
International Journal of Soft Computing and Engineering (IJSCE)
ISSN: 2231-2307, Volume-5 Issue-1, March 2015

43

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

A Cloud Robotics Architecture with Applications to
Smart Homes

José M. Reyes Álamo, Aparicio Carranza

Abstract—Cloud computing is a computational model in which
interconnected computers over the Internet work together toward
offering greater processing power and storage capabilities than
stand-alone solutions. The use of the cloud has found application
in a diversity of fields including robotics and mobile computing.
This has resulted in the emergence of areas like cloud robotics, a
paradigm where robots rely on the cloud to perform their heavy
computations and for their storage needs while focusing on
simpler computation tasks. The mix of mobile devices and the
cloud has created the field of mobile cloud computing (MCC)
where mobile devices like smartphones and tablets focus on data
gathering and simple processing tasks while using the cloud for
complex computations and greater storage. In this paper we
review several mobile cloud robotics architectures that combine
these concepts. We provide a background of the different
technologies used to develop these solutions. We present a
prototype implementation of one of the architectural models and
also show some practical applications of it using a Smart Home
environment as an example.

Index Terms— Cloud computing, cloud robotics, mobile cloud,
smart home.

I. INTRODUCTION

Cloud computing refers to a computational model where tasks
are executed by several interconnected computers offering
greater capabilities in terms of processing power and storage
than stand-alone solutions. Researchers have applied the
principles of cloud computing to the fields of robotics as well
as mobile computing. This has resulted in the emergence of
topics such as cloud robotics and the mobile cloud. Cloud
robotics refers to the use of cloud computing for robotics and
its applications [1], [2]. These applications involving robots
usually require lots of computations and many times these are
limited by the capability of the robot. By relying on the cloud
applications have access to significantly more computational
resources. This makes it possible for robotics applications to
tackle more complex problems than before because of the
extra capabilities that the cloud offers. Mobile and embedded
devices have less computational capabilities, memory, and
resources than stand-alone computers. Other limitations of
these devices include the instructions set, battery life and
overall performance.

Manuscript Received on February 2015.

Dr. José M. Reyes Álamo, Computer Engineering Technology, CUNY/
New York City College of Technology, Brooklyn, NY, USA.

Dr. Aparicio Carranza , Computer Engineering Technology, CUNY/
New York City College of Technology, Brooklyn, NY, USA.

Acknowledgement: Support for this project was provided by a
PSC-CUNY Award, jointly funded by The Professional Staff Congress and
The City University of New York.

The concept of mobile cloud computing (MCC) refers to the
use of mobile devices such as smartphones, tablets, and
embedded devices to detect phenomena, while depending on
the cloud for performing computations and satisfying storage
needs [3]. In this paper we review several mobile cloud
robotics architectures that integrate concepts from cloud
robotics and mobile cloud. We select one of the architectural
models and developed a prototype implementation. We
provide background information on some of the tools used
such as the Lego NXT robot and the Raspberry Pi. This
architecture allows the robots to communicate with each other
and with a mobile server. This server also communicates with
a cloud computing platform. We believe this architecture
provides a platform that eases the development and
deployment of applications and that it will be especially
useful for research projects involving mobile applications and
robotics. We also show some examples of the usability of the
architecture using a Smart Home environment as an example.
The rest of the paper is organized as follows: section II
presents related work and background information of the
different tools used in this project. Section III reviews the
mobile cloud robotics architectures, while section IV
provides the details of the prototype implementation of the
architecture we believe better suits the needs of this project.
Section V provides examples of applications of this
architecture using a Smart Home environments as an
example. Finally section VI provides our conclusions and
future work.

II. RELATED WORK

In this paper we propose a mobile cloud robotics architecture
that will facilitate the research, development, and testing of
applications in fields such as mobile cloud and cloud robotics.
In this work several technologies are being used including the
Lego NXT robot, the Lego Java Operating System (leJOS), a
Python interpreter, the Raspberry Pi, Phidgets, and the Seattle
cloud computing platform. The next paragraphs provide
background information about these.

A. Lego NXT Robot

The Lego NXT robot contains a programmable brick with a
set of sensors and servo motors. The Lego NXT robot comes
with a 32-bit ARM main processor, 256 kilobytes of flash
memory for program storage, and 64 kilobytes of RAM for
data storage during program execution. The Lego NXT robot
contains a programmable brick, servo motors, light sensor,
ultrasonic sensor, sound sensor, and touch sensors. The NXT
brick contains three output ports that are used to power the
servo motors. It also has four input ports that are used to
connect the sensors. To get data from the sensors, an extra
processor is included that has 4 kilobytes of flash memory and
512 bytes of RAM. For connectivity the Lego NXT robot

A Cloud Robotics Architecture with Applications to Smart Homes

44

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

supports the Bluetooth protocol for wireless, and USB for
wired [4].

B. Lego Java Operating System (leJOS)

The Lego Java Operating System (leJOS) [5] is an open
source firmware replacement for the Lego NXT robot. This
OS provides an implementation of a Java Virtual Machine
suited for the Lego Robot processor. leJOS supports having
an alternative runtime environment that allows programming
the robots using the popular programming language Java.
leJOS includes a library of Java classes that implement the
leJOS NXJ Application Programming Interface (API). This
API consists of a library of classes for desktop programming
that communicates with the brick via Bluetooth or USB. It
includes as well a set of tools for debugging, firmware
replacement, compiling, and uploading programs into the
robot’s brick. Some of the features supported by leJOS
include: object oriented programming support, recursion,
threads and synchronization, Java basic types such as float
and String, most of the java.lang, java.util and java.io classes,
arrays, exception handling, and a well-documented robotics
API [6].

C. Python

Python is a high-level interpreted programming language that
supports multiple programming paradigms and focuses on
readability. In this project we used several tools to allow
execution of Python code within the Lego NXT robot. These
tools are Jython, PyMite, and NXT-Python. Jython is a
Python interpreter written in Java [7]. PyMite is a lightweight
Python interpreter especially designed to work on embedded
devices [8]. NXT-Python is a Python library that provides
commands to control the Lego NXT brick using Bluetooth or
USB [9]. Executing Python code is important for using other
tools including the Seattle cloud computing platform and
communicating with the Raspberry Pi.

D. Raspberry Pi

The Raspberry Pi [10] is a credit card-sized single-board
computer developed by the Raspberry Pi Foundation in the
United Kingdom. The original intention of the Raspberry Pi
was promoting the teaching of basic computer science in
schools. The Raspberry Pi was designed to be an inexpensive
yet useful computer. It is based on the Broadcom BCM2835
system on a chip (SoC) and comes with an ARM1176JZF-S
700 MHz processor and a VideoCore IV GPU. The latest
models are known as Model B and Model B+. They come up
with 512 MB of RAM, an improvement over the original
Model A that has 256 MB of RAM. For storage, the
Raspberry Pi supports SD or MicroSD cards. The operating
system of choice is Linux. There are many distributions of
Debian and Arch Linux ARM available for download, being
Raspian the recommended OS. The Raspberry Pi has many
tools and programming languages available such as Python, C,
C++, Java, Perl and Ruby. All this for a small price, between
$30 and $40 depending on the model at the time of this
writing.

E. Phidgets

A phidget [11] is composed of two words: physical and
widget. It is best described as a physical implementation of a
GUI widget (e.g. an on-screen dial widget implemented
physically as a knob). Phidgets rely on the use of USB ports to

provide low-cost sensors and actuators. They were designed
primarily for experimenting with alternative physical
computer interaction systems. However because of their
flexibility and ease of use, they have been widely used in
fields like robotics and smart homes. Their name represents
the attempt to build a physical analogue to the software of the
widgets we find in GUI systems. This way complex physical
systems can be constructed by combining a set of simpler
components. These phidgets connect to a PC which controls
them via the Phidgets Application Programming Interface
(API). This API greatly simplifies the complexity of handling
these physical devices so that developers can focus on the
implementation of applications. Phidgets applications can be
developed for a number of operating systems including the
most popular versions of Windows, Linux, and Mac OS.
There are also multiple programming languages supported
including C, C++, C#, Java, and Python.

F. Seattle Cloud Computing Platform

Seattle is a very useful educational platform for teaching
concepts such as cloud computing, distributed systems, and
networking in general. Seattle is a community-driven effort
supported by resources donated by its users and therefore free
to use [12]. To use Seattle the user installs the software onto
their computer. After installation the user must assigns a
portion of the computer’s resources to share it with the
platform. The user will also receive resources shared from
other computers around the world that are also using the
platform. Seattle is available on different operating systems
including Windows, Mac OS, Linux, and mobile devices such
as Android phones and jail broken iPhones [13]. Programs
running on the Seattle platform are sandboxed and securely
isolated from the rest of the programs running on the same
computer or device. By having hard resources guarantees it
makes it more difficult for malicious or erroneous code to
by-pass them. Seattle is widely deployed on hundreds of
computers around the world, therefore users are able to test
and run their programs on computers all over the Internet. To
create Seattle application developers must use the
programming language RePy which is a subset of Python.
RePy is simple but expressive enough to allow developer to
create interesting applications. Code written in RePy is
portable across all supported platforms.

III. M OBILE CLOUD ROBOTICS ARCHITECTURE

In our previous work [14] we proposed several mobile cloud
robotics architectures. In this paper we select one of the
models, enhance it, and implement it. Also we present some
of the applications within a Smart Home environment in
which this architecture will be useful. What follows is a
summary of the different architectural models we considered.
The first proposed model was the Lego NXT Mobile Cloud
Robotics Architecture. This first architecture consists of a
Lego NXT robot with sound, ultrasonic, touch, and motion
sensors. This robot also has several servo motors. The Lego
NXT robot original operating system is replaced with leJOS.
A Python interpreter such as Jython or PyMite is installed on
the unit [5]. There is also a server that sits between the Lego
NXT robot and the cloud. The Lego NXT robot
communicates with the server via Bluetooth. This server is
responsible for sending and receiving commands from the

International Journal of Soft Computing and Engineering (IJSCE)
ISSN: 2231-2307, Volume-5 Issue-1, March 2015

45

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

cloud and for performing some local computations. Among
the advantages of this first model is that it will maximize the
use of the Lego NXT robot by executing Java, Python, and
RePy code inside the unit while relying on the cloud for
complex computations and storage. However this might come
at cost when it comes to performance as the processor of the
Lego NXT robot is not very powerful, the unit has limited
memory, and by relying on Bluetooth only the connectivity
may be weak or lost possibly creating situations where
applications get disrupted. The second proposed architectural
model was an Android Powered Lego NXT Mobile Cloud
Robotic Architecture with a similar configuration as the first
one, but with the robot enhanced with an Android device
attached to it. This Android device would be in charge of
tasks such as execution of Python and RePy code and
communicating with the server that sits between the Lego
NXT robot and the cloud platform. The Lego NXT robot
communicates with the Android device using Bluetooth,
while the Android device communicates with the server using
Bluetooth or WiFi as Android devices support both protocols.
The server would be responsible for sending and receiving
commands from the cloud as well as performing some local
computations. This second model that enhances the Lego
NXT robot by attaching an Android device at first seems like
a good solution because it adds extra computational and
communication capabilities. However this architecture adds
another level of complexity by having two different devices.
Experts in both Android and Lego NXT robots would be
needed for development, testing, maintenance, and
troubleshooting of applications. Also adding Android devices
would increase the cost and the development time. The third
proposed architecture is a hybrid model that combines
elements of the previous two. Under this architecture only a
subset of the Lego NXT robots would be attached to an
Android device while the others will not. Under this hybrid
architecture the Lego NXT robots would communicate with
each other while the Android powered devices would have
extra connectivity. Under the hybrid model there is no
exclusive dependence on the Android device as the Lego
NXT robots would be able to handle most of the
communication and computation themselves, but those
enhanced with an Android device attached to them would
count with the extra capabilities. Another consideration is that
Android devices could communicate with the cloud platform
as well. So even though communication with the cloud
computing platform would be the responsibility of the server,
in case that the server cannot be reached, the Android devices
might take over this task eliminating the potentially single
point of failure found in the first model. Another important
consideration is cost. The first model offers the lowest cost
but also less connectivity and computational power, while the
second model offers greater connectivity and computational
power but at a greater cost and complexity as each Lego NXT
robot has an Android device attached to it. Under the hybrid
model only a subset of the Lego NXT robots would be
powered by an Android device, resulting in improving
connectivity and computational capabilities with respect to
the first model while at the same time reducing the cost and
complexity with respect to the second model. We believe that
this hybrid model offers a good tradeoff between the

simplicity and cost of the first model and the connectivity and
computational capabilities of the second. In this work we
preserve most elements of the hybrid model as we believe it
offers a balance between performance and cost. One change
we made in this project was to power the Lego NXT robots
with Raspberry Pi devices instead of Android. This way we
achieved similar results and at the same time reduced the cost.
This architecture can be seen in Figure 1 below.

Figure 1: Hybrid Lego NXT Mobile Cloud Robotics

Architecture

A network of interconnected units implementing this
architecture is depicted in Figure 2, with the NXT robots
powered with a Raspberry Pi identified with the π symbol.

Figure 2: Network of Units under the Hybrid Lego NXT
Mobile Cloud Robotics Architecture

IV. PROTOTYPE IMPLEMENTATION

To test the feasibility of our proposed architecture, we
developed a prototype implementation. In our prototype
implementation we included the following components: Lego
NXT robot, raspberry pi, phidgets, a cloud server, and a
laptop. There is a Lego NXT robot that is connected to a
raspberry pi to enhance its capabilities. We call this particular
robot NXTPi. As the raspberry pi is a more powerful device
all computations and communications are carried by it. The
NXT robot with the raspberry pi also has the phidgets devices
attached to it. These phidgets provide several sensor and for

A Cloud Robotics Architecture with Applications to Smart Homes

46

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

this particular implementation we tested the rotation,
temperature, and the light sensors. We also have several
stand-alone NXT robots communicating with the NXTPi and
the server. These robots use the Bluetooth protocol to
communicate among each other when they are within range.
Now we describe one of the test we performed in our
prototype implementation. A python script was developed
and ran in the main unit, the NXTPi. This unit reads a value
from the phidgets rotation sensor via its USB interface and
stores it into memory. After that the NXTPi connects to
another NXT unit via its Bluetooth interface. The NXT unit
provides a reading from its sound sensor. This value is stored
as well in the NXTPi memory. Now with the values obtained
from different devices, the NXTPi disseminates these values
to other robots within range in order to reach the cloud server.
In order to do that, a connection to a peer robot or to the
mobile server is stablished. The mobile server has a script that
waits for messages to be sent and expects the sensor readings
from the NXTPi unit. The NXTPi then sends the phidgets
reading and the sound sensor reading to the mobile server.
The mobile server receives these values and sends and
acknowledgement to the NXTPi. After receiving the values
these must be sent into the cloud. The mobile sever then
establishes a connection to the cloud server. After stablishing
that connection the values are forwarded into the cloud server,
processed, and stored. The cloud server also sends an
acknowledgement to the mobile server that the values were
successfully received. This way our prototype
implementation shows that it is possible to enhance an NXT
robot using a raspberry pi, connect another device to it such as
a phidget in order to gather more context data, establish a
connection to a peer around in order to reach the server,
forward these values to the cloud for processing and storage,
and finally send acknowledgments for successful
communications.

V. APPLICATIONS TO SMART HOMES

A Smart Home is a house that uses technology in order to
enhance the quality of life of the resident and to assist in the
activities of daily living [15]. The devices and programs
mentioned previously are used in our Smart Home prototype
to show the feasibility of them. A very important application
in Smart Home Environments is context-awareness and
detection of phenomena. Usually sensors are deployed at
fixed strategic locations within a Smart Home. With our
solution presented in this paper we have a set of robots
carrying the sensors and in this way sensing is not limited to
just certain areas of a house. Instead the robots are able reach
other areas because of their mobility. We believe this solution
can improve context-awareness and be use for more advanced
detection mechanisms. Another application we are currently
implementing is a coordinated detection mechanism. This
detection mechanism consists of a robot that detects a
phenomena and requests help from other robots in order to
confirm it. By communicating with robots around it as well as
sending a message to the server and the cloud, other robots
can be instructed to check the environment at that particular
location to confirm whether the phenomena is occurring. This
can be useful especially for applications that detect hazardous
conditions such as a smoke, fire or noise.

VI. CONCLUSIONS & FUTURE WORK

In this work we reviewed different proposed architectures for
supporting a mobile cloud robotics architecture using
components such as the Lego NXT robot and the raspberry pi.
We summarized three different architectural models: the Lego
NXT Mobile Cloud Robotics Architecture, the Android
Powered Lego NXT Mobile Cloud Robotics Architecture,
and the Hybrid Lego NXT Mobile Cloud Robotics
Architecture. We argue that the Hybrid Lego NXT Mobile
Cloud Robotics Architecture offers the best tradeoff between
the simplicity and cost of the first model and the connectivity
and computational capabilities of the second. We modified
this architecture using a raspberry pi instead of an Android
device. We implemented a prototype of this architecture and
showed an example of its use. Also we presented how this
platform can be use within Smart Home environments with an
applications for context-awareness and detection of
phenomena. Future work includes testing the performance of
this architecture especially when a lot of data is being
generated and to develop more applications that make use of
it.

REFERENCES
[1] Y. Chen, Z. Du, and M. García-Acosta, “Robot as a Service in Cloud

Computing,” in 2010 Fifth IEEE International Symposium on Service
Oriented System Engineering (SOSE), 2010, pp. 151–158.

[2] G. Hu, W.-P. Tay, and Y. Wen, “Cloud robotics: architecture,
challenges and applications,” IEEE Netw., vol. 26, no. 3, pp. 21–28,
2012.

[3] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile cloud
computing: architecture, applications, and approaches,” Wirel.
Commun. Mob. Comput., p. n/a–n/a, 2011.

[4] M. W. Lew, T. B. Horton, and M. S. Sherriff, “Using LEGO
MINDSTORMS NXT and LEJOS in an Advanced Software
Engineering Course,” in 2010 23rd IEEE Conference on Software
Engineering Education and Training (CSEE T), 2010, pp. 121–128.

[5] R. U. Pedersen, J. Nørbjerg, and M. P. Scholz, “Embedded
programming education with Lego Mindstorms NXT using Java
(leJOS), Eclipse (XPairtise), and Python (PyMite),” in Proceedings of
the 2009 Workshop on Embedded Systems Education, New York, NY,
USA, 2009, pp. 50–55.

[6] “LeJOS, Java for Lego Mindstorms.” [Online]. Available:
http://www.lejos.org/. [Accessed: 22-Oct-2013].

[7] “The Jython Project,” Nov-2013. [Online]. Available:
http://www.jython.org/. [Accessed: 11-Nov-2013].

[8] “PyMite: python-on-a-chip,” 2013. [Online]. Available:
http://code.google.com/p/python-on-a-chip/. [Accessed:
11-Nov-2013].

[9] “nxt-python - A pure-python driver/interface/wrapper for the Lego
Mindstorms NXT robot. - Google Project Hosting.” [Online].
Available: http://code.google.com/p/nxt-python/. [Accessed:
11-Nov-2013].

[10] J. D. Brock and R. F. Bruce, “Sensing the World with a Raspberry Pi,”
J Comput Sci Coll, vol. 30, no. 2, pp. 174–175, Dec. 2014.

[11] S. Greenberg and C. Fitchett, “Phidgets: Easy Development of Physical
Interfaces Through Physical Widgets,” in Proceedings of the 14th
Annual ACM Symposium on User Interface Software and Technology,
New York, NY, USA, 2001, pp. 209–218.

[12] J. Cappos, I. Beschastnikh, A. Krishnamurthy, and T. Anderson,
“Seattle: a platform for educational cloud computing,” in Proceedings
of the 40th ACM technical symposium on Computer science
education, New York, NY, USA, 2009, pp. 111–115.

[13] “Seattle.” [Online]. Available: https://seattle.poly.edu/html/.
[Accessed: 23-Oct-2013].

[14] J. M. Reyes Álamo, M. Benito, and A. Carranza, “Towards An
Architecture for Mobile Cloud Robotics,” in IHART, Las Vegas, NV,
2013, vol. 31, pp. 391–398.

[15] N. Noury, G. Virone, P. Barralon, J. Ye, V. Rialle, and J. Demongeot,
“New trends in health smart homes,” in Enterprise Networking and
Computing in Healthcare Industry, 2003. Healthcom 2003.
Proceedings. 5th International Workshop on, 2003, pp. 118–127.

International Journal of Soft Computing and Engineering (IJSCE)
ISSN: 2231-2307, Volume-5 Issue-1, March 2015

47

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

Dr. José M. Reyes Álamo is an Assistant Professor in the Department of
Computer Engineering Technology at the New York City College of
Technology of the City University of New York. His research interest
include smart homes, embedded devices, cloud computing, and software
engineering. He received his Ph.D. in Computer Science from Iowa State
University and his B.S. in Computer Science from the University of Puerto
Rico at Bayamón.

Dr. Aparicio Carranza is an Associate Professor in the Department of
Computer Engineering Technology at the New York City College of
Technology of the City University of New York. His research interest
include virtualization & cloud computing and software defined networks. He
received his Ph.D. in Electrical Engineering from the Graduate School of
CUNY and both his M.S.E.E. and B.S.E.E. in Electrical Engineering from
the City University of New York.

