
Task Partitioning for
Multi-Core Network Processors

Robert Ennals1, Richard Sharp1, and Alan Mycroft2

1 Intel Research Cambridge,
15 JJ Thomson Avenue, Cambridge, CB3 0FD, UK.

2 Computer Laboratory, Cambridge University
15 JJ Thomson Avenue, Cambridge, CB3 0FD, UK.

robert.ennals@intel.com

richard.sharp@intel.com

am@cl.cam.ac.uk

Abstract. Network processors (NPs) typically contain multiple concur-
rent processing cores. State-of-the-art programming techniques for NPs
are invariably low-level, requiring programmers to partition code into
concurrent tasks early in the design process. This results in programs
that are hard to maintain and hard to port to alternative architectures.
This paper presents a new approach in which a high-level program is sep-
arated from its partitioning into concurrent tasks. Designers write their
programs in a high-level, domain-specific, architecturally-neutral lan-
guage, but also provide a separate Architecture Mapping Script (AMS).
An AMS specifies semantics-preserving transformations that are applied
to the program to re-arrange it into a set of tasks appropriate for ex-
ecution on a particular target architecture. We (i) describe three such
transformations: pipeline introduction, pipeline elimination and queue
multiplexing; and (ii) specify when each can be safely applied.
As a case study we describe an IP packet-forwarder and present an AMS
script that partitions it into a form capable of running at 3Gb/s on an
Intel IXP2400 Network Processor.

1 Introduction

This paper addresses an instance of a perennial general problem in the compi-
lation of concurrent systems to parallel hardware architectures:

Given a program which expresses problem-oriented concurrency, and hard-
ware which has multiple processing elements, how can we efficiently map
one to the other?

The instance we attack concerns the domain of packet processing applications
such as Internet routers, firewalls and similar network devices. The parallel hard-
ware architectures we target are Network Processors (NPs) [1, 6, 10, 23]: spe-
cialised programmable chips designed for high-speed packet processing.

Compile

Simulate

Refine AMS

Deploy final design

AMSPacLang Program

Fig. 1. Design flow using our compiler

NPs typically contain multiple processor cores, allowing multiple network
packets to be processed concurrently. To make a program run fast on such an
architecture it is necessary to partition it into a number of separate concurrent
tasks, such that the number of tasks matches the number of cores on the target
architecture. Furthermore, tasks arranged in a pipeline configuration should be
balanced, with similar latencies.

State-of-the-art programming techniques for NPs are invariably low level,
requiring the programmer to explicitly code a separate process for each core and
explicitly pass state between processes. In this way, the programmer is forced to
combine high-level application functionality with low-level architectural details
in a way that makes them difficult to separate. This results in programs that
are hard to maintain and strongly tied to a particular revision of a particular
architecture.

This paper describes a new approach, in which the high-level application
functionality is completely separated from the architectural details of any specific
NP. Our compiler takes two files as input: a high-level packet processing program
and an Architecture Mapping Script (AMS). The AMS specifies (i) how the
high-level program should be transformed into a new set of concurrent tasks
suitable for execution on a particular NP architecture; and (ii) how these tasks
should be mapped to the NP’s processing cores1. The compiler checks that the
transformations specified in the AMS are semantics-preserving.

We use the domain-specific language PacLang [4] to express the high-level
behaviour of packet processing applications in an architecturally-neutral way
(i.e. without encoding assumptions about any particular target architecture). A
PacLang program consists of multiple concurrent tasks that communicate via
shared queues. Such parallelism, and the controlled non-determinism it intro-
duces, is essential if one is to conveniently express packet processing algorithms.
For example, in an IP forwarder, non-critical, computationally expensive packets
can be processed on different tasks to critical packets, allowing critical packets
to overtake the non-critical ones.

Figure 1 illustrates the design flow that we intend programmers to follow
when using our compiler. After writing a PacLang specification and an initial
AMS for a particular architecture, the compiler is invoked and the resulting code
simulated using architecture-specific tools. Based on the profiling results derived

1 Although there is scope for generating an Architecture Mapping Script automatically
for particular architectures, that is not the topic of this paper.

from simulation, the AMS is iteratively refined to explore different partitionings
and timing behaviours.

The contributions of this paper are: (i) a methodology for programming
multi-core Network Processors that separates architectural-details from high-
level application specification; (ii) a set of semantics-preserving program trans-
formations that re-arrange a concurrent program into a different set of concurrent
units (i.e. tasks and queues); and (iii) a whole-program analysis that determines
when it is safe to pipeline a specified task in the wider context of a whole con-
current program.

We have implemented a PacLang compiler targeting Intel IXP2400 Network
Processors [10]. To demonstrate that the techniques described in this paper are
applicable to realistic networking applications, we present a case-study showing
how an architecturally-neutral PacLang IP packet-forwarder can be transformed
into a form suitable for implementation on an Intel IXP2400 chip. We present
performance figures, showing that executing the compiled code on a 3-port Gi-
gabit Ethernet IXP2400-based system [20] achieves a forwarding rate of 3 Gb/s
(full line-rate).

For expository purposes, this paper initially presents our partitioning trans-
formations (Section 3) and safety analysis (Section 4) in the domain of Core
PacLang—a simplified version of PacLang. Later, the transformations and safety
analysis are then extended from Core PacLang to the full PacLang language
(Section 5). We finish by presenting a case-study (Section 6), related work (Sec-
tion 7), and our conclusions (Section 8).

2 Core PacLang Language

We start by considering Core PacLang: a simplified version of the PacLang
language. Unlike PacLang proper, Core PacLang is untyped, supports only value
types (no references or pointers) and has no user-defined functions.

The abstract syntax of Core PacLang is presented in Figure 2. A program
consists of a set of declarations, each of which is either a task , t, or a queue,
q. Tasks are the unit of concurrent execution: during program execution, all
task bodies run concurrently. Tasks are statically declared; there is no dynamic
thread creation in PacLang. (Note that tasks’ names have no significance other
than providing a convenient way of referencing them in AMSes.)

Each task has a body, s, which it executes repeatedly. One can imagine that
task bodies are surrounded by an invisible “while (true)” loop. When a task
body restarts all its local variables are uninitialised. This ensures that there are
no loop-carried-dependencies between subsequent iterations of a task body.

Queues provide inter-thread communication. In Core PacLang we assume
that queue-read operations block when the queue is empty and queue-write op-
erations never block (i.e. queues are unbounded). We write q.enq(v1, . . . , vn)
to atomically enqueue values v1, . . . , vn in the queue declared with name q.
Similarly, q.deq() returns (multiple) values dequeued from q. Built-in queues,
receive and transmit represent the external network interface. receive.deq()

e ← c | x | op (e1, . . . , ek) constant, local variable, primitive op

s ← if (e) s1 else s2 conditional
| while (e) s while loop
| s; s sequence
| skip do nothing
| x = e imperative assignment
| q.enq (e1, . . . , ek) enqueue
| (x1, . . . , xk) = q.deq() dequeue

d ← task t {s} task t with body s
| queue q; global queue q

p ← d1 . . . dn Core PacLang program

Fig. 2. Abstract Syntax of Core PacLang

reads a value from the network2; transmit.enq(v) schedules value v for trans-
mission.

In untyped Core PacLang, variables do not have to be declared explicitly and
are scoped by their enclosing task.3 To simplify the presentation of subsequent
transformations we assume that all declared names (i.e. local variable names,
queue names and task names) are globally distinct.

3 Semantics-Preserving Transformations for Partitioning

In this section we present three semantics-preserving transformations that allow
programs to be repartitioned into different numbers of concurrent tasks. The first
transformation, PipeIntro (Section 3.1), divides a single task into two separate,
concurrent tasks connected in a pipeline configuration. The second transforma-
tion, PipeElim (Section 3.2), allows two pipeline stages connected via a queue to
be fused into a single task. The third transformation, QueueMux (Section 3.3),
allows multiple queues to be multiplexed onto a single queue. We first present
the transformations in the domain of Core PacLang; Section 5 shows that they
naturally extend to deal with the full PacLang language.

Although we do not prove our transformations formally in this paper, it is
necessary nonetheless to define precisely what we mean by semantics-preserving.
In previous work we presented a small-step transition semantics for PacLang [4].
The semantics is non-deterministic, making no guarantees about the interleav-
ing of concurrent tasks’ operations and making no guarantees about progress
or fairness. With reference to this semantics, we say that a transformation is
semantics-preserving iff the set of possible behaviours of the transformed pro-
gram is a subset of the possible behaviours of the source program, where the

2 Full PacLang supports a structured packet datatype to represent such packets.
3 In contrast, full PacLang supports C-like variable declaration and lexical scoping.

possible behaviours of a PacLang program are the set of possible traces of values
on external queues (receive and transmit). In other words, transformations
can increase determinism, narrowing the set of possible behaviours, but any be-
haviour exhibited by the transformed program must have also been a possible
behaviour of the source program.

3.1 PipeIntro Transformation

The PipeIntro transformation facilitates pipelining, allowing a task t to be trans-
formed into two separate, concurrent tasks, t1 and t2—see Figure 3. Here, and
throughout the rest of this paper, we let A and B range over statements. Queue
Q is used to transfer the variables required by B (i.e. the live variables in task
t at the program point between A and B) from t1 to t2. Recall that statements
may themselves include sequences of other statements. This, and the fact that
we make the “;” operator associative, allows the PipeIntro transformation pre-
sented in Figure 3 to split task t between any two statements that are not nested
within a while loop or a conditional.

task t {A;B} −→
queue Q;

task t1 {A; Q.enq(x1, . . . , xk)}
task t2 {(x1, . . . , xk) = Q.deq(); B}

where Q, t1 and t2 are fresh names and x1, . . . , xk are the live variables
of task t at the program point between statements A and B. (Recall the
x’s in t1 are different from the x’s in t2 because they are locally scoped.)

Fig. 3. The PipeIntro Transformation

In order to preserve the semantics of a Core PacLang program, the PipeIntro
transformation can only be applied under certain conditions. In Section 4 we
present the technical details of a static analysis that determines when it is safe
to apply PipeIntro. We spend the remainder of this section highlighting the need
for a safety analysis, by giving examples of unsafe applications of PipeIntro. First
consider:

queue q1;
task t { x=q1.deq(); y=q1.deq(); transmit.enq(x,y); }

Task t continually reads pairs of values from q1 and writes them to transmit in
the order they were read. If we were allowed to apply the PipeIntro transforma-
tion arbitrarily we might choose to split between the two queue read operations,
yielding:

queue q1; queue Q;
task t1 { x=q1.deq(); Q.enq(x); }
task t2 { x=Q.deq(); y=q1.deq(); transmit.enq(x,y); }

In the transformed program, the values on transmit might not appear in the
same order that they were read from q1. For example, task t1 may consume the
first 5 elements from the q1 before task t2 has had a chance to read q1 at all.

The unsafe application of PipeIntro given above may lead the reader to think
that a suitable safety condition may be that, in the source program, the queues
accessed (read or written) by the statements before the split point should be dis-
joint from the queues accessed by the statements after the split point. However,
this condition is not sufficient in general. Consider the following program:

queue q;
task t { q.enq(1); transmit.enq(2); }
task connect_q_to_transmit { transmit.enq(q.deq()); }

Task t task writes a “1” to q, then writes a “2” to the transmit queue and then
loops. Task connect q to transmit reads elements from q and writes them to
the transmit queue. If we now apply PipeIntro to t, splitting between the two
queue write operations, we get:

queue q; queue Q;
task t1 { q.enq(1); Q.enq(); }
task t2 { ignore = Q.deq(); transmit.enq(2); }
task connect_q_to_transmit { transmit.enq(q.deq()); }

These two programs are not semantically equivalent (even though, in the source
program, the statements on either side of the split point access disjoint queues)—
e.g. in the transformed program the trace 〈1, 1, 1〉 may appear on the transmit
queue; this is not a valid trace of the source program4.

Informally the problem is that t1 affects connect q to transmit which
shares a queue with t2. In Section 4 we present a static analysis that deter-
mines when PipeIntro can be safely applied.

3.2 PipeElim Transformation

The PipeElim transformation allows two tasks t1 and t2 connected by a single-
reader, single-writer queue q to be fused into a single task t. In essence the code
for t2 is inlined into t1 in place of its write to q—see Figure 4. Since the queue
write operation can occur anywhere within a t1 (e.g. nested inside conditionals
or while loops) we express PipeElim in terms of a context [22], C, defined below:

C ← [·] | s;C | C;s | while (e) C
| if (e) then C else s | if (e) then s else C

In joining concurrent tasks, the PipeElim transformation essentially picks a
static interleaving of operations from t1 and t2, encoding this schedule explicitly
in the order of statements in t. For the sake of simplicity, the transformation

4 The source program ensures that: (the number of 1’s on the transmit queue) ≤ (the
number of 2’s on the transmit queue) + 1.

queue q
task t1 {C[q.enq(e1, . . . , ei)]}
task t2 {A; (x1, . . . , xi) = q.deq(); B }

−→
task t {
C[A; x1=e1; . . . ; xi=ei; B]

}

where there are no other references to q in the rest of the program; we assume that
task-local variables in t1 and t2 have been renamed so as to be disjoint.

Fig. 4. The PipeElim Transformation

shown in Figure 4 just inlines the body of t2 into t1. Note, however, that PipeE-
lim is merely an instance of a more general transformation schema which may
interleave the statements from A and B with the statements of t1’s body in a
variety of ways, exploring different static schedules.

Depending on the static schedule implicitly specified by an application of
PipeElim, deadlock may be introduced. For example B might block waiting
for a queue that t1 would have written to immediately after writing to q. Al-
though such deadlocks are consistent with our subset interpretation of semantics-
preserving, they are clearly undesirable. In this paper we do not consider dead-
lock detection further; however, we are currently implementing a “deadlock and
timing analyser”5 that checks whether (transformed) PacLang programs meet
user-specified timing constraints.

3.3 QueueMux Transformation

The QueueMux transformation is used in conjunction with PipeElim to fuse con-
current tasks that are not connected in a pipeline configuration (i.e. concurrent
tasks that cannot be fused using PipeElim alone).

The effect of a QueueMux transformation on program structure is shown
in Figure 5. We start with n queues (q1, . . . , qn) each read by a single reader
task. After transformation, a task body that previously wrote a value, v, to qi

(1 ≤ i ≤ n) now writes a pair of values (i, v) to a Combined Queue, Q. A Demux
task dequeues these (i, v) pairs, testing the value of i to determine which of the
original queues v should be forwarded to.

Once a QueueMux has been applied, PipeElim can be applied as many times
as required to combine each of the reader tasks with the Demux task (see Fig-
ure 5). The case study in Section 6 demonstrates this technique in practice.

3.4 Architecture Mapping Scripts

For a particular NP architecture, A, and an architecturally-neutral PacLang
program, P, an Architecture Mapping Script (AMS) specifies both:

5 After all, for real-time reactive systems, deadlocks are just a special case of failing
to meet timing requirements!

QueueMux

Reader-1

Reader-n

Combined Queue
Writer-1

Writer-m

Writer-1

Writer-m

Reader-1

Reader-n

Demux

Combined Queue
Writer-1

Writer-m

Reader-1

Reader-n

Demux

PipeElim

Fig. 5. Applying the QueueMux Transformation, followed by PipeElim

– how the PipeElim, PipeIntro and QueueMux transformations should be ap-
plied to P in order to refine it into a form suitable for execution on A; and

– how the tasks and queues after transformation are to be mapped onto the
low-level resources of A.

The precise syntax of Architecture Mapping Scripts is straightforward. Although
the technical details are omitted from this paper due to space constraints, the
interested reader may download real examples of AMSes from the web [11].

4 Safety Analysis for PipeIntro Transformation

Here we present a static analysis which enables the PipeIntro transformation by
conservatively determining whether the transformation is safe.

The PipeIntro transformation (as presented in Figure 3) allows a subsequent
iteration of A to start before a previous iteration of B has finished. Therefore,
the transformation is safe if an observer (who reads from transmit queues) is
unable to infer that an execution step in an iteration of A occurs before an
execution step in an iteration of B. We model this observer by adding a task to
the program that reads from all transmit queues. The analysis then determines
whether this observer task might be able to infer that an execution step in an
iteration of A occurs before an execution step in an iteration of B.

We start by considering what information a task, t, might infer about the
ordering of execution steps in other tasks. We note that a task can only infer
ordering information about other tasks’ execution steps by reading from a shared
queue. (One cannot infer anything by performing a queue write, as writes return
no information.)

We let u, v, w (in addition to t) range over tasks. We write u
tÃ v to mean that

task t may infer that an execution step of task u occurred before an execution
step of task v by reading a queue. The relation ‘ tÃ’ is defined as follows:

1. if t and u both read from q, then t
tÃ u and u

tÃ t;
2. if t reads from q and u writes to q, then u

tÃ t;

3. if t reads from q and both u and v write to q, then u
tÃ v and v

tÃ u.

We justify these three cases as follows:

1. If u and t both read from q then t may be able to infer the order of its reads
w.r.t. u’s reads—e.g. let q be a queue containing sequential integers starting
from “1”. If t’s first read returns “2” then it knows that u must have read
first.

2. If u writes to q and t reads from q then t may be able to determine that its
read occurred after u’s write—e.g. if t read the value written by u. However,
it is not possible for t to infer that its read occurred before u’s write. Nor
is it possible for t to infer that any other task’s read from q has occurred
before any further task’s write to q.

3. If u and v both write to q then t may be able to infer the order in which the
writes occurred—e.g. t may perform two read operations and compare the
values returned with those expected.

But we cannot just apply these rules and ask “can the observer infer that an
execution step of A occurs before an execution step of B”. Firstly, consider the
case where task u passes information (via a shared queue) to task v. The data
transferred may reveal, to task v, the event orderings observed by task u. To
simplify the analysis we conservatively assume that every task may get to know
all orderings observed by all other tasks. Therefore, we define:

u Ã v
def⇐⇒ ∃t.u tÃ v

i.e. u Ã v holds iff any task may observe that an execution step in u occurs
before an execution step in v. Secondly, we note that, if u Ã v and v Ã w then
one may use this information to deduce that an execution step of u occurs before
an execution step of w. It is thus necessary to consider Ã∗, the transitive closure
of Ã.

The PipeIntro transform as presented in Figure 3 is safe if in the transformed
program with queue Q removed, it is not the case that t1 Ã∗ t2.

4.1 Algorithm for PipeIntro Safety Analysis

Taking the safety analysis presented above, and making the conservative as-
sumption that all queues have readers, leads to the following simple algorithm
for determining whether a PipeIntro transformation (as presented in Figure 3)
can be applied:

1. Construct a graph, G, where nodes are tasks in the transformed program.
2. In the transformed program with queue Q removed (see Figure 3) consider

each pair of tasks, u and v, that share a queue, q. Place a directed edge from
u to v if:
(a) u and v both read from q; or
(b) u writes to q and v reads from q; or
(c) u and v both write to q.

3. If, there is no path in G from t1 to t2 then the PipeIntro transformation can
be applied.

5 Dealing with the Full PacLang Language

The full PacLang language supports a number of constructs omitted from the
core language of Section 2 including user-defined functions, references, arrays (of
values or of queues) and global variables. Here we discuss how these additional
features impact the transformations presented in Section 3.

User-defined functions can be dealt with straightforwardly: for the purposes
of this paper we simply restrict functions to being non-recursive and then assume
all user-defined function calls are inlined (although, in practice one need only
inline a function call if the AMS requests that it be split across several tasks).

The introduction of generalised global variables is also largely straightfor-
ward6. The PipeElim and QueueMux transformations are unaffected by the in-
troduction of global variables. However, the PipeIntro safety analysis needs to
be extended accordingly (see Section 5.2).

The impact of introducing references needs to be considered more carefully.
If we permitted the unrestricted use of references then the PipeElim and Queue-
Mux transformations would remain sound, but PipeIntro would not. In the fol-
lowing subsection we explain informally why PacLang’s linear type system [4] is
sufficient to ensure that PipeIntro (as already presented) remains sound in the
PacLang domain, even when references are used.

5.1 References, Linearity and the PipeIntro Transform

The full PacLang language provides a packet datatype. Packets are dynamically
allocated blocks of structured data that can be passed-by-reference. PacLang’s
linear type system restricts the ways in which these references can be manipu-
lated, with the aim of enabling a number of optimisations, including PipeIntro.

Before considering PacLang’s linear type system, let us first consider what
would happen to the PipeIntro transformation if we permitted the unrestricted
use of packet references. Figure 6 gives an example of how unrestricted references
can lead to an unsound application of PipeIntro. For the sake of simplicity let
us consider the case where q contains a single packet reference. In this case
task t uses q to simulate a global packet variable: the first line of t reads a
packet reference from q and then immediately writes it back again. Executing
the program results in the packet’s first word being repeatedly incremented and
written to q1. As a result, a series of consecutive integers appears on q1.

In the transformed program, task t1 can loop round many times before t2
has read anything from Q (the queue introduced by the PipeIntro transforma-
tion). As a result, by the time t2 gets round to dereferencing its local copy of
the packet pointer, the packet’s first word may have been incremented several
times. This allows traces to appear on q1 that were not possible in the source
program (e.g. 〈0, 5, 10〉). The problem is that t1 and t2 access shared state via
their packet references. The PipeIntro safety analysis, in the form presented in
Section 4, is not able to detect this sharing since it does not model aliasing. One

6 Recall that Core PacLang already supports global queues.

queue<packet*> q;

queue<int> q1;

task t {
packet* p = q.deq();

q.enq(p);

p[0]++;

q1.enq(p[0]);

}

−→

queue<packet*> q, Q;

queue<int> q1;

task t1 {
packet* p = q.deq();

q.enq(p);

p[0]++;

Q.enq(p);

}
task t2 {

packet* p = Q.deq();

q1.enq(p[0]);

}

Fig. 6. This code, written in a PacLang-like language without a linear type system,
shows that the unrestricted use of references can break the PipeIntro transformation.

solution would be to perform full alias analysis as a precursor to the PipeIntro
safety analysis, using this approximate aliasing information to detect potential
accesses to shared state. Fortunately this is unnecessary as PacLang’s linear
type system [4] prevents aliasing and so would disallow the source program in
Figure 6. Thus, the PipeIntro safety analysis does not need to be modified at
all.

PacLang’s linear type system does not exist merely to make PipeIntro easier.
It has a number of notable features that simplify the compilation of high-level
programs for Network Processors, while naturally capturing the style in which
many packet processing programs are already written [4].

5.2 Extending PipeIntro Safety Analysis to Full PacLang

Global Variables: The algorithm for determining safety of PipeIntro (Sec-
tion 4.1) can be extended to deal with global variables by extending the graph,
G, as follows. For each pair of tasks, u and v, that share a global variable, g,
place directed edges from both u to v and v to u if: (i) both u and v write to g;
or (ii) one of u and v writes to g and the other reads from g.

We note that global variables could be translated into operations on shared
queues. However, if we do this then the safety analysis as presented in Section 4
would deduce that the order of two reads from the same global variable may
be observed. Dealing with global variables directly leads to a more accurate
analysis.

Bounded Queues: Consider adding language primitive HowFull(q) that re-
turns the number of elements currently on queue q. We can extend the algorithm
for determining safety of PipeIntro (Section 4.1) by extending the graph, G, as
follows. For every task, u, that does HowFull(q) add edges (u, v) and (v, u) for
any task, v, that reads or writes q.

The intuition is that if a task tests the fullness of a queue, q, then it may be
able to determine the order of its HowFull operation w.r.t. reads and writes to
q.

6 Case Study

We have written a simple IPv4 unicast packet forwarding engine that employs a
longest-prefix-match route-lookup algorithm in 500 lines of architecturally neu-
tral PacLang. In this section we illustrate how our tools allow the program to
be transformed into a form capable of achieving 3Gb/s (line rate) on an Intel
IXP2400 Network Processor.

The details of IP packet forwarding are not described here (for more technical
information the interested reader is referred directly to the IETF standards [18]
and our PacLang code [11]). The purpose of this case study is to show that our
transformations can be applied to realistic, non-trivial programs.

C tr

(i)
O

A

I E

C tr

(ii)
O

A

I2 EI1

C tr

(iii)
O

A

I2 EI1

D D,O,
A,E

C,I1

I2 t

r

(iv)

Fig. 7. Transforming the IPv4 unicast packet forwarder for IXP implementation. White
circles represent tasks, filled circles represent queues.

Figure 7(i) shows the initial structure of the PacLang IP forwarder. The
program has five tasks, represented by white circles: Classify (C), IP options (O),
ARP (A), IP Route Lookup (I) and ICMP Error (E). Queues are represented by
filled circles. The receive (r) and transmit (t) queues are sources and sinks of
network packets respectively.

Our AMS for Intel IXP-series NPs applies the transformations shown graph-
ically in Figure 7. First, PipeIntro splits I into I1 and I2. Next, QueueMux
is applied to the input queues of O, A, and E, creating a new Demux (D) task.
Finally, PipeElim merges D, O, A, and E together, and merges C and I1 together.

Our safety analysis deems that the PipeIntro transformation is applicable
since, in the graph, G, constructed by the algorithm of Section 4.1, there is no
edge from I1 to any other task. Thus, there is no path from I1 to I2—the two
tasks created by the PipeIntro transformation.

The final structure of the transformed program (Figure 7(iv)) is well suited
for IXP implementation. The tasks on the packet forwarder’s critical path (the
path taken by the vast majority of incoming packets) are highlighted with thick-
lined circles. Timing analysis and simulation shows that, for our IXP2400, a 2-
stage pipelined version of the critical path is sufficient to achieve 3Gb/s packet
throughput (full line-rate on our 3-port Gigabit Ethernet board), for worst-case,
min-size packets. If greater throughput was required (e.g. if we wanted line-rate
for more than 3 ports) then we could apply PipeIntro again to increase the
pipeline depth. Our AMS maps the two tasks on the critical path to separate
micro-engines (small RISC processor cores on the IXP chip), the remaining task
to the IXP’s XScale processor core, and the queues to hardware scratch queues.

Both the source code, and the AMS that transforms it are available for
download [11].

7 Related Work

Transformation-based approaches to program development have been around for
a long time [3, 5] and applied to a variety of problems including circuit design [17]
and hardware/software co-design [2]. The contribution of our research is to show
that program-transformation is an appealing technique for bridging the gap be-
tween a high-level packet processing program and its low-level realisation on a
multi-core network processor.

Software Pipelining [13, 8] is a transformation that superficially sounds simi-
lar to our PipeIntro, but is actually quite different. Software Pipelining reorders
instructions in a loop so that instructions for future iterations may take place
during the current iteration. This allows loads to be hoisted and allows better use
to be made of multiple execution units on VLIW and superscalar architectures.
Unlike our work, the aim is not to split a task over several processing elements,
but to make better use of a single processor.

Our work has more in common with Hardware Pipelining [16, 19]: the division
of a circuit specification into concurrent pipeline stages such that each stage is
of roughly uniform size. However, unlike our work, the successive stages run in
lock-step with no queueing between them—a model which is inappropriate for
packet processing systems.

Previous work on automatic pipelining typically focuses on transforming a
complete sequential program into a single pipeline. In contrast, our PipeIntro
transformation and associated safety analysis extends this work, addressing the
more general problem of determining when it is safe to pipeline a particular
concurrent task within the wider context of a whole concurrent program.

Task Assignment [15, 9] addresses the problem of assigning tasks to proces-
sors, taking into account the sizes of the tasks and the communication between

them. While this work is similar to ours in that it explores the way in which a
program can be mapped to several processors, there is no attempt to pipeline
one task between several processors.

A number of other languages for multi-core processors have been devel-
oped [7, 12, 21, 14], but these are all significantly lower level and do not allow
the task structure of a program to be changed.

8 Conclusions and Future Work

We have (i) presented a transformation-based methodology for programming
Network Processors that allows architectural details to be separated from high-
level program specification; and (ii) validated this methodology by showing how
it can be applied to a realistic packet processing application.

We have also presented a whole-program analysis that determines when it
is safe to pipeline a PacLang task. This extends previous work on automatic
pipelining by addressing the more general problem of determining when it is
safe to pipeline a particular concurrent task within the wider context of a whole
concurrent program.

We hope that the ideas presented in this paper can be applied to the auto-
matic partitioning of high-level code across multi-core architectures more gen-
erally (i.e. not just Network Processors). Since industrial trends suggest that
such architectures will become more prevalent (as silicon densities continue to
increase) we believe that this is an important topic for future research.

Acknowledgements

This research was supported by (UK) EPSRC grant GR/S68941: “High-Level
Languages for Network Processors”.

References

1. Allen, J. R., Bass, B. M., Basso, C., Boivie, R. H., Calvignac, J. L., Davis,
G. T., Frelechoux, L., Heddes, M., Herkesdorf, A., Kind, A., Logan, J. F.,
Peyravian, M., Sabhikhi, M. A. R. R. K., Siegel, M. S., and Waldvogel, M.
PowerNP network processor: Hardware, software and applications. IBM Journal
of research and development 47, 2–3 (3003), 177–194.

2. Barros, E., and Sampaio, A. Towards provably correct hardware/software par-
titioning using occam. In Proceedings of the 3rd international workshop on Hard-
ware/software co-design (1994), IEEE Computer Society Press, pp. 210–217.

3. Burstall, R., and Darlington, J. A transformation system for developing
recursive programs. In JACM 24(1) (1977).

4. Ennals, R., Sharp, R., and Mycroft, A. Linear types for packet processing.
In Proceedings of the European Symposium on Programming (ESOP) 2004 (2004).

5. Feather, M. A system for assisting program transformation. ACM Transactions
on Programming Languages and Systems 4, 1 (January 1982), 1–20.

6. Freescale. C-5 Network Processor Architecture Guide, 2001.
7. George, L., and Blume, M. Taming the IXP network processor. In Proceedings

of the ACM SIGPLAN 2003 conference on Programming Language Design and
Implementation (2003), pp. 26–37.

8. Hwang, C.-T., Hsu, Y.-C., and Lin, Y.-L. Scheduling for functional pipelining
and loop winding. In Proceedings of the 28th conference on ACM/IEEE design
automation (1991), ACM Press, pp. 764–769.

9. Ikinci, M. Multilevel heuristics for task assignment in distributed systems. Mas-
ter’s thesis, Bilkent University, Turkey, 1998.

10. Intel Corporation. Intel IXP2400 Network Processor: Flexible, high-
performance solution for access and edge applications.
Available from: http://www.intel.com/design/network/papers/ixp2400.htm.

11. Intel Corporation. PacLang. http://sourceforge.net/projects/paclang/.
12. Intel Corporation. Microengine C Language Support Reference Manual, 2003.
13. Lam, M. Software pipelining: An effective scheduling technique for VLIW ma-

chines. In Proceedings of the ACM SIGPLAN conference on Programming Lan-
guage Design and Implementation (1988), pp. 318–328.

14. Lam, M. Compiler optimizations for asynchronous systolic array programs. In
Proceedings of the ACM SIGPLAN-SIGACT symposium on Principles of Program-
ming Languages (1998).

15. Lo, V. Heuristic algorithms for task assignment in distributed systems. IEEE
Transactions on Computers (1988), 1384–1397.

16. Marinescu, M.-C. V., and Rinard, M. High-level automatic pipelining for
sequential circuits. In Proceedings of the 14th international symposium on Systems
Synthesis (2001), ACM Press, pp. 215–220.

17. Mycroft, A., and Sharp, R. A statically allocated parallel functional language.
In Proceedings of the International Conference on Automata, Languages and Pro-
gramming (2000), vol. 1853 of LNCS, Springer-Verlag.

18. Network Working Group. RFC1812: Requirements for IP version 4 routers.
19. Papaefthymiou, M. C. On retiming synchronous circuitry and mixed integer

optimization. Master’s thesis, Massachusetts Institute of Technology, 1990.
20. Radisys. ENP-2611 network processor board. http://www.radisys.com.
21. Teja. Teja NP: The first software platform for multiprocessor system-on-chip

architectures. http://www.teja.com.
22. Winskel, G. The formal semantics of programming languages: an introduction.

Foundations of computing. MIT Press, 1993.
23. Yavatkar, R., and H. Vin (eds.). IEEE Network Magazine. Special issue on

Network Processors: Architecture, Tools, and Applications 17, 4 (July 2003).

