
Improved Real-Time Stereo on Commodity Graphics Hardware

Ruigang Yang Marc Pollefeys Sifang Li
Department of Computer Science Department of Computer Science Department of Computer Science

University of Kentucky University of North Carolina at Chapel Hill University of Kentucky
Lexington, Kentucky, USA Chapel Hill, North Carolina, USA Lexington, Kentucky, USA

Abstract
This paper presents a detailed description of an advanced
real-time correlation-based stereo algorithm running com-
pletely on the graphics processing unit (GPU). This is im-
portant since it allows to free up the main processor for
other tasks including high-level interpretation of the stereo
results. Compared to previous GPU-based stereo imple-
mentations our implementation includes some advanced
features such as adaptive windows and cross-checking.

By taking advantage of advanced features of recent
GPUs the proposed algorithm is also a lot faster than pre-
vious implementations. Our implementation running on an
ATI Radeon 9800 graphics card achieves over 289 million
disparity evaluations per second including all the overhead
to download images and read-back the disparity map, which
is several times faster than commercially available CPU-
based implementations.

1 Introduction
Depth from stereo has traditionally been, and continues to
be one of the most actively researched topics in computer
vision. While some recent algorithms have obtained excel-
lent results by casting the stereo problem as a global opti-
mization problem, real-time applications today have to rely
on local methods, most likely correlation-based ones, to ob-
tain dense depth maps in real time and online.

It is only recently that real-time implementations of
stereo vision became possible on commodity PCs, with the
help of rapid progress in CPU clock speed, and assem-
bly level optimizations utilizing special extensions of the
CPU instruction set, such as the MMX extension from In-
tel. While it is a tremendous achievement that some of them
could perform in the order of 100 million disparity estima-
tions per second (Mde/s) in software [9, 10, 11, 13]1, there
are few CPU cycles left to perform other tasks including

1The number of disparity evaluations per seconds corresponds to the
product of the number of pixels times the disparity range times the obtained
frame-rate and therefore captures the performance of a stereo algorithm in
a single number.

high-level interpretation of the stereo results. In many real-
time applications, such as robot navigation, to calculate a
raw depth map is only the first step in the entire processing
pipeline.

Recently, driven by consumer demands for better real-
ism in computer-generated images, the graphic processing
unit (GPU) on the graphics board has become increasingly
programmable, to the point that it is now capable of ef-
ficiently executing a significant number of computational
kernels from many non-graphical applications.

In this paper, we present a correlation-based stereo algo-
rithm that is completely implemented on the GPU. Many
advanced features such as adaptive window and cross-
checking are included in our implementation. Compared
with previous approaches that use GPU accelerations [25,
4], our optimized implementation achieves a significant
speed boost even with the same type of graphics hardware.
In addition, we have measured the accuracy of our approach
using the widely used ground truth data from Scharstein and
Szeliski [20]. When real-world images are used, our ap-
proach compares favorably with several non real-time meth-
ods.

2 Related Work
In this section, we first present an overview of stereo al-
gorithms, in particular, real-time ones. Then, for motiva-
tion and clarity, we explain the basic architecture of modern
GPUs.

2.1 Stereo Reconstruction
Stereo vision is one of the oldest and most active re-
search topics in computer vision. It is beyond the scope
of this paper to provide a comprehensive survey. Interested
readers are referred to a recent survey and evaluation by
Scharstein and Szeliski [21]. While many stereo algorithms
obtain high-quality results by performing optimizations, to-
day only correlation-based stereo algorithms are able to pro-
vide a dense (per pixel) depth map in real time on standard
computer hardware.

Only a few years ago even correlation-based stereo al-
gorithms were out of reach of standard computers so that
special hardware had to be used to achieve real-time perfor-
mance [8, 12, 23, 13, 6].

In the meantime, with the tremendous advances in
computer hardware, software-only real-time systems be-
gin to merge. For example, Mulligan and Daniilidis pro-
posed a new trinocular stereo algorithm in software [16]
to achieve 3-4 frames/second on a single multi-processor
PC. Hirschmuler introduced a variable-window approach
while maintaining real-time suitability [10, 9]. Commer-
cial solutions are also available. The stereo algorithm from
Point Grey Research [11] yields approximately 80Mde/s on
a 2.8Ghz processor, at 100% utilization.

All these methods used a number of techniques to accel-
erate the calculation, most importantly, assembly level in-
struction optimization using Intel’s MMX extension. While
the reported performance is sufficient to obtain dense-
correspondences in real-time, there are few CPU cycles left
to perform other tasks including high-level interpretation of
the stereo results.

Recently, Yang et al [26] proposed a completely different
approach. They presented a real-time multi-baseline sys-
tem that takes advantage of commodity graphics hardware.
The system was mostly aimed at novel view generation, but
could also return depth values. The approach used the pro-
grammability of modern graphics hardware to accelerate the
computation. But it was limited to use a 1 × 1 correla-
tion window. Later, Yang and Pollefeys [25] introduced a
pyramid-shaped correlation kernel that strikes a balance be-
tween large windows (more system errors) and small win-
dows (more ambiguities), and can very efficiently be eval-
uated on graphics hardware. Almost around the same time,
Zach et al. introduced a mesh-based stereo algorithm that
lends itself well on commodity graphics hardware [4].

The method we propose in this paper is most related to
these techniques. Based on [25], we introduce a number of
improvements and optimizations, such as accurate evalua-
tion of matching costs, adaptive window, cross-checking,
multiple-disparity packing, to improve both the accuracy
and speed of stereo reconstruction.

2.2 A Brief Review of Modern Graphics
Hardware

Frame
Buffer

Geo.
Primit.

Vertex
Proc.

Rasteri-
zation

Frag.
Proc.

Figure 1: Rendering Pipeline

GPUs are dedicated processors designed specifically to
handle the intense computational requirements of display

graphics, i.e., rendering texts or images over 30 frames per
second. As depicted in Figure 1, a modern GPU can be
abstracted as a rendering pipeline for 3D computer graphics
(2D graphics is just a special case) [22].

The inputs to the pipeline are geometric primitives, i.e.,
points, lines, polygons; and the output is the framebuffer–a
two-dimensional array of pixels that will be displayed on
screen.

The first stage operates on geometric primitives de-
scribed by vertices. In this vertex-processing stage vertices
are transformed and lit, and primitives are clipped to a view-
ing volume in preparation for the next stage, rasterization.
The rasterizer produces a series of framebuffer addresses
and color values, each is called a fragment that represents
a portion of a primitive that corresponds to a pixel in the
framebuffer.

Each fragment is fed to the next fragment processing
stage before it finally alters the framebuffer. Operations in
this stage include texture mapping, depth test, alpha blend-
ing, etc.

Until a few years ago, commercial GPUs, such as the
RealityEngine from SGI [2], implement in hardware a fixed
rendering pipeline with configurable parameters. As a result
their applications are restricted to graphical computations.
Driven by the market demand for better realism, the most
recent generation of commercial GPUs such as the NVIDIA
GeForce FX [18] and the ATI Radeon 9800 [3] added sig-
nificant programmable functionalities in both the vertex and
the fragment processing stage(see Figure 1). They allow de-
velopers to write a sequence of instructions to modify the
vertex or fragment output. These programs are directly ex-
ecuted on the GPUs to achieve comparable performance to
fixed-function GPUs. For example, the NVIDIA GeForce
FX series can reach a peak performance of 6 Gflops in
the vertex processor and 21 Gflops in the fragment proces-
sor [15].

Many researchers, including us, have recognized
the computation power of GPUs for non-graphical
applications. Interested readers are referred to
http://www.gpgpu.org for a collection of ex-
amples of applications successfully implemented on the
GPU.

3 Method
Given a pair of images, the goal of a stereo algorithm is
to establish pixel correspondences between the two images.
The correspondence can be expressed in general as a dispar-
ity vector, i.e., if PL(x, y) and PR(x′, y′) are corresponding
pixels in the left and right image respectively, then the dis-
parity of PL(x, y) and PR(x′, y′) is defined as the differ-
ence of their image coordinates–[x − x′, y − y′]. There-
fore, the output of a stereo algorithm is a disparity map, i.e.,

a map that records the disparity vector for every pixel in
one image (the reference image) – the disparity map for the
other image is automatically defined because of the symme-
try in disparity vectors.

Rectifi-
cation

Cost
Compu.

Cost
Aggre-
gation

Disparity
Selection

Figure 2: Block diagram of our stereo algorithm

Illustrated in Figure 2, our algorithm contains four ma-
jor steps: rectification, matching cost computation, cost ag-
gregation, and finally disparity selection. Rectification in-
volves a 2D projective transformation for each image so
that the epipolar lines are aligned with scan lines. In this
case, the disparity vector degrades to a scalar since corre-
sponding pixels must be on the same scan line, i.e., y ≡ y′.
We choose to work with rectified images since it brings a
number of performance advantages (we will discuss more
later). In the second step, a matching cost for every possi-
ble disparity value for each pixel is computed. To reduce
the ambiguity in matching, the cost is summed over a small
neighboring window (support region) in the third aggrega-
tion step. The implicit assumption made here is that the sur-
face is locally smooth and frontal-parallel (facing the cam-
era), so neighboring pixels are likely to have the same dis-
parity value. In the last disparity selection step, we use a
“winner-take-all” strategy: simply assign each pixel to the
disparity value with the minimum cost.

While our algorithm resembles a classic stereo vision al-
gorithm, implementing it efficiently on a GPU is challeng-
ing because of GPU’s unique programming model. In the
next few sections, we will discuss how to map these steps
on graphics hardware to receive maximum acceleration.

3.1 Rectification
The standard approach to perform image-pair rectification
consist of applying 3 × 3 homographies to the stereo im-
ages that will align epipolar lines with corresponding scan-
lines [7]. This can be efficiently implemented as a projec-
tive texture mapping on a GPU. It is also a common practice
to correct lens distortions at the same time. Unlike rectifi-
cation, dealing with lens distortions requires a non-linear
transformation. A common optimization is to create a look-
up table that encodes the per-pixel offset resulting from lens
distortion correction and the rectifying homography. The
latest generation of graphics hardware supports dependent-
texture look-up that makes precise per-pixel correction pos-
sible. With older graphics hardware, this warping can be
approximated by using a tesselated triangular mesh. This
type of approach would also allows to use more advanced

non-linear rectification transformations that can be neces-
sary of the epipoles are in (or close to) the images [19].

3.2 Matching cost computation
A widely used matching cost is the the absolute difference
between the left and right pixel intensities:

|IL(x, y) − IR(x + d, y)| . (1)

where d is the hypothesized disparity value. Under the Lam-
bertian surface assumption, a pair of corresponding pixels
in the left and right view should have identical intensities,
leading to a zero(optimal) matching cost.

Since the images are rectified, every disparity value cor-
responds to a horizontal shift in one of the images. In our
implementation, we store the two input images as two tex-
tures. For each disparity hypothesis d, we draw a screen-
sized rectangle with two input textures, one of them be-
ing shifted by d pixels. We use the fragment program to
compute the per-pixel absolute difference, which is written
to the framebuffer. The absolute difference (AD) image is
then transferred to a texture, making the framebuffer ready
for the matching cost from a different disparity value. To
search over N disparity hypothesis, N rendering passes are
needed.

In this baseline implementation, there are several places
that can be improved using advanced features available in
the newer generation of GPUs.

First is the copy from framebuffer to texture. This can
eliminated by using the P-buffer extension [1]. P-buffer is a
user-allocated off-screen buffer for fragment output. Unlike
the framebuffer, it can be used directly as a texture. In our
implementation, we create one or more P-buffers depending
on the disparity search range. Each P-buffer should be as
large as possible so that multiple AD images can be stored
in a single P-buffer to reduce the switching overhead.

Another optimization is to use the vector processing ca-
pability of graphics hardware. One possibility is to pre-pack
the input images into the four channels of textures. Both
images are first converted into gray-scale ones (if they are
color); then they are replicated into all four channels of the
corresponding texture, but one of them (say the right one) is
shifted incrementally in each channel, i.e., the red channel
stores the original right image, the green channel stores the
original right image horizontally shifted by one pixel, so on
and so forth. With these packed images, we can compute
the matching costs for four consecutive disparity values in
a single pass. But this approach discards the color informa-
tion, we instead implemented a quite complicated fragment
program to compute the matching costs over four dispar-
ity values in a single pass. It essentially retrieves one pixel
from the reference image, and four pixels from the other im-
age that correspond to disparity values of d to d + 3. Then

four AD values are calculated and packed into one RGBA
fragment output. Since these operations can be pipelined,
we noticed little performance degradation compared to the
pre-packing approach.

3.3 Cost Aggregation
While it is possible to assign disparity values directly based
on the per-pixel difference values from multiple images
[14, 26], it is necessary to use larger support region in the
stereo case with only two input images.

Stereo algorithms typically sum the matching cost over a
small window to increase the robustness to noise and texture
variation. However, choosing the size of the aggregation
window is a difficult problem. The probability of a mis-
match goes down as the size of the window increases [17].
However, using large windows leads to a loss of accuracy
and to the possibility of missing some important image fea-
tures. This is especially so when large windows are placed
over occluding boundaries. This problem is typically dealt
with by using a hierarchical approach [8], or by using spe-
cial approaches to deal with depth discontinuities [10].

More recently, Yang and Pollefeys introduced a differ-
ent approach that is better suited to the implementation on
a GPU. Their goal was to combine the global characteris-
tics of the large windows with the well-localized minima of
the small windows. They achieved this by adding up the
aggregated matching costs over differently-sized windows.

Modern GPUs have built-in box-filters to efficiently gen-
erate all the mipmap levels needed for texturing. Starting
from a base image P 0 the following filter is recursively ap-
plied:

P i+1
u,v =

1

4

2v+1∑

q=2v

2u+1∑

p=2u

P i
p,q,

where (u, v) and (p, q) are pixel coordinates. Therefore, it
is very efficient to sum values over 2n × 2n windows. Note
that at each iteration of the filter the image size is divided
by two. Therefore, a disadvantage of this approach is that
the cost summation can only be evaluated exactly at every
2n × 2n pixel location. For other pixels, approximate val-
ues can only be obtained by interpolation.

We choose to use an adaptive window that can be accu-
rately evaluated at every pixel location. Note by enabling
bilinear texture interpolation and sampling in the middle of
4 pixels, it is possible to average those pixels. To sum over
a large window, we implement a two-pass algorithm. In the
first pass, we draw every AD image with orthographic pro-
jection and a fragment program is implemented to sample
and sum the AD image at four different locations per pixel
(shown in Figure 3(a)); this is equivalent to sum over a 4×4
window. The resulting sum-of-absolute-difference (SAD)
image is stored in another P-buffer and used as a texture for

(a) (b)

(c)

Figure 3: Adaptive window for cost aggregation. (a) sum the
cost over a 4× 4 windows with four bilinearly interpolated values
(sampled at the circle locations). (b) in the second pass, four more
SAD values are sampled and the smaller two are added to the SAD
score of the current pixel. Therefore a total of six support windows
is possible, shown in (c).

the second pass, in which the four neighbors of each pixel
are sampled. As shown in Figure 3(b), these four neighbors
are (u−4, v), (u+4, v), (u, v+4), and (u, v−4). Their val-
ues (SAD scores) are sorted, and the smaller two are added
to P (u, v) as the final matching cost. All these operations
are implemented in a fragment program.

Our adaptive scheme has six different support windows,
each corresponding to a different shape configuration–
corner, edge, etc(Figure 3(c)). The one with the minimum
score is used as the aggregated matching cost.

3.4 Disparity Selection

Typical in real-time stereo algorithms, we use a “winner-
take-all” strategy that assigns each pixel to the disparity
value with the minimum cost. This step in fact can be com-
bined with the previous aggregation step. Once a pixel’s
matching cost at a certain disparity is computed, it is sent
to the framebuffer as a depth value while the disparity value
is encoded as the color. In our implementation, we draw
each SAD image sequentially. By enabling the depth test,
each pixel in the final framebuffer will be assigned the color
value (disparity) with the minimum depth (matching cost).
That concludes the stereo computation.

When dealing with packed SAD images, we have to im-
plement a fragment program that finds out the minimum
value among the four channels and compute the correspond-
ing color value.

Cross-Checking So far, we have calculated a disparity
map using one image as the reference. We can apply the
same algorithm with the other image as the reference. This
will yield another disparity map. These two maps may not
be identical due to issues such as occlusions and sampling.
We can therefore remove the inconsistent disparity values
to increase the accuracy. This process is called cross check-

ing [5]. Working with rectified images, it is quite easy to ef-
ficiently implement cross-checking. As shown in Figure 4,
the SAD images (each corresponding a single disparity hy-
pothesis) are aligned with the reference image, therefore
different matching costs for a pixel in the reference image
are aligned in a column in the disparity direction. In the
meantime, different matching costs for a pixel in the other
image are aligned in a diagonal direction. Thus, we just
need to draw the SAD images with an incremental hori-
zonal shift to calculate the second disparity map. The two
disparity maps are copied to textures and compared through
a fragment program. Pixels with inconsistent disparities are
removed.

Figure 4: Cross-checking with rectified images.

3.5 Summary of Implementation

copyToTexture();

Rectification();

for all AD images

sum_4x4();

for all SAD images

depth=AdaptiveWindow();

color=disparity

for all AD images

depth=sumMips(maxMip);

color=disparity;

Use MIPMAP? YesNo

Copy Frame To Texture

Setup AD image offset

Compare two maps

Read back framebuffer

Both maps ready?

Yes
No

Cross-

checking

Cost Aggregation

& Disparity Selection

select P-buffer

for all disparities

computeAD();

Use P-buffer?

Yes

(packing optional)No
Matching Cost

for all disparities

computeAD();

copytoTexture();

Use cross-checking?

Read back

framebuffer

No

Figure 5: A block diagram of our implementation.

We summarize our implementation in Figure 5. Input
images are first sent to the graphics board as textures. Then
in the display routine, we usually draw screen-sized rect-
angles with orthographic projection. The rasterized rectan-
gles together with different textures are fed into the frag-
ment processors, in which the majority of the calculations,
including rectification, absolute difference, and cost aggre-
gation, is carried out on a per-pixel basis. Since a modern

GPU typically has multiple fragment processors that work
in parallel, the calculation is greatly accelerated.

4 Results

We have implemented our proposed method in OpenGL, the
complete sample code is available in [24]. In this section,
we will present some quantitative results both in accuracy
and speed.

For accuracy evaluation, we use the data set from the
Middlebury stereo evaluation page [20]. There are four
stereo pairs, each with a ground truth disparity map. We cal-
culate disparity maps using our method and compare them
with the ground truth. The result is summarized in Table 1,
and some disparity maps are shown in Figure 6 and 7. The
“All” columns show the overall error rates, which is cal-
culated as follows: If a pixel’s disparity differs more than
one from the ground truth, it is considered as a bad match.
The error rate is the ratio between the total number of bad
matches and total number of pixels, excluding the boundary
pixels (which are also marked in the ground truth data). The
Middlebury page uses the same accuracy measure [20]. For
results after cross-checking, we compute the error rate as
the ratio of incorrectly matched pixels and pixels with dis-
parity values, excluding the boundary and occluded pixels
as usual. In these cases, we also calculate the percentage
of “missing” pixels. These numbers are displayed in the
“Miss” columns.

Alg Tsukuba Sawtooth Venus Map
All Miss All Miss All Miss All Miss

MIP 7.07 0 10.4 0 13.3 0 2.33 0
AW4 9.68 0 5.79 0 15.7 0 0.91 0
MPX 2.96 22.5 6.76 13.1 4.96 16.9 0.69 12.7
AWX 3.33 28.5 4.02 19.1 2.46 35.6 0.80 22.2

Table 1: Reconstruction Accuracy. All numbers are in per-
centage. “All” is the overall error rate. “Miss” is the per-
centage of pixels with undefined disparity values due to
the inconsistency from cross-checking. Four different algo-
rithms are tested; they are the mipmap method (MIP), the
adaptive window method (AW4), and their derivations with
cross-checking (MPX and AWX).

Several methods are tested. They are the mipmap
method (MIP) that is introduced in [25], the adaptive
window method (AW4), and their derivations with cross-
checking (MPX and AWX). The number of mipmap level
used in the MIP method is set to six cross all tests, and
the AW4 method has no parameter. Looking into the re-
sults, we can find several interesting observations. First, the
AW4 method does preserve depth continuity much better

Figure 6: Estimated disparity maps from the Tsukuba set.
Methods used are MIP, AW4, MPX, AWX (from left to
right, top to down). Pure white in maps resulting from
cross-checking indicates missing pixels.

than the mipmap method (see Figure 7), but the overall er-
ror rates are similar. Secondly, cross-checking substantially
reduces the error rate by half or more, but in the meantime
causes many pixels with no disparity value. Thirdly, while
the results from real images (Tsukuba and Map) are within
the expectation of a local correlation-based algorithm and
better than several non-realtime methods (see [20]), the re-
sults from the remaining synthetics images are substantially
worth than those listed on the Middlebury page. We were
initially puzzled by this outcome but we now believe it is
due to the lack of precision in the AD image since the
matching cost is stored as a unsigned character. This can be
improved by using floating point textures. However in real
applications, the image noise probably outweighs the inac-
curacy caused by storing the matching cost as an unsigned
character.

In term of speed, we test our implementation on an ATI
Radeon 9800 XT card with 256 MB of graphics memory.
The card is housed in a 2.8 Ghz PC with 512 MB of main
memory. We experimented with five methods, MIPMAP
(MIP), adaptive window (AW4), and MIPMAP stored in
P-buffer (MPB), MIPMAP with packed AD images in P-
buffer (MPP), and MIPMAP stored in P-buffer with cross-
checking (MPB X). The MIPMAP summation level is set
to six. The performance data is summarized in Table 2
with the first two rows showing various overheads. For each
method, the time to calculate a disparity map for different
size input and disparity range is displayed. These numbers
do not include the overhead, but we do include the overhead
to calculate the throughput: million disparity evaluation per
second (Mde/s).

As we can see in Table 2, our implementation can reach
289 Mde/s, which is achieved by using P-Buffer and packed

Figure 7: Estimated disparity maps from other data sets.
Images on the left are computed with the MIP method,
while these on the right are from the AW4 method.

AD images. This performance compares favorably with
software stereo implementations, such as the package from
Point Grey Research [11] with an estimated 80 Mde/s on a
2.8Ghz PC. In addition, we still have the majority of the
CPU cycles available for other tasks since our approach
runs on a GPU. There are also a few numbers listed as “not
available” because of the memory limitation in the graphics
hardware–it cant allocate enough P-buffers to store all the
AD images.

5 Conclusion
We have introduced techniques to implement a complete
stereo algorithm on commodity graphics hardware. Com-
pared to previous approaches using GPUs [25, 4], our ap-
proach includes several major improvements, such as ac-
curate evaluation of matching costs, adaptive window, and
cross-checking. Thanks to rapid advancement in graphics
hardware and careful algorithm design, all the calculations
are performed by the GPU, avoiding the GPU-CPU commu-
nication bottleneck as in [4]. Performance tests have shown
that our implementation running on an ATI Radeon 9800
graphics card can calculate up to 289 million disparity eval-
uations per second.

size Download (ms) Read-back (ms) Rectification (ms)
Overhead 512 1.12 × 2 6.25 3.2 × 2

256 0.29 × 2 1.62 0.6 × 2

Size Disp. MIP AW4 MPB MPP MPB X
Range (ms) (Mde/s) (ms) (Mde/s) (ms) (Mde/s) (ms) (Mde/s) (ms) (Mde/s)

16 24 108 33.8 86 19.5 122 15.6 138 31.3 182
5122 32 47.7 134 67.1 102 37.7 159 28.9 192 59.8 225

64 94.9 153 133.6 113 n/a n/a 55.2 239 n/a n/a
94 141.9 161 199.7 117.3 n/a n/a 72.1 289 n/a n/a
16 8.5 88 9 84 7 101 5.7 115 9.8 158

2562 32 16.8 104 17.7 99 10.8 148 9 169 16.4 212
64 33.5 114 35.2 109 18.6 191 15.8 218 29.6 254
96 50.1 118 52.5 113 28.3 198 22.4 243 44.2 264

Table 2: Performance on an ATI Radeon 9800 card. The maximum mipmap level is set to six in all MIPMAP-based tests.
The time per reconstruction does not include the overhead, while the calculation for the million disparity evaluations/second
(Mde/s) does.

Looking into the feature, we are looking at ways to
efficiently implement more advanced reconstruction algo-
rithms on graphics hardware. This work will be eased with
newer generations of graphics hardware providing more and
more programmability. We also hope that our method in-
spires further thinking and additional new methods to ex-
plore the full potentials of GPUs for real-time vision.

Acknowledgments
The authors would like to thank ATI and NVIDIA for their
generous hardware donations and technical support. The
work is supported in part by fund from the office of research
at the University of Kentucky and NSF grant IIS-0313047.

References
[1] OpenGL Specification 1.4, August 2003.

http://www.opengl.org/documentation/specs/ ver-
sion1.4/glspec14.pdf.

[2] K. Akeley. Realityengine graphics. In Proceedings of SIGGRAPH,
1993.

[3] ATI Technologies Inc. ATI Radeon 9800, 2003.
http://www.ati.com/products/radeon9800.

[4] C. Zach C., A. Klaus, and K. Karner. Accurate Dense Stereo Re-
construction using Graphics Hardware. In EUROGRAPHICS 2003,
pages 227–234, 2003.

[5] S. D. Cochran and G. Medioni. 3D Surface Description from Binoc-
ular Stereo. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 14(10):981–994, 1992.

[6] A. Darabiha, J. Rose, and W. J. MacLean. Video-Rate Stereo Depth
Measurement on Programmable Hardware. In Proceedings of Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages
203–210, 2003.

[7] O. Faugeras. Three-Dimensional Computer Vision: A Geometric
Viewpoint. MIT Press, 1993.

[8] O. Faugeras, B. Hotz, H. Mathieu, T. Viville, Z. Zhang, P. Fua,
E. Thron, L. Moll, G. Berry, J. Vuillemin, P. Bertin, and C. Proy.
Real time sorrelation-based stereo: Algorithm, amplementations and
application. Technical Report 2013, INRIA, August 1993.

[9] Heiko Hirschmuler. Improvements in Real-Time Correlation-Based
Stereo Vision. In Proceedings of IEEE Workshop on Stereo and
Multi-Baseline Vision, pages 141–148, December 2001.

[10] H. Hirschmuller, P. Innocent, and J. Garibaldi. Real-Time
Correlation-Based Stereo Vision with Reduced Border Errors. In-
ternational Journal of Computer Vision, 47(1-3), April-June 2002.

[11] Point Grey Research Inc. http://www.ptgrey.com.
[12] T. Kanade, A. Yoshida, K. Oda, H. Kano, and M. Tanaka. A Stereo

Engine for Video-rate Dense Depth Mapping and Its New Applica-
tions. In Proceedings of Conference on Computer Vision and Pattern
Recognition, pages 196–202, June 1996.

[13] K. Konolige. Small Vision Systems: Hardware and Implementation.
In Proceedings of the 8th International Symposium in Robotic Re-
search, pages 203–212. Springer-Verlag, 1997.

[14] K. Kutulakos and S. M. Seitz. A Theory of Shape by Space Carving.
International Journal of Computer Vision (IJCV),, 38(3):199–218,
2000.

[15] K. Moreland and E. Angel. The FFT on a GPU. In SIG-
GRAPH/Eurographics Workshop on Graphics Hardware 2003 Pro-
ceedings, pages 112–119, 2003.

[16] J. Mulligan, V. Isler, and K. Daniilidis. Trinocular Stereo: A New Al-
gorithm and its Evaluation. International Journal of Computer Vision
(IJCV), Special Issue on Stereo and Multi-baseline Vision, 47:51–61,
2002.

[17] H. Nishihara. PRISM, a Pratical Real-Time Imaging Stereo Matcher.
Technical Report A.I. Memo 780, MIT, 1984.

[18] NVIDIA Corporation. GeForce FX, 2003.
http://www.nvidia.com/page/fx desktop.html.

[19] M. Pollefeys, R. Koch, and L. Van Gool. A Simple and Efficient
Rectification Method for General Motion. In Proceedings of Inter-
national Conference on Computer Vision (ICCV), pages 496–501,
Corfu, Greece, 1999.

[20] D. Scharstein and R. Szeliski. www.middlebury.edu/stereo.
[21] D. Scharstein and R. Szeliski. A Taxonomy and Evaluation of Dense

Two-Frame Stereo Correspondence Algorithms. International Jour-
nal of Computer Vision, 47(1):7–42, May 2002.

[22] M. Segal and K. Akeley. The OpenGL Graphics System: A Specifi-
cation (Version 1.3), 2001. http://www.opengl.org.

[23] John Woodfill and Brian Von Herzen. Real-Time Stereo Vision on the
PARTS Reconfigurable Computer. In Kenneth L. Pocek and Jeffrey
Arnold, editors, IEEE Symposium on FPGAs for Custom Computing
Machines, pages 201–210, Los Alamitos, CA, 1997. IEEE Computer
Society Press.

[24] R. Yang. http://galaga.netlab.uky.edu/ ryang/research/ViewSyn/ re-
altime.htm.

[25] R. Yang and M. Pollefeys. Multi-Resolution Real-Time Stereo on
Commodity Graphics Hardware. In Proceedings of Conference on
Computer Vision and Pattern Recognition (CVPR), pages 211–218,
2003.

[26] R. Yang, G. Welch, and G. Bisop. Real-Time Consensus-Based
Scene Reconstruction Using Commodity Graphics Hardware. In
Proceedings of Pacific Graphics 2002, pages 225–234, Beijing,
China, October 2002.

