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Preface

Physicists are currently contributing to the modglof '‘complex systems'
by using tools and methodologies developed in stteéili mechanics and
theoretical physics. Financial markets are remdykalell-defined complex
systems, which are continuously monitored - dowtine scales of seconds.
Further, virtually every economic transaction isaeled, and an increas-
ing fraction of the total number of recorded ecomomiata is becoming
accessible to interested researchers. Facts suttess make financial mar-
kets extremely attractive for researchers intetestedeveloping a deeper
understanding of modeling of complex systems.

Economists - and mathematicians - are the researchkigh the longer
tradition in the investigation of financial systenihysicists, on the other
hand, have generally investigated economic systemisproblems only oc-
casionally. Recently, however, a growing numbeploysicists is becoming
involved in the analysis of economic systems. Gxpomdingly, a signifi-
cant number of papers of relevance to economic®ve being published
in physics journals. Moreover, new interdisciplipgournals - and dedi-
cated sections of existing journals - have beendhad, and international
conferences are being organized.

In addition to fundamental issues, practical consanay explain part of
the recent interest of physicists in finance. Faaraple, risk management,
a key activity in financial institutions, is a colap task that benefits from
a multidisciplinary approach. Often the approacted®n by physicists are
complementary to those of more established diswgli so including physi-
cists in a multidisciplinary risk management teamyngive a cutting edge to
the team, and enable it to succeed in the mogtieffi way in a competitive
environment.

This book is designed to introduce the multidiscigty field of econo-
physics, a neologism that denotes the activitigshgkicists who are working
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Preface X

on economics problems to test a variety of new eptwal approaches de-
riving from the physical sciences. The book is shand is not designed to
review all the recent work done in this rapidly deping area. Rather, the
book offers an introduction that is sufficient tbosv the current literature

to be profitably read. Since this literature spansciplines ranging from

financial mathematics and probability theory to glocg and economics, un-
avoidable notation confusion is minimized by inchgla systematic notation
list in the appendix.

We wish to thank many colleagues for their asst#an helping prepare
this book. Various drafts were kindly criticized #®yndreas Buchleitner,
Giovanni Bonanno, Parameswaran Gopikrishnan, Fabtidlo, Johannes
Voigt, Dietrich Stauffer, Angelo Vulpiani, and Dreth Wolf.

Jerry D. Morrow demonstrated his considereTgX skills in carrying
out the countless revisions required. Robert Torkisireless library re-
search greatly improved the bibliography. We esgbcithank the staff of
Cambridge University Press - most especially Sin@apelin (Publishing
Director in the Physical Sciences), Sue Tuck (Pctida Controller), and
Lindsay Nightingale (Copy Editor), and the CUP Tickl Applications
Group - for their remarkable efficiency and goodeehthroughout this
entire project.

As we study the final page proof, we must resistdtiong urge to re-write
the treatment of several topics that we now reatiae be explained more
clearly and precisely. We do hope that readers wttece these and other
imperfections will communicate their thoughts to us

Rosario N. Mantegna H.

Eugene Stanley
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1
Introduction

1.1 Motivation

Since the 1970s, a series of significant changestaken place in the
world of finance. One key year was 1973, when aqwres began to be
traded in financial markets and their values deteed by the foreign
exchange market, a financial market active 24 hauday all over the
world. During that same year, Black and Scholeq ffblished the first
paper that presented a rational option-pricing faem

Since that time, the volume of foreign exchangdiitrg has been growing
at an impressive rate. The transaction volume @51®as 80 times what it
was in 1973. An even more impressive growth hasrtgkace in the field of
derivative products. The total value of financiaridative market contracts
iIssued in 1996 was 35 trillion US dollars. Contsattitaling approximately
25 trillion USD were negotiated in the over-the-gtar market (i.e., directly
between firms or financial institutions), and tlestr(approximately 10 trillion
USD) in specialized exchanges that deal only invdéive contracts. Today,
financial markets facilitate the trading of hugecamts of money, assets,
and goods in a competitive global environment.

A second revolution began in the 1980s when eleatrrading, already
a part of the environment of the major stock exgesn was adapted to the
foreign exchange market. The electronic storinglata relating to financial
contracts - or to prices at which traders are agllto buy (bid quotes) or sell
(ask quotes) a financial asset - was put in plaabaut the same time that
electronic trading became widespread. One restifiaistoday a huge amount
of electronically stored financial data is readdyailable. These data are
characterized by the property of being high-freaqyetiata - the average time
delay between two records can be as short as @deands. The enormous
expansion of financial markets requires strong streents in money and

1



2 Introduction

human resources to achieve reliable quantificaéiet minimization of risk
for the financial institutions involved.

1.2 Pioneering approaches

In this book we discuss the application to finahmarkets of such concepts
as power-law distributions, correlations, scalingpredictable time series,
and random processes. During the past 30 yearsiqutg have achieved
iImportant results in the field of phase transitiostatistical mechanics,
nonlinear dynamics, and disordered systems. Inetlietds, power laws,
scaling, and unpredictable (stochastic or detestid)itime series are present
and the current interpretation of the underlyingysibs is often obtained
using these concepts.

With this background in mind, it may surprise sdreltrained in the
natural sciences to learn that the first use obagr-law distribution - and
the first mathematical formalization of a randomlkvatook place in the
social sciences. Almost exactly 100 years ago,lttlean social economist
Pareto investigated the statistical character efviiealth of individuals in a
stable economy by modeling them using the distrdrut

y~x", (1.2)

wherey is the number of people having incomer greater thax and
v is an exponent that Pareto estimated to be 132][1Pareto noticed
that his result was quite general and applicableabons 'as different as
those of England, of Ireland, of Germany, of thedi#n cities, and even of
Peru'.

It should be fully appreciated that the concepa glower-law distribution
IS counterintuitive, because it may lack any chiaméstic scale. This property
prevented the use of power-law distributions in tiaural sciences until
the recent emergence of new paradigms (i) in proivalheory, thanks
to the work of Levy [92] and thanks to the applioat of power-law
distributions to several problems pursued by Maliel[103]; and (ii) in
the study of phase transitions, which introduces ¢bncepts of scaling for
thermodynamic functions and correlation functiob47].

Another concept ubiquitous in the natural sciensethe random walk.
The first theoretical description of a random walkthe natural sciences
was performed in 1905 by Einstein [48] in his faraquaper dealing with
the determination of the Avogadro number. In subset years, the math-
ematics of the random walk was made more rigorqué/kener [158], and
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now the random walk concept has spread across alallogsearch areas
in the natural sciences.

The first formalization of a random walk was not anpublication by
Einstein, but in a doctoral thesis by Bachelier Bdchelier, a French math-
ematician, presented his thesis to the facultycodreces at the Academy of
Paris on 29 March 1900, for the degredotteur en Sciences Mathematiques.
His advisor was Poincare, one of the greatest madlieians of his time.
The thesis, entitle@heorie de la speculatiomns surprising in several respects.
It deals with the pricing of options in speculativerkets, an activity that
today is extremely important in financial marketsese derivative securities
- those whose value depends on the values of otlbee basic underlying
variables - are regularly traded on many differexthanges. To complete
this task, Bachelier determined the probabilitypate changes by writing
down what is now called the Chapman-Kolmogorov équaand recogniz
ing that what is now called a Wiener process satghe diffusion equation
(this point was rediscovered by Einstein in his 3@@per on Brownian
motion). Retrospectively analyzed, Bachelier's ih&scks rigor in some of
its mathematical and economic points. Specificalhg determination of a
Gaussian distribution for the price changes wasthematically speaking
- not sufficiently motivated. On the economic si@achelier investigated
price changes, whereas economists are mainly dpelith changes in the
logarithm of price. However, these limitations dat diminish the value of
Bachelier's pioneering work.

To put Bachelier's work into perspective, the Bla&kScholes option-
pricing model - considered the milestone in optpicing theory - was
published in 1973, almost three-quarters of a agrdfter the publication of
his thesis. Moreover, theorists and practitioneesaware that the Black &
Scholes model needs correction in its applicatioeaning that the problem
of which stochastic process describes the chamg#eeilogarithm of prices
in a financial market is still an open one.

The problem of the distribution of price changes baen considered by
several authors since the 1950s, which was th@gevhen mathematicians
began to show interest in the modeling of stockketaprices. Bachelier's
original proposal of Gaussian distributed pricenges was soon replaced by
a model in which stock prices are log-normal dmstted, i.e., stock prices are
performing a geometric Brownian motion. In a geamsdBrownian motion,
the differences of the logarithms of prices are $3#an distributed. This
model is known to provide only a first approximatiof what is observed
in real data. For this reason, a number of altévrainodels have been
proposed with the aim of explaining
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(i) the empirical evidence that the tails of measudistributions are fatter
than expected for a geometric Brownian motion; @ndhe
time fluctuations of the second moment of pricengjes.

Among the alternative models proposed, 'the mosilugionary develop-
ment in the theory of speculative prices since B#eh's initial work' [38],
is Mandelbrot's hypothesis that price changes ol Levy stable dis-
tribution [102]. Levy stable processes are stocbgstocesses obeying a
generalized central limit theorem. By obeying aegafized form of the cen-
tral limit theorem, they have a number of intenegtproperties. They are
stable (as are the more common Gaussian processes)the sum of two
independent stochastic procesx;ascx;characterized by the same Levy
distribution of indewis itself a stochastic process characterized bywayL
distribution of the same index. The shape of tlstrdiution is maintained
(is stable) by summing up independent identicallstributed Levy stable
random variables.

As we shall see, Levy stable processes define ia lodsattraction in the
functional space of probability density functiofie sum of independent
identically distributed stochastic procesS, = 3> 7 x; characterized by a
probability density function with power-law tails,

P(x) ~ x~ {1+, (1.2)

will converge, in probability, to a Levy stable shastic process of index a
whenn tends to infinity [66].

This property tells us that the distribution of awy stable process is a
power-law distribution for large values of the stastic variablex. The fact
that power-law distributions may lack a typical Iece reflected in Levy
stable processes by the property that the variahtevy stable processes is
infinite for a < 2. Stochastic processes with infinite variaraidjough well
defined mathematically, are extremely difficult tse and, moreover, raise
fundamental questions when applied to real systémsexample, in physical
systems the second moment is often related to {theem temperature, so
infinite variances imply an infinite (or undefinethmperature. In financial
systems, an infinite variance would complicate imgortant task of risk
estimation.

1.3 The chaos approach

A widely accepted belief in financial theory is thiane series of asset prices
are unpredictable. This belief is the cornerstohhe description of price
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dynamics as stochastic processes. Since the 188@s been recognized in
the physical sciences that unpredictable time searal stochastic processes
are not synonymous. Specifically, chaos theorydmmsvn that unpredictable
time series can arise from deterministic nonlinggstems. The results ob-
tained in the study of physical and biological gyss$ triggered an interest
In economic systems, and theoretical and empistadies have investigated
whether the time evolution of asset prices in feiahmarkets might indeed
be due to underlying nonlinear deterministic dynasrof a (limited) number
of variables.

One of the goals of researchers studying finanoiatkets with the tools
of nonlinear dynamics has been to reconstruct thgdthetical) strange
attractor present in the chaotic time evolution &maneasure its dimension
d. The reconstruction of the underlying attractor asddimensiond is not
an easy task. The more reliable estimatior of the inequalityd > 6. For
chaotic systems witladl > 3, it is rather difficult to distinguish between a
chaotic time evolution and a random process, eafgdf the underlying
deterministic dynamics are unknown. Hence, fromeanpirical point of
view, it is quite unlikely that it will be possibl® discriminate between the
random and the chaotic hypotheses.

Although it cannot be ruled out that financial metk follow chaotic
dynamics, we choose to work within a paradigm #ssterts price dynamics
are stochastic processes. Our choice is motivagatidoobservation that the
time evolution of an asset price depends on alinf@mation affecting (or
believed to be affecting) the investigated asset iaiseems unlikely to us
that all this information can be essentially ddsed by a small number of
nonlinear deterministic equations.

1.4 The present focus

Financial markets exhibit several of the properthest characterize complex
systems. They are open systems in which many stshimtéract nonlinearly
in the presence of feedback. In financial mark#ts, governing rules are
rather stable and the time evolution of the systemontinuously moni-
tored. It is now possible to develop models ande&t their accuracy and
predictive power using available data, since laldgtabases exist even for
high-frequency data.

One of the more active areas in finance is theipgicof derivative
instruments. In the simplest case, an asset igideddby a stochastic process
and a derivative security (or contingent claimeisaluated on the basis of
the type of security and the value and statisficaperties of the underlying
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asset. This problem presents at least two diffeaspects: (i) ‘fundamental’
aspects, which are related to the nature of thdam@nprocess of the asset,
and (ii) '‘applied’' or 'technical' aspects, whick eglated to the solution of
the option-pricing problem under the assumptiort tha underlying asset
performs the proposed random process.

Recently, a growing number of physicists have aptewh to analyze and
model financial markets and, more generally, ecan@ystems. The interest
of this community in financial and economic systenas roots that date
back to 1936, when Majorana wrote a pioneering papethe essential
analogy between statistical laws in physics anthesocial sciences [101].
This unorthodox point of view was considered of gwaal interest until
recently. Indeed, prior to the 1990s, very few pssfonal physicists did any
research associated with social or economic systéhesexceptions included
Kadanoff [76], Montroll [125], and a group of phgal scientists at the Santa
Fe Institute [5].

Since 1990, the physics research activity in tieédfhas become less
episodic and a research community has begun togemétew interdisci-
plinary journals have been published, conferene@e® libeen organized, and
a set of potentially tractable scientific problehes been provisionally iden-
tified. The research activity of this group of ploysts is complementary to
the most traditional approaches of finance and erattical finance. One
characteristic difference is the emphasis that @ists put on the empir-
ical analysis of economic data. Another is the lgacknd of theory and
method in the field of statistical physics develdme/er the past 30 years
that physicists bring to the subject. The concegtscaling, universality,
disordered frustrated systems, and self-organigstesis might be helpful in
the analysis and modeling of financial and econosyggtems. One argument
that is sometimes raised at this point is thatrapiacal analysis performed
on financial or economic data is not equivalenthe usual experimental
investigation that takes place in physical scientether words, it is im-
possible to perform large-scale experiments in enpnos and finance that
could falsify any given theory.

We note that this limitation is not specific to eoonic and financial
systems, but also affects such well developed areplysics as astrophysics,
atmospheric physics, and geophysics. Hence, iroggpab activity in these
more established areas, we find that we are alikstand falsify any theories
associated with the currently available sets oaricial and economic data
provided in the form of recorded files of financeld economic activity.

Among the important areas of physics research nigalith financial and
economic systems, one concerns the complete statisharacterization of
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the stochastic process of price changes of a finhasset. Several studies
have been performed that focus on different aspgdtse analyzed stochastic
process, e.g., the shape of the distribution afepchanges [22,64,67,105, 111,
135], the temporal memory [35,93,95,112], and tighér-order statistical
properties [6,31,126]. This is still an active graad attempts are ongoing
to develop the most satisfactory stochastic modstdbing all the features
encountered in empirical analyses. One importanb@plishment in this
area is an almost complete consensus concerningntteness of the second
moment of price changes. This has been a longstgmatioblem in finance,
and its resolution has come about because of thewed interest in the
empirical study of financial systems.

A second area concerns the development of a thealehodel that is
able to encompass all the essential features bfinr@acial markets. Several
models have been proposed [10,11,23,25,29,90,911,104.42,146,149-
152], and some of the main properties of the ststthalynamics of stock
price are reproduced by these models as, for exantipé leptokurtic 'fat-
tailed' non-Gaussian shape of the distribution négodifferences. Parallel
attempts in the modeling of financial markets hdeen developed by
economists [98-100].

Other areas that are undergoing intense investigatileal with the ratio-
nal pricing of a derivative product when some & ttanonical assumptions
of the Black & Scholes model are relaxed [7,21 @24 with aspects of port-
folio selection and its dynamical optimization [64,63,116,145]. A further
area of research considers analogies and diffesdmetsveen price dynamics
in a financial market and such physical processeasidulence [64,112,113]
and ecological systems [55,135].

One common theme encountered in these research iarélae time cor-
relation of a financial series. The detection &f resence of a higher-order
correlation in price changes has motivated a radenation of some beliefs
of what is termed 'technical analysis' [155].

In addition to the studies that analyze and mounricial systems, there
are studies of the income distribution of firms atddies of the statistical
properties of their growth rates [2,3,148,153]. Thatistical properties of
the economic performances of complex organizatguth as universities or
entire countries have also been investigated [89].

This brief presentation of some of the current @ffan this emerging
discipline has only illustrative purposes and cdrbeexhaustive. For a more
complete overview, consider, for example, the pedaggs of conferences
dedicated to these topics [78,88,109].



2
Efficient market hypothesis

2.1 Concepts, paradigms, and variables

Financial markets are systems in which a large rernab traders interact
with one another and react to external informatiorder to determine
the best price for a given item. The goods mighabadlifferent as animals,
ore, equities, currencies, or bonds - or derivapveducts issued on those
underlying financial goods. Some markets are laedlin specific cities (e.g.,
New York, Tokyo, and London) while others (suchtlas foreign exchange
market) are delocalized and accessible all ovewibrd.

When one inspects a time series of the time ewwolutf the price, volume,
and number of transactions of a financial prodook recognizes that the
time evolution is unpredictable. At first sight, @might sense a curious
paradox. An important time series, such as theepoica financial good,
Is essentially indistinguishable from a stochagtiocess. There are deep
reasons for this kind of behavior, and in this dkapve will examine some
of these.

2.2 Arbitrage

A key concept for the understanding of marketdes ¢oncept of arbitrage
- the purchase and sale of the same or equivaésniriy in order to profit
from price discrepancies. Two simple examples tthte this concept. At a
given time, 1 kg of oranges costs 0.60 euro in Ha@nd 0.50 USD in
Miami. If the cost of transporting and storing 1 &horanges from Miami
to Naples is 0.10 euro, by buying 100,000 kg ofnges in Miami and
immediately selling them in Naples it is possiler¢alize a risk-free profit
of

100,000[0.60 — (0.80 x 0.50) — 0.10] = 10,000 euro. 2.1)
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Here it is assumed that the exchange rate betws2tJ§ dollar and the
euro is 0.80 at the time of the transaction.

This kind of arbitrage opportunity can also be alied in financial
markets. Consider the following situation. A staskraded in two different
stock exchanges in two countries with differentreacies, e.g., Milan and
New York. The current price of a share of the stscR USD in New York
and 8 euro in Milan and the exchange rate betwe®b dnd euro is 0.80.
By buying 1,000 shares of the stock in New York aelling them in Milan,
the arbitrager makes a profit (apart from trangactiosts) of

8 .
1,000 (m — 9) = 1,000 USD. (2.2)

The presence of traders looking for arbitrage comas contributes to a
market's ability to evolve the most rational price a good. To see this,
suppose that one has discovered an arbitrage appyrt One will exploit
it and, if one succeeds in making a profit, ond wapeat the same action.
In the above example, oranges are bought in Miamdi gold in Naples.
If this action is carried out repeatedly and systgoally, the demand for
oranges will increase in Miami and decrease in BaplThe net effect of
this action will then be an increase in the priéeomanges in Miami and
a decrease in the price in Naples. After a peribdirne, the prices in
both locations will become more ‘rational’, andsthwill no longer provide
arbitrage opportunities.

To summarize: (i) new arbitrage opportunities comdlly appear and are
discovered in the markets but (ii) as soon as hitrage opportunity begins
to be exploited, the system moves in a directiaat iradually eliminates
the arbitrage opportunity.

2.3 Efficient market hypothesis

Markets are complex systems that incorporate inédiom about a given
asset in the time series of its price. The mosepEx paradigm among
scholars in finance is that the market is highljcednt in the determination
of the most rational price of the traded asset. difieient market hypothesis
was originally formulated in the 1960s [53]. A matks said to be efficient
if all the available information is instantly presed when it reaches the
market and it is immediately reflected in a newueabf prices of the assets
traded.

The theoretical motivation for the efficient marksfpothesis has its roots
in the pioneering work of Bachelier [8], who at theginning of the twentieth
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century proposed that the price of assets in ausgtice market be described
as a stochastic process. This work remained alomdstown until the 1950s,
when empirical results [38] about the serial catieh of the rate of return
showed that correlations on a short time scalenagdigible and that the
approximate behavior of return time series is imdgenilar to uncorrelated
random walks.

The efficient market hypothesis was formulated exy in 1965 by
Samuelson [141], who showed mathematically thatperky anticipated
prices fluctuate randomly. Using the hypothesisrational behavior and
market efficiency, he was able to demonstrate Y.y the expected
value of the price of a given asset at titne 1, is related to the previous
values of priceYy, Y1,..., Y; through the relation

E{Yt+lIY09 Y]_,...,Yt} = YI' (23)

Stochastic processes obeying the conditional piibtyapiven in Eq. (2.3)
are called martingales (see Appendix B for a fordefinition). The notion
of a martingale is, intuitively, a probabilistic kel of a ‘fair' game. In
gambler's terms, the game is fair when gains asdel® cancel, and the
gambler's expected future wealth coincides withgambler's present assets.
The fair game conclusion about the price change®mied in a financial
market is equivalent to the statement that thermigvay of making a profit
on an asset by simply using the recorded historysoprice fluctuations.
The conclusion of this '‘weak form' of the efficianairket hypothesis is then
that price changes are unpredictable from the hestbtime series of those
changes.

Since the 1960s, a great number of empirical ingasbns have been
devoted to testing the efficient market hypoth¢s#. In the great majority
of the empirical studies, the time correlation begw price changes has been
found to be negligibly small, supporting the eféist market hypothesis.
However, it was shown in the 1980s that by usimgitiformation present
in additional time series such as earnings/pri¢®sadividend yields, and
term-structure variables, it is possible to makedgpetions of the rate of
return of a given asset on a long time scale, moalger than a month.
Thus empirical observations have challenged thetstrform of the efficient
market hypothesis.

Thus empirical observations and theoretical comatittens show that price
changes are difficult if not impossible to predicbne starts from the time
series of price changes. In its strict form, ancedht market is an idealized
system. In actual markets, residual inefficienaiesalways present. Searching
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out and exploiting arbitrage opportunities is onayvef eliminating market
inefficiencies.

2.4 Algorithmic complexity theory

The description of a fair game in terms of a mayaile is rather formal. In
this section we will provide an explanation - imns of information theory
and algorithmic complexity theory - of why the tirseries of returns appears
to be random. Algorithmic complexity theory was dmped independently
by Kolmogorov [85] and Chaitin [28] in the mid-1960by chance during
the same period as the application of the marteg@aleconomics.

Within algorithmic complexity theory, the complexibf a given object
coded in ann-digit binary sequence is given by the bit lerK® of
the shortest computer program that can print tlrergsymbolic sequence.
Kolmogorov showed that such an algorithm existscaked this algorithm
asymptotically optimal.

To illustrate this concept, suppose that as a giaspace exploration we
want to transport information about the scient#ia social achievements of
the human race to regions outside the solar syséenaong the information
blocks we include, we transmit the valuenoéxpressed as a decimal carried
out to 125,000 places and the time series of thly dalues of the Dow-
Jones industrial average between 1898 and theofehe space exploration
(approximately 125,000 digits). To minimize the amb of storage space
and transmission time needed for these two itemsfofmation, we write
the two number sequences using, for each seriealgamithm that makes
use of the regularities present in the sequenadigifs. The best algorithm
found for the sequence of digits in the valuedofis extremely short. In
contrast, an algorithm with comparable efficien@smot been found for
the time series of the Dow-Jones index. The Dowedandex time series is
a nonredundant time series.

Within algorithmic complexity theory, a series gfnsbols is considered
unpredictable if the information embodied in it nah be 'compressed’ or
reduced to a more compact form. This statementadermore formal by
saying that the most efficient algorithm reprodgciime original series of
symbols has the same length as the symbol sequisetfe

Algorithmic complexity theory helps us understarek tbehavior of a
financial time series. In particular:

(i) Algorithmic complexity theory makes a clearenoection between the
efficient market hypothesis and the unpredictaliiaracter of stock
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returns. Such a connection is now supported bytbperty that a time
series that has a dense amount of nonredundanoedomformation
(as the efficient market hypothesis requires fa& $hock returns time
series) exhibits statistical features that are atmmadistinguishable from
those observed in a time series that is random.

(i) Measurements of the deviation from randomr@sside a tool to verify
the validity and limitations of the efficient matk®ypothesis.

(i) From the point of view of algorithmic compléy theory, it is impossible
to discriminate between trading on 'noise' anditrgan ‘'information'’
(where now we use 'information’ to refer to fundataé information
concerning the traded asset, internal or extermahé market). Algo-
rithmic complexity theory detects no differencevibetn a time series
carrying a large amount of nonredundant econonfierimation and a
pure random process.

2.5 Amount of information in a financial time series

Financial time series look unpredictable, and tleiure values are essen-
tially impossible to predict. This property of thaancial time series is not
a manifestation of the fact that the time seriepmée of financial assets
does not reflect any valuable and important ecooanformation. Indeed,
the opposite is true. The time series of the pricea financial market
carries a large amount of nonredundant informat®ecause the quantity
of this information is so large, it is difficult textract a subset of economic
information associated with some specific aspebe difficulty in making
predictions is thus related to an abundance ofrmé&tion in the financial
data, not to a lack of it. When a given piece dbrmation affects the
price in a market in a specific way, the markehat completely efficient.
This allows us to detect, from the time series 0w€q) the presence of this
information. In similar cases, arbitrage strategias be devised and they
will last until the market recovers efficiency iniximg all the sources of
information during the price formation.

2.6 ldealized systems in physics and finance

The efficient market is an idealized system. Reafkats are only approxi-
mately efficient. This fact will probably not soutmb unfamiliar to physicists
because they are well acquainted with the studde#dlized systems. Indeed,
the use of idealized systems in scientific investimgn has been instrumen-
tal in the development of physics as a disciplidere would physics be
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without idealizations such as frictionless motiogversible transformations
in thermodynamics, and infinite systems in theicaitstate? Physicists use
these abstractions in order to develop theoriestamtkesign experiments.
At the same time, physicists always remember ttiehlized systems only
approximate real systems, and that the behavioeafsystems will always
deviate from that of idealized systems. A similapaach can be taken in
the study of financial systems. We can assumestaalideal' conditions, e.g.,
the existence of a perfectly efficient market, awithin this ideal framework
develop theories and perform empirical tests. Talelity of the results will
depend on the validity of the assumptions made.

The concept of the efficient market is useful irny aitempt to model
financial markets. After accepting this paradigm,important step is to
fully characterize the statistical properties of tlandom processes observed
in financial markets. In the following chapters, wdl see that this task
Is not straightforward, and that several advanceudcepts of probability
theory are required to achieve a satisfactory dasocn of the statistical
properties of financial market data.



3
Random walk

In this chapter we discuss some statistical progerof a random walk.
Specifically, (i) we discuss the central limit tlem, (ii) we consider the
scaling properties of the probability densitieswalk increments, and (iii)
we present the concept of asymptotic convergencantattractor in the
functional space of probability densities.

3.1 One-dimensional discrete case

Consider the sum of independent identically distributed (i.i.d.) random
variable:x;,

Sp=x1+x24+ "+ x,. (3.1)
HereS, = x(nAt)can be regarded as the sumnafandom variables or

as the position of a single walker at tit = nAt, wheren is the number

of steps performed, and At the time interval regdito perform one step.
Identically distributed random variab{x;} are characterized by moments
E{x!"} that do not depend anThe simplest example is a walk performed

by taking random steps of sigescx;randomly takes the values zs. The
first and second moments for such a process are

E{x}=0and E{x?} =g (3.2)
For this random walk
E{xixj} = 51‘j32. (33)

From (3.1)-(3.3), it follows that

E{x(nA1)} = zn: E{x;} =0, (3.4)
i=1

14
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and

. n n n

E{x* (At} =3 E{xix;} = > E{xf} =ns’. (3.5)
i=1 j=1 i=1

For a random walk, the variance of the process grbmearly with the

number of steps. Starting from the discrete random walk, a contirsiou
limit can be constructed, as described in the segtion.

3.2 The continuous limit

The continuous limit of a random walk may be ackaby considering the
limit # — o0 and At — 0 such thait = nAt is finite. Then

E{x*(t)} =ns’ = Z—ir. (3.6)

To have consistency in the limn — ¢ or At = 0 with s* = DAt, it follows
that

E{x*(t)} = Dt. (3.7)

The linear dependence of the variarx?(t) on t is characteristic of a
diffusive process, anD is termed the diffusion constant.

This stochastic process is calletVéener procesdJsually it is implicitly
assumed that fn — coor,At — 0 the stochastic proceg$t) is a Gaussian
process. The equivalence

'random walk='Gaussian walk'

holds only when — coand is not generally true in the discrete case when
nis finite, sinceS,is characterized by a probability density functigalf)
that is, in general, non-Gaussian and that asstinee&aussian shape only
asymptotically withn. The pdf of the procesP [x(nAt)]- or equivalently
P(Sy) - is a function ofn, and P(x;) is arbitrary.

How does the shape P[x(nAt)] change with time? Under the assumption
of independence,

P[x(2A0)] = P(x1) Q) P(x2), (3.8)

where®denotes the convolution. In Fig. 3.1 we show fouffedent
pdfs P{x}: (i) a delta distribution, (ii) a uniform distrition, (iii)) a Gaussian
distribution, and (iv) a Lorentzian (or Cauchy) tdisution. When one of
these distributions characterizes the random véegx;, the pdfP(s,)
changes as increases (Fig. 3.2).
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Fig. 3.1. Examples of different probability densifitymctions (pdfs). From top to
bottom are shown (P{x) = &(x + 1)/2 + d(x — 1)/2, (ii) a uniform pdf with zero
mean and unit standard deviation, (iii)) a Gausp@dhwith zero mean and unit
standard deviation, and (iv) a Lorentzian pdf witht scale factor.
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Fig. 3.2. Behavior oP(Sy) for i.i.d. random variables with = 1,2 for the pdfs of
Fig. 3.1.
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Whereas all the distributions change as a funatiom, a difference is ob-
served between the first two and the Gaussian amdnizian distributions.
The functionsP(S,) for the delta and for the uniform distribution clgen
both in scale and in functional form as n increasdsle the Gaussian and
the Lorentzian distributions do not change in shipeonly in scale (they
become broader wheamincreases). When the functional formP(S,) is
the same as the functional form P(x;) , the stochastic process is said to
be stable.Thus Gaussian and Lorentzian processes are stablalgeneral,
stochastic processes are not.

3.3 Central limit theorem
Suppose that a random varialSgis composed of many parx;, S, =
S *.1Xi, such that eack; is independent and with finite varianE{x;} =0,
E{x?} = s?, and

on =E{S;} =3 5. (3.9)
Suppose further that, whe,, — oo, the Lindeberg condition [94] holds,

% Zn:E{U,?} -1, (3.10)
1

n o=

where, for evere > 0, U;is a truncated random variable that is equx; to
whenlx;} < eo, and zero otherwise. Then the central limit theo{&iT)
states that

Go=_mbmd (3.11)

Is characterized by a Gaussian pdf with unit vacea

Po(Sy) = —=exp(-53/2) 312
A formal proof of the CLT is given in probabilitgxts such as Feller [56].
Using two concrete examples, we 'illustrate’ thennpaint of the theorem,
the gradual convergenceP(S,)to the Gaussian shape whemcreases.
In our examples, we simulate the stochastic pr(S,dssassuming th.x;is
characterized by (i) a double trianguP(x;)(Fig. 3.3) or (ii) a uniforr P(x;)
(Fig. 3.4). As expected, ttP(S,) distribution broadens whamincreases.
We emphasize the convergence to the Gaussian astimgtstribution
by plotting the pdf using scaled units, defining
X

17z (3.13)

X
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_—
]

g

5

Fig. 3.3. Top: Simulation cP(S,) for n ranging fromn = 1 ton = 250 for the case
When P(x) is a double triangular function (inset). Bottom:n8adistribution
using scaled units.

and
P(%) = P(x)n'/2. (3.14)

By analyzing the scaled pdP(%) observed at large values mfn Figs. 3.3
and 3.4, we note that the distributions rapidly venge to the functional
form of the Gaussian of unit variance (shown asmaah curve for large
n.

We emphasize the fundamental hypothesis of the Qlffat is required
is both independence and finite variance of theloam variable x;. When
these conditions are not satisfied, other limitotieens must be considered
(see Chapter 4).
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Fig. 3.4. Top: Simulation cP{S,) for n ranging fromn = 1 to n = 50 for the case
whenP({x) is uniformly distributed. Bottom: Same distributionscaled units.

3.4 The speed of convergence
For independent random variables with finite vacmnthe CLT ensures that
Sy will converge to a stochastic process with pdf

Po(Sy) = \/zim exp(—S2/202). (3.15)

How fast is this convergence? Chebyshev considiriedoroblem for a sum
S» of i.i.d. random variablex;. He proved [30] that the scaled distribution
function given by

S
FuS)= | P&, (3.16)

-0
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differs from the asymptotic scaled normal distribatfunction ®(S) by an
amount

=512 S S S
FA(5) — 0(8) ~ 5= (Q;l(,zl"’QZ( ) 4. +Q{,(,2) ) (3.17)

where theQ(S) are polynomials ir5,the coefficients of which depend on the
first j + 2 moments of the random varia {x;}. The explicit form of these
polynomials can be found in the Gnedenko and Kolonog monograph on
limit distributions [66].

A simpler solution was found by Berry [17] and BE=s¢51]. Their results
are today called the Berry-Esseen theorems [57@. Bérry-Esseen theorems
provide simple inequalities controlling the abselutifference between the
scaled distribution function of the process andakgmptotic scaled normal
distribution function. However, the inequalitiestabed for the Berry-Esseen
theorems are less stringent than what is obtaiyettido Chebyshev solution
of Eq. (3.17).

3.4.1 Berry-Esseen Theorem 1
Let thex;be independent variables with a common distribufiomction F
such that

E{x} = 0 (318)E{x}} = ¢*>0 (3.19)
E{x’} = p<co. (3.20)
Then [57], for aIIS andn,

f

The inequality (3.21) tells us that the convergesgeed of the distribution
function of S, to its asymptotic Gaussian shape is essentiallyrotad
by the ratio of the third moment of the absolutéueaof x; to the cube of
the standard deviation ;.

IFu(S) — ®(S)] < —F— (3.21)

3.4.2 Berry-Esseen Theorem 2

Theorem 2 is a generalization that considers randanables that might
not be identically distributed. Let tx;pe independent variables such that

E{x} = 0 (3.22)
E{x}} = of (3.23)
E{ixf} = n, (3.24)
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Fig. 3.5. Pictorial representation of the conveogen the Gaussian pPs(S.,) for
the sum of i.i.d. finite variance random variables.

and define

ss=¢t+03+-+a? (3.25)
and

Pn=EFLtr2+ + T (3.26)
Then [57] for allSandn,

IFa(S) — ()] < 65. (3.27)

n

3.5 Basin of attraction

The study of limit theorems uses the concept ofitdsin of attractiorof
a probability distribution. To introduce this coptewe focus our attention
on the changes in the functional formP(S,) that occur whem changes.
We restrict our discussion to identically distriedtrandom variablex;.
P(S1) then coincides witlP(x;) and is characterized by the choices made
in selecting the random variablxs Whenn increase:P(S,) changes its
functional form and, if the hypotheses of the CL'E &erified, assumes
the Gaussian functional form for an asymptoticdlyge value ofn. The
Gaussian pdf is an attractor (or fixed point) ie fanctional space of pdfs
for all the pdfs that fulfill the requirements d¢fet CLT. The set of such pdfs
constitutes the basin of attraction of the Gauspidin

In Fig. 3.5, we provide a pictorial representatarine motion of both the
uniform and exponentiP(S,) in the functional space of pdfs, and sketch the
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convergence to the Gaussian attractor of the twohsistic processes,.
Both stochastic processes are obtained by summmngi.d. random
variablesx; and y; . The two processex; and y; differ in their pdfs,
indicated by their starting from different regioat the functional space.
When n increases, both pdfP(S,) become progressively closer to the
Gaussian attractcPg(S,). The number of steps required to observe th
convergence of P(S,) to Ps(S,) provides an indication of the speed of
convergence of the two families of processes. Altito the Gaussian
attractor is the most important attractor in thadional space of pdfs,
other attractors also exist, and we consider thethe next chapter.



4
Levy stochastic processes and limit theorems

In Chapter 3, we briefly introduced the concepstaible distribution, namely
a specific type of distribution encountered in gwem ofn i.i.d. random
variables that has the property that it does naingle its functional form
for different values of. In this chapter we consider the entire class diflsta
distributions and we discuss their principal prdies:

4.1 Stable distributions

In 83.2 we stated that the Lorentzian and Gausgistnibutions are stable.
Here we provide a formal proof of this statement.
For Lorentzian random variables, the probabilitysigy function is

1
P(x) = %'\!2 L w27 (4'1)
The Fourier transform of the pdf
+a0 ,
o(q) = P(x)e'¥dx 4.2)
—0

is called the characteristic function of the st@titaprocess. For the Lorentzian
distribution, the integral is elementary. Subsiitgt(4.1) into (4.2), we have

o(q) = e M. (4.3)

The convolution theorem states that the Fouriansiam of a convolu-
tion of two functions is the product of the Fourteansforms of the two
functions,

Z [f0) @ gx)| = FUNF ()] = F(@)G(@). (4.4)

For i.i.d. random variables,

8 = x1 + x». (4.5)

23
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The pdf P,(S,) of the sum of two i.i.d. random variables is giv@nthe
convolution of the two pdfs of each random variable

Py(S2) = P(x1) Q) P(x2), (4.6)

The convolution theorem then implies that the cbi@mstic functiol¢z2(q)
of §; is given by

#2(q) = [o(@)1* 4.7)

In the general case,

Pu(Sa) = Pe) QPx2) R+ R P, (4.8)
wheresS, is defined by (3.1). Hence

on(q) = [o(g)]". (4.9)

The utility of the characteristic function approacaén be illustrated by
obtaining the pdf for the surS; of two i.i.d. random variables, each of
which obeys (4.1). Applying (4.6) would be cumbensgp while the

characteristic function approach is quite direchcs for the Lorentzian
distribution,

@2(q) = € 2. (4.10)
By performing the inverse Fourier transform
1 +co —iax
P =5 [ ola)edg, @.11)
we obtain the probability density function
2y 1
P = T 4.12)

The functional form o0 P2(Sz}, and more generally (P,(S,), is Lorentzian.
Hence a Lorentzian distribution is a stable disttion. For
Gaussian random variables, the analog of (4.1)agtf

P(x) = — g /27, (4.13)
 \J2mo

The charac_teristic function is
2

olg) = 18 = 7, (4.14)

wherey = ¢2/2. Hence from (4.7)

r(g) = T (4.15)
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By performing the inverse Fourier transform, weaoibt

Py(Sy) = —e—e " /¥ (4.16)

1
NLED
Thus the Gaussian distribution is also a stabl&idigtion. Writing (4.16)
in the form

1 2 2
Py(Sz) = —p= e ¥ [AVT, 4.17
2( 2) ﬁ(ﬁo_)e ( )
we find
oy = J2o. (4.18)

We have verified that two stable stochastic proegssxist: Lorentzian
and Gaussian. The characteristic functions of Ipotitesses have the same
functional form

Plg) = e, (4.19)

wherea = 1 for the Lorentzian from (4.3), are = 2 for the Gaussian from
(4.15).

Levy [92] and Khintchine [80] solved the generablplem of determining
the entire class of stable distributions. They fduhat the most general
form of a characteristic function of a stable prExes

ing — ylql® [1 —ifhtan (%a)] fr # 1]
Inp(q) = o , (4.20)
ing —vlgl [t +iB2nlg]  [a=1]
where0 < o < 2, y is a positive scale factog is any real number, arg is
an asymmetry parameter ranging from —1 to 1.

The analytical form of the Levy stable distributiemknown only for a
few values o« and §:

=172, B = 1(Levy-Smirnov)
e =1, § =0(Lorentzian)
o« = 2(Gaussian)

Henceforth we consider here only the symmetric Istatistribution
(8 =0) with a zero mean u = 0). Under these assumptions, the
characteristic
function assumes the form of Eq. (4.19). The symimestable distribution
of index # and scale factiyis, from (4.20) and (4.11),

1 % a
Pux)y= [ e coslgx)da. 4.21)
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For y = 1, a series expansion valid for large argumeixi > 0) is [16]

k
Pulad) = “Z( i) r(arocktll) o [k?zzoc

] + R(}x|), (4.22)

whereXI'(x) is the EulelI’ function and
R(}x)) = O(Jxj~*"+D=1), (4.23)

From (4.22) we find the asymptotic approximationac$table distribution
of indexxvalid for large values clx|,

I'(d +o)sin(ma/2) x|+
- nlxll-i—oc )

The asymptotic behavior for large valuesxak a power-law behavior,
a property with deep consequences for the momeitheo distribution.
Specifically,E{|x|"} diverges forwhen = «. In & < 2 particular, all Levy
stable processes wix < 2 haveinfinite variance. Thus non-Gaussian stable
stochastic processes do not have a characterisdie s the variance is
infinite!

Pu(jx]) ~ (4.24)

4.2 Scaling and self-similarity

We have seen that Levy distributions are stablethla section, we will
argue that these stable distributions are alsesselilar. How do we rescale
a non-Gaussian stable distribution to reveal itcsmilarity? One way is to
consider the 'probability of return to the oricP(S, = 0), which we obtain
by starting from the characteristic function

0nlg) = e, (4.25)
From (4. 11)

P(S,) = ~ [ ™ cos(¢S,)dg. (4.26)
Hence

1 0 _ a r(l/&)

PS,,=0=—/ nylal® 4 Nl Sl A )
The P(Sy») distribution is properly rescaled by defining

B(8,) = P(S,nl/=. (4.28)
The normalization

+00
B(S,)ds, =1, (4.29)

—0
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is assured if
~ S

Wherg =2, the scaling relations coincide with what we used a
Gaussian process in Chapter 3, namely Egs. (3riB{&14).

4.3 Limit theorem for stable distributions

In the previous chapter, we discussed the centndtl theorem and we noted
that the Gaussian distribution is an attractorhe functional space of
pdfs. The Gaussian distribution is a peculiar sgatiktribution; it is the
only stable distribution having all its momentsifen It is then natural to
ask if non-Gaussian stable distributions are att@ators in the functional
space of pdfs. The answer is affirmative. Therestexa limit theorem [65,66]
stating that the pdf of a sum ofi.i.d. random variablex;converges, in
probability, to a stable distribution under certawnditions on the pdf of
the random variabl x;. Consider the stochastic proceS, = ¥ i x:, with

x; being i.i.d. random variables. Suppose

NS C_x;|~0+%  as x — —o0
P(xl) {C-{-Ixil_(l-'-a) as X — +CO ’ (431)
and
_Cy—C
p= C o (4.32)

ThenP(8,) approaches a stable non-Gaussian distrib P {x) of indexe
and asymmetry paramet g and P(S,) belongs to the attraction basin of
PL(JC).

Sincexis a continuous parameter over the rad < a« < 2, an infinite
number of attractors is present in the function@ce of pdfs. They com-
prise the set of all the stable distributions. Fegd.1 shows schematically
several such attractors, and also the convergehee aertain number of
stochastic processes to the asymptotic attractdfg An important differ-
ence is observed between the Gaussian attractostatde non-Gaussian
attractors: finite variance random variables amsgnt in the Gaussian basin
of attraction, whereas random variables with in@nrariance are present in
the basins of attraction of stable non-Gaussiatridigions. We have seen
that stochastic processes with infinite varianee @draracterized by distribu-
tions with power-law tails. Hence such distribusomith power-law tails are
present in the stable non-Gaussian basins of &tirac
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Fig. 4.1. Pictorial representation of the conveogeprocess (in probability) to some
of the stable attractors of the sum of i.i.d. randaariables. The black circle is the
Gaussian attractor and the black squares the Le&bjlesnon-Gaussian attractors
characterized by different values of the index

4.4 Power-law distributions

Are power-law distributions meaningful or meanirgg@ Mathematically
they are meaningful, despite the presence of dingrsmoments. Physically,
they are meaningless for finite ('isolated’) systefor example, an infinite
second moment in the formalism of equilibrium stial mechanics would
imply an infinite temperature.

What about open (‘non-isolated’) systems? Indeedndlli considered
random variables with infinite expectations in désiag a fair game, the St
Petersburg paradox, while Pareto found power-lastrithutions empirically
in the distribution of incomes. Mandelbrot used posaw distributions in
describing economic and physical systems.

Power-law distributions are counterintuitive beaatisey lack a charac-
teristic scale. More generally, examples of randamables with infinite
expectations were treated as paradoxes before thke @f Levy. A cele-
brated example is the St Petersburg paradox. Nnd@gli introduced the
game in the early 1700s and D. Bernoulli wrote abbin the Commentary
of the St Petersburg Acaderfbb].

4.4.1 The St Petersburg paradox

A banker flips a coirn+1 times. The player win2"~! coins if n tails occur
before the first head. The outcomes are made oighe following chart:
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n coins won probability expected winnings
1 1 1/2 1x1/2
2 2 1/4 2% 1/4
3 4 1/8 4x1/8
no ol 1/2n 12
The cumulative expected win1/2 + 1/2 + -+ = co. How many coins

must the player risk in order to play? To determihe fair 'ante’, each
party must decide how much he is willing to gami8pecifically, the banker
asks for his expected loss - it is an infinite n@mbf coins. The player
disagrees because he assumes he will not win amtenhumber of coins
with probability one (two coins or fewer with prdbbty 3/4, four coins or

fewer with probability 7/8, and so on). The two tpe8 cannot come to an
agreement. Why? The 'modern' answer is that theyrgmg to determine
a characteristic scale for a problem that has rawatdteristic scale.

4.4.2 Power laws in finite systems

Today, power-law distributions are used in the dpsion of open systems.
However, the scaling observed is often limited ioyté size effects or some
other limitation intrinsic to the system. A goodaample of the fruitful
use of power laws and of the difficulties relatedtheir use is provided
by critical phenomena [147]. Power-law correlationctions are observed
in the critical state of an infinite system, buttife system is finite, the
finiteness limits the range within which a powewlaehavior is observed.
In spite of this limitation, the introduction antet use of the concept of
scaling - which is related to the power-law natafeorrelation - is crucial
for the understanding of critical phenomena evemrmwhinite systems are
considered [59].

4.5 Price change statistics

In this book, we are considering the limit theoreofigorobability theory
to have a theoretical framework that tells us wkiatl of distribution we
should expect for price changes in financial magk&table non-Gaussian
distributions are of interest because they obett lineorems. However, we
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Fig. 4.2. Monthly volatility of the S&P 500 indexeasured for the 13-year period
January 1984 to December 1996. Courtesy of P. Gispikan.

should not expect to observe price change disiohstthat are stable. The
reason is related to the hypotheses underlyindithié theorem for stable
distributions: The random variabl{x;} are (i) pairwise-independent and
(i) identically distributed. Hypothesis (i) has dye well verified for time
horizons ranging from a few minutes to several geaHowever,
hypothesis (ii) is not generally verified by empai observation because,
e.g., the standard deviation of price changesangty time-dependent. This
phenomenon is known in finance as time-dependeftility [143] (an
example is shown in Fig. 4.2).

A more appropriate limit theorem is one based amythe assumption
that random variablix; are independent but not necessarily identicall
distributed. A limit theorem valid for a su§, of independent random
variables{x;} was first presented by Bawly and Khintchine [66,8&ho
considered the class of limit laws for the sLS, of n independent
infinitesimal random variables. Infinitesimal isaashere as a technical term
meaning that in the surS, there is no single stochastic variax;e
that dominates the sum. Then the Khintchine theostates that it is
necessary and sufficient thiF,(S), the limit distribution function, be
infinitely divisible.
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4.6 Infinitely divisible random processes

A random process 3; is infinitely divisible if, fevery natural numbdy; it can
be represented as the sumkafi.d. random variable{x;}. The distribution
function F(y) is infinitely divisible if and only if the characatestic
function ¢(q) is, for every natural numbek, the kth power of some
characteristic functic ¢x(q). In formal terms

o(q) = [ou(@)I*, (4.33)

with the requirements (@x{0) = 1 and (ii)¢x(q) is continuous.

4.6.1 Stable processes
A normally distributed random variab{y} is infinitely divisible because,
from (4.14),

2
@(q) = exp [i,uq — %qzl s (4.34)

so a solution of the functional equation (4.33) is

@i(q) = exp [i—i‘i — g—;-qz] : (4.35)

A symmetric stable random variable is infinitelyidible. In fact, from (4.19)
@(q) = explipg — ylql’], (4.36)

Sso
onla) = exp |2~ Tigp]. @37)

4.6.2 Poisson process

The Poisson proce:P(m; A) = e~*(A"/m!), withm = 0,1,...,n, has a char-
acteristic function

@(q) = exp[Ue — 1)), (4.38)
so, from (4.33),

o(q) = exp [gw - 1)] . 4.39)
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(Infinitely divisible ~~_~"
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infinite moments

Fig. 4.3. lllustrative scheme of the classes ofdoan processes discussed in thi:
chapter. The solid circle denotes the stable Gangsiocess.

4.6.3 Gamma distributed random variables
The Gamma distribution has pdf

P(x) = % (4.40)
Forx =0 and0 < v < o, the characteristic function is
olg)=(1—ig)™", (4.41)
so, from (4.33),

orlay= (1 —ig) ™/, (442)

4.6.4 Uniformly distributed random variables

The class of infinitely divisible stochastic proses is large, but there arc
several stochastic processes that are not infindedisible. One example is
a random process with a uniform pdf

0 X <~
Px)=31/24 —¢t<x<?¢ . (4.43)

0 x>
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In this case, the characteristic function is
sin{g¢)
o(q) =

nt

(4.44)

and the process is not infinitely divisible becatlsekth root does not exist.

4.7 Summary

In Fig. 4.3 we provide a schematic illustrationsoime important classes of
stochastic processes discussed in this chapter.

The class of infinitely divisible random processssa large class that
includes the class of stable random processesiitely divisible random
processes may have finite or infinite variancebgtaon-Gaussian random
processes have infinite variance, whereas the Gaugsocess is the only
stable process with finite variance.

Empirical observations, together with limit theoseof probability theory,
allow one to conclude that the pdf of price changesst progressively
converge to an infinitely divisible pdf for longne horizons. Hence the
Khintchine limit theorem ensures that for largewes ofn, the price change
distribution is well defined, in spite of the fabit the price change stochastic
process Z{t) at a timet may be characterized by parameters and
functional forms that aredependent. Moreover, the Khintchine theorem
states that the distributicP{Z) is close to an infinitely divisible pdf and
the degree
of convergence increases whemcreases. Hence a long time horizon pdf
of price changes can be considered in terms ofma stii.i.d. random
variables. Even in the presence of volatility fuations, it is possible to
model price changes in terms of newly defined.isiahdom variables. These
are the variables defined by Eq. (4.33). One mestpkin mind that the
information extracted from this i.i.d. random preseapplies to pdfs for long
time horizons, and not to local time scales.
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Scales in financial data

A truly gargantuan quantity of financial data igrently being recorded and
stored in computers. Indeed, nowadays every trdiosaof every financial
market in the entire world is recorded somewhete fiature and format of
these data depend upon the financial asset iniguneshd on the particular
institution collecting the data. Data have beerorded

» on a daily basis since the 19th century (Fig, o.an example),
» with a sampling rate of 1 min or less since 1984. 5.2), and
* transaction-by-transaction (‘tick-by-tick') sint®93 (Fig. 5.3).

Statistical analyses of financial data have beefopeed since the record-
ing activity started. Since the 1950s, when compdéta processing became

890821 16.62 16.75 16.12 16.19 19800 0
Date 890822 16.19 16.31 16.12 16.31 17884 0
16.31 16.56 16.31 16.56 23044 0 int

890824 16.56 17.00 16.62 17.00 29916 o]~ 'MO

890825 17.00 17.00 16.75 16.75 14964 0

890828 16.75 16.88 16.62 16.88 13160 O

890829 16.88 17.00 16.75 16.81 13516 O

890830 16.81 16.88 16.56 16.62 17532 0

890831 16.62 16.62 16.44 16.62 14544 O Velurie
Y 890901 _16.62 16.88 16.50 16.81 [14328]0 '
open < 890905 [16.81] 16.62 16.38 16.38 20272 0

. 890906 16.38 16.44 16.06 16.19 29308 0

890907 -16.19 16.25 16.12 16.19 17512 0
890908 16.19 16.12 15.81 1594 21868 0
890911 15.94 15.88 15.62 1575 28104 0 v
890912 15.75 15.94 15.60 [15.88] 15752 0 Yclose
890913 15.88 15.94 15.56 15.56 26232 0
Y . 890914 15.56 16.00 15.50 15.88 18672 0
max < 890915 15.88 [16.06] 15.69 15.75 55072 O
890918 15.75 15.75 15.62 15.69 17392 0
890919 15.69 15.81 15.62 15.62 17440 O

890920 15.62 15.69 F??_ 1562 16448 0 'min
890921 15.62 15.62 15.31 15.31 19504 O

Fig. 5.1. Daily data on the prices of Coca Cola §tock. Records show the date,
the open price, the maximum and the minimum prigeng) the day, the closing
price, the volume traded during the day, and adul#i information on the record.

34
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B871019in  x89x 89 in 87110835480028179 0
871019in xB9x - . 83inB87110825530028171 0
871019in x89x . 89in 87110836080028167 ' 0 *
871019in x89x . 89in87110836240028162 0 .
871019in  x89x 89 n'87110837380028113: 0
871019in  x89x 89 in 87110838080028084 - 0
871019in  x89x 89 in 87110838330028081. .0

. 871019in  x89x 89in 87110838500028076 0

© 871013in . x89x 89 in 87110838570028074 0

~ 871019in x89x -~ 89in 87110839530028063. 0
871019in x89x . 89in87110840210028061 0 *

Date «—71019}n x89x - ' 88in87110840300028041 0

871019in  x89x 89 in 87110840530028036 0
871019in  x89x 89 in 87110840530028043 0
871019in  x89x 89 in 87110841530028016 0

871019in x8x  89in87110841560(28020-6—> S & P 500
" g71019in x89%x  89in87110841580028016 0 :

8710190 x89x _ 89n|s7110842230028005 0
871010in x89x 89 in 87110842450028003 0
871019in ¥89x  80in87110843080027994 0
871019in x89x  89in87110843530027985 0 Ti
§71019in x88x  89in8711}B4408P027963 0 | IMEhms
871019in ¥89x  89in 87110844300027972 0
871019in x89x  89in8&7110844440027965 0
871019in x80x  89in87110845080027972 0
871019in x89x  89in&7110845170027952 0
871019in xB9x - 89in87110845430027048 0
- BT1019in x89x - 89in87110845530027945 0
B7101%in X89x  89in87110846230027940 0
§71019in x89x  89in 87110846230027938 0
871019in x89x  .80in 87110846460027935 0

Fig. 5.2. High-frequency records of the S&P 50Cemdrhe data contain information
on the value of the index at each time for whicis italculated.

available, statistical analysis has progressivelyolved a larger and larger
number of financial records. For example, Manddlbr@963 cotton-price
study [102] analyze =~ 2 x 10° records, the 1995 study [111] of the Standard
& Poor's 500 index analyzex 5 x 10° records, and a recent tick-by-tick
study [67] use4 x 107 relative price changes for the 1,000 largest corigsan
traded in the New York Stock Exchange.

Statistical analyses of market data are esseibtdh for the fundamental
reason of understanding market dynamics and foliegypeasons related
to the key problems of option pricing and portfohitanagement. In this
chapter we consider some peculiarities of finandiata, scales and units.
Indeed, the role of scales and reference unitsnante and physics is rather
different, and we discuss this difference in detail

5.1 Price scales in financial markets

In physics, the problem of reference units is coesd basic to all experi-
mental and theoretical work. Efforts are continpatiade to find the optimal



36 Scales in financial data

Tick extraction for JPY DEM

Filtering: O&A standard filter for historical tests

""""" date time price country  Tilter
city Good (1) or Bad (0)

CCYY-MM-DD (GMT) bid ask bank

1992-10-01 00:01:02 84.90 84.95 702 01 0041 1
1992-10-01 00:05:18 84.93 84.96 036 02 0032 1
1992-10-01 00:07:10 84.92 84.97 344 01 0136 1
1992-10-01 00:11:32 84.95 85.00 2344 01 0089 1
1992-10-01 00:16:34 84.96 85.01 344 01 0136 1
1992-10-01 00:16:50 84.98 85.03 344 01 0136 1
1992-10-01 00:17:26 85.00 85.05 344 01 0136 1
1992-10-01 00:18:16 84.95 85.00 392 01 0033 1
1992-10-01 00:20:00 84.96 85.01 344 01 0136 1
1992-10-01 00:20:18 84.95 85.00 344 01 0437 1
1992-10-01 00:21:06 84.95 85.00 702 01 0055 1
1992-10-01 00:23:00 85.00 85.05 344 01 0136 1
1992-10-01 00:23:18 85.02 85.07 344 01 0136 1
1992-10-01 00:23:36 85.00 85.05 702 01 0055 1
1992-10-01 00:23:56 84.96 85.01 344 01 0136 1

=]
9
=}
L=

Fig. 5.3. High-frequency quotes on the foreign exae market, collected by Olsen
& Associates Corporation. The records comprisetitme (GMT), the bid, the
ask on Japanese yen/German Deutschmark transgcéiodsanformation on the
country, city, and financial institution issuingetijuote.

reference units and to improve the accuracy ofrttletermination [33,40].
A branch of physics, metrology, is exclusively deab to this task, and
large specialized institutions in metrology exibtoaer the world. In finance,
almost the opposite is the case. The scales useaftan given in units
(currencies) that are themselves fluctuating iretemd transactions occur at
random times with random intensities. For this oeagreat care must be
taken in the selection of the most appropriatealde to be studied, taking
into account the implicit assumptions associateith wach possible choice.

Here we first consider the problem of price scaleghe next section we
consider the problem of time scales.

The price unit of financial goods is usually therency of the country in
which the particular financial market is locatedheTvalue of the currency
IS not constant in time. A currency can changeatisie because of

* inflation,
e economic growth or economic recession, and
« fluctuations in the global currency market.

Examples of some macroeconomic records are givéigs. 5.4 and 5.5.
In Fig. 5.4, we show a table of the annual peradrgnges of the gross
domestic product of several industrial countries@istant 1980 currency
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GDP at Constant Prices

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 99bp x
4.1 37 2.2 1.7 1.2 2.1 4.1 29 .... .... World 001
4.0 3.2 14 1.5 1.1 26 4.5 3.1 3.0 3.0 Industrial Countries 110
52 2.1 -2 20 =25 37 6.6 3.0 38 3.1 United States 111
42 37 1.5 30 -34 37 6.1 4.3 30 .. Canadd® i 196

8 34 34 2.0 3.1 4 6.7 55 1.8 44 A i 193
5.2 5.3 43 a7 3.1 32 5.1 47 2.5 4.4 Japan* 158

- 27 o 1.4 31 A 6.6 1.5 .... .... New Zealand 196

5 4.7 3.0 -1 1.1 2.2 1.4 2.8 1.7 1.3 Austria 122
29 2.2 4.1 -1.3 1.5 1 20 14 2.4 1.7 Belgi 124
1.5 35 -4 ~9 3.0 25 4.4 4.2 33 -10 D , S— 128
2.2 7.3 5.4 1.6 36 30 33 35 24 .... Finland 172
33 3.2 1.6 1.2 25 7 1.3 1.7 2.1 2.2 France 132
3.0 4.1 1.7 2 117 1.5 2.8 2.1 2.6 1.8 Germany 134
5.9 5.0 4.2 16 ~-l5 -5.5 2.7 10.1 6.3 55 iceland*® 176
1.2 3.1 31 33 23 -1.1 38 1.1 =3 .... lreland 178
27 49 39 1.1 2 1.0 3.2 28 29 3.1 ltaly 136
4.7 4.0 29 5 1.5 2.4 5.7 3.9 34 ... L bourg 137
25 2.4 .9 -7 -l.4 1.4 3.2 2.3 2.4 2.2 Netherlands..........ccosimmniiisisssnsnes. 138
45 5.1 I42 9 3 4.6 157 53 I4.2 1.3 Norway 142
1.8 2 1.5 -2 1.2 1.8 1.9 21 36 .... Spain 184
18 38 1.7 -3 8 24 39 2.1 1.2 28 Swed 144

A4 2.5 4.6 15 -1l J 2.1 37 28 ceo SWItZerand ... msisninisssiens 146
s 21 =21 -9 11 35 2.1 39 29 3.6 United Kingdom ....oocermniiimnecnns . 112

Fig. 5.4. Annual percent change of the gross dampsbduct of several countries
over a 10-year period; data are obtained from ihaeonal Financial Statistics
(International Monetary Fund, 1988), page 165.

Jan Feb  Mar Apr May June July Aug  Sept Oct  Nov Dec
1972 49.9 50.2 50.2 50,4 50.5 50.6 50.9 50.9 51.1 813 51.4 51.6
1973 51.7 52.1 52.6 53.0 53.3 53.6 53.8 54.7 54.9 55.3 55.8 56.1
1974 56.6 57.3 58.0 58.3 59.0 59.5 60.0 60.7 61.5 62.0 62.5 63.0
1975 63.2 63.7 639 64.3 64.5 65.1 65.8 66.0 66.3 66.7 67.1 674
1976 67.5 67.7 67.9 68.2 68.6 68.9 63.3 68.7 69.9 70.2 704 70.6
1977 71.0 71.8 72.2 72.8 73.2 73.7 74.0 74.3 74.6 74.8 75.1 75.4
1978 75.9 76.3 76.9 776 78.3 79.1 79.7 80.1 80.8 81.4 81.8 82.2
1979 82.9 83.9 84.7 85.7 86.8 87.8 88.7 89.6 90.5 91.3 82.2 93.2
1580 94.5 95.8 97.2 98.3 992 1003 1004 1017 1020 1029 1038 1047
1981 1056 1066 1074 108.1 109.0 1093 1112 1120 1132 1134 1137 11441
1982 1145 1148 1147 1162 1163 1127 1184 1186 1188 1192 119.0 1185
1983 1188 1188 1189 1197 1204 1208 1213 1217 1223 1226 1228 1230
1984 1237 1242 1245 1251 1255 1259 1263 1268 1274 1278 1278 1278
1985 1281 1286 129.2 1287 130.2 1306 1308 1311 1315 1318 1323 1327
1986 1331 1327 1321 1318 1322 1329 1329 1331 1338 1339 1340 1342

Fig. 5.5. Monthly consumer price index in the Udit8tates during the 15-year
period 1972 to 1986, normalized to the value of UBD for the year 1980. Data
from International Financial Statistics, SupplementPrice Statistics (International
Monetary Fund, 1986), page 70.

values. The economic growth of a country is itsetbndom variable. In Fig.
5.5, the monthly values of the US consumer priaexare shown for the
period 1972 to 1986. Also for this economic indicaperiods of high levels
of inflation alternate with periods of low levelBor economic indicators,
many stochastic descriptions have been developed.

Let us defineY (¢) as the price of a financial asset at tim&/hich is the
appropriate stochastic variable for us to invesa@aDifferent choices are
possible and each has its merits and its problBesw, we discuss the most
common choices.

(i) One can investigate price changes,

Z(t)=Y(t+ At — Y (2). (5.1)
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The merit of this approach is that nonlinear orchtstic transformations
are not needed. The problem is that this definii@iseriously affected by
changes in scale:

(i) Alternatively, one can analyze deflated, osabunted, price changes,

Zp(t) = [Y (¢ + At} — Y ()] D(1), (5.2)

where D(t) can be a deflation factor, or a discounting facidre merits
of this approach are that (i) nonlinear transfororad are not needed and
(i) prices are given in terms of 'constant’ monetye gains possible with
riskless investments are accounted for by the faD(t). The problem is
that deflators and discounting factors are unptetlie over the long term,
and there is no unique choice D(f)

(iif) One can analyze returns, defined as

Y+ A)~Y() Z(1)

RO=—"5g— 7o

(5.3)

The merit of this approach is that returns provaddirect percentage of
gain or loss in a given time period. The problenthist returns are sensitive
to scale changes for long time horizons.

(iv) One can study the successive differences efrtitural logarithm of
price,

SO =Yt +A)~InY (). (5.4)

The merit of this approach is that the averageemtion of scale changes is
incorporated without requiring deflators or discbng factors. The problems
are (a) the correction of scale change would beecbronly if the growth
rate of the economy were constant, but the growaté generally fluctuates,
and these fluctuations are not incorporated intbniteon (5.4), and (b)
a nonlinear transformation is used, and nonlingasirongly affects the
statistical properties of a stochastic processeNwat the information carried
by S(t) mixes features of the dynamics of the financialeagsgether
with aspects involving fluctuations of macroeconommdicators.

The analysis of high-frequency financial data hasdme widespread ir
research institutes and financial institutions, &nd worthwhile to considei
how the above definitions are interrelated in tlghtfrequency regime. Fron
(5.4) and (5.1),

L Y(t+A) Z ()
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For high-frequency datiAt is small anc|Z({t)] < Y (t). Hence

ao=mh+§8]z§$;Rmf (5.6)
Since Z(t) is a fast variable whereiY (¢) is a slow variable,
R(t) = C1Z(1), (5.7)

where the time dependence C; is negligible. Moreover, if the total
investigated time period is not too lorD(t) = 1, so

Z(t) = Zp(t). (5.8)

To summarize, for high-frequency data and for inigdions limited to
a short time period in a time of low inflation, ddur commonly used
indicators are approximately equal:

S(t) = R(t) = C1Z(t) ~ Zp(¢). (5.9)

However, for investigations over longer time pespd choice must be made.
The most commonly studied functions iS(z} and R(¢)

5.2 Time scales in financial markets

Next we consider the problem of choosing the appatg time scale to use
for analyzing market data. Possible candidatesther'correct' time scale
include:

* the physical time,
 the trading (or market) time, or
» the number of transactions.

An indisputable choice is not available. As in ttase of price scale unit,
all the definitions have merits and all have prafde When examining price
changes that take place when transactions occgriwibrth noting that each
transaction occurring at a random time (see Fi§) fvolves a random
variable, the volume, of the traded financial good.

Physical timeis well defined, but stock exchanges close at nighter
weekends, and during holidays. A similar limitatimnalso present in a
global market such as the foreign exchange maAd#tough this market is
active 24 hours per day, the social organizatiohusiness and the presence
of biological cycles force the market activity tavye temporal constraints in
each financial region of the world. With the choafeaphysical timewe do
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Fig. 5.6. Price change during the day of 3 Jandi&84 of an Exxon stock traded
in the New York Stock Exchange. The price is reedrd/hen a transaction occurs,
and transactions occur randomly in time.

not know now to model the stochastic dynamics adgw and the arrival of
information during hours in which the market issgd.

Trading timeis well defined in stock exchanges - it is the tithat elapses
during open market hours. In the foreign exchangeket, it coincides with
the physical time. Empirical studies have trieddetermine the variance
of log price changes observed from closure to ¢s$a financial markets.
These studies show that the variance determinedomgidering closure
values of successive days is only approximately 2®&&r than the variance
determined by considering closure values acrosskevels [52,60]. This
empirical evidence supports the choice of usinditrg time in the modeling
of price dynamics. Indeed, the trading time is thest common choice
in research studies and in the studies performedhe determination of
volatility in option pricing. However, problems alarise with this definition.
Specifically,

() information, affecting the dynamics of the piof a financial asset can
be released while the market is closed (or itsvagtis negligible in a
given financial area),
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Fig. 5.7. Volatility (to be discussed in Chapterof)the S&P 500 high-frequency
data. A daily cycle with a period of 6.5 tradingun® is clearly observed in the time
evolution.

(i) in high-frequency analyses overnight price mpes are treated as short-
time price changes, and

(i) the market activity is implicitly assumed te uniform during market
hours.

This last assumption is not verified by empiricadlyses. Trading activity
IS not uniform during trading hours, either in teraf volume or in number
of contracts. Rather, a daily cycle is observemharket data: the volatility is
higher at the opening and closing hours, and ugtlad lowest value of the
day occurs during the middle hours. As an exampéeshow in Fig. 5.7 the
intraday 1-minute volatility of the S&P 500 indertdrmined each trading
hour. Clearly seen is a daily cycle with a peridd ® trading hours.

An analogous, almost periodic behavior is obseindtie average activity
of the foreign exchange market (Fig. 5.8). In tbase, the three different
peaks of the intraday cycle observed in the vatatdf price changes reflect
the daily peak activity in three different regioofsthe world - Asia, Europe,
and the Americas [41].
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Fig. 5.8. Average hourly activity in the foreignatvange global market. Intraday
cycles are also observed. Note that the three meak®lated to the maximal activity
in each of the three main geographic areas, AmeAsa&, and Europe. Adapted

from [41].
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Fig. 5.9. Schematic illustration of the occurren€successive transactions in trans-
action units.

One can explore other definitions of temporal agtithat are not affected
by the fact that trading activity is not uniform tme. One definition
concerns the time index of the number of effectnaasactions occurring
in the market for a given financial asset. The ak¢his definition is not
easy because tick-by-tick data are necessary forpea statistical analysis
in terms of such a time index. However, such arlyamais possible today
because tick-by-tick data are available, at leassbme financial markets.

If 'time" is defined in terms of the number of tsactions (Fig. 5.9),
then one source of randomness observed in finantaskets is eliminated,
specifically the time elapsing between transactidtiewever, the second
source of randomness, the volume of the transacstdhremains.
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5.3 Summary

It is not straightforward to select the price fuontand the time reference
frame to be used in the analysis and modeling efstochastic dynamics
of a price. Several choices are possible, eachdbaseexplicit or implicit
assumptions that may or may not be verifiable fomeaset in a given period
of time. Empirical analyses are often performedhwstightly different (i)
definitions of the variables investigated, e.gtumes and log price differences,
(i) periods of time analyzed, and (iii) frequenafyrecorded data. Results are
sensitive to these choices, so particular care lmeisaken when we compare
results obtained by different researchers for deffee financial goods under
different time conditions. Perhaps this is onehaf teasons why the complete
characterization of the statistical properties n€g changes is still lacking,
despite a large number of empirical analyses.
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Stationarity and time correlation

In this chapter we consider the degree of statibparbserved in time
series of price changes in financial markets. WeewBs various definitions
of stationarity, and consider which of them besplegs to financial data.
We take a similar approach concerning time conaatnamely we first
discuss the classes of correlation of short-range lang-range correlated
stochastic processes, and then we present andsslisome empirical studies
of financial data. When the stochastic variablesiadependent, stationarity
implies that the stochastic proce:x(t} is independent identically
distributed. The statistical observables charaziagi a stochastic process
can be written in terms afth-order statistical properties. The case n =1 is
sufficient to define the mean,

o2
El{x(t)} = xf(x,t)dx, (6.1)

—o0

wheref(x,t) gives the probability density of observing the ramdvaluex
at timet. The casen = 2 is used to define the autocorrelation function

E{x(ty)x(t2)} = L Z f__ Z x1x2f (x1, X2; 11, t2)dx 1z, (6.2)

where f(x1, %251, 22}is the joint probability density thx;is observed at time

t1 ancxzis observed at tintz. To fully characterize the statistical properties
of a stochastic process, knowledge of the fun f(xy, x2,...,Xnst1,t2,...,tn)

Is required for evelx;, t; andn. Most studies are limited to consideration of
the 'two-point' functior f(xy, x2; 1, 2}

6.1 Stationary stochastic processes

A stochastic procesx(t) is stationary if its pd P{x(z)} is invariant under
a time shift. This definition is sometimes consig@ito be a very strict

44
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definition of a stationary stochastic process, #&ng termed by physical
scientistsstrict-sense stationaritylhere are, in fact, less restrictive definitions
of stationary stochastic processes [131]. Exampldsde the following:

(&) Awide-sense stationary stochastic procssdefined by the three con
ditions

E{x(t)} =1, (6.3)
E{x(t1)x(t2)} = R(t1, 12), (6.4)
where R(t1,t;) = R(t) is a function ot = t; — 11, and

E{x*(8)} = R(0). (6.5)

Thus the variance of the proceR(0) — 2, is time-independent.

(b) Asymptotically stationary stochastic procesaes observed when the
statistics of the random variabx(¢; + ¢),..., x(t, + ¢} does not depend on
cif cis large.

(c) Nth-order stationary stochastic processese when the joint probability
density

FOet, oo s Xns b, oot = f(X1,. . s Xp3t1 €ty +C) (6.6)

holds not for every value of, but only forn < N

(d) Stochastic processes stationary in an intearal found when (6.6) holds
for everyt; andt; + ¢ in the interval considered.

At the end of this chapter, after a discussion alibe time correlation
properties of price changes, we discuss which defm of stationarity is
more appropriate for the price changes in financiaftkets.

6.2 Correlation
The autocorrelation functioR(ty, ¢2) is sensitive to the average value of the
stochastic process. For stochastic processes watfage value different from
zero, it is useful to consider the autocovariance,

Clt1,t2) = R(ty, t2) — ptr)ple2). (6.7)
For stationary processes, the autocovariance is
C(z) = R(z) — pi*. (6.8)

The typical shape C(r)for positively correlated stochastic variables is a
decreasing function, starting froC(0) = ¢ and ending aC(t) ~ 0 for
large values ot (see Fig. 6.1).

For the sake of simplicity and without loss of gealgy, we consider
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Fig. 6.1. Typical autocovariance function of a kmstic process with finite memory.

stochastic processes with zero mean and unit \@jx =0 ance? = R(0) =
1. With this choice, the autocorrelation functiomdahe autocovariance
function are the same.

Now we focus on the kind of time memory that candiserved in
stochastic processes. An important question coscim typical scale (time
memory) of the autocorrelation function. For staioy processes, we can
answer this important question by considering thedral of R(z). The
area belowR(zr) can take on three possible values (Fig. 6.2),

- finite
fo R{1)dt = ¢ infinite . (6.9)

indeterminate

When [;° R{z)dz is finite, there exists a typical time memcz,. ' called the
correlation time of the process.

Examples are the following: Case
(a); R(7) = exp[—7/z]:

oo —T
f exp [—-] de =1, (6.10)
0 Te
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Fig. 6.2. Autocorrelation functions with and withautypical time scale.

Case (b) R(t) = exp[—1"/70]:
1/v

o0 —¥ T i
dr=2Cr(2). .
/0 exp[m] T " I"(v) (6.11)
Case (c) R(z) ~ 77!, where, if0 < 5 < 1,
00
f 1=z = co. (6.12)
5]

The finiteness of the area under the autocorreidtimction gives infor-
mation about the typical time scale of the memdrthe process. In fact, as
a zero-order approximation, it is possible to matel system by saying that
full correlation is present up 1t* and no correlation is present it > 1",
where 7* is the area under the autocorrelation function. Elav, not all
the integrals of monotonic decreasing functionsfimee!

In case (c), it is impossible to select a time es¢hht can separate a regime
of temporal correlations from a regime of pairwisdependence. Random
variables characterized by an autocorrelation foncsuch as case (c) are
said to be long-range correlated.

The above heuristic discussion can be formalizéq {@r stationary pro-
cesses by considering the general behavior of énence of the surs, of
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n stochastic variablex;. From the definition (3.1), it follows that

Ey
E{S2} =nE{x{} + 2 (n —K)E{xiXi+k}, (6.13)

k=1
wherek assumes values from 1 toand E{x;x;+x} is the autocorrelation
between the variable:x; and x;x. By restricting our discussion to
positively correlated random variables, we hiE{x;x;+x} = 0. For large
values ofn, E{S?} satisfies the relation

(53} =n (B 423 Bl ) 6.4

k=1

Depending on the behavior of the second term of dguation, we have
two cases:
(i) The sum of correlation terms is finite for l@rgalues oh, namely

/]
n%}_i}go ;;E {xiXi4+k } = const. (6.15)
In this case, it is said that the random varialades weakly dependent or
short-range correlatedndeed, for sufficiently large values of n, the aeior
E{S?} = (const.)s, valid for independent random variables, still holds

(i) The sum of correlation terms diverges,

n
;}.l_»% ;; E{xiXi4k} = 0. (6.16)
When this condition holds, the random variables sa& to be strongly
dependent olong-range correlatedSimilar random variables show a depen-
dence om of the variance 08, that is stronger than linear. Long-range
correlated random variables are characterized bylabk of a typical tem-
poral scale. This behavior is observed in stochgstbcesses characterized
by a power-law autocorrelation function as in E1@).

We have noted that the suS,of n random variables can also
be seen as a stochastic process in time wS$;:mepresents a random
process detected at tint = nAt. In this case, the continuous limit of
the sum of correlation terms wiin — o is equal to f° R(z)dz. Hence,
for time-dependent stochastic processes, the iattedrthe autocotrelation
function can be used to distinguish between sharge correlated and
long-range correlated random variables.
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6.3 Short-range correlated random processes

In the previous section we noted that short-rangeetated random pro-
cesses are characterized by a typical time men®@ng simple example is
given by a stochastic process having an exponedéeahying autocorrela-
tion function (see Eg. (6.10)). This form descrildes example, the statistical
memory of the velocity »(t) of a Brownian particle, as the
autocorrelation function cv(t) is

R(z) = g2 ¢ /%, (6.17)

In addition to the characterization of the two-pastatistical properties
in terms of autocorrelation function, the sameistigal properties might be
investigated in the frequency domain. To this ewnd, consider the power
spectrum of the random variable. The power spectoina wide-sense

stationary random process is the Fourier transfofmts autocorrelation
function

sih= [ +°° R(x) e=2%ds, (6.18)

For the velocity autocorrelation function of (6.1#e power spectrum is

2621,
5S¢ = 1+ Q2rft)?

When f <« 1/(2nz.), the power spectrum is essentially frequency-ieddpnt.
Then, for a time window much longer th 7., the stochastic process is ap-
proximately white noise. The integral of white mois called a Wiener
process, a nonstationary process characterizedpoyvar spectrum with the
functional form

t
SU)~ 7 (6.20)

(6.19)

In summary, short-range correlated stochastic m®x® can be character-
ized with respect to their second-order statistpralperties by investigating
the autocorrelation function and/or the power speot Fast-decaying auto-
correlation functions and power spectra resemblimgte noise (or1/f>
power spectra for the integrated variable) aregdnprints’ of short-range
correlated stochastic processes.

6.4 Long-range correlated random processes

Stochastic processes characterized by a powerddg@carrelation function
(as in Eq. (6.12)) are long-range correlated. Pdewmsrautocorrelation func-
tions are observed in many systems - physicalpgiohl, and economic. Let
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us consider a stochastic process with a power gpaatf the form

_ const,

S(f)y = TR (6.21)
with 0 < n < 2. In the last section we saw that the (4 = Ocorresponds
to white noise, whiley = 2 corresponds to the Wiener process. Wy = 1,

a stochastic process characterized by a spectralitgeas in Eq. (6.21) is
callect/fnoise, while the general ca0 < n < 2 is sometimes callel/f”
noise. 1/f noise has been observed in a wide variety of phemam
ranging from the current fluctuations in diodes atmdnsistors to the
fluctuations in traffic flow on a highway [46,79,3(36,156].

These stochastic processes are nonstationary.d@wwhat one observes
the noise at time:t; and t; such that the observation tinTes iS
short compared with the time elapsed since thegaobeganTaes < t1),
one can evaluate the autocorrelation function. ustonsider the concrete
example of a noise current source with a white posmgectral density
driving the input of a one-dimensional resistor@epor transmission line
of infinite length. In this system, for0<g <1 and z>0, the
autocorrelation function of such a nonstationargckastic process is
described by a form similar to Eq. (6.12) usedsf@ationary processes [79],

R(t) ~ jzJ7 L. (6.22)
Forl<gn<2,
R(ts, 1) ~ 8§ = Clz" L. (6.23)

Finally, for the borderline casy =1 and0 < 7 <« 1,

R(t2,7) ~ In(4t3) — In |zi. (6.24).

The typical shapes of these autocorrelation funstiare shown in Fig. 6.3.
The autocorrelation function fcl/f noise lacks a typical time scale, so
1/f noise is a long-range correlated stochastic psces

It is difficult in practice to distinguis 1/f noise from a process with many
characteristic time scales. How many charactersstades does one require in
order to mimic al/f noise over a given frequency interval? Strictly
speaking, one requires an infinite number. HoweNamly a finite accuracy
is required, then a finite nhumber of characteristales is sufficient. It has
been estimated [79] that 1/f power spectral density extending over 10
orders of magnitude can be mimicked at a 5 per@amturacy by the
response of a linear system in which at least &difit time scales are
present, while for a 1 percent accuracy the minimahber of time scales
needed is of the order of 40.
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Fig. 6.3. Shapes of the autocorrelation functicrsal1/f* noise, for the cases
n =0, 1, and 2. After Keshner [79].

6.5 Short-range compared with long-range correlateahoise
If a time scalet, characterizes the memory of a stochastic prochkss t

for time intervals longer thaz. the conditional probability densities verify
the equation

f(xls X250 Xn—1511502,.. ., En—1 |xn ’ tﬂ-) = f(xn._l sin—1 |xn > tn)- (625)

Stochastic processes with the above form for themnditional probability
density are called Markov processes. For the sisapltarkov process,

F(x1,x2, %35 t1, 82, 83) = f(x1, £1)f (x15E1)%2; 02)f (%25 £21%35 £3). (6.26)

Thus only the first- and second-order conditionedlability densities
f(x1,t1) and f(xn; ta|xn+1; tn+1) are needed to fully characterize the stochastic
process. Stochastic processes lacking a typicag seale, such al/f
noise, are not Markov processes.

The knowledge of the first- and second-order coodél probability
densities fully characterizes a Markov processesiagy higher-order joint
probability density can be determined from themr Bonon-Markovian
process, this knowledge is not sufficient to futlyaracterize the stochastic
process.

Non-Markovian stochastic processes with the samsédrder and second-
order conditional probability densities are, in geal, different because the
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joint probability densities of all orders are rema to fully characterize
long-range correlated stochastic processes. Thiffereht 1/f noise
signals cannot be considered to be Hame stochastic process, unless
information about higher-order joint probabilityrdgties is also known.
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Time correlation in financial time series

In this chapter, we apply the concepts develope@hapter 6 to discuss
empirical observations of the temporal correlatidesected in time series
of price of financial goods. We will see that theaee only short-range
correlations in price changes, but there are large correlations in the

volatility. Further, we shall discuss the degreestationarity of financial time
series.

7.1 Autocorrelation function and spectral density

Pairwise independence of the changes of the |dgardf price of a financial
asset is typically investigated by analyzing theéoaarrelation function of
time variations of the logarithm of price (Fig. Y dr the spectral density of
the time series of the logarithm of price itselig(F7.2). These two statistical
properties are equivalent for stationary stochastacesses. One finds for
individual stocks that the spectral density of kbgarithm of stock price is
well described by the functional form (cf. Fig. ¥.2

1
S(f) ~ 2k (7.1)

which is the prediction for the spectral densityaafandom walk.

The autocorrelation function of changes of the tagen of price is a fast-
decaying function usually characterized by a catreh time much shorter
than a trading day. Accurate detection of the datien time is possible
by analyzing high-frequency (intraday) data. Foaraple, one detects a
correlation time of the order of a few trading nteaiby analyzing the high-
frequency data of the time changes of the S&P &@@éx (Fig. 7.3).

The investigation of high-frequency data allows tmextend the analysis
of spectral density over a large number of freqyeshecades, even if the
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Fig. 7.1. Autocorrelation function of the logarithoh price changes for Coca Cola
daily data for the period 7/89 to 10/95. The timemory is less than one trading
day.
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Fig. 7.2. Spectral density of the logarithm of praf Coca Cola, using daily data

for the period 7/89 to 10/95. The spectral densitywell approximated by a power
law,S(f) ~ 1/f?
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Fig. 7.3. Semi-log plot of the autocorrelation ftino for the S&P 500, sampled
at a 1 min time scale. The straight line corresgottdexponential decay with a
characteristic decay time «# =4 min. It is apparent that after about 20 min the
correlations are at the level of noise. Courtesk.oGopikrishnan.

total time interval over which data are analyzedos very long. Thus high-
frequency data can be useful to overcome problessocaated with
nonstationarity of fluctuations of economic indimes.

In Fig. 7.4 we show the spectral density of the S index, using data
recorded during the 4-year period from January 1®82ecember 1987. By
using high-frequency data, we can analyze the sgedénsity over a fre-
quency interval of about five orders of magnitufiee data support (7.1), in
agreement with the hypothesis that the stochaghamiics of the logarithm
of stock price and of a stock index may be descrime a random walk.

Spectral densities and autocorrelation functiomssaatistical tools which
are not extremely sensitive to long-range correteti Another test, often
more efficient in detecting the presence of longge correlations, is based
on the investigation of the time evolution of tharslard deviatioro(t) of
price changes. In general

o(t) ~ ¢, (7.2)

where ¥ = 1/2 for independent price changes. Empirical investiget of
the time evolution of the standard deviation otprchanges have recently
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Fig. 7.4. Spectral density of high-frequency datanf the S&P 500 index. Th
behavior of Eq. (7.1) is observed for almost fieeades, with only a small deviation
detected for the highest frequency investigatecpaed from [112].

been carried out [41,112]. The empirical behavietedted in market data
Is described by Eq. (7.2) with valuesv = 0.5 in the time window from
approximately 30 trading minutes to 100 trading slaf/he value vis
specific to the market investigated. Other stuchesalyze daily data or
stock indices of New York (the New York Compositeléx), Frankfurt
(the DAX index), and Milan (the MIB index) excharggavith the results
for v being 0.52, 0.53, and 0.57 respectively. Vakies obtained show the
presence of a weak long-range correlation (the sogdivalues of v are
always slightly larger than 0.5). The strengthltd tong-range correlation
Is market-dependent and seems to be larger foeksgent markets.

Using high-frequency data for the S&P 500 indexe dimds thale(?)
has two regimes. For short tim@s< 30 trading minutes) a superdiffu-
sive (v > 0.5) behavior is observed, while in the long time regithe
behavior
is close to diffusivev = 0.5). In the short time regimev =~ 0.8 this
superdiffusive behavior is probably due to the fHwt the time series
have a memory of only a few minutes (Fig. 7.3)haitgh it could also
depend on the degree to which the process is nasstm. In the long time
regime covering the time interval from 30 to*1fading minutes, one finds
v = 0.53 so only a weak long-range correlation is present.
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7.2 Higher-order correlations: The volatility

The autocorrelation function of price changes hgsoeential decay with
small characteristic times - a few trading minutes the S&P500 index
(Fig. 7.3). However, pairwise independence doesdirectly imply that the
price changes are independent random variableer&estudies performed
by economists and physicists have shown that th&cartrelation function of
nonlinear functions of price changes has a mucgdotime memory. Indeed
nonlinear functions such as the absolute valuenersguare are long-range
correlated for stock market indices and for foreggichange currency rates.

The presence of long-range correlation in the sguatue of price changes
suggests that there might be some other fundamsetdahastic process in
addition to the price change itself. This proceseften referred to as volatil-
ity. The volatility is often estimated by calculagi the standard deviation of
the price changes in an appropriate time windowe ©an also use other
ways of estimating it, for example by averaging #ibsolute values of the
price changes, by maximum likelihood methods orBayesian methods
(see [129] for a review). There are several moivest for considering the
statistical properties of volatility itself. (i) \fatility can be directly related
to the amount of information arriving in the markata given time. For
example, if there is large amount of information\ang in the market, then
the traders would act accordingly - resulting itaege number of trades,
and, in general, in large volatility. (ii) Volatii can be directly used in the
modeling of the stochastic process governing theeprhanges, as for exam-
ple in ARCH/GARCH models, to be discussed in Chapte (iii)) From a
practical point of view, volatility is a key paratee in the measure of the
risk of a financial investment.

The autocorrelation function of the volatility, esated either as a local
average of the absolute value of price changesyothb local standard
deviation, is well described by a power-law deca¥,86,41,95,137]. Fig-
ure 7.5 shows the autocorrelation function for asolute values of 1 min
S&P 500 price changes using the same data as @lott€ig. 7.3. In this
case, a power-law decay with an expory ~ 0.3 [96] is a good fit to the
autocorrelation function.

Long-range correlations in the absolute value afgpchanges can also be
investigated by considering the power spectrumuféiy.6 shows the power
spectrum of absolute value of price changes oSt 500 index - measured
in a one-hour interval. The power spectrum resaits consistent with the
autocorrelation function results, namel1/f7behavior wittgy = 1—y =~ 0.7
[95,96,114].
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Fig. 7.5. Log-log plot of the volatility autocoregion function using the same data
as in Fig. 7.3. The solid line is a power-law ragren fit over the entire range, which
gives an estimate of the power-law expory = 0.3 that quantifies the long-range
correlations in the autocorrelation function. Cesyt of P. Gopikrishnan.

Studies on the distribution of volatility reportay-normal distribution for
the volatility near the center of the distributif81,96,133], while another
work suggests that the asymptotic behavior dispteyger-law behavior [96].
Before concluding, we note that the existence dawdy correlation does
not contradict the observation of pairwise indeperod of price changes
because the autocorrelation of price changes dependhe second-order
conditional probability density, while the volatyliautocorrelation is affected
by higher-order conditional probability densities.

7.3 Stationarity of price changes

From the empirical investigations discussed in joney sections, we conclude
that the stochastic dynamics of price of a finahg@od can be approxi-
mately described by a random walk characterized Bhort-range pairwise
correlation. Can we describe price changes in terfresstationary process?
Empirical analyses of financial data show that @rchanges cannot be
described by a strict-sense stationary stochasticgss, since the standard
deviation of price changes, namely the volatility time-dependent in real
markets. Hence, the form of stationarity that isgent in financial markets
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Fig. 7.6. Power spectrum of the volatility of hiffequency S&P 500 time series for
the 13-year period Jan 1984 to Dec 1996. The ditdige shown is not a fit to
the data, but is the prediction for the power-laypanent —0.7 that is consistent
with the fit to the data of Fig. 7.5. The sharp lpedserved for a frequency of
approximately one inverse day is related to intyafactuations in the volatility.
Courtesy of P. Gopikrishnan.

IS at best asymptotic stationarity. By analyzinguéficiently long time series,
the asymptotic pdf of prices changes is obtaindte asymptotic pdf gives
the large time statistical properties of the staticgorocess.

7.4 Summary

In this chapter, we have discussed several fagtsThe statement 'price
changes are pairwise uncorrelated' describes weiiethe statistical behavior
observed in empirical data. (ii) A short-time megnof only a few minutes is
observed in the changes in financial indices. Aigveak long-range memory
appears to be present in price changes as obsartkd time evolution of

o(t). (iv) The volatility is long-range correlated withspectral density of the
1/f type.
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Stochastic models of price dynamics

The statistical properties of the time evolutiontloé price play a key role
in the modeling of financial markets. For examplee knowledge of the
stochastic nature of the price of a financial assetrucial for a rational
pricing of a derivative product issued on it. Thel fcharacterization of
a stochastic process requires the knowledge ofctmelitional probability
densities of all orders. This is an incredible taskt cannot be achieved in
practice. The usual empirical approach used by iplsts is performed in
two steps. The first concerns the investigatiotirag correlation and power
spectrum, while the second concerns the studyeo&fiymptotic pdf.

The most common stochastic model of stock priceadyins assumes that
In Y (¢} is a diffusive process, and tIn Y (¢) increments are assumed to be
Gaussian distributed. This model, known as geomdirownian motion,
provides a first approximation of the behavior alisd in empirical data.
However, systematic deviations from the model mtoins are observed, the
empirical distributions being more leptokurtic th&aussian distributions
(Fig. 8.1). A highly leptokurtic distribution is aehacterized by a narrower
and larger maximum, and by fatter tails than in @&ussian case. The
degree of leptokurtosis is much larger for highgfrency data (Fig. 8.2).

Based on theoretical assumptions and empiricalyaas) several alterna-
tive models to geometric Brownian motion have bpeyposed. The models
differ among themselves not only with respect ® shape and leptokurtosis
of the pdf, but also with respect to key propersash as

(i) the finiteness or infiniteness of the second amgher moments of the
distribution;
(i) the nature of stationarity present on a slione scale or asymptotically;
(iii) the continuous or discontinuous characteY (t) - or In Y (¢}; and
(iv) the scaling behavior of the stochastic process

60
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Fig. 8.1. Empirical pdf for the logarithm of datyice differences of Chevron stock
traded in the New York Stock Exchange in the pefi®89 to 1995. The smooth
line is the Gaussian pdf with the same varianceutatled from the data.

To elucidate these concepts, we first discuss tapaubset of these models,
() the Levy stable non-Gaussian model [102], thg Student's-distribution
[19], (iii)) the mixture of Gaussian distribution87], and (iv) the truncated
Levy flight [110].

Other prominent models include the jump-diffusiondal [121] and the
hyperbolic-distributed stochastic process [47].c8u&stic models having a
time-dependent variance over short time intervedsfeequently modeled in
terms of autoregressive conditional heteroskedas(iBRCH) processes or,
in generalized form, GARCH processes, as will Iszadssed in Chapter 10.

8.1 Levy stable non-Gaussian model

The first model to take into account explicitly tleptokurtosis empirically
observed in the probability density functi P(S) was proposed in 1963
when Mandelbrot modeleln Y {t} for cotton prices as a stochastic process
with Levy stable non-Gaussian increments. His figdivas supported by the
investigations of Fama in 1965 [52], which werefpened by analyzing stock
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Fig. 8.2. Empirical probability density functionrfbigh-frequency price differences

of the Xerox stock traded in the New York Stock Excge during the two-year

period 1994 and 1995. This semi-logarithmic plaivgs the leptokurtic nature ob-

served in empirical investigations. For comparidbe, Gaussian with the measured
standard deviation is also shown. Courtesy of Rikdishnan.

prices in the New York Stock Exchange. The mostrigdting properties of
Levy stable non-Gaussian processes are

* their stability (i.e., their self-similarity), an
» their relation with a limit theorem - they ardratctors in probability
space.

Mandelbrot's Levy stable hypothesis implies tin Y (¢) undergoes a
discontinuous time evolution aiS(z) =In Y (t +1)—1In Y (¢) is characterized
by a non-Gaussian scaling and by a distributiorhvirifinite second and
higher moments. Since 1963, many papers have beeartatl to considering
the important problem of the finiteness or infiméss of the variance S(t)

8.2 Student'st-distribution

Gaussian processes possess a finite variance. dtalsle non-Gaussian pro-
cesses possess infinite variance. Is there sontetimetween' these two
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limits? Indeed, the Studentslistribution is the distribution
Cy
(1 + z2/n)+D/2

of a stochastic process
_ﬂ_, (8.2)
V4ot

obtained from independent stochastic varia yi, y2,...,¥s andx, each with
normal density, zero mean, and unit variance. Here

_Tl(n+1)/2]
= —\/?fﬁl" TR (8.3)
Wher n = 1, P(z)is the Lorentzian distribution. When — oo, P(z) isthe
Gaussian distribution. In gener P(z) has finite moments fik < n. Hence
a stochastic process characterized by a Studedisribution may have
both finite and infinite moments. By varying thentml parameten (which
controls the finiteness of moments of ordgrone can approximate with
good accuracy the log price change distributioredatned from market
data at a given time horizon [19].

The Student's-distribution is, forn s£ 1 and finite, not stable. This implies
that its shape is changing at different time hongand that distributions
at different time horizons do not obey scaling tielas.

P(z) = (8.1)

1]

z

Cr

8.3 Mixture of Gaussian distributions

Another model that is capable of describing thedkprtic behavior ob-
served in empirical data, and that is compatibléhwhe existence of a
finite second moment of price changes, was propdse@lark [32]. His
model utilizes the concept of a subordinated ststih@rocess [57]. When a
stochastic process occurs at tirts, 2, t3,..., which are themselves a realiza-
tion of a stochastic process, starting from theloan timest; one can obtain
a function (t), called the directing process. Starting from thecpss
InY(z) occurring at random timt,2,13,...,a new random process
In Y [Q(t)] may therefore be formed. The procen Y {(t)] is said to be
subordinated tclnY(f) and the distribution of the differences of the
logarithm of price incrementS[€(#)] is said to be subordinated to the
distribution of S(t).

From analysis of market activity, it is known ththe number of trans-
actions occurring in the market in a given timeipérfluctuates. Clark
assumed that the trading volume is a plausible oreasf the evolution of
price dynamics. He used as a directing proQ(t); the cumulative trading
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volume up to timd. In his model, the distribution of log price incremg
occurring from a given level of trading volur P[S[Q()]] is subordinate to
the one of individual trad P{S(t})] and directed by the distribution of the
trading volume P(£2). By assumin(P[S(¢)] to be Gaussian arP{Q) to have
all moments finite, Clark was able to prove ttP[S[Q(r)]] is a leptokurtic
distribution with all the moments finite.

Clark interpreted the leptokurtic behavior obserwedcempirical analyses
as the result of the fact tha.t the trading activét not uniformly distributed
during the trading interval. In his model the setomoment of theP {S{Q(¢)1]
distribution is always finite provide P(€2) has a finite second moment. The
specific form of the distribution depends on thstdbution of the directing
process X{¢). In general, thiP[S{€Q(z)]] distributions do not possess scaling
properties.

8.4 Truncated Levy flight

Levy stable non-Gaussian distributions obey scatalgtions but have infi-
nite variance. Studenttsdistributions and mixtures of Gaussian distribngo
do not, in general, show scaling features and nraynay not have finite
variance. A stochastic process with finite variaand characterized by scaling
relations in a large but finite interval is the noated Levy flight (TLF)
process [110]. The TLF distribution is defined by

0 x>/

P@hﬁ{dUﬂ —<x<{, (84)
0 x<—~f

where PL(x) is the symmetric Levy distribution of indeand scale factor

7, andc is a normalizing constant. A TLF is not a stableckiastic process,

since we showed above that only Levy distributiares stable.

Since it has a finite variance, the TLF will congerto a Gaussian process
How quickly will it converge? To answer this questj we consider the
quantityS, = 3 i1 Xi, wherex; is a truncated Levy process, a{x;x;} =
constdi;. The distributionP(S,) well approximate:P,(x) in the limit n — 1,
while P(S») = Ps(S,) in the limit n — co. Hence there exists a crossover
value ofn, ny, such that (Fig. 8.3)

P(Sn) A~ {PL(Sn) When n << nx

P(S,) whenn>>n,’ (8.5)

where Ps(S») is a Gaussian distribution. The crossover vin,és given by

ny =~ Af°, (8.6)
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Lévy Flight Regime Gaussian Regime
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Fig. 8.3. Schematic illustration of our results tbe TLF. Shown is the crossover
found between Levy flight behavior for smaland Gaussian behavior for large
n. The crossover valuny increases rapidly with the cutoff leng¢. Adapted
from [110].

Fig. 8.4. Probability of return to the origin §, as a function oh for « = 1.5 and
#="100. The simulations (circles), obtained w5 x 10* realizations, are compared
with the Levy regime (solid line) and the asymptdBaussian regime calculated for
# =100 (dotted line). Adapted from [114].

where, fory =1,
200/ (ot~~2)

A = no
2 (1/a)[T(1 + o) sin(re/2) /(2 — )] 1/2

8.7)

It is possible to numerically investigate the comence process, as
increases, of the TLF to its asymptotic Gaussiangé&nerate a Levy stable
stochastic process of index a and scale fay = 1, we use Mantegna's
algorithm [106]; other algorithms exist [140]. Ingr- 8.4, we show the
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Fig. 8.5. Semi-logarithmic scaled plot of the pritity distributions of the TLF
process characterized o= 1.5 and ¢ =100 forn=1, 10, 100, and 1,000. For low
values ofn (n= 1 (circles) and 10 (squares)) the central pathefdlstrlbut|ons IS
well described by the Levy stable symmetrical peodissociated wit « = 1.5 and

y = 1 (solid line). For large values of (n = 1,000 (inverted triangles)), the TLF
process has already reached the Gaussian regimbeudstribution is essentially
Gaussian (dotted line). Adapted from [114].

probability of return to the origin obtained by sihating the S
process whea = 1.5 and £ = 100. We also show the asymptotic behavior:
for small and larg&. We see clearly the crossover between the two regim:
For the selected control parameters, the crossin,ris observed for
ny = 260,

For the same control parameters, we also investiglhaé distribution
P(S,) at different values o, by simulating a TLF fon = 1, 10, 100, and
1,000 (Fig. 8.5). In order to be able to compare 8hapes of the
distribution at different values af, we plot the distributions using the
scaled variableP(8) = P(S)/n~"%, and § = $/n"/*. From Fig. 8.5, it is
clear that the TLF distribution is changing shapeadunction oh. For low
values ofn (n =1 and 10), we find good agreement with a Levy peofi
while for large values af (n = 1,000), the distribution is well approximatec
by the asymptotic Gaussian profile. By comparing thsults of Figs. 8.4
and 8.5, we note that the probability of returnthie origin indicates with
high accuracy the
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degree of convergence of the process to one dfwheasymptotic regimes.
For example, when = 1 and 10, the probability of return is clearly et
Levy regime (Fig. 8.4) and the central part of g distribution is well
described by a Levy distribution (Fig. 8.5). Corsady, forn = 1,000 the
probability of return to the origin is in the Gaissregime (Fig. 8.4), and the
distribution almost coincides with the Gaussianrdisition characterized
by the appropriate standard deviation (Fig. 8.5).

To summarize, by investigating the probability efurn to the origin of
an almost stable non-normal stochastic processfwite variance, one finds
a clear crossover between Levy and Gaussian regilesce a Levy-like
probability distribution can be empirically obsedvéor a long (but finite)
interval of time, even in the presence of stocltagtbcesses characterized
by afinite variance.

In Chapter 4 we concluded that, under the efficimairket hypothesis,
the price change distribution for long horizonsmsll approximated by an
infinitely divisible pdf. The TLF discussed thug fig not infinitely divisible
because the truncation of the distribution is abrblowever, an example of
infinitely divisible TLFs was introduced by Kopong®6], who considered
a TLF with a smooth (exponential) cutoff, and foutick characteristic

Lo

_ @1/
@(q) = exp { == Sl cos[aarctan (£]q[)] ¢ , (8.8)
wherec; is a scaling factor and
e
©= cos(ma/2) (8.9)

A process with ¢{g) given by Eq. (8.8) is infinitely divisible since
processes whose characteristic functions have gonextial form are
infinitely divisible. The detailed form of the cutodoes not change the
overall behavior of the convergence of the TLFhe &ssociated asymptotic
Gaussian process, since according to the Berryeassbeorem, the
convergence is essentially controlled by the tim@iment ot|xj[144].



9
Scaling and its breakdown

No model exists for the stochastic process desugibhe time evolution of
the logarithm of price that is accepted by all msbers. In this chapter
we present one view. To this end, we discuss thelteof recent empirical
studies designed to answer the following questions:

(i) Is the second moment of the price-change diation finite?
(ii) Is self-similarity present?
(iii) If self-similarity is present, what is its hae?
(iv) Over what time interval is self-similarity pgent?

9.1 Empirical analysis of the S&P 500 index

We first consider a study of the statistical praiesrof the time evolution of
the S&P 500 over the 6-year period January 198@doember 1989 [111].
We label the time series of the index Y(f). The database has
remarkably high resolution in time, with values Y (t) every minute,
and sometimes every 15 seconds.

In this analysis, the time advances only duringliimg hours. First, we
calculate the pdP(Z) of the index changes

Zpaut) =Y+ A)—-Y (1) (9.1)
occurring in a 1-minute interval (¢At =1 minute). The pdf (see Fig. 9.1) is

» almost symmetric,
 highly leptokurtic, and
» characterized by a non-Gaussian profile for samaléx changes.

We extract several subsets of non-overlapping phemge:Za(t) by varying
At from 1 to 1,000 minutes. The number of recordsdnleset decreases

68



9.1 Empirical analysis of the S&P 500 index 69

20 =" T % T T T T ¥ Z7

Log,,P(Z)

Fig. 9.1. Comparison of tt At = 1 probability density function for high-frequency
S&P 500 price changes with the Gaussian distribufitotted line) and with a Levy
stable distribution (solid line) of index = 1.40 obtained from the scaling analysis
and scale factcy = 0.00375 obtained from P(0) measured whA¢ = 1 minute.
Adapted from [111].

from 493,545 At = 1 minute) to 562 At = 1,000 minutes). The pdfs spread
asAtincreases, as in any random process (Fig. 9.2).

When characterizing the functional form of the ptiffe usual approach
Is to investigate the wings. We adopt a differeppraach: we study the
probability of returr {[Pa(Z = 0}] as a function o At. When we plot our
results on a log-log scale, we observe an intergspiower-law 'scaling'
behavior (Fig. 9.3). This result is compatible wah_evy stable pdf. The
index a of the Levy distribution is the negativereénse of the slope, by
Eq. (4.27). We thereby fing = 1.40 £ 0.05. For At = 1, Pa,{0) = 15.7, and
Eq. (4.27) results in the valiy = 0.00375 for the scale factor.

We next compare the empirical results with a Letgb&e pdf of index
o = 1.40 and scale factoy = 0.00375. We find that there is a deviation
from the Levy distribution in the tails (Fig. 9.1Bpecifically, when
IZ| = 60, the data in the tails are distinctly lower thae trevy pdf. This
analysis provides an answer to question (i) by shgwhat the variance of
price-change distribution fnite.

We now address question (ii). We noted already tiatmaxima of pdfs
scale for time interval At < 1,000 minutes. What about other regions of
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Fig. 9.2. High-frequency data for the S&P 500 ind@sobability density functions
of price changes measured at different time hoszAt=1, 3,10, 32,100,

316,1,000 minutes. The typical spreading of a ramdalk is observed. Adapted
from [111].
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Fig. 9.3. Probability of return to the origin meesd as a function of the time
interval At. The power-law dependence is shown by plotting theasared
values in a log-log plot. The slope —07712+0.026rdtaree orders of magnitude is
consistent with a non-Gaussian scaling. Adapteah il 1].
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Log 4, P(2)

Fig. 9.4. The same probability density functionsrakig. 9.2, but now plotted in
scaled units. A good quality data collapse is olkrvhen the scaling is performed
using the value = 1.40. Adapted from [111].

the distribution? In Chapter 4 we observed thablstalistributions are
self-similar. The scaling variables for a Levy déaprocess of inde& are

- Z

Z = Bl 9.2)
and

o P{Z

B(Z)= (‘51%3)75' 9.3)

When we ustw = 1.40 for the index of the Levy distribution, the empaic
results collapse well onto ttAt = 1 min distribution (Fig. 9.4).

At first glance, some of our findings seem contcemly. Specifically, we
observe what at first sight appear to be inconsistesults: non-Gaussian
scaling in the central part of the distributionl.evy non-Gaussian profile
for {Z] < 66, but nevertheless a finite variance. A finite vadanmplies
that the scaling is approximate and valid onlyddinite time interval. For
long time intervals, scaling must break down. Te #as breakdown, we
show in Fig. 9.9°(0), the probability of return to the origin measdrfor
the S&P 500 high-frequency data, together v P(0), the probability of

return to the origin that would be obtained if fh®cess were Gaussian.
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Fig. 9.5. Probability of return to the origin fo&B 500 high-frequency data (circles),
together with the probability of return to the onighat would be obtained if the
process were GaussiePg(0) (squares), estimated from the measurement of the

variance for each value (At. The distance between the two points is a measure

of the non-Gaussian nature of the pdf. Adapted ffbh2].

Empirical values of the variance measured at eacbstigated value cAt
are used to calculaPg{0). For a given value cAt, the difference between
the two probabilities of return to the origin sys@gically decreases for
30 < At < 1,000 minutes. By extrapolating the scaling behavior (@)Rand
Pg(0), we estimate that the breakdown of the non-Gaussialting occurs
at approximately 10trading minutes. Hence we conclude that non-Gaussi
scaling is observed for a time interval that igg&rbut finite, ranging from
1 to approximately 10trading minutes.

9.2 Comparison with the TLF distribution

Most of the empirical findings for the high-frequsnchanges of the S&P 500
are consistent with the simple stochastic modetudised in the previous
section, the TLF. The TLF has some limitationsha tmodeling of empirical
findings. The most important concerns the assumptibi.i.d. increments,
since in a TLF model the control paramea,yancZare time-
independent. This assumption implies that the agptnp and the short
time pdfs of
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Fig. 9.6. Time dependence of the indaxdetermined from the probability of
return to the origin for the distribution of highe§uency price changes, analyzed on
a monthly time scale. The determination is repetdedach of the 72 months in the
period 1/84 to 12/89. Adapted from [114].

TLF increments are the same for the same time baorAz. We test this
assumption by studying the time evolution of « @nd y parameters; the
parametely gives one possible measure of the volatility of phecess. We
consider 72 subsets of the original database, epéat for each of them the
same analysis carried out on the entire databdserdsults are summarized
in Figs. 9.6 and 9.7, where we show the time evofubf the « and y
parametert We conclude thaa is approximately constant (Fig. 9.6)
[114], while ¥ shows strong fluctuations, including 'bursts' otiaty
(Fig. 9.7). Hence empirical data show that pricearddes cannot be
modeled in terms of a stochastic process with. iincdrements.

In summary, the TLF model well describes the asytiptprice-change
distributions measured at different time horizond ¢heir scaling properties,

but fails to describe in a proper way the time-de®nt volatility observed
in market data.

4 The ¢ parameter is not obtainable because a larger numbegcords is needed to
estimate this parameter reliably.
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Fig. 9.7. Time dependence of the scale fa y atetermined by using the value of
a given in Fig. 9.6 and the probability of returnttee origin of the distribution
of high-frequency price changes measurecAt = 1 minute. The determination

Is repeated for each of the 72 months in the peti@d to 12/89. Adapted from
[114].

9.3 Statistical properties of rare events

One key point in the description of statistical peaies of stock prices con-
cerns 'rare events', namely the rare occurrencésr@é positive or negative
returns. Quantitative analysis of the statisticedperties of such events is
difficult, and extremely large databases (or exgbntong time periods) are
required to reach reliable conclusions. A study] [B&s considered for the
two-year period January 1994 to December 1995 itjefnequency behavior
of the 1,000 largest companies (by capitalizatiwajled in the three major
US stock markets, the New York Stock Exchange (N)YSEe American
Stock Exchange (AMEX), and the National Associatioh Securities
Dealers Automated Quotation (NASDAQ). For each camp S(t) was
investigated, and homogeneity between the set ofpemies was ensured
by dividing S(t) by the company's volatility, measured over the stigated
time period.

The behavior of rare events in the ensemble ofGdanpanies is studied
by considering the cumulative distribution of themalized variableg(t) =
S(t)/o; where oiis the volatility of company. The cumulative probability
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Fig. 9.8. Log-log plot of the cumulative probalyldistributionF(g) based on high-
frequency data for the 1,000 largest companies theetwo-year period January
1, 1994 to December 31, 1995. The power-law bemaidq. (9.4) well fits the
data over the range 2 < g < 100 for both positive maegative tail. Exponents are
#= 3.10 + 0.03 (positive tail) ar « = 2.84 + 0.12(negative tail). Adapted from [67].

distributionF(g) of observing a change g or larger was found to doeqo-
law for large values af, both for positive and negative valuesgdfFig. 9.8),

F(g)~g™", (9.4)
with exponen a = 3 for both the positive and the negative tails, whwen
data are fit over the range 2g< 100. Sincea > 2, this result is also in
agreement with the conclusion that the second momifeprice changes is
finite [67,68,99].

In summary, while a definitive model for the prickange statistics does

not exist, some results concerning the propertfethie stochastic process
have been found.
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ARCH and GARCH processes

We have seen that there is strong empirical andrétieal evidence sup-
porting the conclusion that the volatility of logige changes of a financial
asset is a time-dependent stochastic process.is$ncttapter we discuss
an approach for describing stochastic processegmctesized by a time-
dependent variance (volatility), the ARCH processgsoduced by Engle
in 1982 [50]. ARCH models have been applied to savdifferent areas
of economics. Examples include (i) means and vagarof inflation in the
UK, (ii) stock returns, (iii) interest rates, ann)(foreign exchange rates.
ARCH models are widely studied in economics andarice and the lit-
erature is huge. They can also be very attractorediescribing physical
systems.

ARCH models are simple models able to describeoahsistic process
which is locally nonstationary but asymptoticallsatsonary. This implies
that the parameters controlling the conditionalbataility density function
fi(x) at timet are fluctuating. However, such a 'local' time defsmrce does
not prevent the stochastic process from having ladedined asymptotic pdf
P(X).

ARCH processes are empirically motivated discretetstochastic models
for which the variance at timtedepends, conditionally, on some past value:
of the square value of the random signal itself.CARprocesses define
classes of stochastic models because each spewfiel is characterized by
a given number of control parameters and by a $pgel@rm of the pdf,
called the conditional pdf, of the process genagathe random variable at
timet.

In this chapter we present some widely used ARCbtgsses. We focus
our attention on the shape of the asymptotic protphldensity function
and on the scaling properties observed.

76
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Fig. 10.1. Numerical simulation of an ARCH(l) presecharacterized by the para-
metersao = 0.43,4; = 0.55 and conditional Gaussian probability density fuoicti
The time evolution of(t) (top) and its conditional variance (bottom) arewsho

10.1 ARCH processes

A stochastic process with autoregressive conditibateroskedasticity, namely
a stochastic process with 'nonconstant variancedittonal on the past, but
constant unconditional variances' [50] is an AR@Hgfrocess defined by
the equation

67 = ap +ouxi_y + - +opxl,. (10.1)

Here oo, %1,...,%, are positive variables arx; is a random variable with
zero mean and variane?, characterized by a conditional £f,(x). Usually
fi(x) is taken to be a Gaussian pdf, but other choicegassible.

By varying the numbep of terms in Eq. (10.1), one can control the amount
and the nature of the memory of the variae?.Moreover, the stochastic
nature of the ARCH) process is also changed by changing the fornhef t
conditional pdff:{x). An ARCH(p) process is completely determined only
whenp and the shape (f;(x) are defined.

We consider the simplest ARCH process, namely tRECH(I) process
with Gaussian conditional pdf. The ARCH(I) procésslefined by

62 = ap +dix?,, (10.2)
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Fig. 10.2. Numerical simulations of ARCH(l) processvith the same unconditional
variance g2 = 1) and different values of the unconditional kursoSiop:ae = 1,

a; =0 (sox =3 by Eqg. (10.6)). Middle:(s'ap = &; = 0.5). Bottomx = 9 ap = 0.45,

o =055 (sox = 23).

and

i=t
S = x. (10.3)

i=1
In Fig. 10.1 we show the time evolution {t) obtained by simulating an
ARCH(l) process with parameteag = 0.45 andx; = 0.55. In the same
figure we also show the time evolution of the vada ¢2. Although the
conditional pdf is chosen to be Gaussian, the asgtigopdf presents a
given degree of leptokurtosis because the variia,cef the conditional
pdf is itself a fluctuating random process.

An ARCH(Il) process with Gaussian conditional pdtcigracterized by a

finite 'unconditional' variance (the variance obgelron a long time interval),
provided

1—oa;5#0 0<o < L. (10.4)

The value of the variance is

2_ _%
1—-051‘

a

(10.5)
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Fig. 10.3. Successive increments of the simulatwsvn in Fig. 10.2. Events outside
three standard deviations are almost absent \x =3 (top), are present when
x =9 (middle), and are more intense wtx = 23 (bottom).

The kurtosis of the ARCH(l) process is [50]

_ Y 6o
= (x2)2 3+ 1--3a?’ (10.6)
which is finite if
1
O0<oy < —. (10.7)

3
Hence, by varyingep and a3, it is possible to obtain stochastic
processes with the same unconditional variancewhtlt different values
of the kurtosis.

Next we consider three examples of ARCHY(l) timaesehaving the same
unconditional variance but different values of Kugtosis;¢? = 1 for all
examples, while the kurto<xincreases from 3 (Wiener process) to 23. In
Fig. 10.2 we show th&(t) time series, while in Fig. 10.3 we show tke
time series. By inspecting Fig. 10.2 we note that 'territory visited' in the
ARCH(]) process increases for lar x {despite the fact thig? = t for all
three examples); corresponding to this observatansee in Fig. 10.3 that
jumps of size larger than 3 times the unconditioreiance are observed
when « > 3. From the shape of the asymptotic pdfs (Fig. 101) note the
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Fig. 10.4. Probability density function of the segsive increments shown in Fig. 10.3.
The pdf is Gaussian whex = 3 (top) and is leptokurtic whenx = 9or 23 (middle
and bottom).

0

higher degree of leptokurtosis wkrx > 3.Wheray = 1 and «; = 0,the
unconditional pdP(x)is Gaussian. F0 < «; < 1, the exact shape of the
ARCH(l) pdf is unknown.

10.2 GARCH processes

In many applications using the linear AR@HModel, a large value gfis
required. This usually poses some problems in pitienal determination of
thep + 1 parameterag, ai, ..., a5, Which best describe the time evolution of
a given economic time series. The overcoming afdifficulty leads to the
introduction of generalized ARCH processes, c&ladRCH(p, q) processes,
introduced by Bollerslev in 1986 [20]. This clagsichastic processes is
defined by the relation

o] = a0+ oyxt g+ gl + Brody o+ Bl (10.8)

whereo, o1, .., 24, B1,..., Bp are control parameters. Hex;:is a random
variable with zero mean and variane?, and is characterized by a
conditional pdf:(x),which is arbitrary but is often chosen to be Gaussi
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We consider the simplest GARCH process, namelyGA&RCH(1,1)
process, with Gaussian conditional pdf. It can @ [9] that

5 %o

g = t— oy — BI, (109)
and the kurtosis is given by the relation
=34 by
T Y 3 =2 — (10.10)

10.3 Statistical properties of ARCH/GARCH processes

For the sake of simplicity, in this section we m@msthe statistical properties
of the GARCH(1,1) process with Gaussian conditiogndfl. The properties
of the more general GARCH(q) processes with Gaussian conditional pdf
are essentially the same [20].

First we discuss the class of stochastic processagich GARCH(1,1)
belongs. The GARCH(1,1) process is defined by

o7 = a + uX;_1 + P1oiy. (10.12)
The random variabl x, can be written in term ce; by defining

X = 1101, (10.12)

wherey; is an i.i.d. random process with zero mean, and vaiiance.
Under the assumption of Gaussian conditional jx:fjs Gaussian. By
using Eq. (10.12), one can rewrite Eg. (10.11) as

67 = oo + (umr—; + Bio? . (10.13)

Equation (10.13) shows that GARCH(1,1) and, momeegaly, GARCHp, q)
processes are essentially random multiplicativeeggses. The autocorrela-
tion function of the random variabx:, R(t) = {x;x;+.) iS proportional to a
delta functioré(z).

What about the higher-order correlation of the pe®® Following Boller-
slev [20], we will see that in a GARCH(1,1) procex? is a Markovian
random variable characterized by the time sz = |In(«; + $1)|~!. Hence a
GARCH(1,1) process provides an interesting exarapblestochastic process
x; that is second-order uncorrelated, but is highéeprcorrelated.

Let us first recall that a GARCH(1,1) process mayritten as

X = ayF o i = v+ vy (10.14)
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where

v = x2 — 62 = (32 — 1)o?. (10.15)

It is worth noting thevis serially uncorrelated with zero mean. This form
of writing the GARCH(1,1) process shows that the RB(1,1) process
can be interpreted as an autoregressive movingagegARMA) process in

x2. This formulation is also useful in determining @ngtocovariance cx?,
which is defined as

cov(x?, x2,,) = (x2xty,) — () (x2, ). (10.16)

For a GARCH(1,1) process defined as in Eq. (10With a finite fourth-
order moment, by using Eg. (10.14) and Eq. (10itl5s) possible to conclude
that

COV(xZ, X2y p1) = (o1 + Br)cov(x?, x2,,,). (10.17)

For the most general case of a GARQGH{) process, it is also possible to
write down the relation between the autocovarian¢ex? and x?,,
(time lag ofn steps) with the autocovariance x> and x2,, ; (time lag ofn
— i steps). This general relation is [20]

m
COV(X7, X7y ) = 3 Bicov(x], x2y, ). (10.18)

je=1
wherem = max{p,q} and
Bi = o; + B.. (10.19)

From Eq. (10.17), we see that the autocovariancbheoquare of the process
X, is described by the exponential form

cov(xf, xf_,,,,) =Ae " (10.20)
whered = ao/(1 — B) andt = [InB|~!, and B = a; + ;. In a GARCH(1,1)
process the square of the procex? is a Markovian process
characterized by the time scz.e

The Markovian character (x? is also observed in ARCH processes.
For example, the characteristic time scale of thtbeovariance o x?
ist = {Inoyf~'in the ARCH(I) process. A difference in the templora
memory of ARCH(l) and GARCH(1,1) processes is degdcby com-
paring the characteristic time scale for these fwocesses. Let us con-
sider ARCH(l) and GARCH(1,1) processes with fingecond and fourth
moments. The requirement of the finiteness of tath moment implies
that 21 must be lower tha 1/4/3 (see Eq. (10.7)) for the ARCH(l) pro-
cess whereas the corresponding GARCH(1,1) procés$sfimite fourth
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moment can be characterized by values «ifandf;, such as
a1 + B1 is close to 1 provided thig, is larger than approximately 0.7
(the conditions for finiteness or infiniteness ofomments for a
GARCH(1,1) process can be found in Ref. [20]). Heram ARCH(I)
process with finite fourth moment may be charactedi by a maximal
characteristic time scale in the square of fluctuet of approximately

7 =1|In1/37! >~ 1.8 time units whereas in the GARCH(1,1) process
with finite fourth moment we can observe a charaste time scale
longer than hundreds of time units, the only coioditbeing that the 1
parameter must be larger than 0.7.

In previous chapters, we have shown that therenigirical evidence that
the variance of returns is characterized by a pdawrcorrelation. Since
the correlation of the square of a GARCH(1,1) pssces exponential, a
GARCH(1,1) process cannot be used to describeetmigirically observed
phenomenon properly. In spite of this limitationARBCH(1,1) processes
are widely used to model financial time series. Timiation is overcome by
using values oB close to one in empirical analysis [1]. ValuesBoélose to
one imply a time memory that could be of the ordemonths. The model's
values for thajancgiparameters - obtained in the period 1963 to
1986 by analyzing the daily data of stogk priceshef Center for Research
in Security Prices (CRSP) — giva; =0.07906 ancf; =0.90501 [1]. The
sunB = oy + By is then 0.98407, which implies a memory x?
corresponding tct =62.3 trading days. Such a long time memory in the
square of returns mimics in an approximate waypbweer-law correlation
of this variable in a finite time window.

Another key aspect of the statistical propertiethef GARCH(1,1) process
Is its behavior for different time horizons. Fonife variance GARCH(1,1)
processes, the central limit theorem applies aredlexpects that the tempo-
ral aggregation of a GARCH(1,1) process progres$givaplies a decrease
in the leptokurtosis of the process. Drost and MHijn{43] carried out a
quantitative study of this problem. They were afdleshow that a 'tempo-
ral aggregation' of a GARCH(1,1) process is stittARCH(1,1) process,
but it is characterized by different control paraens. Specifically, when a
GARCH(1,1) x, is 'aggregated' as

o = Z Xe—i. (10.21)

It can be shown the S,-(-m) Is also a GARCH(1,1) process characterized by



84 ARCH and GARCH processes

ALPHA

0.0 0.2 0.4 06 08 10
BETA

Fig. 10.5. Aggregation of GARCH(1,1). Marks indiedhe paramete« and fi
of a GARCH(1,1) model generated by doubling or lg\the sampling interval.
The starting GARCH(1,1) processes are charactety 8;= 0.8 andxij= 0.05,
0.1, 0.15, 0.19, 0.199, and 0.1999 (from bottortofy respectively). After Drost and
Nijman [43].

the control parameters [43]

(m) _ 1—B™
B E=RTTE (10.22)
a(lm) = B" — ﬁ{m)

where ™ & (0, 1) is the solution of the quadratic equation

ﬁ(m) p1Bm-1
1+ [B0™] 1+ 021 — B22]/[1 — B?] + p}B¥m~2’

In Fig. 10.5 we show the behavior of the paramet«™ and
Bf’"’ for the temporal aggregation of GARCH(1,1) processbktained by
repeatedly doubling or halving the time interval @ARCH(1,1) processes,
for a range of parameter values. When the timervateis doubled, the
parameters move to lower values B™ while oc({“’ may increase or
decrease, depending on the starting value:xjoénc g;. However,
in any case (see the left region of Fig. 10.5), déltteactor for all the
GARCH(1,1) processes with finite variance is theqass characterized
by oc({”)=0, g™ = 0 - namely a Gaussian process.

(10.23)
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Fig. 10.6. Comparison of the empirical pdf meastmaa high-frequency S&P 500 data
with Az= 1 minute with the unconditional pdf of a GARCH1(llprocess characterized
by @, =230 x 1075, a; = 0.09105, and ;= 0.9 (Gaussian conditional probability
density). The agreement is good for more thandeuades.

In summary, for any GARCH(1,1) process, temporaragation implies
that the unconditional pdf of the process presandegree of leptokurtosis
that decreases when the time horizon between thables increases. Unfor-
tunately, the knowledge of the behavior & and g™ for any
value ofm is not sufficient to determine the behavior of grebability of
return to the origin of a GARCH(1,1) process. Wesgistigate this function
numerically in the next section, where we compampiecal findings and
GARCH(1,1) simulations.

10.4 The GARCH(1,1) and empirical observations

In this section we compare empirical investigati@ighe S&P 500 high-
frequency data with simulations of a GARCH(1,1) qass. Specifically we
compare the pdf and the scaling properties of mupigcal analysis with

the pdf and the scaling properties of a GARCH(Ipfgcess character-
ized by the same variance and kurtosis measuréideiriime series of the
S&P 500.
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Fig. 10.7. Scaling properties of a GARCH(1,1) stmtit process (black squares),
with the same control parameters as in Fig. 10h& Jcaling of the GARCH(1,1)

process fails to describe the empirical behavigeoked in the S&P 500 high-

frequency data (which are also shown for comparaowhite circles). Note that

the slope 0.53 is extremely close to the Gaussadmevof 0.5, indicating that the

scaling is close to the scaling of a Gaussian @®ce

The GARCH(1,1) process has three control parameeg, a1 and f§;.
We select the parameters that best describe thelaensuring that the
variance and the kurtosis of the GARCH(1,1) proagsals the measured
values. In this way, we determine the values oftthe parameter ap and
%1. The value of the third paramete By, is chosen to be 0.9, because this
value is often used in the literature [1].

From the empirical analysis of the S&P 500 higlgtrency data, we

find for At= 1 minute tha ¢?= 0.00257 ancx = 43. Using Egs. (10.9)
and (10.10) we obtaixg = 2.30 x 10~ and &; = 0.09105.

By properly choosing the control parameteag, «;, and 1, GARCH(1,1)
stochastic processes with Gaussian conditional paidel quite well the
short-time leptokurtic pdf of price changes. In Fi§.6, we show the price
change distribution of the S&P 500 together with thstribution observed
for the GARCH(1,1) process. The agreement is qyoiad.

The fact that the GARCH(1,1) process describes the At = 1 minute
pdf does not ensure that the same process desambiéshe stochastic
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dynamics of the empirical data for any time hori.At.1Hence an important
guestion to be answered is whether the overall myee of high-frequency
price changes are well described by a GARCH(1,bress. To describe
the dynamics of price changes in a complete wayaddition to pdf of
price changes at a given time horizon, the scahmgerties of price change
pdfs need to be considered also. What about thé&ngcaroperties of
GARCH(1,1) stochastic processes? A theoretical ansitvthe moment does
not exist; however, indications can be obtainedpeyforming numerical
simulations of GARCH processes.

Figure 10.7 shows the scaling property of the phaloty of return to
the origin for a GARCH(1,1) process with conditibri@aussian pdf for
the same control parameters as those used to othia@ipdf of Fig. 10.6.
The empirical behavior observed in the S&P 500 Higdguency data is
also shown for comparison. Although the GARCH(Ipigcess is able to
describe theAt= 1 minute pdf, it fails to describe the scalingperties
of pdfs for all time horizons using the same cohparameters. Thus to

test the effectiveness of a model, it is not sight to compare distributions
at a single time horizon.

10.5 Summary

ARCH and GARCH processes are extremely interestiagses of stochastic
processes. They are widely used in finance, and snay be used in other
disciplines. Concerning high-frequency stock madata, ARCH/GARCH
processes with Gaussian conditional pdf are abtéesuribe the pdf of price
changes at a given time horizon, but fail to démcmproperly the scaling
properties of pdfs at different time horizons.

Open questions concerning this class of stochpsticesses include:

(i) What is the form of the asymptotic pdf of th&RE&H and GARCH pro-
cesses characterized by a given conditional préibabensity function
frlx) ?

(i) What is the nature of the scaling propertytloé probability of return
to the origin as a function of the values of thatcol parameters and
of the shape of the conditional probability dengitgction?
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One of the objections often leveled at the approafchhysicists working

with economic systems is that this kind of activagnnot be a branch of
physics because the 'equation of motion of the ggs'’cis unknown. But if

this criterion - requiring that the Hamiltonian tfe process be known or
obtainable - were to be applied across the boarderal fruitful current

research fields in physics would be disqualified,,ethe modeling of friction

and many studies in the area of granular matterre®her, a number of
problems in physics that are described by a wdlinéel equation - such
as turbulence [61] - are not analytically solval#een with sophisticated
mathematical and physical tools.

On a qualitative level, turbulence and financialrkeds are attractively
similar. For example, in turbulence, one injectergy at a large scale by,
e.g., stirring a bucket of water, and then one ohkesethe manner in which
the energy is transferred to successively smadlales. In financial systems
‘information’ can be injected into the system darge scale and the reaction
to this information is transferred to smaller ssaledown to individual
investors. Indeed, the word ‘turbulent' has conb@ @common parlance since
price fluctuations in finance qualitatively resemblelocity fluctuations in
turbulence. Is this qualitative parallel useful @muantitative level, such
that our understanding of turbulence might be rafévo understanding
price fluctuations?

In this chapter, we will discuss fully developedhlulence in parallel
with the stochastic modeling of stock prices. Own & to show that cross-
fertilization between the two disciplines might heseful, not that the
turbulence analogy is quantitatively correct. Walkfind that the formal
correspondence between turbulence and financiaésssis not supported
by quantitative calculations.

88
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11.1 Turbulence

Turbulence is a well defined but unsolved physpablem which is today
one of the great challenges in physics. Among gpr@aches that have been
tried are analytical approaches, scaling arguméased on dimensional
analysis, statistical modeling, and numerical satiohs.

Consider a simple system that exhibits turbulermc@uid of kinematic
viscosity v flowing with velocityV in a pipe of diameteL. The control
parameter whose value determines the ‘complexitthie flowing fluid is
the Reynolds number,

Re = %K (11.1)
When Re reaches a particular threshold value ctiraplexities of the fluid
explode' as it suddenly becomes turbulent.

The equations describing the time evolution of mcompressible fluid
have been known since Navier's work was publisineti8i23 [128], which
led to what are now called the Navier-Stokes e aunat|

:%V(r, 1)+ (V(r,2) - V)V(r,t) = —VP + vVZV(r, t), (11.2)
and
V-V&,t)=0. (11.3)

Here V(,t) is the velocity vector at position and timet, and P is the
pressure. The Navier-Stokes equations characteaawletely 'fully devel-
oped turbulence’, a technical term indicating tlehae at a high Reynolds
number. The analytical solution of (11.2) and (}h8&s proved impossible,
and even numerical solutions are impossible foy Varge values of Re.

In 1941, a breakthrough in the description of fullgveloped turbulence
was achieved by Kolmogorov [82-84]. He showed thahe limit of infinite
Reynolds numbers, the mean square velocity incremen

{AVP) =V + )= V() (11.4)
behaves approximately as
(IAV(O1?) ~ £2/° (11.5)

in the inertial range, where the dimensions arellemahan the overall
dimension within which the fluid's turbulent behawvioccurs and larger
than the typical length below which kinetic energyissipated into heat.
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Kolmogorov's theory describes well the second-o{[AV(¢)]?) and pro-
vides the exact relation for the third-or({[AV(£)]?) moments observed in
experiments, but fails to describe higher moments.

In fully developed turbulence, velocity fluctuat®mre characterized by
an intermittent behavior, which is reflected in fle@tokurtic nature of the
pdf of velocity increments. Kolmogorov theory istrable to describe the
intermittent behavior of velocity increments. Iretkexperimental studies
of fully developed turbulence, experimentalists alsumeasure the velocity
V(t) as a function of time. From this time series, tpat@l dependence of
the velocityV(¢£) can be obtained by making the Taylor hypothesigl]12

11.2 Parallel analysis of price dynamics and fluidrelocity

Turbulence displays both analogies with and difiees from the time evo-
lution of prices in a financial market. To see thiae discuss the results
of a parallel analysis [112] of two systems, thedievolution of the S&P
500 index and the velocity of a turbulent fluidragh Reynolds number.
Both processes display intermittency and non-Gams$eatures at short
time intervals. Both processes are nonstationarghamt time scales, but are
asymptotically stationary. A better understanding enodeling of stochastic
processes that are only asymptotically stationaryfi potential utility to
both fields.

Specifically, we consider the statistical propextu (i) the S&P 500 high-
frequency time series recorded during the six-ymarod 1984 to 1989 and
(i) the wind velocity recorded in the atmosphesiarface layer about 6 m
above a wheat canopy in the Connecticut AgricultiR@search Statiof.
Similarities and differences are already appargntlibect inspection of the
time evolutions of the index and the velocity o€ tfluid, as well as the
successive measurements of both time series.

First, we compare the time evolution of the S&P Htifex (Fig. 11.1a) and
the time evolution of fluid velocity (Fig. 11.2&)Ve also display one-hour
changes in the S&P 500 index (Fig. 11.1b) and fedbcity changes at
the highest sampling rate (Fig. 11.2b). By analgine temporal evolution
of successive increments in both signals, we caaimuseful information
concerning the statistical properties of the twgnals. A quantitative analysis
can be performed by considering the volatility forancial data, and the
square root of the second moment of velocity flattns for turbulence data.

t K. R. Sreenivasan kindly provided the data on fuléveloped turbulence.
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Fig. 11.1. (a) Time evolution of the S&P 500, saetplvith a time resolution
At = 1 h, over the period January 1984 to Decembe®.1@8 Hourly variations of
the S&P 500 index in the 6-year period January 1®34ecember 1989.

Both sets of data are seen in Fig. 11.3 to be aesdtribed by power laws.
o(At) ~ (Ar)’, (11.6)

but with quite different values of the exponenindex changes are essentially
uncorrelated (the observed valuevy 0.53 is extremely close to 1/2, the
value expected for uncorrelated changes), whileaigl changes are anti-
correlated v= 0.33 < 1/2). Thus the quantitative differencenssn the two
forms of behavior implies that the nature of thedicorrelation between

two successive changes must be different for tleegmcesses. Indeed, the
time evolutions of the index and the velocity ig&ill.1a and 11.2a look
guite different, since there is a high degree aicanrelation in the

velocity. This difference is also visually apparendm Fig. 11.2b, which is
approximately symmetric about the abscissa, whefgpsl1.1b is not.

This difference between the two stochastic processalso observable in
the power spectra of the index and velocity timeese(see Fig. 11.4). When
both obey Eq. (6.21) over several frequency decatiesexponent # are
guite different. For the S&P 500 inden= 1.98, so the spectral density
Is essentially identical to the power spectrum mfuacorrelated random
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Fig. 11.2. Time evolution of the fluid velocity mlly developed turbulence. (a)
Time evolution of the wind velocity recorded in thBmosphere at extremely high
Reynolds number; the Taylor microscale Reynoldslmems of the order of 1,500.
The time units are given in arbitrary units. (b)lagity differences of the time series
given in (a). Adapted from [113].

processy = 2). For the velocity time serien = 5/3 in the inertial range
and#n =~ 2 in the dissipative range.

Ghashghaiest al. [64] have proposed a formal analogy between the ve
ocity of a turbulent fluid and the currency exchangte in the foreign
exchange market. They supported their conclusiomlserving that when
measurements are made at different time horizAt,g2he shapes of the
pdf of price increments in the foreign exchange ketirand the pdf of
velocity increments in fully developed turbulencetth change. Specifically,
the shapes of both pdfs display leptokurtic prafilg short time horizons.
However, the parallel analysis of the two phenomidri2,113] shows that
the time correlation is completely different in thweo systems (Fig. 11.4).
Moreover, stochastic processes such as the TLF taedGARCH(1,1)
processes also describe a temporal evolution ofptifeof the increments
which evolves from a leptokurtic to a Gaussian ghaw such behavior is
not specific to the velocity fluctuations of a fulurbulent fluid.

To detect the degree of similarity between veloflilgtuations and index
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Fig. 11.3. (a) Standard deviatig(At) of the probability distributior?(Z) charac-
terizing the incremeniZ,,(t) plotted double logarithmically as a functionAt for

the S&P 500 time series. After a time interval wperdiffusive behavior (0 At< 15
minutes), a diffusive behavior close to the oneeexgd for a random process with
uncorrelated increments is observed; the measufédidn exponent 0.53 (the
slope of the solid line) is close to the theordtiue 1/2. (b) Standard deviation
a{At) of the probability distributiorP(U) characterizing the velocity increments
Unlt) = V(e + Aty — V(¢) plotted double logarithmically as a functiorAzfor the
velocity difference time series in turbulence. Afeetime interval of superdiffusive
behavior (0 ‘At< 10), a subdiffusive behavior close to the oneeekgd for a
fluid in the inertial range is observed. In fatie tmeasured diffusion exponent 0.33
(the slope of the solid line) is close to the tmtical value 1/3. Adapted from
[112].

changes, consider the probability of return to ohigin, Pa,(U = 0), as a
function of At for a turbulent fluid, obtained by following the rsa
procedure used to obtain Fig. 9.3. We display ig. Ai1.5 the measured
Pas(U = 0). We also show the estimatPg(U = 0) obtained starting from
the measured variance of velocity chan ¢{Af) and assuming a Gaussian
shape for the distributionPs(U = 0) =1/2re(Af)). The difference
between each pair of points is a measure of the Pa:/Ps, and quantifies
the degree of non-Gaussian behavior of the velaoditierences. We note
that the turbulence process becomes increasinglys§an as the time
interva Atrincreases, but we do not observe any scaling regime
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Fig. 11.4. (a) Spectral density of the S&P 500 tigegies. Th1/f2 power-law
behavior expected for a random process with incnésnghat are pairwise
independent is observed over a frequency inter¥ahore than four orders of
magnitude. (b) Spectral density of the velocityetiseries. Thil/f*? inertial range
(low frequency) and the dissipative range (highgtdiency) are clearly observed.
Adapted from [112].

11.3 Scaling in turbulence and in financial markets

The concept of scaling is used in a number of areasience, emerging when
an investigated process does not exhibit a tysicale. A power-law behavior
in the variance of velocity measurements in turbcée(see Eg. (11.5)) is an
example of a scaling behavior, as is the powerdb@wavior of volatility
at different time horizons in financial marketsgdeq. (11.6)). The reasons
underlying the two scaling behaviors are, howewginte different. In the
turbulence case, the 2/3 exponent of the distaZ:zes a direct
consequence of the fact that, in the inertial ranlye statistical properties
of velocity fluctuations are uniquely and univetgatletermined by the
scale¢ and by the mean energy dissipation rate per unsisie.a

Next we show that dimensional consistency requinasthe mean square
velocity increment assumes the form

AV = Ce3¢23, (11.7)

where C is a dimensionless constant. This equasiahe only one possi-
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Fig. 11.5. Measured probability of return to thegor of the velocity of a turbulent
fluid. Probability of return to the origin P(0) (ep circles) and probability of return
assuming a Gaussian sh¢ Pg(0) (filled squares) are shown as functions of the
time sampling intervaAs. Again, the two measured quantities differ in the
full interval, implying that the profile of the PDfust be non-Gaussian. However,
in this case, a single scaling power-law behavm¥sdnot exist for the entire time
interval spanning three orders of magnitude. Tbepeslof the best linear fit (which
Is of quite poor quality) is —0.t+0.11, while a Gaussian distribution would have
slope -0.5. Adapted from [112].

ble because the energy dissipation rate per unssnhas the dimensions
[L)?[T]73. In fact, if we definea to be the exponent ce, andb to be
the exponent of in Eq. (11.7), then dimensional consistency recuthat

[L]Z _ [L 2a
[Ty~ [T]™
where the equality indicates that both sides ofefeation have the same
dimension. This condition is satisfied by equatpoyvers ofL andT,
{2 =2a+b
2 =3a.

Hencea = 2/3 andb = 2/3.
Hence Kolmogorov's law (11.7) is directly relatedhe observation that
the mean energy dissipation rate is the only relegaantity in the inertial

[L]?, (11.8)

(11.9)
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range, and to the requirement of dimensional comscy. In fact, (11.7)
loses its validity when other observables beconevaat, such as occurs in
two-dimensional turbulence, in which there is vatyi conservation.

Note that the scaling properties observed in ahstsitc process for the
variance at different time horizons and for thelyadoility of return to the
origin need not be related. In certain specificdl@mmon) cases they are
related, e.g., in Gaussian or fractional Browniastion stochastic processes.
But they are not related

* in turbulent dynamics, where scaling is presarthe variance of velocity
changes but not present in the probability of netiar the origin, and

* in truncated Levy flights, where the scaling erpat of the variance
o%(t) ~ t is always one, but the scaling exponent of the pbility of
return to the origin i—1/a for time intervals shorter than the crossover
time.

For financial markets, the scaling law of the viitgt at different time
horizons has a different origin, being a directsggquence of two properties.
The first is that successive price changes aremeleded, while the second
Is that the variance of price changes is finitenék unlike turbulence,
the scaling property of volatility is related toasstical properties of the
underlying stochastic process. Thus we have sesnatthough scaling can
be observed in disparate systems, ¢hesesof the scaling need not be the
same. Indeed, the fundamental reasons that leadalng in turbulence
differ from those that lead to scaling in finanawrkets.

11.4 Discussion

The parallel analysis of velocity fluctuations iarkhulence and index (or
exchange rate) changes in financial markets shbatsthe same statistical
methods can be used to investigate systems witlwhknbdut unsolvable,
equations of motion, and systems for which a basithematical description
of the process is still lacking. In the two pheno@eve find both

» similarities: intermittency, non-Gaussian pdf, and gradual cogeece to
a Gaussian attractor in probability, and

» differencesthe pdfs have different shapes in the two systeand,the
probability of return to the origin shows differdrmhavior - for turbulence
we do not observe a scaling regime whereas foxiclanges we observe
a scaling regime spanning a time interval of mdrantthree orders
of magnitude. Moreover, velocity fluctuations argieorrelated whereas
index (or exchange rate) fluctuations are essdwytigicorrelated.
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A closer inspection of Kolmogorov's theory explaimisy the observation
of this difference is not surprising. The 2/3 lawr the evolution of the
variance of velocity fluctuations, Eq. (11.5), &id only for a system in which
the dynamical evolution is essentially controlledthe energy dissipation
rate per unit mass. We do not see any rationabresasgpporting the idea that
assets in a financial market should have a dyndnenalution controlled
by a similar variable. Indeed no analog of the [2i8 appears to hold for
price dynamics.
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Correlation and anticorrelation between stock

One of the more appealing ideas in econophysi¢bas financial markets
can be described along lines similar to succességcriptions of critical
phenomena. Critical phenomena are physical phenartiext occur in space
(real or abstract) and time. We have considered ttawm only a single
asset and its time evolution, but in this chapter discuss an approach
based on the simultaneous investigation of sev&i@ik-price time series
belonging to a given portfolio. Indeed, the preseont cross-correlations
(and anticorrelations) between pairs of stocks loag been known, and
plays a key role in the theory of selecting the tmaf$icient portfolio of
financial goods [49,115]. We show how relevant éhedrrelations and
anticorrelations are by discussing a study devatedetect the amount of
synchronization present in the dynamics of a pdistocks traded in a
financial market [107]. The specific propertiestbé covariance matrix of
stock returns of a given portfolio of stocks haeem investigated extensively.
Also we briefly consider studies that aim (i) tdett the number of economic
factors affecting the dynamics of stock prices igivgen financial market [34,
154], and (ii) to evaluate the deviations obserbetiveen market data and
the results expected from the theory of random icedr[63,87,134].

12.1 Simultaneous dynamics of pairs of stocks

In financial markets, many stocks are traded siamdbusly. One way to
detect similarities and differences in the synclomstime evolution of a
pair of stocks is to study the correlation coeffitd p;; between the daily
logarithmic changes in price of two stodkandj. Generalizing (5.4), we can
define for stock

Si=IlnY(t)—In Yyt — 1), (12.1)
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SO
(8iS;) —(SSp)
(52 = (592 (57— (5,2).

Here Y; is the daily closure price of stodkat timet, and S; is the
daily change of the logarithm of the price of stackhe angular brackets
indicate a time average over all the trading daitbiwthe investigated time
period. With this definition, the correlation coefént p;; can assume
values ranging from —1 to 1, with three specialuesl

oy = (12.2)

1 completely correlated changes in stock price,
pij = {0 uncorrelated changes in stock price, and (12.3)
—1 completely anticorrelated changes in stock price.
We discuss here an investigationg;; carried out for

two sets of stocks of the New York Stock Exchant&/].

(i) The 30 stocks used to compute the Dow-Jonesistrilal Average
(DJIA). (ii) The 500 stocks used to compute therfsitard & Poor's 500
index (S&P 500).

12.1.1 Dow—Jones Industrial Average portfolio
For the set of 30 stocks of the DJIA, there (30 x 29)/2 = 435 different
pij- All the p;; are calculated for each investigated time pericabld 12.1
summarizes the minimum and maximum values of the ofe p;;.
From Table 12.1 it is evident that the typicabximumvalue of p;;
Is above 0.5, so in this portfolio there exist sajnée positively correlated
pairs of stocks. The typicahinimumvalue is close to zero, so the degree of
maximal anticorrelation is small.

The largest value of thg;;, 0.73, is observed in 1990 for the pair of
stocks Coca Cola and Procter & Gamble. In Fig. 1Reltime evolution of
In Y(t) is shown for both stocks. From the figure it isdewnt that the prices
of the two stocks are remarkably synchronized.

In Table 12.1 only the minimum and maximum valuésp;; for each
time interval are listed. Additional information @it the behavior of the
correlation coefficient matrix can be obtained bgnsidering the pdf
P(p;;) of the full set of 435 correlation coefficients. flact, P(g;;) is a bell-
shaped curve; the average is slowly time-dependen¢reas the standard
deviatione is almost constant [107].
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Table 12.1.The observed minimum and maximum
values when one measures all values of
correlation coefficier p;; in the set of 30 stocks
of the Dow-Jones Industrial Average [107].

Time period Minimum Maximum
1990 0.02 0.73
1991 —0.01 0.63
1992 —0.10 0.63
1993 —0.16 0.63
1994 —0.06 0.51
4.0 2 T g % T T T T T T T T
35 | ]
o
=
-
3.0
25 —_ — ' : '
0 50 100 150 200 250
time (trading day)

Fig. 12.1. Time evolution ohlY (t)for Coca Cola (bottom curve) and Procter &
Gamble (top curve) in the year 1990.

For all 435 pairs of stock:p;; changes with time. How long is the char-
acteristic time scale over which strongly corraflapairs of stocks maintain
their correlated status? Figure 12.2 shows the erwution of InY(t) for
Coca Cola and Procter & Gamble for the five calendsrs investigated.

To quantify the relative value of the correlaticetficient for a pair of
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Fig. 12.2. Time evolution ofmlY(t) for Coca Cola and Procter & Gamble for the
five calendar years investigated, 1990 to 1994. Vakle of p;; is 0.73, 0.47,
0.28, 0.33, and 0.39 during the five years fromQ&&ough 1994, respectively,

wherea §;; is 2.62, 1.73, 1.25, 2.44, and 2.27, respectivélyjng the same five
years.

stocks, we define

5ij = pij — {Pij)
g
to be the deviation olp;; from its average value using the standard
deviation ¢ as the unit of measurement, whe{p;;} is the average c gi;
over all pairs of stockg in the portfolio analyzed. For the case where
and | denote Coca Cola and Procter & Gamté;; > 1 for all five years
studied, consistent with the possibility that, fibis pair of stocks, the
correlation coefficier p;; varies with a characteristic time scale of years.

(12.4)

12.1.2 S&P 500 portfolio

For the portfolio of stocks used to compute the S&I® index, there are
(500 x 499)/2 = 124,750 differelp;; - many more than for the 30 stocks
included in the DJIA. Table 12.2 lists the minimand maximum values
of gi; measured for the S&P 500. Consistent with the tssabtained
for the DJIA portfolio, we observe pairs of stockaracterized by a high de-
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Table 12.2The observed minimum and maximum
value:p;;for the set of 500 stocks of the S&P 500.

Time period Minimum Maximum
199C -0.3C 0.81
199! -0.2¢ 0.7¢
199: -0.2E 0.7:
199: -0.27 0.81
1994 -0.25 0.82
6.0 : : .
< 40} —— 1990
E: 2.0 | /\
0.0
6.0 : ;
= 40} — 1991 ]
a 20 /\
0.0 . .
6.0 ; ; ;
= 40 i —— 1902
E: =1 /\
0.0 : . .
6.0 . : _
o 40} —— 1993 kK
@ 20/ /\
0.0 ' :
6.0 . ,
2 40| —— 1994
@ 20! /\
0'01 0 0.‘5 ojo ofs 1.0
P

P(pi)
Fig. 12.3. Correlation coefficients for the S&P 58&hown for each of the ’
five calendar years 1990 to 1994.

gree of synchronization [107]. The most promineagecis observed in 1994,
between Homestake Mining and Placer Dome, Inc.wbich p;;— 0.82.
Anticorrelated stocks are also present but, astlierDJIA, the degree of
anticorrelation is less than the degree of con@hatThe strongest anticor-
relation observed - in 1990, between Barrick Gaild &lynex Corporation
—is pyj= -0.30.

Since the total number of correlation coefficie p;; is much larger than
for the DJIA, theP{p;;) pdf has a larger statistical reliability. In Fi.3,
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P(p;;) 1s shown for each of the five calendar years. Tiperé demonstrates,
as for the DJIA case, that the center of the pdlasvly moving in time,
whereas the width is approximately constant.

12.2 Statistical properties of correlation matrices

The statistical properties of the correlation matof returns have been
investigated in both the economics and the physiesature, but with
differing goals. In economics research, a main gealo determine the
number ofk factors present in a financial market using thateae pricing
theory originally developed by Ross [139]. In ttheory, an economic factor
is a factor that is common to the set of stockseurmbnsiderationn one-
period asset returrR, are generated by a linear stochastic process kvith
factors. Specifically,

Ry = Ryo + By + €n, (12.5)
where Rno represents the risk-free and factor-risk premia mea
returns,B the n x k matrix of factor weights §x the time series of thk
factor affecting the asset returns, ae, an asset-specific risk. It is
assumed thaig, and ¢, have zero means, and are characterized by
covarianc cov(&, &,) = Owhen k # ¢ and cov(&;, ;) = 0 for anyi.

The statistical properties of the eigenvalues odrmdom matrix are well
documented [39,69,119]. Within the framework of thbitrage pricing
theory, the existence of eigenvalues dominatingdbneariance matrix has
been interpreted as evidence of a small numbecafi@nick factors driving
the stochastic dynamics of asset returns in a @@hmarket. Empirical
analysis seems to suggest that only a kefactors exist, and that there is
strong evidence for the existence of a promirkgiactor among them [24].

The empirical analyses pursued by physicists agteatl a prominent eigen-
value far larger than - and several other eigerealsiightly larger than -
what is expected from random matrix theory [87,1F%]ysicists hope to use
the theoretical framework of theories such as Asderlocalization theory
and spin glass theory to interpret these findigs. example, the Anderson
localization theory motivates the monitoring of lbevest eigenvalues, which
are associated with eigenvectors that turn outet@dntrolled by a number
of independent elements smaller than for the tymagenvector [134].

12.3 Discussion

Analyses of the correlation coefficient and of tweariance matrices of asset
returns In financial markets show that synchromrabetween pairs of assets
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Is present in the market. It is plausible that phesence of a relevant degree
of cross-correlation between stocks needs to bentakto account in the

modeling of financial markets. Evidence of the pres of a small number
of economic factors driving a large number of assetalso detected. These
findings are not inconsistent with the efficient ket hypothesis because
synchronization between assets and the existenezafomic factors do

not directly imply the temporal predictability ofitire asset prices. Cross-
correlations after a given time lag, and a prekisewledge of the nature of

factors and their dynamics, if present, would pdevarbitrage opportunities
and deviation from market efficiency. Indeed, origlese deviations has
been detected by observing that returns of largekstlead those of smaller
stocks [97].
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Taxonomy of a stock portfolio

In Chapter 12, we introduced the notion of a catieh coefficienp;;jto
guantify the degree of synchronization of sto@nd stock. In this chapter,
we will see that this concept is useful in two drént ways: (i) it allows
us to define a metric that provides the relativetahce between the stocks
of a given portfolio, and (ii) it provides a methéar extracting economic
information stored in the stock-price time series.

13.1 Distance between stocks

A method of determining a distance between stocksd] evolving in time
in a synchronous fashion is the following. Let osisider

§i = Si — (Si) ,
(S?) — (S:)?

where S;, the_logarithmic price difference of stodk is given by Eq.
(12.1). Hences; is the same variable subtracted from its mean,davided

by its standard deviation computed over a givenetimterval. Let us
consider then records of §; present in the same time interval as the
components §; of an n-dimensional vectorS;. The Euclidean
distance d;; between vectorsS; and ‘3; IS obtainable from the
Pythagorean relation

(13.1)

n
diy = 18 = §;I” = (S — 8. (13.2)
The vectoiS; has unit length because, from definition (13.1),
Y SE=t. (13.3)
k=1
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Hence Eqg. (13.2) can be rewritten as

n R
& =385 + 8% — 2548y =2 -2 Sl (13.4)
k=1 k=1

The sum on the right side of Eq. (13. >5_; SxSj, coincides witr pi; (see
Eqg. (12.2)). Hence Eq. (13.4) leads to (D. Sorngitivate communication)

d;‘j = \/2(1 - pfj). (135)

Because Eg. (13.2) defines a Euclidean distaneefolfowing three prop-
erties must hold:

Property (i) dij =0 <= i=j
Property (i) :d;; =d;i (13.6)
Property (iii) :dij < di + di;

Properties (i) and (ii) are easily verified bece p;; = 1 impliesd;; = 0,
While p;; = pj implies d;; = dj. The validity of Property (iii), the ‘triangular
inequality’, relies on the equivalence of Eq. (J38d Eq. (13.5). Thus the
quantity d;; fulfills all three properties that must be satisfiey a metric
distance.

The introduction of a distance between a synchrenexolving pair of
assets was first proposed in [108], where a distamemerically verifying
properties (i)-(iii) was used. The knowledge of thsetance matrix betwean
objects is customarily used to decompose the setobjects into subsets of
closely related objects. To obtain such a taxoncanyadditional hypothesis
about the topological space wfobjects needs to be formed, and this is th
subject of the next section.

13.2 Ultrametric spaces

Consider a specific example, a portfoliorof= 6 stocks: Chevron (CHV),
General Electric (GE), Coca Cola (KO), Procter &nidde (PG), Texaco
(TX), and Exxon (XON), where in parentheses we ftidigtheir tick symbols.
Starting from the measured value:p;jbver the calendar year 1990, we
calculate the distance matd;;
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CHV GE KO PG TX XON

CHv 0 1B 18 115 08 08

GE O 08 08 126 116
KGO 0 074 127 11
PC 0O 1% 110
TX 0 09
XON 0

We make the working hypothesis that a useful sppacénking n stocks
Is an ultrametric space. This hypothesis is mo#igat posterioriby the fact
that the associated taxonomy is meaningful fronre@momic point of view.
An ultrametric space is a space in which the distapetween objects is an
ultrametric distance. An ultrametric dlstand,, must satisfy the first two
properties of a metric distance, d;_; =0 e i=j and (ii dU = dﬁ,
while the usual triangular inequality of Eq. (13i6)replaced by a stronger
inequality, called an ultrametric inequality,

3,-,- < max{fi,—k, Eikj}. (13.7)

Ultrametric spaces provide a natural way to deschierarchically structured
complex systems, since the concept of ultrameyrisitdirectly connected
to the concept of hierarchy. They are observedpin glasses [123], the
archetype of frustrated disordered systems. A gmdcbduction to the
concept of ultrametricity for the reader with a k@goound in physical
science is provided by Rammetlal.[138].

The general connection between indexed hierardnesultrametrics was
rigorously studied by Benzecri [15]. Provided thanetric distance between
n objects exists, several ultrametric spaces carbb@ned by performing any
given partition of the set af objects. Among all the possible ultrametric
structures associated with the distance metd;;, a single one
emerges owing to its simplicity and remarkable grbies. This is the
subdominant ultrametric. In the presence of a mepace in whicim objects
are linked together, the subdominant ultrametriay d@e obtained by
determining the minimal-spanning tree (MST) conmgcthen objects. The
MST is a concept in graph theory [157]. In a conedaveighted graph of
objects, the MST is a tree having— 1 edges that minimize the sum of the
edge distances. The subdominant ultrametric spasocated with a
metric space provides a well defined topologicalamgement that has
associated a unique indexed hierarchy. Hence thesiigation of the
subdominant ultrametrics allows one to determineaiunique way an
indexed hierarchy of the objects
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Fig. 13.1. (&) MST and (b) indexed hierarchica¢ todtained for the example of six
firms, identified by their tick symbols CHV, GE, K®G, TX and XON.

considered. The method of constructing a MST ligkenset ofn objects,
known as Kruskal's algorithm [130,157], is simphal alirect.

The MST associated with the Euclidean matrix camlained as follows.
First find the pair of stocks separated by the ssaldistance: KO and PG
(d = 0.74). Then find the pair of stocks with the nextaiest distance: CHV
and TX(d = 0.84). We now have two separate regions in the MEWwe
continue, we find next the KO and GE pé&lf = 0.86). At this point, the
regions of the MST are GE-KO-PG and CHV-TX. The tngxirs of closest
stocks are GE-PG and CHV-XO{ = 0.89). The connection GE-PG is
not considered because both stocks have already dmrted, while XON is
linked to CHV in the MST. Now the two regions ar©NX-CHV-TX and
GE-KO-PG. The smallest distance connecting the rggons is observed
for PG-XON(d = 1.10). This PG-XON link completes the MST.

Using this procedure, it is possible to obtain M@&T shown in Fig. 13.1a.
In Fig. 13.1b we show the indexed hierarchical &sgociated with the MST.
The tree shows clearly that in this portfolio thare two groups of stocks.
In the first group are the oil companies (CHV, Tafgd XON), and in the
second are companies selling consumer productsrmuener services (KO,
PG, and GE). If we start from the indexed hierarahtree, determining the
matrix of the ultrametric distancd;; is straightforward. In our example,
the di; matrix is
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Fig. 13.2. Indexed hierarchical trees obtainedrduthe calendar years from 1991
to 1994 for the portfolio of six firms (CHV, GE, K®G, TX, and XON).

CHv (E KO PG TX
CHv O 110 110 110 0.8
(€= O 08 08&% 110
KO 0 07 110
PG 0 110
™ 0
XON

Each element in thefi,-j matrix is equal to the maximal distance

XON

0.89

110

110

110

0.89
0

between two successive objects encountered wheningnofrom the
starting object to the ending object over the swmirtpath of the MST
connecting the two objects. In contrast to d;; matrix, the number of
different element values in the ultrametric distanoatrix fif,- cannot
exceedn — 1, as is confirmed by the present example.

In Chapter 12, we showed that the time evolutio g;;zfan be char-
acterized by slow dynamics over a time scale offyeHowever,pi; is a

statistical quantity and it is relevant to consid@w stable a hierarchical

structure can be (Fig. 13.1b). In Fig. 13.2 we shbe/indexed hierarchical
trees obtained in the calendar years from 19919 ifor the portfolio of

six stocks discussed above.
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Fig. 13.3. (a) MST and (b) indexed hierarchicaé tobtained for the DJIA portfolio
during the time period 7/89 to 10/95. Adapted fridr8].

The two main clusters observed in 1990 (Fig. 13.T3HV-TX-XON
and GE-PG-KO, are also observed in all the othearyeBut the value
of the baseline distance is time-dependent andritegnal structure of
the two clusters varies. For example, in four of five years the closest
oil companies are CHV and TX, whereas in 1991 tlosest are CHV
and XON (cf. Figs. 13.1 and 13.2). The most strgriginnected consumer
product companies are KO and PG in 1990 and 19&3ad KO in 1991,
and GE and PG in 1994.
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Fig. 13.4. Main structure of the MST of the S&P Sfif¥tfolio for the time period
7/89 to 10/95. Adapted from [108].

In summary, empirical analyses show that the inddxerarchical tree is
time-dependent, but maintains on a time scale afs/a basic structure that
exhibits a meaningful economic taxonomy.

13.3 Subdominant ultrametric space of a portfolio bstocks

The procedure outlined above has been used [108pt@in the ultrametric
space of two stock portfolios. The first is the aeB0 stocks used to compute
the Dow-Jones Industrial Average (DJIA) index. Feyd3.3 shows the MST
obtained for the DJIA portfolio during the time pmd 7/89 to 10/95, as
well as the associated indexed hierarchical trdeed groups of linked
stocks are seen in this figure. The first groupnede up of oil companies
(CHV, TX, and XON), the second of consumer-productonsumer-service
companies (PG, KO, GE, MMM, MCD, T, DD, MRK, andM} and the
third of raw-material companies (IP and AA). Thxdaomy associated
with the subdominnant ultrametric of the DJIA polith is a meaningful
economic taxonomy. Notice that this taxonomy isadféd by starting
from the time series of stock prices, without asgwamptions other than
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the fundamental one - that the subdominant ultrametell describes the
reciprocal arrangement of a stock portfolio.

The second portfolio is the S&P 500. The associd@dnomy is more
refined in this portfolio than in the DJIA, because S&P 500 portfolio
Is much larger and because several companieshiawvi different economic
activities. The MST, and the associated indexedahohical tree, are too
complex to display here, but Fig. 13.4 shows thenrsaucture of the MST.
This is obtained by considering only those lineattend in a group of no
fewer than two stocks. There are 44 groups obté&nasing this procedure
and, in most cases, these groups are homogenedhsregipect to their
industry sector, and often also with respect tartimelustry subsector [108]
as specified in the 49thorbes Annual Report on American Industry.

13.4 Summary

In Chapter 2 we discussed a key point in infornmatioeory: a time series
that is not redundant often closely resembles aa@anprocess. In this
chapter, we have seen that is possible to devis¢egies that allow us to
obtain meaningful taxonomies if we start from tly@achronous analysis of
more than one stock-price time series. Specificallg can retrieve part of
the economic information stored in the individuedck-price time series if
we calculate the distance between each pair okstoca portfolio, and we
assume that a subdominant ultrametric space ippropriate topology.
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Options in idealized markets

In the previous chapters we have seen that thendyosaof stock prices is
a complex subject, and that a definitive model yaisto be constructed.
The complexity of the entire financial system ige\greater. Not only is the
trading of financial securities complex, but aduhitkl sources of complexity
come from the issuing of financial contracts onsehdluctuating financial
securities.

An important class of financial contracts is detives, a financial product
whose price depends upon the price of another rfaftere basic) finan-
cial product [22,45,73,74,122,127]. Examples ofiadives include forward
contracts, futures, options, and swaps. Derivatarestraded either in over-
the-counter markets or, in a more formalized wayspecialized exchanges.
In this chapter, we examine the most basic findromatracts and procedures
for their rational pricing. We consider idealizecnkets and we discuss the
underlying hypothesis used in obtaining a ratigorade for such a contract.

14.1 Forward contracts

The simplest derivative is forward contract. When a forward contract is
stipulated, one of the parties agrees to buy amgamount of an asset at
a specified price (called the forward price or thdivery priceK) on a
specified future date (the delivery date The other party agrees to sell the
specified amount of the asset at the delivery poiceghe delivery date. The
party agreeing to buy is said to havloag position,and the party agreeing
to sell is said to haveshort position.

The actual priceY of the underlying financial asset fluctuates, ahd t
priceY (T) at the delivery date usually differs from theidetly price specified
in the forward contract. The payoff is either pwgitor negative, so whatever
is gained by one party will be lost by the otheig(R.4.1).

113
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Fig. 14.1. Payoff for each party involved in a fang contract, as a function of the
price Y(T)at maturity timeT, (a) for the short position (party which agreesdt s
in the future), (b) for the long position (party mh agrees to buy in the future).

14.2 Futures

A future contracts a forward contract traded on an exchange. Thidies
that the contract is standardized and that theparties interact through an
exchange institution, thelearing houselmmediately following the comple-
tion of the trade, the clearing house writes thetiaxts - one with the buyer
and one with the seller. The clearing house guaesnthat its contracts will
be executed at the delivery date.

14.3 Options

An option is a financial contract that gives thddey the right to exercise
a given action (buying or selling) on an underlyegget at tim@ and at
price K. The priceK is called the strike price or the exercise price] @is
called the expiration date, the exercise dateherdate of maturity.

Options can also be characterized by the naturthefperiod during
which the option can be exercised. If the option ba exercised only at
maturity,t = T, it is called a European option. If the option canexercised
at any time between the contract initiationtat0 andt = T, it is called
an American option. In this chapter we considerdpean options.

There are call options and put options. leal option, the buyer of
the option has the right to buy the underlying fioal asset at a given
strike priceK at maturity. This right is obtained by paying tceetkeller
of the option an amount of money(Y,). In a call option there is no
symmetry between the two parties of the contrabe huyer of the option
pays money when the contract is issued and acqgthexgby a right to be
exercised in the future, while the seller of théi@preceives cash immediately
but faces potential liabilities in the future (Fit4.2). In aput option, the
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Fig. 14.2. (a) The payoff as a function of the prat maturity timerl for a buyer
of a call option, which cost€(Y,!) at the time the contract is written, whefe
denotes the strike price, (b) The payoff for thkes®f the same call option.
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Fig. 14.3. Same as Fig. 14.2, for a put option.

buyer of the option has the right to sell the uhgiag financial asset at

a given strike pricK at maturity { = T) back to the seller of the option
(Fig. 14.3).

14.4 Speculating and hedging

Derivatives are attractive financial products fotemast two types of traders:
speculators and hedgeiSpeculatorsare interested in derivatives because
they can provide an inexpensive way to expose Hghar to a large amount
of risk. Hedgersare interested in derivatives because they alloxgstors to
reduce the market risk to which they are dteadpesed.
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14.4.1 Speculation: An example

An investor believes that a particular stock (cothe priced at 200 USD)
will go up in value at timel. He buys a call option for a strike price
of 220 USD by gambling 5 USD. Suppose that at tireeT (maturity),
the stock value has risen to 230 USD. The investor then exercise his
option by buying a share for 220 USD and then imiaedly selling it for
230 USD. The profit will be 10 - 5 =5 USD - a 100%urn. Note that
in this example the stock return is equal to (23D06)/200 = 15%. On the
other hand, suppose that at maturity the stockevaddess than or equal to
220 USD - the investor will lose his gamble (1008%d). Thus the investor,
by gambling 5 USD, becomes eligible for huge resuah the expense of
exposing himself to huge risks.

14.4.2 Hedging: A form of insurance

A company in the United States must pay 10,000 ¢éuiBuropean firms in
180 days. The company can write a forward contiithe present exchange
rate for the above sum, or can buy a call optianaf@iven strike price at
180 days' maturity. This eliminates the risk asatsd with fluctuations in
the USD/euro exchange rate, but has a cost - egtkigosure to losses in a
forward contract, or simply the direct cost in gtion contract.

14.4.3 Hedging: The concept of a riskless portfolio

To examine more closely the procedure of hedgirgycansider a simplified

version of our problem, namely a binomial modelstidck prices [37]. The

priceY at each time stepmay assume only two values (Fig. 14.4). Suppo:
a hedger at each time step holds a numA,rof shares for each

option sold on the same stock. In order to minintize risk, the hedger
needs to determine the value A, that makes the portfolio riskless.
The value¢ of a portfolio is

¢=YA —C, (14.1)

whereY A, is the value o Ay shares held by the investor at tilpandC
Is the value of the option sold at tirh@ riskless investment requires

¢u = g, (14.2)

where ¢, is the portfolio value if the stock goes up, w ¢4:is the portfolio
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Fig. 14.4. Schematic illustration of the binomiabael. HereY denotes the stock
share price, where C denotes the cost of an opggured on the underlying stock.
For a given time horizot = t;, Yy and Y4 denote the possible stock price values,
while €, and Cy4 denote the possible values of options.

value if the stock goes down. Hence from (14.1),
Yolp —~ Gy = YaAyp — Cyq,

or

Ay = Yo — Y, (14.3)

In the limit whent becomes infinitesimal

L

h= Sy (14.4)

Thus As is equal to the partial derivative of the price the option
with respect to the price of the stock (at constanBecauseY changes
over time, Ay =dC/0Y must also be changed over time in order to
maximize the effectiveness of the hedging and mirenthe risk to the
portfolio.

We have seen that at least three different tradingtegies are used in
financial markets: hedging, speculating, and explgiarbitrage opportuni-
ties. Some traders specialize in one of these thvhge others occasionally
switch from strategy to strategy. Hedgers focugortfolio risk reduction,
while speculators maximize portfolio risk.
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14.5 Option pricing in idealized markets

For a financial market to function well, particigamust thoroughly under-
stand option pricing. The task is to find the raaband fair priceC(Y,1)
of the option under consideration. Sindgg) is a random variableZ(Y,?)
is a function of a random variable.

The first reliable solution of the option-pricinggblem was proposed in
1973 by Black and Scholes [18,120]. Their solui®ralid under a series of
assumptions:

(i) The stock price follows Ito's stochastic prages
(i) security trading is continuous;

(i) there are no arbitrage opportunities;

(iv) selling of securities is possible at any time;
(v) there are no transaction costs;

(vi) the market interest rateis constant; and
(vii) there are no dividends betweern 0 andt = T.

Black and Scholes assume that a stock pY{tecan be described as an
Ito process, namely a process defined by the ssbichdifferential equation
dY = aY,)dt + b(Y,)dW. Specifically, they assume that a stock price
follows a geometric Brownian motion

dY = uYdt+c¥Ydw, (14.5)

where u is the expected return per unit tire? the variance per unit
time, andW a Wiener process. This assumption implies thatctieges in
the logarithm of price are Gaussian distributed.

If one assumes that a stock price is modeled bgangtric Brownian
motion, any function ofY (including the price of the optio@) must be a
solution of the partial differential equation obtad from a special case of
Ito's lemma valid for a geometric Brownian motiaib],

2
dC = g—g—ﬂ + % + %%021’2 dt + g-lg;amw. (14.6)

Let us consider the portfolio of the holderA, shares who is selling one

derivative of the stock at time The value of the portfolio is, from (14.1)

~AnA /14 AN

oC
¢=—-C+ ﬁY. (14.7)
The change in the value of the portfc¢oover a time intervaAt is
0
Ad =—AC + 5 ay. (14.8)

Y
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Using Ito's lemma, we have

oC aCc  10%C 52 oC
—0ocYAW. 14.9
AC = (aYyY e 3772° Y)At+ﬁ{0' (14.9)

From the definition of geometric Brownian motioa4(5), we have

AY = puY At + 6 YAW. (14.10)

Hence the change ¢ is

aC oC 13*C 272 + oC
- = At

AP = [ i T Y )

oC aC
which simplifies to

aC 19°C ,.,

—_ 3 14.12

A { 5 26Y26Y]Ar ( )

The Black & Scholes assumption that a stock praéoWws a geometric
Brownian motion turns out to be crucial in derivitige rational price of an
option. In fact, without this assumptioA¢ could not be simplified as
itisin Eq. (14.12).

The second key assumption concerns the absencebfage. In the
absence of arbitrage opportunities, the changbenvalue of portfolicA¢
must equal the gain obtained by investing the sameunt of money in

a riskless security that provides a return per wihitime r. Under the
assumption thatis constant,

Ad = roAt. (14.13)

By equating the two equations for the change inpibfolio value, (14.12)
and (14.13), we obtain

rC = % +r Y —!— 35720 6°Y~, (14.14)
which is called the Black & Scholes partial diffetial equation. To obtain
(14.14), no assumption about the specific kindaifan has been made. This
partial differential equation is valid for both tahd put European options.

The appropriat€(Y,1) for the chosen type of option will be obtained by
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selecting the appropriate boundary conditions. Aanaple for a call option
IS

C =max{Y —K,0} when t=T. (14.15)

The parameters in Eq. (14.14) are the varianceupetr of time a2
and the return per unit of timeof the riskless security. The solution of
(14.14) depends on these two parameters, and owathes ofY, K,andT
characterizing the boundary conditions. The Black Stholes partial
differential equation has an analytic solution, e¥his discussed in the next
section.

14.6 The Black & Scholes formula

Black and Scholes solved their partial differengiquation (14.14) by making
the following substitution

C(Y,t) = Dy(x, 1), (14.16)
where
x= % (r — %62) [m G;-) ~ (r — ";) (t T)] , (14.17)
and

2
{ = ”;,%5 (r - 92-) t—T). (14.18)

With this substitution, the Black & Scholes partdfferential equation
becomes formally equivalent to the heat-transferaéiqn of physics,

dy(x,t) _ y(x,t)
ar axr
The heat-transfer equation is analytically solvadoiel, by using substitu-

tions (14.17) and (14.18), Black and Scholes fotlnsir famous equation for
the option-pricing problem,

C(Y,t) = YN(d)) — K" TIN(dy), (14.20)

(14.19)

whereN(x) is the cumulative density function for a Gaussianiable with
zero mean and unit standard deviation,

_ In(Y/K) +(r +0?/20(T —1)

o /T —t ’

dy (14.21)

and

dy=dy — /T —1. (14.22)
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14.7 The complex structure of financial markets

The Black & Scholes model provides two importamaficial instruments:
(a) an analytic solution (14.20) for the rationailcp of a European option,
and (b) a trading strategy for building up a riselgortfolio. The existence
of a riskless portfolio implies also that a spexifiortfolio of bonds and
underlying stock can be equivalent to an optiouesson the underlying
stock at any time if the portfolio is properly ba¢ed in terms of Egs. (14.1)
and (14.4). In other words, the value of an opttam be replicated by an
appropriate portfolio of stocks and bonds, and ksgtit options can be
realized in a financial market obeying the BlaclS&holes assumptions.

Among assumptions (i) and (vii) of the Black & St model, two
assumptions are crucial to the existence of aegskiportfolio. The first is
that the path of stock price dynamics is a geomdérownian motion. The
second is that security trading is continuous nmeti

In the previous chapters, we saw that the ultintgtieamics of a stock
price are discrete in both time and space. Moreosmpirical observations
of the statistical properties of price-change stets for the high-frequency
regime do not support the geometric Brownian moassumption. Indeed,
rare events (namely large jumps in the price ofvermgstock) are observed
from time to time.

Hence the Black & Scholes model is a beautiful ®amrk for under-
standing and modeling an ideal financial markett provides only an
approximate description of real financial markdtsparticular, the Black
& Scholes assumptions are not verified in real rtgkand they do not
guarantee the existence of a riskless portfolio ahdynthetic options in
real markets.

14.8 Another option-pricing approach

Other aspects of the option-pricing problem emdrgeonsidering an alter-
native way of obtaining the rational price of artiop. In a Black & Scholes
market, the rational price of an option does ngtedel on the risk toler-
ance of economic agents. This implies that therapsion of risk-neutrality
Is legitimate in a financial market without impest®ns. In a risk-neutral
economy, the expected rate of reignf an underlying financial asset
must be equal to the interest rateHence, in the absence of arbitrage
opportunities, the expected value of an Europedinopdion at maturity {

= T) is the average expected payoff, namE{(Y(T)— K)*}, where
(Y(T)—K)t is Y(T) - KwhenY(T) - K> 0 and zero wheY(T) - K <

0. To obtain the risk-neutral value valid at tifie— t,this value needs to
be discounted
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at the risk-free interest rate, so
C(Y,t)=e " TIE{Y(T) - K)*}. (14.23)

Equation (14.23) provides a tool for determini@gy,t) without solving
the partial differential equation associated wtike bption-pricing problem.
Equation (14.23) can be written in explicit form as

o
C(Y,1) = e~ (T~) f dY' (Y — K)f (Y030 | Y'; T), (14.24)
K

wheref{Yq;0 | Y’;T) is the conditional probability density of observing
Y =Y’ attimet =T whenY = Yp at timet= 0.

Equation (14.24) shows how crucial exact knowledfjéhe price-change
distribution is. IndeedC(Y,?) is controlled completely by its exact shape ir
a financial market without imperfections.

Equation (14.24) also provides a flexible tool floe analytic or numerical
determination ofC(Y,) when the distribution of price changes is known
However, it is worth pointing out that Eq. (14.24)valid only when the
stochastic process d(t) allows the building of a riskless portfolio under
a risk-neutrality assumption. If there is no rigdeportfolio under a risk-
neutrality assumption, there is also no guararttae @ unique option price
exists satisfying the condition that arbitrage oppoities are not present.

14.9 Discussion

The Black & Scholes solution of the option-pricipgblem is a milestone in
modern finance. Their model of financial activitgtches the basic features
of real financial markets. Some aspects, howevernat fully reflect the
stochastic behavior observed in real markets. T®e tiree examples: (i)
the Gaussian hypothesis of changes in the logarhra stock price is
incorrect - especially when changes are high fregyg (ii) the path of
the underlying asset price can be discontinuouthatarrival of relevant
economic information; and (iii) the volatility of given stock or index and
the interest rate are not constant, and are themaselandom processes.
The modeling of real financial markets, sometimalied the modeling of
'markets with imperfections', involves a class aflgpems that we introduce
in the next chapter.
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Options in real markets

In Chapter 14, we considered the option-pricingbpem in ideal friction-
less markets. Real markets are often efficient,tbay are never ideal. In
this chapter, we discuss how the complexity of nlindefinancial markets
increases when we take into account aspects ofmeakets that are not
formalized in the ideal model. These aspects adeemsed in the literature
as market microstructure [26] or market imperfeasipl27].

The terminology used in the economics literaturggests a clear parallel
with similar scenarios observed in physical scisné®r example, it is much
easier to construct a generalized description efrtiotion of a mechanical
system in an idealized world without friction thianthe real world. A similar
situation is encountered when we compare equilibraind non-equilibrium
thermodynamics. In this chapter, we show that keolgé of the statistical
properties of asset price dynamics is crucial fardeling real financial
markets. We also address some of the theoreticghlpaactical problems
that arise when we take market imperfections imtmoant.

15.1 Discontinuous stock returns

The existence of a portfolio containing both rigldeand risky assets -
replicating exactly the value of an option - is @s8al in determining

the rational price of the option under the assuamptihat no arbitrage
opportunities are present. Whether a portfolioeiglicating or not depends
on the statistical properties of the dynamics & timderlying asset. In the
previous chapter, we saw that a replicating padfekists when the price of
the underlying asset follows a geometric Browniaotion, but we also saw
that this case cannot be generalized. For examnglen the asset dynamic
follows a jump-diffusion model [121], a simple regaiting portfolio does not
exist. A jump-diffusion model is a stochastic preeeomposed of a diffusive

123
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term (as in geometric Brownian motion) plus a selc@mm describing jumps
of random amplitudes occurring at random times.

Roughly speaking, the presence of two independantes of randomness
in the asset price dynamics does not allow thadmglof a simple replicating
portfolio.FIt is not possible to obtain the rational priceaof option just by
assuming the absence of arbitrage opportunitidseiCGissumptions must be
made concerning the risk aversion and price expieas of the traders.

Taking a different perspective, we can say thatneed to know the
statistical properties of a given asset's dynarnefsre we can determine the
rational price of an option issued on that assetcdntinuity in the path of
the asset's price is only one of the 'imperfectioimat can force us to look
for less general option-pricing procedures.

15.2 Volatility in real markets

Another 'imperfection’ of real markets concerns taedom character of
the volatility of an asset price. The Black & Sdaw®wloption-pricing formula
for an European option traded in an ideal markgiedes only on five
parameters: (i) the stock pricéat timet, (ii) the strike priceK, (iii) the
interest rate, (iv) the asset volatility rate, and (v) the maturity timé&. Of
these parameter& and T are set by the kind of financial contract issuec
while Y andr are known from the market. Thus the only paramétat
needs to be determined is the volatility rete

Note that the volatility rate needed in the Blacks&holes pricing formula
is the volatility rate of the underlying securityat will be observed in the
future time interval spanning= 0 andt = T. A similar statement can be
made about the interest rate r, which may jumpaitré times.

We know from the previous analysis that the valatibf security prices is
a random process. Estimating volatility is notraigthtforward procedure.

15.2.1 Historical volatility

The first approach is to determine the volatilitprh historical market
data. Empirical tests show that such an estimat&ffescted by the time
interval used for the determination. One can aittpaé longer time intervals
should provide better estimations. However, thaloonstationarity of the
volatility versus time implies that unconditionadlatility, estimated by using
very long time periods, may be quite different frtime volatility observed
in the lifetime of the option.

t For a more rigorous discussion of this point, seg70].
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Fig. 15.1. Schematic illustration of the problemmg@untered in the determination
of historical volatility. The nonstationary behaviaf the volatility makes the deter-
mination of the average volatility depend on theestigated period of time. Long
periods of time are observed when the daily vatgtis quite different from the
mean asymptotic value (solid line).

An empirical rule states that the best estimateotdtility rate is obtained
by considering historical data in a time intert; — t chosen to be as long
as the time to maturity of the option (Fig. 15.1).

15.2.2 Implied volatility

A second, alternative approach to the determinatbthe volatility is to

estimate the implied volatilitein,, Which is determined starting from the
options quoted in the market and using the Black&aoles option-pricing
formula (14.20). The implied volatility gives andication about the level of

volatility expected for the future by options trasle
The value oloip IS Obtained by using the market valuesag¥,t) and
by solving numerically the equation

C(Y,T —t) = YN(d1) — Ke " T-IN(dy), (15.1)
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Fig. 15.2. Schematic illustration of the impliedatdity as a function of the differ-
ence between the strike prikeand the stock pric&. The specific form shown is
referred to as a volatility smile.

where now the time is expressed in days from migtuaind
_ (Y /R) + (r + 0f, /(T —1)

dy - , (15.2)
and
dz = d1 - O'imp\/T — L (15.3)

In a Black & Scholes market, a determination of thmplied volatility
rate would give a constant valie for options with different strike
prices and different maturity. Moreover, the vabfethe implied volatility
should coincide with the volatility obtained frorstorical data.

In real markets, the two estimates, in generalndb coincide. Implied
volatility provides a better estimate of Empirical analysis shows that
gmp 1S @ function of the strike price and of the eapimn date. Specifically,
Fmp 1S Minimal when the strike prick is equal to the initial value of the
stock priceY (‘at the money'), and increases for lower and higdtake
prices. This phenomenon is often termed a 'valatdmile' (Fig. 15.2). The
implied volatility increases when the maturity ieases. These empirical
findings confirm that the Black & Scholes modelieslon assumptions that
are only partially verified in real financial matke

When random volatility is present, it is generallyt possible to determine
the option price by simply assuming there are rmti@rge opportunities. In
some models, for example, the market price of thlatility risk needs to be



15.4 Extension of the Black & Scholes model 127

specified before the partial differential equatiminthe option price can be
obtained.

15.3 Hedging in real markets

In idealized financial markets, the strategy forfeetly hedging a portfolio
consisting of both riskless and risky assets iswkmdn real markets, some
facts make this strategy unrealistic: (i) the rabaing of the hedged portfolio
Is not performed continuously; (ii) there are tracteon costs in real markets;
(i) financial assets are often traded in rount$ lof 100 and assume a degree
of indivisibility.

It has been shown that the presence of these wutavel market imper-
fections implies that a perfect hedging of a pditfas not guaranteed in a
real market, even if one assumes that the assetniigs are well described
by a geometric Brownian motion [58]. When we coesideal markets, the
complexity of the modeling grows, the number ofuasgtions increases, and
the generality of the solutions diminishes.

15.4 Extension of the Black & Scholes model

It is a common approach in science to use a mogtem to understand
the basic aspect of a scientific problem. The idedl model is not able to
describe all the occurrences observed in real systbut is able to describe
those that are most essential. As soon as thetyabfithe idealized model is
assessed, extensions and generalizations of thelraoel attempted in order
to better describe the real system under considatabome extensions do
not change the nature of the solutions obtainedgusie model, but others
do.

The Black & Scholes model is one of the more sisfaégdealized models
currently in use. Since its introduction in 1973asge amount of literature
dealing with the extension of the Black & Scholesdal has appeared.
These extensions aim to relax assumptions thatmoaye realistic for real
financial markets. Examples include

» option pricing with stochastic interest rate [20];

 option pricing with a jump-diffusion/pure-jumposhastic process of stock
price [13,121];

» option pricing with a stochastic volatility [72} and

» option pricing with non-Gaussian distributionslof prices [7,21] and
with a truncated Levy distribution [118].
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We will briefly comment on general equations ddsng the time evolution
of stock price and volatility [12] that is much neogeneral than the Black
& Scholes assumption of geometric Brownian moti®uir aim is to show
how the complexity of equations increases whenarmseveral of the Black
& Scholes assumptions are relaxed. These genewatiegs are

d; (g) = [r{t) — Aydt + a(t)dWy (t) + J (t)dq(t) (15.4)
and
do?(t) = [0y — Kya*(8)]dt + ayo(t)dWi(1), (15.5)

while the Black & Scholes assumption of geometriovnian motion is,

from (14.5),

dY (t)
Y(t)

Here r(t) is the instantaneous spot interest rithe frequency of
jumps per yeara?(t) the diffusion component of return varianc Wy (z)
and  Wl(t) standard Wiener processes  with covariance
covidWy (1), dWu(t)] = pdt, J(t) the percentage jump size with
unconditional meaiyy, q(t) a Poisson process with intensi,” and K+, 8,
andeg, parameters of the diffusion component of returriaraze a%(t).

It is worth pointing out that the increase in coaxitly is not only technical,
but also conceptual. This is the case becausertoess is so general that it
iIs no longer possible to build a simple replicatpwytfolio, or to perfectly
hedge an 'optimal’ portfolio. The elegance of thacB & Scholes solution
Is lost in real markets.

= pdt + adW(t); o = const. (15.6)

15.5 Summary

Complete knowledge of statistical properties ofeag®gturn dynamics is
essential for fundamental and applied reasons. 8nctvledge is crucial for
the building and testing of a statistical modelhdinancial market. In spite
of more than 50 years of effort, this goal hasyeitbeen achieved.

The practical relevance of the resolution of thelyem of the statistical
properties of asset return dynamics is relateche dptimal resolution
of the rational pricing of an option. This is a dimcial activity that is
extremely important in present-day financial maskeiVe saw that the
dynamical properties of asset return dynamics hsag the continuous or
discontinuous nature of its changes, the randomaciiar of its volatility,
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and the knowledge of the pdf function of assetrrsty need to be known
in order to adequately pose, and possibly sohepgtion-pricing problem.
Statistical and theoretical physicists can contabto the resolution of
these scientific problems by sharing - with redsenin the other disciplines
involved - the background in critical phenomenapdiered systems, scaling,
and universality that has been developed oveiaste8D years.



Appendix A: Martingales

A new concept was introduced in probability theatyout half a century
ago - the martingale. J. Ville introduced the tebut its roots go back to
P. Levy in 1934 (see ref. [77]). The first compléteory of martingales was
formulated by Doob [42].

Let the observed process be denote S,oyet #, represent a family
of information sets (technically, a ‘filtrationUsing a given set of
information % , one can generate a 'forecast’ of the outcSy1e

E{Sy|F n—1}.
S» is a martingale relative t{ % ,}, 2) if
(i)  Spis known, givel#, (the technical term is thS, is adapted),
(i)  E{jS.]} < oo, ¥rn(unconditional forecasts are finite), and
(iii) E{S;|# n-1} = Su—1, @.S.(n > 1) (i.e., the best forecast of
unobserved future values is the last observatioS,—iJ. HereZis a
probability measure and all expectati E{e}are assumed to be taken with
respect t2.A martingale is defined relative to a given filiat and
probability measure. The essence of a martingaléoide a zero-drift
stochastic process.

This concept is fundamental in mathematical finabheeause, e.g., in a
world in which interest rates are zero and them ra@ arbitrage oppor-
tunities, there exists a unique equivalent martimgaeasure under which

the price of any non-income-producing security égjuis expected future
price [70].
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