0, or to the fact that the forces exerted by the
vortices balance each other. This follows from suitable applications of the Pohozaev identity,
as in [BMR]. Similarly, as seen in [BBH, CM1], if uε, a solution of (1.6) in a bounded
domain, has some vortices ai of degree di accumulating (as ε → 0) around a single point
p, then the same rule (

∑
i di)2 =

∑
i d

2
i holds. Now, if uε is a configuration with say, two

vortices, one of degree 1, one of degree −1, at a distance o(1) as ε → 0 (which is what
happens during a vortex-collision of a +1 with a −1) then this rule is obviously violated
(and it’s the same for any situation with (

∑
i di)

2 6= ∑
i d

2
i ), so we can trace how much it is

violated in the Pohozaev identity for (1.1), and get a lower bound for ‖fε‖L2 . The technique
thus relies on some adaptations of the Pohozaev identities with error term fε. Observe that
Pohozaev identities have already been widely used in the context of Ginzburg-Landau statics
and dynamics ([BMR, BBH, BCPS, RuS, SS2]). Some similar results and the “balanced
clusters” condition (1.7) also appear in the recent preprint of Bethuel-Orlandi-Smets [BOS]
(see Theorem 5) on the parabolic Ginzburg-Landau equation.

1.2 Main results on (1.1)

Before stating the results, let us make a few assumptions. Since we are going to consider
nice initial data u0

ε for (1.4) with a fixed number of vortices as ε → 0, and since the energy
decreases during the flow, it is natural to restrict to

(1.8) Eε(uε) ≤ M |log ε|

and

(1.9) |uε| ≤ 1 |∇uε| ≤ M

ε
.

It is well-known that (1.4) is well-posed and that if these estimates are true for u0
ε, they

remain satisfied at all times for solutions of (1.4).
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We sometimes assume in addition that

(1.10) ‖fε‖2
L2(Ω) ≤

1
εβ

for some β < 2.

If this assumption is not true, then clearly we have a large lower bound on ‖fε‖L2 . If (1.10)
holds, then after blow-up at the scale ε, solutions of (1.1) converge to solutions of Ginzburg-
Landau in the plane

−∆U = U(1− |U |2)
which enables to define what we shall call a “good collection of vortices” ai with degrees di

(depending on ε) for uε. Without going into full details of what it means and how they are
found, these are points such that the balls Bi := B(ai, Rεε) with some 1 ¿ Rε ≤ |log ε|, are
disjoint and cover all the zeroes of uε, and di = deg (uε, ∂B(ai, Rεε)) 6= 0. We can then give a
more precise definition (although we will mostly use a slightly weaker condition, see Theorem
2)

Definition 1. The ai’s and di’s being as above, we say that uε has a cluster of vortices at
the scale l at x0 if

B(x0, l) ∩ {ai} 6= ∅(1.11)
dist({ai/ai /∈ B(x0, l)}, B(x0, l)) À l, as ε → 0.(1.12)

We say uε has an unbalanced cluster of vortices at the scale l at x0 if the previous conditions
hold and if

∑

i/ai∈B(x0,l)

d2
i 6=


 ∑

i/ai∈B(x0,l)

di




2

.

Once these vortices are found, it allows to define a canonical harmonic phase θ in Ωε :=
Ω\ ∪n

i=1 B(ai, Rεε) as the harmonic conjuguate of Φ solution to −∆Φ = 2π
∑

i diδai with
suitable boundary conditions. Once this is done, denoting ϕ the phase of uε, i.e. u = ρeiϕ in
Ωε, we may consider the phase-excess ψ = ϕ− θ. The first main result consists in evaluating
the energy-excess (due to both the phase-excess and the modulus of u), in terms of only
one natural quantity: the L2 norm of fε, the natural norm to consider for the study of the
parabolic flow.

The method is inspired by that of Comte-Mironescu in [CM1, CM2], however their result
was for the case fε ≡ 0, and used some precise L∞ and decay estimates for solutions of
Ginzburg-Landau away from the vortices. Here we retrieve the result with the only control
on ‖fε‖L2 and no a-priori bounds, other than (1.8) and (1.9). We obtain in addition a scaled
version of the estimate, localised in any (small) ball. The result is

Theorem 1. Let uε satisfy (1.1), (1.8), (1.9) and (1.10). The ai, di, Bi being as above, we
have

(1.13)
∫

Ωε

|∇ψε|2 ≤ o(1) + C‖fε‖2
L2(Ω).

(1.14)
∫

Ωε

|∇|uε||2 +
(1− |uε|2)2

ε2
≤ o

(
1 + ‖fε‖2

L2(Ω)

)
.
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For any x ∈ Ω, and any l À ε
√
|log ε|, we have

(1.15)
∫

Ω∩B(x,l)\∪iBi

|∇ψε|2 ≤ min
(
C + Cl2 log2 l‖fε‖2

L2(Ω), o
(
1 + l2 log4 l‖fε‖2

L2(Ω)

))
,

and

(1.16)
∫

Ω∩B(x,l)\∪iBi

|∇|uε||2 +
(1− |uε|2)2

ε2
≤ o(1) + o

(
l2 log2 l‖fε‖2

L2(Ω)

)
.

Moreover, we have,

(1.17) ∀α < 1, απ

n∑

i=1

d2
i ≤

Eε(uε)
|log ε| + C|log ε|7/2ε1−α‖fε‖L2(Ω) + o(1),

and

(1.18) π
n∑

i=1

d2
i log

1
ε

+ Wd(a1, · · · , an) +
n∑

i=1

γ(Vi) + o(1) ≤ Eε(uε)

≤ π
n∑

i=1

d2
i log

1
ε

+ Wd(a1, · · · , an) +
n∑

i=1

γ(Vi) + C‖fε‖2
L2(Ω) + o(1),

where the Vi’s are the (limiting) blown-up profiles of uε around ai at scale ε, and the γ(Vi)
are constants equal when di = ±1 to a universal constant γ introduced in [BBH].

Moreover, all the constants C and o(1) above depend only on β, M , Ω and g (if applicable).

This result allows to bound the phase-excess (with scaled versions of it, cf. (1.15)–(1.16)),
and in turn to bound the energy-excess in terms of ‖fε‖L2 and of the vortices of uε only, in
(1.18). This way, it provides a lower bound for ‖fε‖L2 and it allows, for solutions of (1.4),
to bound from below the energy-dissipation rate, and to bound from above the number of
vortices through (1.17). Let us mention that the “energy-quantization” result for solutions of
(1.4) shown in [BOS] (Theorem 6 and appendix) is equivalent at leading order to (1.18).

From this first theorem, we may implement the Pohozaev strategy described above and
obtain the following.

Theorem 2. There exist constants l0 > 0 and K0 > 0 such that, assuming that uε is as in
Theorem 1, and that there exists a nonempty subcollection {Bi}k

i=1 of the balls {Bi} which are
included in B(x0, l/2), ε

√
|log ε| ¿ l < l0 as ε → 0, and such that for some K > K0, either

1. B(x0,Kl) ⊂ Ω and B(x0,Kl) intersects no other ball in the collection {Bi}, and we
have

(1.19)
k∑

i=1

d2
i 6=

(
k∑

i=1

di

)2

.

2. x0 ∈ ∂Ω and B(x0,Kl) intersects no other ball in the collection {Bi}.
Then

(1.20) ‖fε‖2
L2(Ω) ≥ min

(
C

l2|log ε| ,
C

l2 log2 l

)
.

All the constants above depend only on β, M , Ω and g.
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This is exactly the desired lower bound on ‖fε‖2
L2 : it shows it blows up like 1/(l2|log ε|)

in most cases, as the scale of the unbalanced cluster of vortices l gets small.
As a byproduct, we retrieve in the case fε = 0

Corollary 1.1. Let uε be solutions of the Ginzburg-Landau equation (1.6) such that Eε(uε) ≤
C|log ε|. Then, there exists a constant l0 > 0, such that for ε small enough, uε has no
unbalanced cluster of vortices at any scale l < l0; and has no vortex at distance < l0 from the
boundary.

Some sharper (but of same order) lower bounds for ‖fε‖2
L2 will be given in Proposition

5.1 in [S1], by blowing up at the scale l in the case where l is not too small (log4 l ≤ C|log ε|).
Observe that all these results (in particular (1.20)) can be viewed as obtaining lower

bounds for the higher-order energy-functional Fε(u) =
∫
Ω |∆u + u

ε2 (1 − |u|2)2|2 under the
assumption Eε(uε) ≤ C|log ε|. It was proved in [Li, SS1] that (denoting here and in the rest of
the paper by (., .) the scalar product in C identified with R2) if curl (iuε,∇uε) ⇀ 2π

∑n
i=1 Diδpi

as ε → 0 (i.e. the limiting vortices of uε as ε → 0 are the pi’s with degrees Di), then

lim inf
ε→0

(|log ε|Fε(uε)) ≥ 1
π

n∑

i=1

|∇iWD(p1, · · · , pn)|2

This is the lower bound part of a Γ-convergence result (the upper bound should not be hard to
prove). The lower bounds we obtain here (and in Proposition 5.1 of Part II) are in agreement
with this, but in general sharper since they involve the locations and degrees of the vortices
at the ε level, and blow up when these get very close.

Let us point out that such a study of forced equations, with its “dual” Γ-convergence
point of view, was performed for the Allen-Cahn equation (the same equation as (1.1) but
with real-valued functions — an important model for phase-transitions) with a lower bound
by the Wilmore functional, see [To, RS] and the references therein. We are not aware of any
other singularly perturbed equation for which this has been done.

In this first paper, we start by performing a “Pohozaev ball-construction” which is an
adaptation of that done in [SS2] but with nonzero error term fε. This allows to bound the
number of vortices and define a good collection of vortices. Then, we prove Theorem 1 and
Theorem 2.

In the second part [S1], we will present the applications of both of these theorems to the
dynamics and collisions of vortices under (1.4).

Acknowledgments: We wish to thank warmly Petru Mironescu and Etienne Sandier for helpful
discussions.

2 A “Pohozaev ball-construction” for (1.1) and applications

This construction, which is a combination of the Pohozaev identity with the ball-growth
method of Jerrard/Sandier, consists in an adjustment of the one presented in [SS2], taking
into account the nonzero right-hand side in (1.1). The main result is
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Proposition 2.1. Let uε satisfy (1.1), (1.8), (1.9) and (1.10). Then,

(2.1)
∫

{x∈Ω,|u(x)|≤1− 1
|log ε|2 }

(1− |u|2)2
ε2

≤ C,

where C depends only on β in (1.10), M , Ω and g.

2.1 Pohozaev identities for (1.1)

The Pohozaev identity consists in multiplying (1.1) by x · ∇u and integrating by parts. How-
ever, because of the boundary conditions, we will need a more general version of it, as in
[SS2], Chapter 4.2

Introducing the stress-energy tensor associated to the equation

(2.2) Tij =
1
2

(
|∇u|2 +

1
2ε2

(1− |u|2)2
)

δij − (∂iu, ∂ju),

an easy computation yields that

(2.3) div Tij = −
(
∂ju,∆u +

u

ε2
(1− |u|2)

)
= −(∂ju, fε),

where div Tij denotes
∑2

i=1 ∂iTij . Multiplying the relation (2.3) by a vector field X, we find

Lemma 2.1. Let u satisfy (1.1). For any U open subset of Ω and any smooth vector-field
X, we have

(2.4)
∫

∂U

∑

i,j

XjνiTij =
∫

U

∑

i,j

(∂iXj) Tij −
∫

U
(fε, X · ∇u)

where ν denotes the outer unit normal to ∂U and the indices i, j run over 1, 2.

The most standard Pohozaev identity follows by applying this in U = Ω ∩ B(x0, s) to
X = x− x0, it yields

(2.5)
1
2

∫

∂(B(x0,s)∩Ω)
(x− x0) · ν

(∣∣∣∣
∂u

∂ν

∣∣∣∣
2

−
∣∣∣∣
∂u

∂τ

∣∣∣∣
2

− (1− |u|2)2
2ε2

)
+ (x− x0) · τ

(
∂u

∂τ
,
∂u

∂ν

)

+
∫

B(x0,s)∩Ω

(1− |u|2)2
2ε2

=
∫

B(x0,s)∩Ω
(fε, (x− x0) · ∇u) .

In particular, if B(x0, s) does not intersect ∂Ω, one obtains
(2.6)∫

∂B(x0,s)

∣∣∣∣
∂u

∂r

∣∣∣∣
2

+
1
s

∫

B(x0,s)

(1− |u|2)2
ε2

=
∫

∂B(x0,s)

∣∣∣∣
∂u

∂τ

∣∣∣∣
2

+
(1− |u|2)2

2ε2
+

1
s

∫

B(x0,s)
(fε, (x− x0) · ∇u) .

We deduce the following lemma.
2number to be checked
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Lemma 2.2. Let u satisfy (1.1). Then, if R is such that B(x0, R) ⊂ Ω and 0 < r < R, we
have

(2.7)
∫ R

r

1
s

∫

B(x0,s)

(1− |u|2)2
ε2

ds +
∫

B(x0,R)\B(x0,r)

∣∣∣∣
∂u

∂r

∣∣∣∣
2

=
∫

B(x0,R)\B(x0,r)

∣∣∣∣
∂u

∂τ

∣∣∣∣
2

+
(1− |u|2)2

2ε2
+

∫ R

r

1
s

∫

B(x0,s)
((x− x0) · ∇u, fε) ds,

with

(2.8)

∣∣∣∣∣
∫ R

r

1
s

∫

B(x0,s)
(fε, (x− x0) · ∇u) ds

∣∣∣∣∣ ≤
∫

B(x0,R)\B(x0,r)

∣∣∣∣
∂u

∂r

∣∣∣∣
2

+
R2

4

∫

B(x0,R)\B(x0,r)
|fε|2 + r log

R

r
‖fε‖L2(B(x0,r)) ‖∇u‖L2(B(x0,r)) .

Proof. (2.7) follows from integrating the relation (2.6) for s ∈ [r,R]. For (2.8), we write

(2.9)

∣∣∣∣∣
∫ R

r

1
s

∫

B(x0,s)
(fε, (x− x0) · ∇u)

∣∣∣∣∣

≤
∫ R

r

1
s

(∫

B(x0,r)
|x− x0|

∣∣∣∣
∂u

∂ν

∣∣∣∣ |fε|+
∫

B(x0,s)\B(x0,r)
|x− x0|

∣∣∣∣
∂u

∂ν

∣∣∣∣ |fε|
)

ds

≤ r log
R

r

∫

B(x0,r)

∣∣∣∣
∂u

∂ν

∣∣∣∣ |fε|+ R

∫

B(x0,R)\B(x0,r)

∣∣∣∣
∂u

∂ν

∣∣∣∣ |fε|.

Inserting the fact that for every λ > 0,

(2.10)
∫

B(x0,R)\B(x0,r)

∣∣∣∣
∂u

∂ν

∣∣∣∣ |fε| ≤ 1
2λ

∫

B(x0,R)\B(x0,r)

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

+
λ

2

∫

B(x0,R)\B(x0,r)
|fε|2

applied to λ = R/2, we are led to (2.8).

Another standard relation consists in writing in the Dirichlet case, as in [BBH], a global
Pohozaev identity using (2.4) on the whole Ω. Using the fact that Ω is strictly starshaped,
one obtains

Lemma 2.3. Let Ω be strictly starshaped and let u satisfy (1.1) with u = g on ∂Ω. Then

(2.11)
∫

∂Ω

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

+
∫

Ω

(1− |u|2)2
ε2

≤ C
(
1 + ‖∇u‖L2(Ω)‖fε‖L2(Ω)

)

where the constant C depends only on Ω and g.

Proof. Assume Ω is strictly starshaped with respect to the point x0 (hence (x−x0) ·ν ≥ β > 0
on ∂Ω), and apply (2.4) to U = Ω and X = x− x0, this yields

(2.12)
1
2

∫

∂Ω
β

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

+
∫

Ω

(1− |u|2)2
2ε2

≤ C

∫

∂Ω

∣∣∣∣
∂g

∂τ

∣∣∣∣
2

+
∣∣∣∣
(

∂u

∂ν
,
∂g

∂τ

)∣∣∣∣ +
∫

Ω
|x − x0||fε||∇u|

from which the result follows easily.
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2.2 Proof of Proposition 2.1 - interior case

For simplicity, we will start by presenting the proof of Proposition 2.1 assuming no balls
intersect ∂Ω.

Proof of Proposition 2.1: The proof is a ball-construction that is very similar to that pre-
sented in [SS2], Chapter 4. Following [Sa1], since (1.8) holds, by the coarea-formula, one may
cover the set {x, |u(x)| ≤ 1− 1

|log ε|2 } by a finite union of disjoint closed balls Bi(0) of radii ri

such that
∑

i ri ≤ Cε|log ε|3. We grow all these balls in parallel according to the method of
Jerrard and Sandier, presented for example in [SS2], which yields:

Lemma 2.4. For every t ≥ 0 there exists a finite collection of disjoint closed balls B(t) such
that

1. B(0) = {Bi(0)}i

2. r(B(t)) = etr(B(0)) for every t ≥ 0, where r(B(t)) denotes the sum of the radii of the
balls in the collection

3. For every t ≥ s ⋃

B∈B(s)

B ⊂
⋃

B∈B(t)

B.

There exists a finite set T ⊂ R+ such that if [t1, t2] ⊂ R+ \ T , then B(t2) = et2−t1B(t1),
where λB denotes the collection of balls obtained from B by keeping the same centers
and multiplying all the radii by λ.

The times t ∈ T correspond to “merging times” when some of the balls have intersecting
closures. Assuming first the balls remain disjoint through the growing, we may apply (2.7)
to r = ri and R = etri to find

(2.13)∫ etri

ri

1
s

∫

Bi(log s
ri

)

(1− |u|2)2
ε2

ds ≤
∫

Bi(t)
|∇u|2+(1− |u|2)2

2ε2
+etri‖fε‖L2(Bi(t))‖∇u‖L2(Bi(t)),

where we wrote
∫ R
r

1
s

∫
B(x0,s) ((x− x0) · ∇u, fε) ds ≤ R

∫
B(x0,R) |fε||∇u| ≤ R‖fε‖L2(Bi(t))‖∇u‖L2(Bi(t)).

We easily deduce

(2.14) t

∫

Bi(0)

(1− |u|2)2
ε2

≤ 2Eε(u,Bi(t)) + r(Bi(t))‖fε‖L2(Bi(t))‖∇u‖L2(Bi(t))

where we denote for any set U ,

Eε(u,U) =
1
2

∫

U
|∇u|2 +

1
2ε2

(1− |u|2)2.

Now these relations add up nicely over all the balls in the collection B(t), including through
possible merging of balls, and we have for every t, and every Bk(t) ∈ B(t),

(2.15) t

∫

∪i/Bi(0)⊂Bk(t)Bi(0)

(1− |u|2)2
ε2

≤ 2Eε(u,Bk(t)) + r(Bk(t))‖fε‖L2(Bk(t))‖∇u‖L2(Bk(t)).
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Summing this over k, using (1.8), and applying this relation to t = α log 1
ε for some 0 < α < 1,

we find

(2.16) α|log ε|
∫

∪iBi(0)

(1− |u|2)2
ε2

≤ 2Eε(u,∪kBk(t)) + Cε1−α‖fε‖L2(∪kBk(t))|log ε|7/2,

where we observe, r(B(t)) ≤ Cε1−α|log ε|3. Since (1.10) is satisfied, we may choose α > 0
such that 2− 2α− β > 0, and find

(2.17)
∫

∪iBi(0)

(1− |u|2)2
ε2

≤ 2Eε(u)
α|log ε| + o(1) ≤ C.

We conclude that
∫
∪iBi(0)

(1−|u|2)2

ε2 ≤ C and since the Bi(0) were constructed to cover the set
{x ∈ Ω, |u(x)| ≤ 1 − 1

|log ε|2 } we deduce (2.1). This proof is valid if none of the balls Bk(t)
intersect ∂Ω.

2.3 Proof of Proposition 2.1 - boundary issues

The method follows that of [SS2], Chapter 4, with the only modifications due to the fε term.
We sketch the main steps.

2.3.1 Dirichlet case

In the Dirichlet case, instead of using (2.6) and (2.7), we use (2.5). Decomposing ∂(B(x0, s)∩
Ω) into ∂B(x0, s) ∩ Ω and ∂Ω ∩B(x0, s), we find

(2.18)
∫

∂B(x0,s)∩Ω

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

+
1
s

∫

B(x0,s)∩Ω

(1− |u|2)2
ε2

≤
∫

∂B(x0,s)∩Ω

∣∣∣∣
∂u

∂τ

∣∣∣∣
2

+
(1− |u|2)2

2ε2

+
1
s

∫

∂Ω∩B(x0,s)
(x− x0) · ν

(∣∣∣∣
∂g

∂τ

∣∣∣∣
2

−
∣∣∣∣
∂u

∂ν

∣∣∣∣
2

− (x− x0) · τ
(

∂g

∂τ
,
∂u

∂ν

))

+
1
s

∫

B(x0,s)∩Ω
2 ((x− x0) · ∇u, fε)

Using Lemma 2.3, we deduce

(2.19)
∫

∂B(x0,s)∩Ω

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

+
1
s

∫

B(x0,s)∩Ω

(1− |u|2)2
ε2

≤
∫

∂B(x0,s)∩Ω

∣∣∣∣
∂u

∂τ

∣∣∣∣
2

+
(1− |u|2)2

2ε2

+ C
(
1 + ‖∇u‖L2(Ω)‖fε‖L2(Ω)

)

and integrating

(2.20)
∫ R

r

1
s

∫

B(x0,s)∩Ω)

(1− |u|2)2
ε2

ds +
∫

(B(x0,R)\B(x0,r))∩Ω

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

≤
∫

(B(x0,R)\B(x0,r))∩Ω

∣∣∣∣
∂u

∂τ

∣∣∣∣
2

+
(1− |u|2)2

2ε2
+ CR

(
1 + ‖∇u‖L2(Ω)‖fε‖L2(Ω)

)

and we may reproduce the proof above with this relation instead of (2.7).
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2.3.2 Neumann case

In the Neumann case, we extend u by performing a reflection with respect to ∂Ω. Let Ω̃
denote a large enough tubular neighborhood of Ω, i.e. Ω ⊂ Ω̃. Let ψ be a smooth mapping of
Ω onto the unit disc. It can be extended to a mapping from Ω̃ to a domain strictly containing
the unit disc. Let then R denote the reflection with respect to the unit circle defined in
complex coordinates by R(z) = z

|z|2 . The mapping ϕ = ψ−1 ◦ R ◦ ψ then maps Ω̃\Ω to Ω.

One can check that it is the identity on ∂Ω, that it is C2 in Ω̃\Ω, and that Dϕ(x) converges
to the orthogonal symmetry relative to the tangent to ∂Ω at x0 as x → x0 ∈ ∂Ω, at a rate
bounded by Cdist (x, ∂Ω).

We can then extend u with ∂u
∂ν = 0 on ∂Ω, by u = u in Ω and

u(x) = u(ϕ(x)) if x ∈ Ω̃\Ω
Since Dϕ converges to a reflection with respect to the boundary as x → ∂Ω and ∂u

∂ν = 0 on
∂Ω, we find that u is C1 in Ω̃. We also define fε = fε(ϕ(x)) in Ω̃\Ω and fε = fε in Ω. We will
use the same proof as above through ball-growth in Ω̃ for u. The relation (2.7) still applies
inside Ω. For the balls that intersect ∂Ω, we need to replace it with a variant for u.

Let B(x0, s) be a ball intersecting ∂Ω and let D1 = B(x0, s) ∩ Ω and D2 = B(x0, s)\Ω.
From (2.5), we have

(2.21)
∫

D1

(1− |u|2)2
ε2

=
∫

∂Ω∩B(x0,s)
(x− x0) · ν

(∣∣∣∣
∂u

∂τ

∣∣∣∣
2

+
(1− |u|2)2

2ε2

)

+
∫

∂B(x0,s)∩Ω
s

(∣∣∣∣
∂u

∂τ

∣∣∣∣
2

−
∣∣∣∣
∂u

∂ν

∣∣∣∣
2

+
(1− |u|2)2

2ε2

)
+

∫

D1

((x− x0) · ∇u, fε) .

In order to get the analogue in D2, we apply (2.4) in D′
2 = ϕ(D2) with X(ϕ(x)) = Dϕ(x)(x−

x0). Arguing as in [SS2], this leads to

(2.22)
∫

D′2

(1− |u|2)2
ε2

(1 + O(s)) =
∫

B(x0,s)∩∂Ω
(x− x0) · ν

(∣∣∣∣
∂u

∂τ

∣∣∣∣
2

+
(1− |u|2)2

2ε2

)

+ s

∫

∂D′2∩Ω

∣∣∣∣
∂u

∂τ

∣∣∣∣
2

−
∣∣∣∣
∂u

∂ν

∣∣∣∣
2

+
(1− |u|2)2

2ε2
+ O

(
s2

∫

∂D′2
Eε(u, ∂D′

2)

)
+

∫

D′2
(fε, X · ∇u) .

Adding this to the relation (2.21), the contributions on ∂Ω cancel and we find
∫

D1∩D′2

(1− |u|2)2
ε2

(1 + O(s)) = s

∫

∂D1∪∂D′2

∣∣∣∣
∂u

∂τ

∣∣∣∣
2

−
∣∣∣∣
∂u

∂ν

∣∣∣∣
2

+
(1− |u|2)2

2ε2

+ O
(
s2Eε(u, ∂D′

2)
)

+ O

(
s

∫

D1∪D′2
|∇u||fε|

)
.

After a change of variables, and since ϕ approaches a reflection, we find (as in [SS2])
∫

B(x0,s)

(1− |u|2)2
ε2

= s

∫

∂B(x0,s)

∣∣∣∣
∂u

∂τ

∣∣∣∣
2

−
∣∣∣∣
∂u

∂ν

∣∣∣∣
2

+
(1− |u|2)2

2ε2

+ O

(
s

∫

B(x0,s)

(1− |u|2)2
ε2

)
+ O

(
s2Eε(u, ∂B(x0, s))

)
+ O

(
s

∫

B(x0,s)
|∇u||fε|

)
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Dividing by s and integrating, we find

(2.23)
∫ R

r

1
s

∫

B(x0,s)

(1− |u|2)2
ε2

ds ≤
∫

B(x0,R)\B(x0,r)
|∇u|2 +

(1− |u|2)2
2ε2

+ CREε(u, B(x0, R)\B(x0, r)) + R

∫

B(x0,R)

(1− |u|2)2
ε2

+ CR‖∇u‖L2(Ω̃)‖fε‖L2(Ω̃)

Replacing (2.7) by this relation, and growing the balls the same way, we are led to the same
result for u, and Proposition 2.1 is proved.

2.4 Application: construction of the vortex collection

We now show how to define a good collection of vortex-balls for solutions of (1.1).
If |u(x0)| < 1

2 , the assumption (1.9) implies standardly that |u| ≤ 3
4 in some ball B(x0, λε)

and thus that there exists a constant µ > 0 such that

(2.24)
∫

B(x0,λε)

(1− |u|2)2
ε2

≥ µ.

Using this, the result of Proposition 2.1 suffices to conclude as in [BBH], that the set {|u(x)| ≤
3
4} can be covered by a bounded (independently of ε) number of disjoint balls of centers ai

and radii Rε (where R is fixed), and changing R if necessary, we may always assume that
|ai − aj | À ε for i 6= j. We may also assume that each ball contains a point x0 where
|u(x0)| < 1

2 (otherwise the ball can simply be removed from the collection).
The next step is to perform a blow-up analysis. If (1.10) is verified, then the perturbation

term fε in (1.1) disappears after blow-up at the scale ε, and we can use the known results on
(1.6).

Lemma 2.5. Let uε satisfy (1.1), (1.8), (1.9) and (1.10). If aε is a sequence of points such
that dist(aε, ∂Ω) À ε and deg(u, ∂B(aε, Rε)) = d, then up to extraction, vε(x) = uε(aε + εx)
converges uniformly over compact subsets of R2 as ε → 0 to a solution U of

(2.25) −∆U = U(1− |U |2) in R2

with

(2.26)
∫

R2

(1− |U |2)2 = 2πd2.

If aε is such that dist(aε, ∂Ω) ≤ Cε then up to extraction, vε(x) = uε(aε + εx) converges
locally uniformly to a constant of modulus 1.

Proof. Setting vε(x) = uε(aε + εx) we have

(2.27) ∆vε + vε(1− |vε|2) = ε2fε(aε + εx),

and we also know that |∇vε(x)| ≤ C and |vε| ≤ 1. Thus, vε is compact in L∞ by Ascoli’s
theorem. But we have ‖ε2fε(aε + εx)‖L2(BR) ≤ ε‖fε‖L2(Ω) ≤ o(1) by (1.10); thus ∆uε is
strongly compact in L2(BR) for every R. In the first case, up to extraction, we thus find that
vε converges locally uniformly and in H2

loc to U solution of (2.25). It was proved in [BMR]
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that under our assumptions, (2.26) holds. In the case dist(aε, ∂Ω) ≤ Cε, up to translation
and extraction, we find that vε converges to a solution of −∆U = U(1 − |U |2) on the half-
plane R2

+, with either |U | = 1 boundary condition or ∂U
∂ν = 0. In the Dirichlet case, a result of

Sandier [Sa2] allows to conclude that U is a constant; in the Neumann case, a simple reflection
yields a solution to (2.25) of degree zero, hence a constant of modulus 1 (from [BMR]).

For U a solution of (2.25), following [BMR], we have

(2.28)
1
2

∫

B(0,R)
|∇U |2 +

(1− |U |2)2
2

= πd2 log R + γ(U) as R →∞.

where d is the degree of U and γ(U) is a constant depending on the solution. When d = ±1,
it has been proved by Mironescu [M] that there exists a unique solution to (2.25) (up to
multiplication by a constant of modulus 1), which is the radial solution of (2.25) and then
γ(U) = γ, a universal constant first defined in [BBH].

Proposition 2.2. Let uε satisfy (1.1), (1.8), (1.9) and (1.10). Then, after extraction of a
sequence ε → 0, we can find Rε → +∞ with Rε ≤ C|log ε| and a family of balls ∪n

i=1Bi =
∪n

i=1B(ai, Rεε), with ai depending on ε and n bounded independently of ε, such that

1. ‖1− |uε|‖L∞(Ω\∪iB(ai,Rεε)) → 0 as ε → 0.

2. |ai − aj | À Rεε for i 6= j and dist(ai, ∂Ω) À Rεε for every i.

3. The di = deg(u, ∂B(ai, Rεε)) are all nonzero.

4.

(2.29) lim
ε→0

∥∥∥∥uε − Vi

(
.− ai

ε

)∥∥∥∥
L∞(B(ai,Rεε))

= 0

where Vi is some solution of degree di of (2.25),

5.

(2.30) lim
ε→0

∫

∂B(ai,Rεε)

∣∣∣∣
∂|uε|
∂ν

∣∣∣∣ = 0
∫

∂B(ai,Rεε)

∣∣∣∣
∂uε

∂ν

∣∣∣∣ ≤ C.

6.

(2.31) lim
ε→0

∫

B(ai,Rεε)

(1− |uε|2)2
ε2

= 2πd2
i

(2.32) lim
ε→0

Eε(uε, B(ai, Rεε))− 1
2

∫

B(0,Rε)
|∇Vi|2 +

(1− |Vi|2)2
2

= 0.

Moreover, for every α < 1, and every subset I of [1, n], we have

(2.33) απ
∑

i∈I

d2
i ≤

Eε

(
uε,∪i∈IB(ai, Rεε

1−α)
)

|log ε| + C|log ε|7/2ε1−α‖fε‖L2(Ω) + o(1)
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Proof. We have already found the points ai. In view of Lemma 2.5, we may blow up around
them to find that vε(x) = uε(ai + εx) converges in H2(B(0, R)) for every R > 0 to some Vi

solution of (2.25). Now, following [CM2], we may find by an abstract argument Rε → ∞,
with Rε ≤ C|log ε| and 2), such that {|uε| ≤ 3

4} ⊂ ∪k
i=1B(ai, Rεε) and

lim
ε→0

‖vε − Vi‖H2(B(0,Rε)) = 0.

We deduce (2.29), (2.30), (2.31) and (2.32): H2 convergence implies H1/2 convergence of
the derivatives on the boundary (by trace). 3) comes from the fact that if di = 0 then
(2.31) contradicts (2.24). But the choice of 3/4 was arbitrary, the same can be done to cover
{|uε| ≥ m} for any m < 1. By a diagonal argument, one can then obtain 1).

There remains to prove (2.33). In the previous subsection, we may apply the method of
Proposition 2.1 with initial balls Bi(0) equal to the B(ai, Rεε), and obtain exactly as in (2.16)
that for every α < 1,

α|log ε|
∫

∪i/Bi(0)⊂Bk
Bi(0)

(1− |u|2)2
ε2

≤ 2Eε(u,Bk) + Cε1−α‖fε‖L2(Bk)|log ε|7/2,

where the Bk are disjoint balls of sum of radii ≤ eα|log ε|Rεε = Rεε
1−α. Combining this with

(2.31) leads to (2.33) and thus to (1.17).

3 Canonical phase and energy lower-bounds

We introduce the Green kernel G(x, y) solution to

(3.1)
{ −∆xG(x, y) = δy in Ω

∂G
∂ν = (ig, ∂g

∂τ ) (resp. G = 0 for Neumann boundary condition) on ∂Ω.

and S(x, y) defined by

(3.2) S(x, y) = 2πG(x, y) + log |x− y|.
It is standard that G is symmetric, and S is a C1 function in Ω× Ω. Also the renormalized
energy W , as introduced in [BBH], can be written with these notations

(3.3) Wd(a1, · · · , an) = −π
∑

i6=j

didj log |ai − aj |+ π
∑

i,j

didjS(ai, aj)

+
1
2

∫

∂Ω

(
−

∑

i

di log |x− ai|+
∑

i

diS(x, ai)

)
(ig, ∂τg)

where the ai’s are distinct points in Ω, the dj ’s are integers, and the last integral is taken to
be 0 in the Neumann case. If there are no vortices then we consider instead

(3.4) W0 =
∫

Ω
|∇Φ|2

where Φ = 0 in the Neumann case, and Φ is a harmonic function with ∂Φ
∂ν = (ig, ∂g

∂τ ) on ∂Ω
in the Dirichlet case.
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3.1 Estimates for the canonical phase

The balls Bi = B(ai, Rεε) being given by Proposition 2.2, we denote by Ωε = Ω\∪iB(ai, Rεε).
We consider

(3.5)
{ −∆Φ = 2π

∑
i diδai in Ω

∂Φ
∂ν = (ig, ∂g

∂τ ) (resp. Φ = 0 for Neumann) on ∂Ω,

with
∫
Ω Φ = 0 in the Dirichlet case.

Then, we consider θ the “canonical phase associated to the (ai, di)”, the harmonic con-
jugate of Φ in Ωε. It is not univalued, however eiθ is well defined. Observe that θ depends
implicitely on ε since the points ai do. We will use the estimate:

(3.6) |∇θ(x)| ≤ C

r
where r = dist(x, {ai} ∪ ∂Ω),

and the following result:

Lemma 3.1. Let B(bj , ρj) be any finite collection of disjoint balls (in number bounded with
ε → 0), with ρj ≥ Rεε depending on ε, such that

1. ∪iB(ai, Rεε) ⊂ ∪jB(bj , ρj),

2. ρj ¿ |bi − bj | for every i 6= j and ρj ¿ dist (∪i{bi}, ∂Ω).

3. ∀ai ∈ B(bj , ρj), |ai − bj | ¿ ρj,

(these hypotheses allow in particular to take bi = ai and ρi = Rεε). We have

(3.7)
1
2

∫

Ω\∪jB(bj ,ρj)
|∇θ|2 = π

∑

i

D2
i log

1
ρj

+ WD(b1, · · · , bn) + o(1)

where Dj = deg(eiθ, ∂B(bj , ρj)) =
∑

i/ai∈B(bj ,ρj)
di.

Proof. The proof is quite standard, similar to results in [BBH] (except that here the ai depend
on ε) or to [SS2], Chap. 93). From (3.2), we have

(3.8) Φ(x) = −
n∑

i=1

di log |x− ai|+
n∑

i=1

diS(x, ai).

Using the fact that |ai − bj | ¿ ρj ¿ |bj − bk| for j 6= k, and ai ∈ B(bj , ρj), and computing
explicitly, we find

∂Φ(x)
∂ν

=
−Dj

ρj
(1 + o(1)) on ∂B(bj , ρj),(3.9)

|∇Φ(x)| ≤ C

minj |x− bj | , in Ω\ ∪j B(bj , ρj).(3.10)

For assertion (3.7), integrating by parts using (3.5), we first have

(3.11)
1
2

∫

Ω\∪jB(bj ,ρj)
|∇θ|2 =

1
2

∫

Ω\∪jB(bj ,ρj)
|∇Φ|2 = −1

2

∑

j

∫

∂B(bj ,ρj)
Φ

∂Φ
∂ν

+
1
2

∫

∂Ω
Φ

∂Φ
∂ν

,

3number to be confirmed
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where ν denotes the outer unit normal to ∂B(bj , ρj). Inserting (3.8), we find

(3.12) −
∫

∂B(bj ,ρj)
Φ

∂Φ
∂ν

= −
∫

∂B(bj ,ρj)


−

∑

i/ai∈B(bj ,ρj)

di log |x− ai| −
∑

i/ai /∈B(bj ,ρj)

di log |x− ai|+
∑

i

diS(x, ai)


 ∂Φ

∂ν

= −
∫

∂B(bj ,ρj)


Dj log

1
ρj
−

∑

k 6=j

Dk log |bj − bk|+
∑

k

DkS(x, bk) + o(1)


 ∂Φ

∂ν
,

where we have used the continuity of S, and the facts that on ∂B(bj , ρj), if ai ∈ B(bj , ρj),

log |x− ai| = log |x− bj |+ log
∣∣∣∣1 +

bj − ai

x− bj

∣∣∣∣ = log |x− bj |+ o(1) = log ρj + o(1),

because |x−bj | = ρj À |ai−bj |; and similarly if ai ∈ B(bk, ρk), log |x−ai| = log |bj−bk|+o(1)
on ∂B(bj , ρj). On the other hand,

−
∫

∂B(bj ,ρj)

∂Φ
∂ν

=
∫

B(bj ,ρj)
−∆Φ = 2πDj .

Inserting this into (3.12) and using the regularity of S, we get

(3.13) −
∫

∂B(bj ,ρj)
Φ

∂Φ
∂ν

= 2πD2
j log

1
ρj
− 2π

∑

k 6=j

DjDk log |bj − bk|

+ 2π
∑

k

DjDkS(bj , bk) + o(1).

Combining (3.11) and (3.13), we conclude that

(3.14)
1
2

∫

Ω\∪jB(bj ,ρj)
|∇Φ|2 = 2π

∑

j

D2
j log

1
ρj
− 2π

∑

k 6=j

DjDk log |bj − bk|

+ 2π
∑

j,k

DjDkS(bj , bk) +
1
2

∫

∂Ω


−

∑

j

log |x− bj |+
∑

j

DjS(x, bj)


 (ig, ∂τg) + o(1)

thus (3.7) holds.

With the same kind of techniques, we can get the following result, which will be useful in
the sequel.

Lemma 3.2. Let Bi be a family of balls as in Proposition 2.2, and let θ be the canonical
phase associated to the (ai, di)’s. If BR and Bl are two concentric balls such that B2R\Bl/2

is included in Ω and does not intersect any of the balls Bi, then

(3.15) 2π


 ∑

i/Bi⊂Bl

di




2

log
R

l
≤

∫

BR\Bl

|∇θ|2 ≤ 2π


 ∑

i/Bi⊂Bl

di




2

log
R

l
+ O(1).
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(3.16)
∫

BR\Bl

∣∣∣∣
∂θ

∂r

∣∣∣∣
2

≤ O(1).

If BR and Bl are two concentric balls centered on ∂Ω such that B2R\Bl/2 does not intersect
any of the Bi’s, then

(3.17)
∫

BR\Bl

|∇θ|2 ≤ O(1).

Here the O(1) depends only on Ω, on the number of points ai and on some upper bound on∑
i |di|.

Proof. Let us first deal with the interior case, and the left-hand side inequality in (3.15). Since
B2R\Bl/2 does not intersect any ball, θ is well defined in BR\Bl and the degree is constant
equal to

∑
i,Bi⊂Bl

di; that is, for every l ≤ r ≤ R, we have

∫

∂Br

∂θ

∂τ
= 2π

∑

i/Bi⊂Bl

di.

Thus, using the Cauchy-Schwarz inequality, we have

∫

BR\Bl

|∇θ|2 ≥
∫ R

l

∫

∂Br

∣∣∣∣
∂θ

∂τ

∣∣∣∣
2

dr

≥
∫ R

l

1
2πr

(∫

∂Br

∂θ

∂τ

)2

dr = 2π


 ∑

i,Bi⊂Bl

di




2

log
R

l
.(3.18)

This proves the left-hand inequality in (3.15).
For the other inequality, for both the interior and boundary case, let us evaluate

∫

BR\Bl

|∇θ|2 =
∫

BR\Bl

|∇Φ|2.

Clearly, since BR\Bl does not contain any ai, integrating by parts yields

(3.19)
∫

BR\Bl

|∇Φ|2 =
∫

∂(BR\Bl)
Φ

∂Φ
∂ν

,

where ν is the outer unit normal to each disc. Let us now study Φ closer. For each point ai,
let us denote by a∗i its symmetric with respect to ∂Ω (there might be several choices, but it
does not matter). Let then

(3.20) Ψ(x) = −
∑

i

di log |x− ai|+
∑

i

di log |x− a∗i |.

One can check that Ψ and ∂Ψ
∂ν remain bounded on ∂Ω by some constant independent of the

ai’s. On the other hand, ∆(Φ−Ψ) = 0 in Ω, so in view of the boundary conditions for Φ (see
(3.5)) we find, by the maximum principle, that Φ−Ψ is bounded in Ω (in both Dirichlet and
Neumann cases). Thus, we may write
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(3.21) Φ(x) = −
∑

i

di log |x− ai|+
∑

i

di log |x− a∗i |+ O(1).

Let us now first focus on the interior case. Denoting by x0 the center of the balls Bl and BR,
let x ∈ ∂Bl and ai ∈ Bl/2, we have

log |x− ai| = log |x− x0|+ log
∣∣∣∣1−

ai − x0

x− x0

∣∣∣∣

But, since ai ∈ Bl/2, we have
∣∣∣ai−x0

x−x0

∣∣∣ ≤ 1
2 , thus log

∣∣∣1− ai−x0
x−x0

∣∣∣ remains uniformly bounded
and we can write log |x − ai| = log l + O(1). Assume now that x ∈ ∂Bl and ai /∈ Bl/2, that
means that ai is outside of B2R, then

log |x− ai| = log |ai − x0|+ log
∣∣∣∣1−

x− x0

ai − x0

∣∣∣∣

and since |x − x0| ≤ R and |ai − x0| ≥ 2R we have
∣∣∣ x−x0
ai−x0

∣∣∣ ≤ 1
2 and thus log

∣∣∣1− x−x0
ai−x0

∣∣∣
remains uniformly bounded. The same holds for a∗i which is always in Ω\B2R. We can thus
write
(3.22)
Φ(x) = −

∑

i/Bi⊂Bl/2

di log l −
∑

i/Bi⊂Ω\B2R

di(log |ai − x0| − log |a∗i − x0|) + O(1) for x ∈ ∂Bl.

Similarly, for x ∈ ∂BR, we have

Φ(x) = −
∑

i/Bi⊂Bl/2

di log R−
∑

i/Bi⊂Ω\B2R

di(log |ai − x0| − log |a∗i − x0|) + O(1).

Thus,

∫

∂Bl

Φ
∂Φ
∂ν

=


−

∑

i/Bi⊂Bl/2

di log l −
∑

i/Bi⊂R2\B2R

di log
|ai − x0|
|a∗i − x0|




∫

∂Bl

∂Φ
∂ν

+ O

(∫

∂Bl

∣∣∣∣
∂Φ
∂ν

∣∣∣∣
)

=


−

∑

i/Bi⊂Bl/2

di log l −
∑

i/Bi⊂R2\B2R

di log
|ai − x0|
|a∗i − x0|





−2π

∑

j/Bj⊂Bl/2

dj


 + O(1),(3.23)

where we have used (3.5) and the estimate (3.6) or in other words |∇Φ| ≤ C
l on ∂Bl. Similarly,

∫

∂BR

Φ
∂Φ
∂ν

=


−

∑

i/Bi⊂Bl/2

di log R−
∑

i/Bi⊂R2\B2R

di log
|ai − x0|
|a∗i − x0|




∫

∂Bl

∂Φ
∂ν

+ O(1).

Substracting those two relations and returning to (3.19), we find

∫

BR\Bl

|∇Φ|2 = 2π


 ∑

i/Bi⊂Bl/2

di




2

log
R

l
+ O(1).
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This finishes the proof of (3.15). Comparing it to (3.18), we conclude that (3.16) must hold.
For the boundary case, one may check with similar ideas that (3.21) implies that Φ is

bounded (independently of the location of the points and R and l) in BR\Bl. Therefore
∫

∂(BR\Bl)
Φ

∂Φ
∂ν

=
∫

∂Ω∩(BR\Bl)
Φ

∂Φ
∂ν

+ O

(∫

∂BR∩Ω

∣∣∣∣
∂Φ
∂ν

∣∣∣∣
)

+ O

(∫

∂Bl∩Ω

∣∣∣∣
∂Φ
∂ν

∣∣∣∣
)

The contribution on ∂Ω is zero in the Neumann case and is bounded in the Dirichlet case (in
view of the bound on Φ and the boundary condition on ∂Φ

∂ν ). The contributions on ∂BR and
∂Bl are bounded by the same argument as above (using |∇Φ| ≤ C

R or C
l ). We conclude that

(3.17) holds.

3.2 Lower bounds on the energy

Returning to uε, we introduce ρε = |uε|, and ϕε such that

(3.24) uε = ρεe
iϕε in Ωε.

We also introduce the phase-excess ψε = ϕε − θ in Ωε, observe it is a single-valued function.
Afterwards, we most often drop the subscripts ε. We claim that from (2.29), for each i, there
exists a constant ci such that

(3.25) ψ = ϕ− θ = ci + o(1) on ∂B(ai, Rεε).

Also, ψ = cst on ∂Ω in the case of the Dirichlet boundary condition, and ∂ψ
∂ν = 0 on ∂Ω in

the case of the Neumann boundary condition.
In the next section, we will work alternatively in Ωε or in B(x, l)\ ∪i Bi where B(x, l) is

some ball of radius l (possibly depending on ε) included in Ω such that ∂B(x, l) ⊂ Ωε. In the
sequel Dε denotes either Ωε or any subset of Ωε of the form Ω∩B(x, l)\∪i Bi, and D denotes
Ω or B(x, l) ∩ Ω respectively.

Lemma 3.3. Assume uε satisfies (1.1), (1.8), (1.9) and (1.10), and hence the results of
Proposition 2.2. Then,

Eε(uε) ≥ 1
2

∫

Ωε

|∇θ|2 + π
∑

i

d2
i log Rε +

∑

i

γ(Vi) + o(1)(3.26)

= π
∑

i

d2
i log

1
ε

+ Wd(a1, · · · , an) +
∑

i

γ(Vi) + o(1)

where Vi is given by (2.29).

Proof. This follows arguments of [BMR, CM1]. Let Dε = Ωε or Dε = Bl\ ∪i Bi. We claim
that

(3.27) Eε(uε, Dε) ≥ Eε(eiθ, Dε) +
1
2

∫

Dε

ρ2|∇ψ|2 +
1
5

∫

Dε

(1− ρ2)2

ε2
+

∫

Dε

ρ2∇θ · ∇ψ + o(1).

Indeed,
∫

Dε

ρ2|∇ϕ|2 =
∫

Dε

ρ2|∇(θ + ψ)|2

=
∫

Dε

ρ2|∇θ|2 + ρ2|∇ψ|2 + 2ρ2∇θ · ∇ψ.(3.28)
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But, with Cauchy-Schwartz,

(3.29)
∣∣∣∣
∫

Dε

(ρ2 − 1)|∇θ|2
∣∣∣∣ ≤ ε

(∫

Dε

(1− ρ2)2

ε2

) 1
2
(∫

Dε

|∇θ|4
) 1

2

.

By definition of θ, we have
∫
Ωε
|∇θ|4 ≤ C

(Rεε)2
, thus, using Rε → +∞,

(3.30)
∫

Dε

(ρ2 − 1)|∇θ|2 = o

((∫

Dε

(1− ρ2)2

ε2

) 1
2

)
.

Hence,

(3.31)
∫

Dε

ρ2|∇θ|2 ≥
∫

Dε

|∇θ|2 + o

(∫

Dε

(1− ρ2)2

ε2

)
+ o(1).

We deduce (3.27). Arguing similarly, we also have

∣∣∣∣
∫

Dε

(ρ2 − 1)∇θ · ∇ψ

∣∣∣∣ ≤ ε‖∇θ‖L∞(Dε)

(∫

Dε

(1− ρ2)2

ε2

) 1
2
(∫

Dε

|∇ψ|2
) 1

2

≤ C

Rε

∫

Dε

(1− ρ2)2

ε2
+ |∇ψ|2

≤ o

(∫

Dε

(1− ρ2)2

ε2
+ |∇ψ|2

)
(3.32)

where we have used (3.6). Combining this with (3.27), we find

(3.33) Eε(uε, Dε) ≥ Eε(eiθ, Dε) +
∫

Dε

∇θ · ∇ψ + o(1).

Particularising to Dε = Ωε, using the fact that θ is harmonic, we also have
∫

Ωε

∇θ · ∇ψ =
∑

i

∫

∂Bi

ψ
∂θ

∂ν
.

Inserting (3.25), and using
∫
∂Bi

∂θ
∂ν =

∫
∂Bi

∂Φ
∂τ = 0, we find that

∫

Ωε

∇θ · ∇ψ = o(1)
∑

i

∫

∂Bi

∣∣∣∣
∂θ

∂ν

∣∣∣∣ .

Using (3.6) again, we conclude that
∫
Ωε
∇θ · ∇ψ = o(1) and hence, from (3.33), we get

(3.34) Eε(uε,Ωε) ≥ Eε(eiθ, Ωε) + o(1).

On the other hand, from (2.32) and (2.28), we have

(3.35) Eε(uε, Bi) = πd2
i log Rε + γ(Vi) + o(1).

Adding to (3.34) and combining with Lemma 3.1, we have the result.
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As a corollary, we get the lower bound:

Lemma 3.4. Assume that uε satisfies the results of Proposition 2.2 and B(bk, ρk) is a family
of balls satisfying the hypotheses 1), 2), 3) of Lemma 3.1. Let the pj’s be the points of
accumulation of the ai’s with nonzero total degree. Then, with the same notations as in
Lemma 3.1,

(3.36) Eε(uε) ≥ π
∑

k

|Dk||log ε|+ WD(pj)

− π
∑

j

∑

k 6=k′/bk→pj ,bk′→pj

DkDk′ log |bk − bk′ |+
(∑

k

|Dk|
)

γ + o(1),

where Dj =
∑

bk→pj
Dk. Moreover, if there is equality in (3.36) then each Dk = ±1 and each

B(bk, ρk) contains only one ai.

Proof. From the results of Proposition 2.2, we have a family of small balls (ai, di). Applying
Lemma 3.3, we have

(3.37) Eε(uε) ≥ π
∑

i

d2
i log

1
ε

+ Wd(a1, · · · , an) +
∑

i

γ(Vi) + o(1).

On the other hand, one can check that

(3.38) Wd(a1, · · · , an) = WD(pj)− π
∑

j

∑

i6=i′/ai,a′i→pj

didi′ log |ai − ai′ |+ o(1).

For each given j, let us now study

π
∑

i/ai→pj

d2
i |log ε| − π

∑

i6=i′/ai,a′i→pj

didi′ log |ai − ai′ |.

The points ai converging to the same pj belong to several of the B(bk, ρk). It is again
easy to check from the properties on the B(bk, ρk) that

(3.39) − π
∑

i 6=i′/ai,a′i→pj

didi′ log |ai − ai′ | = −π
∑

k 6=k′/bk,bk′→pj

DkDk′ log |bk − bk′ |

− π
∑

k/bk→pj


 ∑

i6=i′,ai/ai′∈B(bk,ρk)

didi′ log |ai − ai′ |

 + o(1).

So we are led to studying for each k,

(3.40) π
∑

i/ai∈B(bk,ρk)

d2
i |log ε| − π

∑

i6=i′/ai,ai′∈B(bk,ρk)

didi′ log |ai − ai′ |.

We examine the ai’s belonging to one B(bk, ρk). Let l1 be the smallest distance between
two of the ai’s. Let us group together all the ai’s that are at distance O(l1) from each other.
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This makes several clusters of points. Over each cluster Cm, since the total number of vortices
is bounded, we have

− π
∑

i6=i′∈Cm

didi′ log |ai − ai′ | = −π


 ∑

i6=i′∈Cm

didi′


 log l1 + O(1)

= π


 ∑

i∈Cm

d2
i −

( ∑

i∈Cm

di

)2

 log l1 + O(1).

Therefore,

(3.41) π
∑

i∈Cm

d2
i log

1
ε
− π

∑

i 6=i′∈Cm

didi′ log |ai − ai′ |

= π
∑

i∈Cm

d2
i log

l1
ε
− π

( ∑

i∈Cm

di

)2

log l1 + O(1).

We now need to sum this over all m’s and add the interactions between the clusters themselves,
which have total degree δ1

m =
∑

i∈Cm
di. Since they are all at a distance À l1 from each other,

we may consider l2 À l1 the minimum of their distance. Let us again group the clusters
into clusters of size O(l2), at a distance l3 À l2 from the others. The interaction within
each cluster of size l2 can be counted as −π

∑
δ1
mδ1

m′ log l2 = π
(∑(

δ1
m

)2 − (∑
δ1
m

)2
)

log l2.
Adding up over all clusters of size l2, we find an energy

π
∑

i

d2
i log

l1
ε

+ π
∑
m

(
δ1
m

)2 log
l2
l1
− π

(∑
m

δ1
m

)2

log l2 + O(1).

Again there remains to add this over all clusters of clusters, and add the interaction between
them, which is at the scale l3 À l2, etc... Iterating this process (which stops after a finite
number of steps since the total number of balls is bounded) we are left with an energy bounded
from below by

(3.42) π
∑

i/ai∈B(bk,ρk)

d2
i |log ε| − π

∑

i 6=i′/ai,ai′∈B(bk,ρk)

didi′ log |ai − ai′ |

≥ π
∑

i/ai∈B(bk,ρk)

d2
i log

l1
ε

+ π
∑
m

(
δ1
m

)2 log
l2
l1

+ π
∑

m′

(
δ2
m′

)2 log
l3
l2

+ · · ·+ πD2
k log

1
lq

+ O(1),

where Dk is the total degree on ∂B(bk, ρk) and each δh, the total degree of a cluster at scale
lh, is the sum of the degrees over all the clusters at scale lh−1 that it contains. In other words,
we have

∑
i d

2
i ≥

∑
i |di| ≥ |Dk| and similarly

∑
m

(
δh
m

)2 ≥ ∑
m |δh

m| ≥ |Dk|. This means we
can bound from below (3.42) by

(3.43) π
∑

i/ai∈B(bk,ρk)

d2
i |log ε| − π

∑

i 6=i′/ai,ai′∈B(bk,ρk)

didi′ log |ai − ai′ |

≥ π|Dk|
(

log
l1
ε

+ log
l2
l1

+ · · ·+ log
1
lq

)
+ O(1) = π|Dk| log

1
ε

+ O(1).
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Moreover, this inequality is sharp if and only if
∑

i d
2
i =

∑
i |di| = |Dk| and

∑
m

(
δh
m

)2 =∑
m |δh

m| for every h. The first relation implies that each di is equal to ±1, the sign being
equal to that of Dk. The second relation implies that each δh

m = ±1, which means that there
is only one cluster at each scale, so in fact there can be at most one vortex ai of degree ±1
in B(bk, ρk), and Dk = ±1 (or 0). In that case, then the lower bound above can be replaced
simply by π|Dk||log ε|. If this is not the case, then we have dropped some term in (3.42)
of size π log lh

lh−1
which tends to +∞ by construction of the lj ’s. Thus, in all cases, we may

replace (3.43) by

(3.44) π
∑

i/ai∈B(bk,ρk)

d2
i |log ε| − π

∑

i6=i′/ai,ai′∈B(bk,ρk)

didi′ log |ai − ai′ | ≥ π|Dk| log
1
ε

+ Rε,

where Rε → +∞, unless Dk = ±1 or 0, with at most one vortex of degree ±1 in each
B(bk, ρk), in which case Rε = 0. Combining this to (3.37), (3.38) and (3.40), we find

(3.45)
Eε(uε) ≥ π

∑

k

|Dk||log ε|+WD(pj)−π
∑

j

∑

k 6=k′/bk→pj ,bk′→pj

DkDk′ log |bk−bk′ |+Rε+
∑

i

γ(Vi)+o(1).

If Rε → +∞ this implies the desired relation (3.36). If not then all the small vortices are of
degree ±1, so γ(Vi) = γ for each i, which implies again (3.36).

4 The substitution lemma and Theorem 1

This section is inspired by the analysis of [CM1, CM2]. It needs to be readjusted to the case
where only (1.1) is known, and also to be localized in small balls. The main result we obtain
by this method is the following (we recall we work in Dε which is alternatively Ωε = Ω\∪i Bi

or B(x, l)\ ∪i Bi).

Proposition 4.1. Assume uε satisfies (1.1), (1.8), (1.9) and (1.10) and the results of Propo-
sition 2.2. Then, with the same notations as above, as ε → 0,

(4.1)
∫

Ωε

|∇ψ|2 + |∇ρ|2 +
1

2ε2
(1− ρ2)2 ≤ C‖fε‖2

L2(Ω) + o(1),

and

(4.2) Eε(uε,Ωε) ≤ Eε(eiθ, Ωε) + C‖fε‖2
L2(Ω) + o(1).

Let x be a given point in Ω, and let us denote

(4.3) F (l) =
∫

B(x,l)∩Ω\∪iBi

|∇ψ|2 +
1
2
|∇ρ|2 +

2
5

(1− ρ2)2

ε2
.

If either

1. x ∈ Ω, l ≤ dist (x, ∂Ω) and dist (∪i{ai}, ∂B(x, l)) À ε
√
|log ε| is satisfied, or

2. x ∈ ∂Ω and dist (∪i{ai}, ∂B(x, l)) À ε
√
|log ε|
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then the function F satisfies a relation of the form

(4.4) F (l) ≤ l + Kl2

2
F ′(l) + K(l‖fε‖L2(B(x,l)) + 1)

√
F (l) + o(1).

where K (and the constants and o(1) above) is a constant depending only on β, M , Ω and g.

The proof requires many steps which we separate into lemmas.

Lemma 4.1 (Substitution lemma). Under the hypotheses of Proposition 4.1,

(4.5) Eε(eiθ, Dε) = Eε(uε, Dε) +
1
2

∫

Dε

(fε, e
iϕ)

1
ρ

(
1− ρ2

)
+

1
2

∫

Dε

ρ2

∣∣∣∣∇
1
ρ

∣∣∣∣
2

+
1
2

∫

Dε

|∇ψ|2

−
∫

Dε

∇ϕ · ∇ψ +
1

4ε2

∫

Dε

(1− ρ2)2 +
1
2

∫

∂D

(
1
ρ
− ρ

)
∂ρ

∂ν
+ o(1),

where we recall u = ρeiϕ in Ωε.

Proof. For any real-valued functions ζ and 1
2 ≤ η ≤ 4

3 in Dε, we may consider v = ηeiζuε =
ηρeiϕ+ζ , and we have

(4.6) Eε(v, Dε) =
1
2

∫

Dε

|∇(ρη)|2 + ρ2η2|∇ϕ +∇ζ|2 +
1

2ε2
(1− η2ρ2)2.

Expanding all the terms, we find

(4.7) Eε(v,Dε) = Eε(uε, Dε) +
1
2

∫

Dε

(η2 − 1)|∇ρ|2 + ρ2|∇η|2 + 2ηρ∇ρ · ∇η

+ ρ2(η2− 1)|∇ϕ|2 + ρ2η2|∇ζ|2 + 2ρ2η2∇ϕ · ∇ζ +
1

2ε2

(−2ρ2(1− ρ2)(η2 − 1) + ρ4(1− η2)2
)

But, taking the scalar product of (1.1) with eiϕ yields

(4.8) −∆ρ + ρ|∇ϕ|2 =
ρ

ε2
(1− ρ2) + (fε, e

iϕ) in Dε.

Multiplying (4.8) by (η2 − 1)ρ and integrating, we find

(4.9) −
∫

∂Dε

(η2 − 1)ρ
∂ρ

∂ν
+

∫

Dε

(η2 − 1)|∇ρ|2 + 2ηρ∇η · ∇ρ

+ ρ2(η2 − 1)|∇ϕ|2 +
ρ2

ε2
(1− ρ2)(1− η2) =

∫

Dε

(fε, e
iϕ)ρ(η2 − 1)

Inserting this into (4.7), and using (2.30), we find

(4.10) Eε(v, Dε) = Eε(u,Dε) +
1
2

∫

Dε

(fε, e
iϕ)ρ(η2 − 1)

+
1
2

∫

Dε

ρ2|∇η|2 + ρ2η2|∇ζ|2 +
ρ4

2ε2
(1− η2)2 + 2ρ2η2∇ϕ · ∇ζ +

1
2

∫

∂D
(η2 − 1)ρ

∂ρ

∂ν
+ o(1).

Choosing specifically ζ = −ψ and η = 1
ρ , we find (4.5).
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Lemma 4.2. Under the same hypotheses,

(4.11)
∫

Dε

(ρ2 − 1)
(

1
2
|∇ψ|2 +∇θ · ∇ψ

)
+

2
5

∫

Dε

(1− ρ2)2

ε2
+

1
2

∫

Dε

|∇ρ|2

≤ C

∫

∂D
|1− ρ2|

∣∣∣∣
∂ρ

∂ν

∣∣∣∣ + o(1).

and

(4.12) Eε(uε, Dε) ≤ Eε(eiθ, Dε) + C

∫

∂D
|1− ρ2|

∣∣∣∣
∂ρ

∂ν

∣∣∣∣ +
∫

Dε

∇ϕ · ∇ψ + o(1).

Proof. Adding up the relations (3.27) and (4.5), we find

(4.13)

0 ≥ 1
2

∫

Dε

(ρ2 +1)|∇ψ|2 +
(

1
5

+
1
4

) ∫

Dε

(1− ρ2)2

ε2
+

1
2

∫

Dε

ρ2

∣∣∣∣∇
1
ρ

∣∣∣∣
2

+
∫

Dε

(ρ2∇θ−∇ϕ) ·∇ψ

− 1
2

∫

∂D

∣∣∣∣
1
ρ
− ρ

∣∣∣∣
∣∣∣∣
∂ρ

∂ν

∣∣∣∣− C

∫

Dε

|fε||ρ2 − 1|+ o(1).

Hence, splitting ϕ as θ + ψ, we get

(4.14)
∫

Dε

(ρ2 − 1)
(
∇θ · ∇ψ +

1
2
|∇ψ|2

)
+

2
5

∫

Dε

(1− ρ2)2

ε2
+

1
2
|∇ρ|2

≤ C

∫

∂
|1− ρ2|

∣∣∣∣
∂ρ

∂ν

∣∣∣∣ + C

∫

Dε

|fε||ρ2 − 1|+ o(1),

where
∫
Dε
|fε||ρ2−1| ≤ ‖fε‖L2(Dε)‖ρ2−1‖L2(Ω) ≤ Cε|log ε|‖fε‖L2(Dε) ≤ o(1) by (1.10), hence

the result.
Similarly (4.5) implies (4.12).

Lemma 4.3. Under the same hypotheses,

(4.15)
∣∣∣∣
∫

Ωε

ρ2∇ϕ · ∇ψ

∣∣∣∣ ≤ C‖fε‖L2(Ω)‖∇ψ‖L2(Ωε) + o(1),

(4.16)
∣∣∣∣
∫

Ωε

(∇θ − ρ2∇ϕ) · ∇ψ

∣∣∣∣ ≤ C‖fε‖L2(Ω)‖∇ψ‖L2(Ωε) + o(1).

and

(4.17)

∣∣∣∣∣
∫

B(x,l)∩Ω\∪iBi

(∇θ − ρ2∇ϕ) · ∇ψ

∣∣∣∣∣

≤ l + Cl2

2

∫

∂B(x,l)∩Ω
|∇ψ|2 +

2(1− ρ2)2

5ε2
+ Cl‖fε‖L2(B(x,l))‖∇ψ‖L2(B(x,l)∩Ω\∪iBi) + o(1).
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Proof. Taking the inner product of (1.1) and iu, we find

(4.18) div (ρ2∇ϕ) = (fε, iu)

Thus,
div (ρ2∇ϕ−∇θ) = (fε, iu) in Dε

We now let ψ denote, if D is a ball not intersecting ∂Ω, the average value of ψ on ∂D, if D is
a ball intersecting ∂Ω, either in the Dirichlet case, the constant value of ψ on ∂Ω, or in the
Neumann case, the mean value of ψ on ∂D ∩Ω; finally if D = Ω, either the value of ψ on ∂Ω
in the Dirichlet case, or the average of ψ on ∂Ω in the Neumann case.

Let us then multiply (4.18) by ψ − ψ, and integrate by parts. We find

(4.19)
∫

Dε

(∇θ − ρ2∇ϕ) · ∇ψ =
∫

∂Dε

(ψ − ψ)
(

∂θ

∂ν
− ρ2 ∂ϕ

∂ν

)
+ O

(∫

Dε

|fε||ψ − ψ|
)

Moreover, ∫

∂Bi

(ψ − ψ)
∂θ

∂ν
=

∫

∂Bi

(ψ − ci)
∂θ

∂ν
+

∫

∂Bi

(ci − ψ)
∂Φ
∂τ

= o(1)

by (3.6) and (3.25). Also,
∫

∂Bi

(ψ − ψ)ρ2 ∂ϕ

∂ν
=

∫

∂Bi

(ψ − ci)ρ2 ∂ϕ

∂ν
+

∫

∂Bi

(ci − ψ)ρ2 ∂ϕ

∂ν

= o(1)− (ci − ψ)
∫

Bi

(fε, iu),

where we have used (2.30) and (4.18). We may always extend ψ inside D ∩ (∪iBi) into a
function ψ̃ in such a way that

∫
B(ai,Rεε) |∇ψ̃|2 ≤ C

∫
B(ai,2Rεε)\B(ai,Rεε) |∇ψ|2 (see for example

[BMR]), so that we have
∫
D |∇ψ̃|2 ≤ C

∫
Dε
|∇ψ|2. Moreover, we can do it in such a way that

‖ψ̃ − ci‖L∞(Bi) ≤ ‖ψ − ci‖L∞(∂Bi) = o(1).

Using this, we find
∣∣∣∣(ci − ψ)

∫

Bi

(fε, iu)
∣∣∣∣ ≤

∫

Bi

|ψ̃ − ψ||fε|+
∫

Bi

|ψ̃ − ci||fε|

≤
∫

Bi

|ψ̃ − ψ||fε|+ o(Rεε‖fε‖L2(Ω)).

We may thus conclude with (4.41) and (1.10) (combined with Rε ≤ |log ε|) that

(4.20)
∫

Dε

(∇θ − ρ2∇ϕ) · ∇ψ = O

(∫

D
|fε||ψ̃ − ψ|

)
+

∫

∂D
(ψ − ψ)

(
∂θ

∂ν
− ρ2 ∂ϕ

∂ν

)
+ o(1).

In the case D = Ω, in view of the boundary conditions (ψ = ψ or ∂ϕ
∂ν = 0), the second term

in the right-hand side vanishes identically, so

(4.21)
∫

Ωε

(∇θ − ρ2∇ϕ) · ∇ψ = O

(∫

Ω
|fε||ψ̃ − ψ|

)
+ o(1)
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Following the exact same steps, we can deduce that

(4.22)
∫

Ωε

ρ2∇ϕ · ∇ψ = O

(∫

Ω
|fε||ψ̃ − ψ|

)
+ o(1).

But, by a Poincaré type inequality, we always have

(4.23)
∫

D
|fε||ψ̃ − ψ| ≤ C|D|‖fε‖L2(D)‖∇ψ‖L2(Dε)

where |D| denotes the half-diameter of D (a constant if D = Ω and l if D = B(x, l)). (Recall
that if D intersects ∂Ω, then it is a ball centered at a point of the boundary, essentially a
half-disc if l is small, by smoothness of ∂Ω). From (4.21) and (4.22), we already deduce that
(4.16) and (4.15) hold.

There remains to bound the other term of the right-hand side of (4.20). In the case
D = B(x, l) ∩ Ω (the only one left to consider) we observe that since ϕ = θ + ψ, in view of
the boundary conditions and the choice of ψ, we have

(4.24)
∫

∂D
(ψ − ψ)

(
∂θ

∂ν
− ρ2 ∂ϕ

∂ν

)
=

∫

∂B(x,l)∩Ω
(ψ − ψ)(1− ρ2)

∂θ

∂ν
−

∫

∂B(x,l)∩Ω
(ψ − ψ)ρ2 ∂ψ

∂ν
.

Let us now distinguish between the cases where B(x, l) intersects ∂Ω and not. If D = B(x, l) ⊂
Ω, we may use, as in [BMR], a sharp scaled Poincaré inequality on ∂B(x, l): observe that
∫
∂B(x,l) |ψ−ψ|2 ≤ l2

∫
∂B(x,l)

∣∣∣∂ψ
∂τ

∣∣∣
2

and
(∫

∂B(x,l)

∣∣∣∂ψ
∂τ

∣∣∣
2
) 1

2
(∫

∂B(x,l)

∣∣∣∂ψ
∂ν

∣∣∣
2
) 1

2

≤ 1
2

∫
∂B(x,l) |∇ψ|2.

Inserting this into the above, and using ρ ≤ 1, we are led to
∣∣∣∣∣
∫

∂B(x,l)
(ψ − ψ)ρ2 ∂ψ

∂ν

∣∣∣∣∣ ≤ l

(∫

∂B(x,l)

∣∣∣∣
∂ψ

∂τ

∣∣∣∣
2
) 1

2
(∫

∂B(x,l)

∣∣∣∣
∂ψ

∂ν

∣∣∣∣
2
) 1

2

≤ l

2

∫

∂B(x,l)
|∇ψ|2.(4.25)

When D = B(x, l) ∩ Ω and x ∈ ∂Ω, then, we may calculate explicitely

(4.26) min
h∈H1

0 ([0,L])

∫ L
0 (h′)2∫ L
0 h2

=
π2

L2

and

(4.27) minR L
0 h=0

∫ L
0 (h′)2∫ L
0 h2

=
π2

L2

Applying this to the curve ∂B(x, l) ∩ Ω parametrized by arclength, we find, using (4.26) in
the Dirichlet case and (4.27) in the Neumann case, in view of the choice of ψ,

(4.28)
∫

∂B(x,l)∩Ω
|ψ − ψ|2 ≤ |∂B(x, l) ∩ Ω|2

π2

∫

∂B(x,l)∩Ω

∣∣∣∣
∂ψ

∂τ

∣∣∣∣
2

,

where |∂B(x, l)∩Ω| denotes the length of ∂B(x, l)∩Ω. Using the fact that ∂Ω is smooth, we
can write

|∂B(x, l) ∩ Ω| ≤ πl + Cl2
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(that is ∂B(x, l) ∩ Ω tends to a half-circle as l → 0). Inserting into (4.28), we find, in place
of (4.25),

∣∣∣∣∣
∫

∂B(x,l)
(ψ − ψ)ρ2 ∂ψ

∂ν

∣∣∣∣∣ ≤
(

(l2 + Cl3)
∫

∂B(x,l)∩Ω

∣∣∣∣
∂ψ

∂τ

∣∣∣∣
2
) 1

2
(∫

∂B(x,l)∩Ω

∣∣∣∣
∂ψ

∂ν

∣∣∣∣
2
) 1

2

≤ 1
2
(l + Cl2)

∫

∂B(x,l)∩Ω
|∇ψ|2.(4.29)

On the other hand, for both cases (boundary and interior), using (3.6), we have |∇θ| ¿
C√
|log ε|ε on ∂B(x, l), hence

∣∣∣∣∣
∫

∂B(x,l)∩Ω
(ψ − ψ)(1− ρ2)

∂θ

∂ν

∣∣∣∣∣ ≤ o(1)√
|log ε|

(∫

∂B(x,l)∩Ω
|ψ − ψ|2

∫

∂B(x,l)∩Ω

(1− ρ2)2

ε2

) 1
2

≤ o(1)√
|log ε|

(
l

∫

B(x,l)
|∇ψ|2

∫

∂B(x,l)∩Ω

(1− ρ2)2

ε2

) 1
2

where we have used a trace inequality. Using the fact that
∫
Ωε
|∇ψ|2 ≤ ∫

Ω |∇u|2 +
∫
Ωε
|∇θ|2 ≤

C|log ε|, we deduce
∣∣∣∣∣
∫

∂B(x,l)
(ψ − ψ)(1− ρ2)

∂θ

∂ν

∣∣∣∣∣ ≤ o(1)

(
1 +

l

2

∫

∂B(x,l)

(1− ρ2)2

ε2

)
.

Combining with (4.20) and (4.23), we conclude that (4.17) holds.

Lemma 4.4. Under the same hypotheses, we have the estimates
∣∣∣∣
∫

Dε

(ρ2 − 1)(2∇θ +
3
2
∇ψ) · ∇ψ

∣∣∣∣ ≤ C‖∇ψ‖L2(Dε) + o(1)(4.30)
∣∣∣∣
∫

Ωε

(ρ2 − 1)(2∇θ +
3
2
∇ψ) · ∇ψ

∣∣∣∣ ≤ o

(∫

Ωε

1
2ε2

(1− ρ2)2 +
∫

Ωε

|∇ψ|2
)

+ o(1).(4.31)

Proof. For the first relation, let us write
∫

Dε

(1− ρ2)|∇ψ|2 ≤
∫

Dε∩{|u|≥1− 1
|log ε|2 }

(1− ρ2)|∇ψ|2 +
∫

Dε∩{|u|≤1− 1
|log ε|2 }

(1− ρ2)|∇ψ|2

≤ C

|log ε|2
∫

Ωε

|∇ψ|2 +




∫

Dε∩{|u|≤1− 1
|log ε|2 }

(1− ρ2)2

ε2




1
2 (∫

Dε

|∇ψ|2
) 1

2

(4.32)

where we have used the fact that |∇ψ| ≤ C
ε . Now, using the fact that

∫
Ωε
|∇ψ|2 ≤ C|log ε|

and combining this to the result of Proposition 2.1, we conclude that
∫
Dε

(1 − ρ2)|∇ψ|2 ≤
o(1)+C‖∇ψ‖L2(Dε). A similar reasoning (using |∇θ| ≤ C

ε in Ωε) works for
∫
Dε

(1−ρ2)∇θ ·∇ψ,
and we deduce (4.30).

The other relation is a direct consequence of (3.32) and ρ ≥ 1− o(1) in Ωε.
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Lemma 4.5. Under the same hypotheses,

(4.33)
∫

B(x,l)∩Ω\∪iBi

|∇ρ|2+(1− ρ2)2

ε2
≤ C

∫

∂B(x,l)∩Ω
|1−ρ2||∇ρ|+o

(
1 +

∫

B(x,l)∩Ω\∪iBi

|∇ψ|2
)

,

and

(4.34)
∫

Ωε

|∇ρ|2 +
(1− ρ2)2

ε2
≤ o(1)

(
1 +

∫

Ωε

|∇ψ|2
)

.

Proof. Indeed, returning to (4.11), we find
∫

Dε

|∇ρ|2+(1− ρ2)2

ε2
≤ C

∫

∂Dε

|1−ρ2|
∣∣∣∣
∂ρ

∂ν

∣∣∣∣+o(1)+C

∣∣∣∣
∫

Dε

(ρ2 − 1)∇θ · ∇ψ

∣∣∣∣+C

∫

Dε

|1−ρ2||∇ψ|2

Using (3.32) and the fact that |1 − ρ2| = o(1) in Dε (from 1. of Proposition 2.2), (2.30) to
get rid of the terms on ∂Bi, we easily find that (4.33) and (4.34) hold.

These relations will be used later.
We are now in a position to give the full

Proof of Proposition 4.1. The control of the excess energy comes from (4.11). We just observe
that
(4.35)

(ρ2−1)
(
∇θ · ∇ψ +

1
2
|∇ψ|2

)
= |∇ψ|2 +(∇θ−ρ2∇ϕ) ·∇ψ +(ρ2−1)

(
2∇θ · ∇ψ +

3
2
|∇ψ|2

)
,

and combine (4.11) with (4.16) and (4.31), to find
(4.36)

(1− o(1))
∫

Ωε

|∇ψ|2 +(1−o(1))
∫

Ωε

2
5ε2

(1−ρ2)2 +
∫

Ωε

1
4
|∇ρ|2 ≤ C‖∇ψ‖L2(Ω)‖fε‖L2(Ω) +o(1).

The relation (4.1) follows directly. Similarly, using (4.30), we are led to

(4.37)
∫

B(x,l)∩Ω
|∇ψ|2 +

1
2
|∇ρ|2 +

2
5ε2

(1− ρ2)2

≤ l + Cl2

2

∫

∂B(x,l)
|∇ψ|2 +

1
2
|∇ρ|2 +

2
5ε2

(1− ρ2)2

+ C‖∇ψ‖L2((B(x,l)\∪iBi))(l‖fε‖L2(B(x,l)) + 1) + o(1).

Setting F (l) =
∫
B(x,l)∩Ω\∪iBi

|∇ψ|2 + 1
2 |∇ρ|2 + 2

5
(1−ρ2)2

ε2 , we deduce that F satisfies (4.4).
Also, returning to (4.12), and using (4.15) and the same other arguments, and combining

to (4.1), we find (4.2).
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4.1 ODE approach

Here, we give estimates for F given that it satisfies the differential inequality (4.4).

Lemma 4.6. Let f be a nondecreasing function on an interval [r,R] with R ≤ L, satisfying

(4.38) ∀x ∈ [r,R], f(x) ≤ x + cx2

2
f ′(x) + g(x)

√
f(x) + b

for some continuous function g, then

(4.39) f(r) ≤ C
r2

R2
f(R) + 2r2(G(R)−G(r))2 + 2b

(
1− r

R

)
,

where G is an antiderivative of g(x)
x2 and C = 2(1 + Lc)2.

Proof. Dividing (4.38) by x2
√

f(x), we find
√

f(x)
x2

≤ f ′(x)
2x

√
f(x)

+
cf ′(x)

2
√

f(x)
+

g(x)
x2

+
b

x2
√

f(x)
.

Setting h(x) =
√

f(x)

x , we observe that h′(x) = f ′(x)

2x
√

f(x)
−
√

f(x)

x2 , and thus

(4.40) 0 ≤ h′(x) + c
(√

f
)′

(x) +
g(x)
x2

+
b

x2
√

f(x)
.

Integrating between r and R, and using the monotonicity of f for the last term, we find
√

f(r)
r

≤
√

f(R)
R

+ c
√

f(R)− c
√

f(r) + G(R)−G(r) +
b√
f(r)

(
1
r
− 1

R

)
.

Thus
√

f(r)
r

≤
√

f(R)
(

1
R

+
Lc

R

)
+ G(R)−G(r) +

b√
f(r)

(
1
r
− 1

R

)
.

We observe that this is of the form λ2 ≤ a1λ + a2 where λ =
√

f(r). Using the fact that for
such an equation we have λ2 ≤ a2

1 + 2a2, we deduce

f(r) ≤
(

r(1 + Lc)
R

√
f(R) + r(G(R)−G(r))

)2

+ 2b
(
1− r

R

)
,

the relation (4.39) follows directly.

4.2 Proof of Theorem 1

Proof of (1.13), (1.14), (1.18) and (1.17)

(1.13) follows directly from (4.1), and (1.14) from (1.13) combined with (4.34). For (1.18),
we start from (4.2), which, combined with Lemma 3.1 (applied to the B(ai, Rεε)) yields

Eε(uε,Ωε) ≤ π
∑

i

d2
i log

1
Rεε

+ Wd(a1, · · · , an) + C‖fε‖2
L2 + o(1).
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But, from (2.32) and (2.28), we find

Eε(uε, B(ai, Rεε)) = πd2
i log Rε + γ(Vi).

With Lemma 3.3, the result (1.18) follows.
Finally, (1.17) was proved in Proposition 2.2.

Localised estimates

We recall that l À ε
√
|log ε|, so we can find a quantity

√
|log ε|ε ¿ Qε ¿ l. Let us first

consider the boundary case, i.e. x ∈ ∂Ω, and let F (l) be defined as in (4.3). Since the number
of points ai remains bounded by some n0, the set S = {l ∈ R/∂B(x, l) ∩ (∪iB(ai, Qε)) 6= ∅}
is a finite union of fewer than n0 intervals, with total length ≤ CQε. Let us write S ∩ [0, R] =
[t1, t′1] ∪ [t2, t′2] · · · ∪ [tk, t′k], where t1 < t′1 < t2 < t′2 · · · < tk+1 = R ≤ 1. Assume now l is
given, and l ∈ [t′i, ti+1], (4.4) holds in that interval. We may use Lemma 4.6 with f = F ,
g(l) = Kl‖fε‖L2(B(x,R))+1 and b the o(1) found in (4.4), then G(l) = K log l‖fε‖L2(B(x,R))− 1

l ,
thus we find

F (l) ≤ C
l2

t2i+1

F (ti+1) + 2
(

l log
ti+1

l
‖fε‖L2(B(x,R)) + 1

)2

+ 2b

(
1− ti+1

l

)
.

But, F (ti+1) ≤ F (t′i+1) and ti+1 ≤ 1, so

(4.41) F (l) ≤ C
l2

t2i+1

F (t′i+1) + 4
(

1 + l2 log2 1
l
‖fε‖2

L2(B(x,R))

)
+ 2b.

Similarly, using (4.4) on [t′i+1, ti+2], we have

(4.42) F (t′i+1) ≤ C
(t′i+1)

2

t2i+2

F (t′i+2) + 4
(

1 + (t′i+1)
2 log2 1

t′i+1

‖fε‖2
L2(B(x,R))

)
+ 2b.

The same relation holds for any i ≤ j ≤ k + 1. Now observe that since tj+1 ≥ t′j+1 −Qε, we
have

l2

t2i+1

(t′i+1)
2

t2i+2

· · · (t
′
k)

2

R
≤ l2

R2

(
1 +

CQε

l

)2n0

≤ Cl2

R2

in view of the assumption l À Qε. Using this and combining all the relations of the type
(4.42), we are led, after some calculations, to

(4.43) F (l) ≤ C
l2

R2
F (R) + Cl2 log2 1

l
‖fε‖2

L2(B(x,R)) + C

where C is a constant (depending on n0). On the other hand, from (4.1), we have F (R) ≤
C‖fε‖2

L2(Ω) + o(1), thus, taking R = 1,

(4.44) F (l) ≤ Cl2‖fε‖2
L2(Ω) log2 l + C.

If l belongs to some interval [ti, t′i], then we may get (4.44) for t′i, and using F (l) ≤ F (t′i) and
t′i ≤ l + Qε ≤ 2l, we deduce that a relation like (4.44) still holds.
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For the interior case, let x ∈ Ω and let R = dist (x, ∂Ω). Let us denote F by Fx to keep
track of the center point. If l ≥ R, then there exists x0 ∈ ∂Ω such that B(x, l) ⊂ B(x0, 2l)
and thus Fx(l) ≤ Fx0(2l) and the result follows from the boundary case. If l ≤ R, then,
arguing exactly as above, since B(x,R) ⊂ Ω and (4.4) holds in the interior case, we can get
similarly (4.43), that is

(4.45) Fx(l) ≤ C
l2

R2
Fx(R) + Cl2 log2 1

l
‖fε‖2

L2(B(x,R)) + C.

If R ≥ 1, using (4.1), we are done. If not, we can find x0 ∈ ∂Ω such that B(x,R) ⊂ B(x0, 2R),
thus, using the result (4.44) for the boundary case

Fx(R) ≤ Fx0(2R) ≤ CR2‖fε‖2
L2 log2 1

R
+ C.

Combining with R ≥ l and (4.45), we find

Fx(l) ≤ Cl2‖fε‖2
L2 log2 1

l
+ C,

that is (4.44) is proved in the interior case as well, and we always have

(4.46)
∫

B(x,l)∩Ω\∪iBi

|∇ψε|2 + |∇ρ|2 +
(1− |u|2)2

2ε2
≤ C + Cl2 log2 l‖fε‖2

L2(Ω).

In order to prove (1.16), let us use (4.33) on B(x, s):

(4.47)
∫

B(x,s)∩Ω\∪iBi

|∇ρ|2+(1− ρ2)2

ε2
≤ C

∫

∂B(x,s)∩Ω
|1−ρ2||∇ρ|+o(1)+o

(∫

B(x,s)∩Ω\∪iBi

|∇ψ|2
)

Let us recall that l À ε
√
|log ε| À ε. Thus, from (4.47),

∫

B(x,s)∩Ω\∪iBi

|∇ρ|2+(1− ρ2)2

ε2
≤ Cε

∫

∂B(x,s)∩Ω
|∇ρ|2+(1− ρ2)2

ε2
+o(1)+o

(∫

B(x,s)∩Ω\∪iBi

|∇ψ|2
)

Integrating this relation for s ∈ [l, 2l], we easily deduce that

l

∫

B(x,l)∩Ω\∪iBi

|∇ρ|2+(1− ρ2)2

ε2
≤ Cε

∫

B(x,2l)∩Ω
|∇ρ|2+(1− ρ2)2

ε2
+o(1)+o

(
l

∫

B(x,2l)∩Ω\∪iBi

|∇ψ|2
)

Inserting (4.46) and the fact that
∫
Bi
|∇ρ|2 + (1−ρ2)2

2ε2 = O(1) (from [BMR] for example), we
are led to

∫

B(x,l)\∪iBi

|∇ρ|2 +
(1− ρ2)2

ε2
≤

(
C

ε

l
+ o(1)

)(
l2 log2 1

l
‖fε‖2

L2(Ω) + C

)
+ o(1)

and since we assumed ε/l → 0, we conclude that (1.16) holds.
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We now prove that the second upper bound in (1.15) holds. For that, let us return to the
proof of Proposition 4.1. Inserting (1.16) into (4.32), we have

(4.48)
∫

Dε

|1− ρ2||∇ψ|2 ≤ o(1)
(

1 + l log
1
l
‖fε‖L2(B(x,2l)

)
‖∇ψ‖L2(Dε) + o(1).

In place of (4.37) we can now write

(4.49)
∫

B(x,l)∩Ω\∪iBi

|∇ψ|2 +
1
2
|∇ρ|2 +

2
5ε2

(1− ρ2)2

≤ l + Cl2

2

∫

∂B(x,l)∩Ω
|∇ψ|2 +

1
2
|∇ρ|2 +

2
5ε2

(1− ρ2)2

+ C‖∇ψ‖L2((B(x,l)\∪iBi))o

(
l log

1
l
‖fε‖L2(Ω) + 1

)
+ o(1).

Then, we apply the same reasoning as before, i.e. use (4.39) this time with g(l) = c(l log 1
l ‖fε‖L2(Ω)+

1), where c = o(1), and the same method. Since G(l) the anti-derivative for g/l2 is equal to
c(− log2 l

2 − 1
l ), we find in the end, in place of (4.44),

F (l) ≤ o(1)(l2 log4 l‖fε‖2
L2(Ω) + 1)

and we may conclude as before that (1.15) holds.

Remark 4.1. When fε = 0, Theorem 1 reproves the result of [CM2] without the need of L∞

estimates on 1− |u|2 in Ωε.

5 Proof of Theorem 2

As we mentioned, the proof relies on the Pohozaev identity as in (2.7) or as in [BMR],
combined with Lemma 3.2.

5.1 Interior case

Case
∑k

i=1 d2
i > (

∑
i di)

2

We denote by BR the ball centered at x0 of radius R. Let us apply Lemma 2.2 with r = l and
R ≤ Kl/2 so that B2R\Bl/2 intersects no Bi. Denoting f(s) =

∫
Bs∩Ω

(1−|u|2)2

ε2 , and combining
(2.7) and (2.8), we find

∫

BR\Bl

∣∣∣∣
∂u

∂r

∣∣∣∣
2

+
∫ R

l

f(s)
s

ds

≤
∫

BR\Bl

∣∣∣∣
∂u

∂τ

∣∣∣∣
2

+
(1− |u|2)2

2ε2
+

∫

BR\Bl

∣∣∣∣
∂u

∂r

∣∣∣∣
2

+
R2

4

∫

BR\Bl

|fε|2+l log
R

l
‖fε‖L2(Bl)‖∇u‖L2(Bl),

hence

(5.1)
∫ R

l

f(s)
s

ds ≤
∫

BR\Bl

∣∣∣∣
∂u

∂τ

∣∣∣∣
2

+
(1− |u|2)2

2ε2

+
R2

4
‖fε‖2

L2(Ω) + Cl log
R

l

√
|log ε|‖fε‖L2(Bl).
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But, in BR\Bl, we have
∣∣∣∣
∂u

∂τ

∣∣∣∣
2

≤ |∇u|2 = |∇ρ|2 + ρ2|∇θ +∇ψ|2.

We claim that
(5.2)∫

BR\Bl

|∇θ|2−CR2 log2 1
R
‖fε‖2

L2−C ≤
∫

BR\Bl

ρ2|∇θ+∇ψ|2 ≤
∫

BR\Bl

|∇θ|2+CR2 log2 1
R
‖fε‖2

L2+C.

Assuming this holds, let us insert this relation into (5.1), and use (1.16). We are led to

(5.3)
∫ R

l

f(s)
s

ds ≤
∫

BR\Bl

|∇θ|2 + Cl log
R

l

√
|log ε|‖fε‖L2(Bl) + CR2 log2 1

R
‖fε‖2

L2(Ω) + C.

Now observe that for all s ≥ l,

f(s) ≥
∫

Bl

(1− |u|2)2
ε2

≥ 2π
k∑

i=1

d2
i − o(1)

in view of (2.31). Thus, using (the relation x ≤ x2 + 1), (3.15), and inserting this into (5.3),
we obtain the relation
(

2π
k∑

i=1

d2
i − o(1)

)
log

R

l
≤ 2π

(
k∑

i=1

di

)2

log
R

l
+C+CR2 log2 1

R
‖fε‖2

L2(Ω)+Cl log
R

l

√
|log ε|‖fε‖L2(Ω).

But we assumed (
∑k

i=1 di)2 <
∑k

i=1 d2
i , and because these involve integers, the difference is

at least 1. We deduce

(5.4) log
R

l
− C ≤ CR2 log2 1

R
‖fε‖2

L2(Ω) + Cl log
R

l

√
|log ε|‖fε‖L2(Ω),

where again the constants depend only on β, M , Ω, and g.
We then distinguish two cases. Either the first term in the right-hand side CR2 log2 1

R‖fε‖2
L2(Ω)

is less than the second, in which case we deduce

log
R

l
− C ≤ Cl log

R

l

√
|log ε|‖fε‖L2(Ω)

and taking R = K0l/2 with K0 large enough (K0 thus depends only on β, M , Ω and g), we
find

(5.5) ‖fε‖2
L2(Ω) ≥

C

l2|log ε| .

In the other case, CR2 log2 1
R‖fε‖2

L2 ≥ l log R
l

√
|log ε|‖fε‖L2(Ω), taking again R = K0l/2, we

find

(5.6) ‖fε‖2
L2(Ω) ≥

C

R2 log2 1
R

=
C

K2
0 l2 log2 1

K0l

.

The theorem is thus proved in this case.
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Proof of (5.2)

As in the proof of Theorem 1, we can extend ψ inside Bl in such a way that
∫
BR
|∇ψ|2 ≤

C
∫
BR\Bl

|∇ψ|2 ≤ CR2 log2 1
R‖fε‖2

L2 + C (from Theorem 1). Then, using the fact that∫
∂BR

∂θ
∂ν =

∫
∂Bl

∂θ
∂ν = 0,

∫

BR\Bl

ρ2|∇θ +∇ψ|2 =
∫

BR\Bl

ρ2|∇θ|2 + ρ2|∇ψ|2 + 2
∫

BR\Bl

∇θ · ∇ψ + 2
∫

BR\Bl

(ρ2 − 1)∇θ · ∇ψ

=
∫

BR\Bl

ρ2|∇θ|2 + ρ2|∇ψ|2

+2
∫

BR\Bl

(ρ2 − 1)∇θ · ∇ψ + 2
∫

∂BR

∂θ

∂ν
(ψ − ψR)− 2

∫

∂Bl

∂θ

∂ν
(ψ − ψl),

where ψR and ψl are the averages of ψ on ∂BR and ∂Bl respectively. On the other hand, by
trace theorem and Theorem 1,

∫
∂Bl

|ψ−ψl| ≤ Cl‖∇ψ‖L2(Bl) ≤ Cl2 log2 1
l ‖fε‖L2 + o(1), while

|∇θ| ≤ C
l on ∂Bl, thus

∣∣∣∣
∫

Bl

∂θ

∂ν
(ψ − ψl)

∣∣∣∣ ≤ Cl log
1
l
‖fε‖L2 + C

and the same holds on ∂BR. Arguing as in Lemma 4.4, we also have
∫

BR\Bl

(ρ2 − 1)
(|∇θ|2 + 2∇θ · ∇ψ

) ≤ CR log
1
R
‖fε‖L2 + C ≤ CR2 log2 1

R
‖fε‖2

L2 + C.

Using (1.15) again, we deduce that (5.2) holds.

Case (
∑k

i=1 di)2 >
∑k

i=1 d2
i

We start again from (2.7) and (2.8) and are led to

(5.7)∫

BR\Bl

∣∣∣∣
∂u

∂τ

∣∣∣∣
2

+
(1− |u|2)2

2ε2
≤

∫ R

l

f(s)
s

ds+
∫

BR\Bl

∣∣∣∣
∂u

∂r

∣∣∣∣
2

+
R2

4

∫

BR\Bl

|fε|2+Cl log
R

l

√
|log ε|‖fε‖L2(Bl).

First, using (3.16) and Theorem 1, we have

(5.8)
∫

BR\Br

∣∣∣∣
∂ρ

∂r

∣∣∣∣
2

+
∣∣∣∣

∂

∂r
(θ + ψ)

∣∣∣∣
2

≤ C + CR2 log2 1
R
‖fε‖2

L2(Ω).

On the other hand, from (5.2), we have
∫

BR\Bl

|∇u|2 ≥
∫

BR\Bl

|∇θ|2 − CR2 log2 1
R
‖fε‖2

L2 − C.

But if we combine this with (5.8), we must have

∫

BR\Bl

∣∣∣∣
∂u

∂τ

∣∣∣∣
2

≥
∫

BR\Bl

|∇θ|2 − CR2 log2 1
R
‖fε‖2

L2 − C.
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Combining this with (3.15) and inserting it and (5.8) into (5.7), we are led to

(5.9)

2π

(
k∑

i=1

di

)2

log
R

l
≤

∫ R

l

f(s)
s

ds+C+CR2 log2 1
R
‖fε‖2

L2(Ω)+Cl log
R

l

√
|log ε|‖fε‖L2(Ω).

Meanwhile for all s ≤ R,

(5.10) f(s) =
∫

∪k
i=1Bi

(1− |u|2)2
ε2

+
∫

Bs\∪k
i=1Bi

(1− |u|2)2
ε2

≤ 2π
k∑

i=1

d2
i + o

(
R2 log2 1

R
‖fε‖2

L2

)
+ o(1)

where we have used (2.31) and (1.16). After integrating, this yields

2π

(
k∑

i=1

di

)2

log
R

l
≤

(
2π

k∑

i=1

d2
i + o(1)R2 log2 1

R
‖fε‖2

L2 + o(1)

)
log

R

l

+ C + CR2 log2 1
R
‖fε‖2

L2(Ω) + Cl log
R

l

√
|log ε|‖fε‖L2(Ω),

and hence

2π

(
k∑

i=1

di

)2

− 2π

k∑

i=1

d2
i ≤ CR2 log2 1

R
‖fε‖2

L2 + Cl
√
|log ε|‖fε‖L2(Ω) +

C

log R
l

+ o(1).

Since the left-hand side is at least equal to 2π, we find, if R = K0l/2 with K0 large enough,
that

C ≤ CR2 log2 1
R
‖fε‖2

L2 + Cl
√
|log ε|‖fε‖L2 .

Distinguishing two cases as previously, we may conclude that

‖fε‖2
L2 ≥ min

(
C

l2|log ε| ,
C

l2 log2 1
l

)
.

5.2 Boundary case

The proof is roughly the same. Assuming R < 1
2 , we may use (2.20) or (2.23) to get in any

case

(5.11)
∫ R

l

f(s)
s

≤ C

∫

(BR\Bl)∩Ω
|∇u|2 +

(1− |u|2)2
ε2

+ CR
(
1 +

√
|log ε|‖fε‖L2(Ω)

)
.

Arguing as in the interior case and using (3.17), we get
∫

(BR\Bl)∩Ω
|∇u|2 +

(1− |u|2)2
ε2

≤ C + CR2 log2 1
R
‖fε‖2

L2
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and also
∫ R
l

f(s)
s ≥ (2π

∑
i d

2
i − o(1)) log R

l ≥ π log R
l . Inserting into (5.11), we find

π log
R

l
≤ C + CR2 log2 1

R
‖fε‖2

L2 + R
√
|log ε|‖fε‖L2

and arguing as above, we deduce, taking R = K0l/2 with K0 large enough, that ‖fε‖2
L2 ≥

min
(

C
R2|log ε| ,

C
R2 log2 1

R

)
from which the result follows.

Applying Theorem 2 in the case fε = 0 i.e. for a solution of Ginzburg-Landau, we obtain
Corollary 1.1.
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