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Summary. Simultaneous localization and mapping (SLAM) is an important research area in
robotics. Lately, systems that use a single bearing-only sensors have received significant at-
tention and the use of visual sensors have been strongly advocated. In this paper, we present a
framework for 3D bearing only SLAM using a single camera. We concentrate on image fea-
ture selection in order to achieve precise localization and thus good reconstruction in 3D. In
addition, we demonstrate how these features can be managed to provide real-time performance
and fast matching to detect loop-closing situations. The proposed vision system has been com-
bined with an extended Kalman Filter (EKF) based SLAM method. A number of experiments
have been performed in indoor environments which demonstrate the validity and effectiveness
of the approach. We also show how the SLAM generated map can be used for robot localiza-
tion. The use of vision features which are distinguishable allows a straightforward solution to
the “kidnapped-robot” scenario.

1.1 Introduction

It is widely recognized that an autonomous robot needs the ability to build maps of
the environment using natural landmarks and to use them for localization, [2, 4, 18–
20]. One of the current research topics related to SLAM is the use of vision as the
only exteroceptive sensor, [3,5,6,15,17] due to the low cost. In this paper, we present
a SLAM system that builds 3D maps using visual features using a single camera. We
describe how we deal with a set of open research issues such as producing stable
and well-localized landmarks, robust matching procedure, landmark reconstruction
and detection of loop closing. These issues are of extreme importance when working
for example in an EKF setting where the computational complexity grows quadrat-
ically with the number of features. Robust matching is required for most recursive
formulations of SLAM where decisions are final.

Besides low cost, another aspect of using cameras for SLAM is the much greater
richness of the sensor information as compared to that from, for example, a range
sensor. Using a camera it is possible to recognize features based on their appearance.
This can then simplify one of the most difficult problems in SLAM, namely data



association. We demonstrate just how powerful an advantage this is by using the
SLAM map to perform robot localization without any initial pose estimate.

The main contributions of this work are i) a method for the initialization of visual
landmarks for SLAM, ii) a robust and precise feature detector, iii) the management
of the measurement to make on-line estimation possible, and iv) the demonstration
of how this framework can facilitate loop closing and localization. Due to the low
complexity, we believe that our approach scales to larger environments.

1.2 Related Work

Bearing only/single camera SLAM suffers from the problem that a single observation
of a landmark does not provide an estimate of its full pose. This problem is typically
addressed by combining the observations from multiple views as in the structure-
from-motion (SFM) approaches in computer vision. The biggest difference between
SLAM and SFM is that SFM considers mostly batch processing while SLAM typi-
cally requires on-line real-time performance.

The most important problem that has to be addressed in bearing only SLAM is
landmark initialization, again because a single observation does not allow all degrees
of freedom to be determined. A particle filter used to represent the unknown initial
depth of features has been proposed in [3]. The drawback of the approach is that the
initial distribution of particles has to cover all possible depth values for a landmark
which makes it difficult to use when the number of detected features is large. A sim-
ilar approach has been presented in [9] where the initial state is approximated using
a Gaussian Sum Filter for which the computational load grows exponentially with
number of landmarks. The work in [10] proposes an approximation with additive
growth.

Similarly to our work, a multiple view approach has been presented in [6]. This
work demonstrates the difficulties related to landmark reconstruction when the robot
performs only translational motion along the optical axis. To cope with the re-
construction problem, a stereo based SLAM method was presented in [17] where
Difference-of-Gaussians (DoG) is used to detect distinctive features which are then
matched using SIFT descriptors. One of the important issues mentioned is that their
particle filter based approach is inappropriate for large-scale and textured environ-
ments. The contribution of our work is that we deal with this problem using a feature
detector that produces fewer features (presented in more detail in Section 1.4). In our
work we use only a few high quality features for performing SLAM.

We have also considered another problem raised in [17] related to time consum-
ing feature matching and useKD-trees to make our matching process very fast. The
visual features used in our work are Harris corner features across different scales
represented by a Laplacian pyramid for feature detection. For feature matching, we
take a combination of a modified SIFT descriptor andKD-trees.

In man-made environments, there are many repetitive features and a single SIFT
descriptor is not discriminative enough in itself to solve the data association problem.
To deal with this problem, the approach using “chunks” of SIFT points to represent



landmarks in an outdoor environment has been presented in [12]. This is motivated
by the success that SIFT has had in recognition applications where and object/scene
is represented as a set of SIFT points. In our approach, the position of a landmark is
defined by a series of single modified SIFT points representing different views of the
landmark. Each such point is accompanied with a chunk of descriptors that make the
matching/recognition of landmarks more robust. Our experimental evaluation shows
also that our approach performs successful matching even with a narrow field of view
which was mentioned as a problem in [6], [17].

One of the more challenging problem in SLAM is loop closing. In [15] visu-
ally salient so called “maximally stable extremal regions” or MSERs, encoded using
SIFT descriptors, are used to detect when the robot is revisiting an area. A number
of approaches have been presented for other sensory modalities, [7]. We also show
how our framework can be used for this purpose.

In our work, a distinction is made between recognition and location features.
A single location feature will be associated with several recognition features. The
recognition features’ descriptors then give robustness to the match between the loca-
tion features in the map and the features in the current image. The key idea is to use
a few high quality features to define the location of landmarks and then use the other
features for recognition.

1.3 Landmark Initialization

In this work, we use feature matching acrossN frames to determine which points
make good landmarks. Features that are successfully matched over a number of
frames are candidates for landmarks in the map. Having a buffer ofN frames also
allows us to calculate an estimate of the 3D position of the corresponding landmark.
The SLAM process is fed with data from the output side of the buffer, i.e. with the
data from frames that are delayedN steps with respect to the input side of the buffer.
Fig. 1.1 illustrates the idea.
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Fig. 1.1.Features are tracked overN frames in a buffer to allow for quality assessment and
feature selection. The 3D position is estimated and landmarks formed from features that are
tracked over many frames and are of high quality. The input to the SLAM process is delayed
by N frames, but in return an estimate of the 3D position of the points landmarks can be
supplied.

Since an estimate of the 3D position of landmarks can be supplied with the first
observation of a landmark presented to the SLAM process (see Fig. 1.1), the land-
marks can immediately be fully initialized in the SLAM process. This allows im-



mediate linearization without the need to apply multiple hypotheses [10] or particle
filtering [3] techniques to estimate the depth. It is important to point out that that the
approximate 3D position found from the buffer of frames is only used to be able to
initialize the point landmark at the correct depth with respect to the camera at the
first observation. In a sense it allows us to know which of the multiple hypotheses
about the depth is correct right away which of course saves computations. Having the
correct depth allows us, as said before, to handle the linearization errors that would
results from having a completely wrong estimate of the depth.

In our experience having the SLAM output laggingN frames is not a problem.
For cases where the current position of the robot is needed, such as when performing
robot control, a prediction can be made using dead-reckoning forward in time from
the robot pose given by the SLAM process. For typical values ofN, the addition to
the robot position error caused by the dead-reckoning is small and we believe that
the benefits of being able to initialize landmarks using bearing-only information and
perform feature quality checks are more significant. It is also important to understand
that we predict forward the short distance from the SLAM time to the current time
in every iteration so the errors from the prediction do not accumulate.

When selecting what features to use as landmarks in the map several criteria are
considered: i) The feature is detected in more than a predefined number of frames,
ii) The image positions of the feature allow good triangulation, and iii) The resulting
3D point is stable over time in the image. The first requirement removes the noise
and moving targets. The second removes the features that have a high triangulation
uncertainty (small baseline, features with bearings near the direction of motion). The
third requirement removes features that lack sharp positions in all images due to
parallax or a lack of a strong maximum in scale space. Difference in scales of the
images can also cause apparent motion of features, such as for example a corner of a
non-textured object.

In our implementation the length of the buffer, i.e. the numberN is fixed. We
have tested with values between 10 and 50. Since one of the key purposes with the
buffer is to allow for 3D estimation we demand that the camera has moved to add a
new frame to the buffer. This way, it is likely that there is a baseline for estimating the
location. The value ofN depends very much on the motion of the robot/camera and
the camera parameters. For a narrow field of view camera mounted in the direction
of motion of the robot as in our case the effective baseline will be quite small. As
part of our future work we plan to compare the results that we get from using an
omnidirectional camera.

1.4 Feature Description

It has been shown in [14] that the SIFT descriptor [11] is the most robust regarding
scale and illumination changes. The original version of the SIFT descriptor uses
feature points determined by the peaks of a series of Difference of Gaussians (DoG)
on varying scales. In our system, peaks are found using Harris-Laplace features, [13]
since they respond to regions of high curvature, instead of blob-like image structures



obtained by series of DoG. This leads to features accurately localized spatially, which
is essential when features are used for reconstruction and localization, instead of just
recognition. In addition, Harris-Laplace generates on average one fourth of points [8]
compared to the regular DoG approach which is an important benefit for SLAM
where we strive to keep the number of features low for computational reasons.

The original SIFT descriptor assigns canonical orientation at the peak of smoothed
gradient histograms. This means that similar corners but with a significant rotation
difference can have similar descriptors. In a sparse, indoor environment many of the
detected features come from corner features and there may potentially be many false
matches. For example, the four corners of the waste bin in Fig. 1.2 might all match
if rotated. Therefore, we use a rotationally ’variant’ SIFT descriptor where we avoid
the canonical orientation at the peak of smoothed gradient histogram and leave the
gradient histogram as it is.

Fig. 1.2.Example image from an indoor environment showing that many corner structures are
very similar if rotated. Examples are the corners of the waste bin and the window sections on
the door.

1.5 Feature Tracking

As outlined in Section 1.3 a buffer with the lastN frames is stored in memory. The
image data itself does not need to be stored, it is the feature points extracted from the
frames that are stored. The feature points are tracked in consecutive image frames as
the robot moves. The similarity between two feature points is the distance between
the descriptors which are vectors in a 128-dimensional space. To manage the match-
ing between frames, lists with association/points are maintained. Fig. 1.3 shows the
basic organization of this frame memory. On the left we have the buffer with the
N frames drawn vertically with the input side at the top and output side that is fed
into the SLAM process at the bottom. On the right side of the buffer in the frame
memory we show the association list that keep track of which feature points in the



different frames have been matched. Each such association list item corresponds to
one landmark in the world.

The SIFT descriptor of a feature changes when the camera moves. However given
that the feature is continuously tracked this change in descriptor is typically small be-
tween consecutive frames and can be handled. Each association/point in the world,
pi , will have a set of descriptorsd j corresponding to different vantage points for each
of the tracked features over theN frames. These lists can be analyzed to judge the
quality of the corresponding landmark candidate as described in Section 1.3. The
output from the tracking module is a selection of the points in the oldest frame in the
buffer. These points correspond to either already initialized landmarks or new land-
marks of high quality that can be initialized. Along with new landmarks an estimate
of the 3D position is provided. This estimate is only used in the initialization step
and thus only have to be performed for new landmarks. The number of points that
are output is only a small fraction of all points detected in a frame.

To make the matching procedure faster and more robust, we predict the approxi-
mate image location of the features from previous frames using odometry and optical
flow estimates. The buffer allows us to predict the position of features detected not
only in the previous frame but also in frames before that. We make one prediction
for each potential landmark in the old frames, i.e., we only use the last of features
that have been matched between frames. One important observation in our investiga-
tion was that even with very small changes between frames the same features would
typically not be detected in every frame which would mean loosing track of most
features if only matching against the previous frame. This observation is true also
when using the DoG detector for the features.

Using the prediction allows us to reduce the search window when looking for
matches between frames. Features that do not match the predicted positions of points
currently in the frame memory are matched to landmarks in the database. This also
allows for fast detection of potential loop closing situations. The first time the loca-
tion of a landmark has been established through triangulation and it has met the other
criteria listed in Section 1.3, it is added to the database as a new location feature. This
is discussed further in the next section.

1.6 Database Management

As the robot moves along in the environment, features will leave its field of view
and thus eventually also the frame memory described in Section 1.5. In SLAM, it is
important for the robot to detect if it is revisiting an area and find the correspondence
between the new features in the image and existing landmarks. In fact, this is an issue
not only when revisiting an area after closing a large loop but also when turning the
camera back to an area that has not been looked at for a while. To handle this we
use a database that stores information about the appearance of the landmarks from
different view points. That is, we let the SLAM process take care of estimating the
position of the landmarks and leave it to the data base to deal with the appearance
and matching of them.
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Fig. 1.3.A schematic view of the frame memory that stores the points and the associations
between points in theN last frames and the database. The point in the frame memory that have
been matched or added to the database have a reference to the corresponding landmark there.
Each landmark in the database has a set of descriptors that corresponds to location features
seen from different vantage points. To validate a match, each of these descriptors keeps a list
of the other descriptors found in the same frame. We refer to these as recognition descriptors.
These provide the ability to “recognize” a landmark again.

In our database, each landmark has a set of SIFT descriptors that correspond to
different vantage points. These descriptors are provided by the frame memory that
matches the image points between frames and stores this in the association/point lists.
A new descriptor is added to a landmark when it differs more than a certain threshold
from all other descriptors attached to that landmark. Fig. 1.3 shows the structure of
the database where the landmarks are denoted withF1, F2, . . . , FN. The dashed box
contains the descriptors for each of the landmarks. A KD-tree representation and a
Best-Bin-First [1] search allow for real-time matching between new image feature
descriptors and those in the database.

There may be potentially many similar descriptors corresponding to different
features. Looking once again at the image in Fig. 1.2 the four corresponding corner
points on the glass windows on the left hand side door section will all be very simi-
lar. Trying to find a correspondence between images features in a new frame and the
map landmarks with a bit of uncertainty induced by a loop can be hard based only
on a single SIFT descriptor. Therefore, we require multiple matches to increase the
robustness [6]. We refer to these multiple descriptors as recognition descriptors and
the corresponding image features as recognition features. That is, when matching



a feature to the database we first look for matches between its location descriptor1

and the descriptors in the database. Then, we verify the match using the correspond-
ing two sets of recognition descriptors. As an additional test, it is required that the
displacement in image coordinates for the descriptor is consistent with the transfor-
mation between the two frames estimated from the matched recognition descriptors.
Currently, the calculation is simplified by checking the 2D image point displacement.
This final confirmation eliminates matches that are close in the environment and thus
share recognition descriptors such as would be the case with the glass windows in
Fig. 1.2.

To summarize, the matching of new features with the database proceeds as fol-
lows:

1. Find matching candidates by matching with the set of location descriptors in the
database (dashed box in the database in Fig. 1.3). The KD-tree representation
allows for fast matching and an effective way to eliminate all but a few of the
potential location feature matches in the database.

2. Validate the candidates using all extracted descriptors from the current frame, i.e.
the recognition feature and the recognition features associated with the matches
from step 1.

3. Confirm candidate by checking that the motion given all the matches is consis-
tent.

1.7 Using the Location Features for SLAM and Localization

We have seen in the previous sections how features are tracked between frames us-
ing a buffer ofN frames and how keeping this buffer allows for judging the quality
of potential landmarks and for finding an estimate of the 3D position of the land-
marks before they are initialized in SLAM. We use an EKF based implementation
for SLAM but the output from the frame memory and database can be fed into any
number of SLAM algorithms. The main difference between the EKF implementa-
tion used here for SLAM and the standard formulation is that we supplement the
first bearing-only measurement of a new landmark with the additional information
about the approximate distance as determined through the triangulation in the frame
buffer. The distance information s not given in the form of an EKF measurement,
these are always only bearings. It is used more like some oracle told the SLAM fil-
ter where in depth to initialize a new landmark. As a result an accurate linearization
can be made in the EKF as of the first sighting without the need for any special
arrangement to account for an unknown depth as in e.g. [3,10].

Once the map is built, it can be used for localization. Since the landmarks in the
database are distinguishable, it allows the robot to recognize areas that are part of
its map using a single landmark. Thus the robot can automatically initialize itself

1 Each feature in a new image is a potential location feature and the rest of the features in
that frame will be its recognition features. A feature can thus be both a location feature and
act as recognition feature for one or more other location features in that frame.



in the map after which the map can be used to track the robot pose. This is similar
to the situation when closing a loop and having to make the association between
new measurements and old landmarks in the map. In the latter case one has a rough
idea about where to look for such a match. When performing global localization the
uncertainty is the entire space and the search for matches can thus become quite
expensive. The framework presented in this work allows for fast matching against
the database which we will further investigate in the experimental section.

One of the benefits of our representation with multiple descriptors for the land-
marks, each of them encoding the appearance from a certain vantage point, is that
this information can be used to deduce the approximate position of the robot from a
single point observation. To allow for this, the pose from which each descriptor was
first observed is stored along with the descriptor. The idea is not that to get an exact
position out of an observation but to narrow down the area that the robot is likely to
be in.

To find the pose of the robot in the map we initialize a particle filter as soon as a
match to the database is found. The particles are initially distributed around the pose
indicated by the database match. The orientation for each particle in the initial sample
set is given by the bearing angle of the observation. This cuts the unconstrained
degrees of freedom down to two. Given that the 3D position of the landmark is given,
that the floor is flat and that a measurement of the bearing to the landmark is given
not only in the xy-plane but also in the vertical direction the distance to the landmark
can also be estimated from a single measurement. In our current implementation have
not incorporated this last bit of information. After the first observation it will then
require only a few other database matches to reduce the spread of particles enough to
say that the position is known. In our current implementation we initialize a normal
EKF localization algorithm at this point.

1.8 Experimental Evaluation

The experimental evaluation has been carried out on a PowerBot platform from Ac-
tivMedia. It has a differential drive base with two rear caster wheels. The camera
used in the experiments is a Canon VC-C4 CCD camera. This camera has built-in
pan-tilt-zoom capabilities but in the experiments these were all fixed with a slight
tilt upwards to reduce the amount of floor in the image. The non-holonomic motion
constraints of the base makes it hard to generate large baselines for triangulation as
the motion mostly is along the optical axis. This in combination with the relatively
narrow field of view2 contributes to the difficulty of the problem.

The experimental evaluation is carried out in two steps. In the first step we let
the robot build up a database of visual landmarks while feeding them into SLAM to
build a map with the 3D position of these landmarks. This test will show that i) our
framework produces few but stable landmarks well suited for map building ii) we
can match new observation to the database when closing the loop.

2 The field of view of the Canon VC-C4 is about 45◦ in the horizontal plane and 35◦ vertically
when the camera is in “wide-angle mode” as in our experiments.



Fig. 1.4.The experimental PowerBot platform with the Canon VC-C4 camera mounted on the
laser scanner.

In the second step the robot is given the task to find its position in this map given
the database and the map. This test will underscore the ability to match observations
to the database without false matches and highlight the strength our representation
provides to a localization system. The setting for the experiments is an area around
an atrium that consists of loops of varying sizes.

In the map building experiment we let the robot drive 3 laps around a part of
the environment, each lap being approximately 30m long. This trajectory is shown
along with a map built using a laser scanner in Fig. 1.5 (dark “circular” path). The
experiment took 8 minutes and 40 seconds and the time to process the data was 7 min
7s on a 1.8GHz laptop computer which shows that the system can run in real-time
even if all unmatched features are matched to the database in every processed frame.
After the first loop the database/map consisted of 98 landmarks. The landmarks are
shown as red/dark squares in Fig. 1.5. After the 3 loops were completed the map
consisted of 113 landmarks. This shows that the robot was successfully matching
most of the observations to the database during the last two laps. Otherwise one
would expect the map to be roughly 3 times the size after the first loop.

There are two important characteristics to note about the map with 3D visual
landmarks. Firstly, there are far fewer features then is typically seen in other works
where SIFT like features are used in the map [16,17]. This can be attributed to using
only the most stable points features as SLAM landmarks and the rest for recog-
nition/matching of those landmarks. Real-time performance was not demonstrated
in [16,17].

Secondly, the landmarks are well localized which can be seen by comparing with
the walls from the superimposed map built using the laser scanner3. Some of the
landmarks are lamps hanging from the ceiling such as the one at the upper right

3 Note that the laser based map is only shown for reference. Only vision was used in the
experiments



corner of the robot path in Fig. 1.5. This lamp is also visible in the upper image on
the right side of the same figure. The area to the right in the map with a large number
of landmarks is shown in the lower right image in Fig. 1.5. This area has many
objects at differing depths. In the back against the walls there are five heavily textured
paintings. The line in the laser based map comes from the benches that are in front of
the wall which accounts for the line of visual landmarks behind the line made using
the laser. Part of the spread is also due to uncertainty in depths of the landmarks. The
robot moved close to orthogonal to the wall creating very little baseline in the data
fed into SLAM. It is worth while repeating that the depth estimate from the frame
memory only serves to get the initialization of the depth roughly right to reduce the
linearization errors but that the real estimate of the 3D position is calculate through
the SLAM process using the bearing-only measurements.

Fig. 1.5. The SLAM map is shown as red squares at the locations of landmarks. To help
visualize the environment, a separately made laser scanner map is superimposed on this map.
Also shown are the trajectories from when the map was built (3 loops) and when the robot was
trying to localize. The feature match between the evening database image image (top) and the
daytime localization experiment (middle) is indicated. The bottom image corresponds to the
area of the map where the density of landmarks is greatest.

Depending on the scene, a typical frame has between 40-100 point features. The
time to perform the tracking over frames has constant complexity. Out of the features



in each new frame as many as half typically do not match any of the old features in the
frame memory and are thus matched to the database. The matching to the database
uses the KD-tree in the first step which makes this first step fast. This often results
only in a few possible matching candidates. A typical landmark in the database has
around 10 descriptors acquired from different viewing angles.

As we noted while building this map, the landmarks inserted into the database
during the first loop were then matched and updated on the second two loops with
no difficulty. In order to demonstrate the usefulness of this result we then used the
map and database in the second experiment to localize the robot at a different time
of day, when there was sunlight streaming through the windows and students milling
about. When performing localization we do not need to estimate the 3D location of
the points and thus the output from the frame memory is shifted to be at the input
side, i.e., without the delay. The frame memory is still used to track the points over
time but not to verify the quality which is most important when building the map.
The robot was given no initial pose information relative to the database and map. In
Fig. 1.5 the path of the robot in this second experiment is overlayed. The robot ini-
tially moves around in the lower left corner of the figure before it moves to the right
for some time and then eventually moves up into regions that were mapped in the
first experiment. The robot moves in unmapped areas for almost 6 minutes. During
this time it is constantly trying to find matches between unmatched features in the
image to the database. More than 1,000 images are added to the frame memory and
matched without any false matches to the database. When the robot enters an area
were it can observe landmarks from the database/map it almost immediately recog-
nized a landmark and a particle filter consistent with the observation was initialized.
In seconds, after repeated observations of several landmarks, the particles had con-
verged enough to initialize the EKF localization. The evolution of the particle filter
from initialization to convergence is shown in Fig. 1.6 in four frames from left to
right. In the last frame in this figure, the precision of the localization is indicated by
the alignment of the laser scan (not used for localization, only for comparison) and
the walls in the map.

The problems of a narrow field of view for an ordinary camera were overcome in
these experiments partly by carefully driving the robot. Better results were observed
when the robot was driven so that features remained in view for as long as possible,
(notice the rather crooked paths in Fig. 1.5).

1.9 Conclusion and Future Work

The contributions of the framework presented here are the feature selection and
matching that allows for real-time vision based bearing-only SLAM. We distinguish
between location and recognition features. The location features correspond to points
in 3D for which the robot motion allows good triangulation and which are used as
landmarks in the map. The matching is made robust by the inclusion of many recog-
nition features from the image for each location feature.



Fig. 1.6. Here we show the evolution of the localization particle filter. On the left we see
the initial distribution after first match to the database. On the right is shown the robot after
initialization in the map. The laser scan is also shown in the right image to help confirm that
the localization is indeed correct.

The use of Harris-Laplace corner detection combined with a scale space maxi-
mization gives rotationally variant features which are more appropriate for the cam-
era motions generated by a camera mounted on a mobile robot.

We use three criteria to select features for SLAM: persistence, range estimate
quality and image stability. The persistence criteria eliminates spurious and dynamic
features by requiring that the feature be observed many times. The quality of the
range estimate depends on the motion of the robot relative to the 3D point. If the
motion does not produce a sufficient baseline there is no reason to use the associated
vision feature. The stability in the image depends on how well the feature is localized
in the image.

The evaluation of our vision based landmarks was done on data collected from
a robot moving through a indoor environments. We were able to report no false
matches and the creation of accurate 3D maps. We also showed that those maps
could be used to localize the robot automatically in the environment.

One topic for future research is to actively control the pan-tilt degrees of freedom
of the camera on the robot. This would allow the robot to focus on a landmark for a
longer time and create a better baseline and thus a more accurate map. Another way
to address the problem with the limited field of view is to use an omnidirectional
camera which is also part of the planned future work.

References

1. J. S. Beis and D. G. Lowe. Shape indexing using approximate nearest-neighbour search
in high-dimensional spaces. InIEEE CVPR, pages 1000–1006, 1997.

2. J. A. Castellanos and J. D. Tardós. Mobile Robot Localization and Map Building: A
Multisensor Fusion Approach. Kluwer Academic Publishers, 1999.



3. A. J. Davison. Real-time simultaneous localisation and mapping with a single camera. In
ICCV, 2003.

4. G. Dissanayake, P. Newman, S. Clark, H.F. Durrant-Whyte, and M. Corba. A solution to
the slam building problem.IEEE TRA, 17(3):229–241, 2001.

5. J. Folkesson, Jensfelt P, and H. I. Christensen. Vision slam in the measurement subspace.
In IEEE ICRA05, 2005.

6. L. Goncavles, E. di Bernardo, D. Benson, M. Svedman, J. Ostrovski, N. Karlsson, and
P. Pirjanian. A visual fron-end for simultaneous localization and mapping. InIEEE
ICRA, pages 44–49, 2005.

7. J. Gutmann and K. Konolige. Incremental mapping of large cyclic environments. InIEEE
Int. Symposium on Computational Intelligence in Robotics and Automation, volume 1,
pages 318–325, 1999.

8. Patric Jensfelt, Danica Kragic, John Folkesson, and Mårten Bj̈orkman. A framework for
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