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Abstract. Towards the goal of correctness and reliability of hybrid systems,
we continue the nonstandard static analysis program where hybrid dynamics
is turned into purely discrete one with explicit use of infinitesimals. While our
previous results have focused on deductive verification by program logics, the
current work aims at automation and enhanced scalability by extending abstract
interpretation—a technique known for its ample scalability and widespread use
in various verification tools—with infinitesimals. Our theoretical results include
soundness and termination via uniform widening operators; and our prototype
implementation successfully verifies some benchmark examples.

1 Introduction

Hybrid systems exhibit both discrete jump and continuous flow dynamics. Quality assur-
ance of such systems are of paramount importance due to the current ubiquity of cyber-
physical systems (CPS) like cars, airplanes, and many others. For the formal verification
approach to hybrid systems, the challenges are: 1) to incorporate flow-dynamics; and 2)
to do so at the lowest possible cost, so that the discrete framework smoothly transfers
to hybrid situations. A large body of existing work uses differential equations explicitly
in the syntax; see the discussion of related work below.

In [17], instead, an alternative approach of nonstandard static analysis—combining
static analysis and nonstandard analysis—is proposed. Its basic idea is to introduce a
constant dt for an infinitesimal (i.e. infinitely small) value, and turn flow into jump.
With dt, the continuous operation of integration can be represented by a while-loop,
to which existing discrete techniques such as Hoare-style program logics readily apply.
For a rigorous mathematical development we employed nonstandard analysis (NSA)
beautifully formalized by Robinson [16].

Concretely, in [17] we took the common combination of a WHILE-language and
a Hoare logic (e.g. in the textbook [19]); and added a constant dt to obtain a model-
ing and verification framework for hybrid systems. Its components are called WHILEdt

and HOAREdt. The soundness of HOAREdt is proved against denotational semantics
defined in the language of NSA. Subsequently in the nonstandard static analysis pro-
gram: in [13] we presented a prototype automatic theorem prover for HOAREdt; and
in [18] we applied the same idea to stream processing systems, realizing a verification
framework for signal processing as in Simulink.
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Underlying these technical developments is the idea of what we call sectionwise
execution, illustrated by the following example.

Example 1.1 Let celapse be the program on the right. The value
of dt is infinitesimal; therefore the while loop will not terminate
within finitely many steps. Nevertheless it is somehow intuitive to
expect that after an “execution” of this program, the value of t
should be infinitesimally close to 1.

t := 0 ;
while t ≤ 1 do
t := t+ dt

t := 0 ;
while t ≤ 1 do
t := t+ 1

i+1

One possible way of thinking is to imagine sectionwise execu-
tion. For each natural number i we consider the i-th section of the
program celapse, denoted by celapse|i and shown on the right. Con-
cretely, celapse|i is obtained by replacing the infinitesimal dt in celapse
with 1

i+1 . Informally celapse|i is the “i-th approximation” of the original celapse.
A section celapse|i does terminate within finite steps and yields 1 + 1

i+1 as the value
of t. Now we collect the outcomes of sectionwise executions and obtain a sequence

( 1 + 1, 1 + 1
2
, 1 + 1

3
, . . . , 1 + 1

i
, . . . ) (1)

which is thought of as a progressive approximation of the actual outcome of the original
program celapse. Indeed, in the language of NSA, the sequence (1) represents a hyperreal
number r that is infinitesimally close to 1.

We note that a program in WHILEdt is not executable in general: the program celapse
executes infinitely many iterations. It is however an advantage of static approaches to
verification, that programs need not be executed to prove their correctness. Instead,
well-defined mathematical semantics suffices and supports deductive reasoning. This is
what we do, with the denotational semantics of WHILEdt exemplified in Example 1.1.

Our Contribution In the previous work [13,17,18] invariant discovery has been a big
obstacle in scalability of the proposed verification techniques—as is usual in deductive
verification. The current work, as a first step towards scalability of our approach, ex-
tends abstract interpretation [4] with infinitesimals. The abstract interpretation method-
ology is known for its ample applicability (it is employed in symbolic model checking
as well as many deductive techniques) and scalability (the static analyzer Astrée [6] has
been successfully used e.g. for Airbus’s flight control system).

Our theoretical contribution includes: the theory of hyper abstract interpretation
where well-known abstract domains, like the ones by intervals and convex polyhedra,
are “∗-transformed” to the abstract domains for hyperreals; their soundness in over-
approximating semantics of WHILEdt programs; and introduction of the notion of uni-
form widening operators. With the latter, inductive approximation is guaranteed to ter-
minate within finitely many steps—even after extension to the nonstandard setting. We
show that many known widening operators, if not all, are indeed uniform.

These theoretical results form a basis of our prototype implementation, that suc-
cessfully analyzes: water-level monitor, a common example of piecewise-linear hybrid
dynamics; and also thermostat that is beyond piecewise-linear.

Organization In §2 we review preliminaries on: nonstandard analysis; the modeling
language WHILEdt from [17]; and abstract interpretation. In §3 we extend the theory of
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abstract interpretation with infinitesimals and build the theory of nonstandard abstract
interpretation. An example of water-level monitor is analyzed in §4, using convex poly-
hedra and the widening ∇M [10, 12]. There we present our prototype implementation
and the experiment results, too.

2 Preliminaries

2.1 Nonstandard Analysis

Here we list a minimal set of necessary definitions and results in nonstandard analysis
(NSA) [16]. Some details that will be needed in our proofs are deferred to Appendix A;
further details of NSA are found e.g. in [8, 14].

Hyperreals We fix an index set I = N, and an ultrafilter F ⊆ P(I) that extends the
cofinite filter Fc := {S ⊆ I | I \ S is finite}. Its properties to be noted: 1) for any
S ⊆ I , exactly one of S and I \ S belongs to F ; 2) if S is cofinite (i.e. I \ S is finite),
then S belongs to F .

Definition 2.1 (hyperreal r ∈ ∗R) We define the set ∗R of hyperreal numbers (or hy-
perreals) by ∗R := RI/∼F . It is therefore the set of infinite sequences on R modulo
the following equivalence ∼F : we have (a0, a1, . . . ) ∼F (a′0, a

′
1, . . . ) if

{i ∈ I | ai = a′i} ∈ F , for which we say “di = d′i for almost every i.” (2)

A hypernatural n ∈ ∗N is defined similarly.

It follows that: two sequences (ai)i and (a′i)i that coincide except for finitely many
indices i represent the same hyperreal. The predicates besides = (such as<) are defined
in the same way. A notable consequence is the existence of an infinitesimal number:
a hyperreal ω−1 := [ (1, 12 ,

1
3 , . . . ) ] is positive (0 < ω−1) but is smaller than any

(standard) positive real r, since the latter is identified with the hyperreal [(r, r, . . . )].
A hyperreal r is limited if it is not infinite, i.e. if there is a standard positive real

K ∈ R such that −K < r < K. It is well-known (see [8, 14]) that a limited hyperreal
r has a unique standard real that is infinitely close to r. This standard real is called the
shadow of r and denoted by sh(r). The notion of shadow is a generalization of that of
limit: if (ai)i converges then sh

(
[(a0, a1, . . . )]

)
= limi→∞ ai. See e.g. [8, 14].

Superstructure What we need from the logical machinery of NSA goes beyond the
elementary fragment we just presented. The advanced fragment employs a set theory-
like first-order language LX and a so-called superstructure as a model.

A superstructure is a “universe,” constructed step by step from a certain base set X
(whose typical examples are R and ∗R). We assume N ⊆ X .

Definition 2.2 (superstructure) A superstructure V (X) overX is defined by V (X) :=⋃
n∈N Vn(X), where V0(X) := X and Vn+1(X) := Vn(X) ∪ P(Vn(X)).
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(Ordered) pairs (a, b) and tuples (a1, . . . , am) are defined in V (X) as is usually
done in set theory, e.g. (a, b) := {{a}, {a, b}}. The set V (X) is closed under many
set formation operations. For example the function space a → b is thought of as a
collection of special binary relations (i.e. a→ b ⊆ P(a× b)), hence is in V (X).

The First-Order Language LX We use the following first-order language LX , defined
for each choice of the base set like R and ∗R.

Definition 2.3 (the language LX ) Terms in LX consist of: variables x, y, x1, x2, . . . ;
and a constant a for each entity a ∈ V (X).

Formulas in LX are constructed as follows.

– The predicate symbols are = and ∈; both are binary. The atomic formulas are of
the form s = t or s ∈ t (where s and t are terms).

– Any Boolean combination of formulas is a formula. We use the symbols ∧,∨,¬
and⇒.

– Given a formula A, a variable x and a term s, the expressions ∀x ∈ s.A and
∃x ∈ s.A are formulas.

Note that quantifiers always come with a bound s. The language LX depends on the
choice of X (it determines the set of constants). We shall also use the following syntax
sugars in LX , as is common in NSA.

(s, t) pair (s1, . . . , sm) tuple
s× t direct product
s ⊆ t inclusion, short for ∀x ∈ s. x ∈ t
s(t) function application; short for x such that (t, x) ∈ s
s ◦ t function composition, (s ◦ t)(x) = s(t(x))
s ≤ t inequality in N; short for (s, t) ∈ ≤ where ≤ ⊆ N2

Remark 2.4 The first-order language LX resides in a different level from the lan-
guages like WHILEdt. LX is used to formalize the semantics of those object-level lan-
guages and to prove their meta-properties. LX is a meta-level language in this sense.

Definition 2.5 (semantics of LX ) We interpret LX in the superstructure V (X) in the
obvious way. Let A be a closed formula; we say A is valid if A is true in V (X).

The ∗-Transform and the Transfer Principle The so-called ultrapower construction
yields a canonical map

∗( ) : V (X) −→ V (∗X) , a 7−→ ∗a (3)

that is called the *-transform. It is a map from the universe V (X) of standard entities
to V (∗X) of nonstandard entities. The details of its construction are in Appendix A.

The map ∗( ) becomes a monomorphism, a notion in NSA. Most notably it satisfies
the transfer principle (Lem. 2.7).

Definition 2.6 (*-transform of formulas) LetA be a formula in LX . The *-transform
of A, denoted by ∗A, is a formula in L∗X obtained by replacing each constant a occur-
ring in A with the constant ∗a that designates the element ∗a ∈ V (∗X).
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Lemma 2.7 (the transfer principle) For any closed formula A in LX , A is valid (in
V (X)) if and only if ∗A is valid (in V (∗X)). ut

2.2 The Modeling Language WHILEdt

WHILEdt, a modeling language for hybrid systems based on NSA, is introduced in [17].
It is an augmentation of a usual imperative language (such as IMP in [19]) with a
constant dt that expresses an infinitesimal number.

Definition 2.8 Let Var be the set of variables. The syntax of WHILEdt is as follows:

AExp 3 a ::= x | r | a1 aop a2 | dt
where x ∈ Var, r ∈ R and aop∈ {+,−, ·, /}

BExp 3 b ::= true | false | b1 ∧ b2 | ¬b | a1 < a2
Cmd 3 c ::= skip | x := a | c1; c2 | if b then c1 else c2 | while b do c.

An expression a ∈ AExp is an arithmetic expression, b ∈ BExp is a Boolean expres-
sion and c ∈ Cmd is a command.

In the usual, standard abstract interpretation (without dt), a command c is assigned
its collecting semantics P(Var → R) → P(Var → R) (see e.g. [4]). This is seman-
tics by reachable sets of memory states, as the concrete semantics. Presence of dt in
the syntax of WHILEdt calls for an infinitesimal number in the picture. Therefore we
replace the set R by ∗R; for WHILEdt commands, their collecting semantics is of the
type P(Var→ ∗R)→ P(Var→ ∗R).

Definition 2.9 Collecting semantics for WHILEdt, in Table 1, has the following types.

JaK : (Var→ ∗R)→ ∗R for a ∈ AExp
JbK : (Var→ ∗R)→ B for b ∈ BExp
JcK : P(Var→ ∗R)→ P(Var→ ∗R) for c ∈ Cmd

In [17] and in §1, the semantics of a while loop is defined using the idea of sec-
tionwise execution, instead of as a least fixed point. This is not suited for our current
purpose of employing abstract interpretation—the latter is after all for computing least
fixed points. The collecting semantics in Def. 2.9 (Table 1) does use least fixed points; it
is based on the alternative WHILEdt semantics introduced in [15] (it will also appear in
the full version of [13,17]). The equivalence of the two semantics is established in [15].

In the rest of the paper we restrict the set of variables Var to be finite. This assumption—
a realistic one when we focus on the program to be analyzed—makes our NSA frame-
work much simpler. Therefore P(Var → X) is equal to P(Xn) (X = R or ∗R) for
some n ∈ N; we prefer the latter notation in what follows.

2.3 Abstract Interpretation

Abstract interpretation [7] is a well-established technique in static analysis. We make a
brief review of its basic theory; it is mostly for the purpose of fixing notations.
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JxKσ := σ(x) for each x ∈ Var JtrueKσ := tt

JrKσ := r for each r ∈ R JfalseKσ := ff

Ja1 aop a2Kσ := Ja1K aop Ja2K Jb1 ∧ b2Kσ := Jb1K ∧ Jb2K
JdtKσ := [(1, 1

2
, 1
3
, · · · )] J¬bKσ := ¬(JbKσ)

JskipKS := S

Jx := aKS := {σ[JaKσ/x] | σ ∈ S}
Jc1; c2KS := Jc2K(Jc1KS)

Jif b then c1 else c2KS :=
{Jc1Kσ | σ ∈ S, JbKσ = tt}
∪ {Jc2Kσ | σ ∈ S, JbKσ = ff}

Jwhile b do cKS := lfp(∗Φ(JbK)(JcK))
where Φ : (St→ B ∪ {⊥})→ (P(Var→ R)→ P(Var→ R))→

((P(Var→ R)→ P(Var→ R))→ (P(Var→ R)→ P(Var→ R)))
is defined by Φ(f)(g) = λψ. λS. {ψ(g(σ)) | σ ∈ S, f(σ) = tt} ∪ {σ | σ ∈ S, f(σ) = ff}.

Table 1. WHILEdt collecting semantics

Definition 2.10 (Galois connection) Let (L,v) and (L,v) be posets, and α : L→ L
and γ : L → L be functions. A tuple

(
(L,v), (L,v), α, γ

)
is said to be a Galois

connection if: for each x ∈ L and y ∈ L, we have αx v y ⇔ x v γy. This fact
is denoted by L

α


γ
L; and we call L a concrete domain, L an abstract domain, α an

abstraction function and γ a concretization function.

Proposition 2.11 A Galois connection (L,v)
α


γ

(L,v) extends to monotone endo-

functions. Concretely, it yields a Galois connection (L −→
mono.

L)
~α


~γ

(L −→
mono.

L) where

L −→
mono.

L and L −→
mono.

L are the posets of monotone functions ordered by the pointwise

extension of v and v. The functions ~γ and ~α here are defined by: ~γ(f) = γ ◦ f ◦α and
~α(f) = α ◦ f ◦ γ, respectively. ut

A Galois connection allows us to over-approximate, in the abstract domain L, least-
fixed points in the concrete domain L. Let L

α


γ
L be a Galois connection such that L is

additionally a cpo; F : L→ L be a continuous function on L; and⊥- ∈ L be an element
such that ⊥- v F (⊥- ). The least fixed point relative to ⊥- , denoted by lfp⊥- F , is the least
among the fixed points of F above ⊥- ; by the cpo structure it is given by

⊔
n∈N F

n⊥- .

Proposition 2.12 In the above setting, assume further that: F : L→ L be a monotone
function such that F v ~γ(F ); and that x ∈ L is a prefixed point of F (i.e. F (x) v x)
such that α(⊥- ) v x.

Then x over-approximates lfp⊥- F , that is, lfp⊥- F v γ(x). ut
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In a typical situation where we wish to analyze imperative programs, we useP(Rn)—
the set of subsets of memory states—as a concrete domain L. The programs’ interpre-
tation as functions F on L is defined in a straightforward manner; but computing such
interpretation is nontrivial, principally due to loops. In abstract interpretation one aims
to over-approximate the interpretation of a loop—i.e. lfp⊥- F in L, where F is the inter-
pretation of the loop’s body—exploiting Prop. 2.12. Towards that goal we have to: 1)
find a suitable abstract domain L; 2) interpret the loop’s body as a suitable function F
on L; and 3) find a suitable prefixed point x of F .

For the first task among the above three, not a small number of options have been
proposed in the literature; among them are the interval domain IntvR over R, and the
domain of convex polyhedra CPn, that we will be using later. Once an abstract domain
L is fixed, very often there is standard interpretation of (the loop-free fragment of) an
imperative language on L; this achieves the second task. For the last task (i.e. finding a
prefixed point), the following notion of widening is used (together with narrowing that
we will not be using).

Definition 2.13 (widening operator) Let (L,v) be a poset. A function∇ : L×L→ L
is said to be a widening operator if the following two conditions hold.

– (Covering) For any x, y ∈ L, x v x∇y and y v x∇y.
– (Termination) For any ascending chain 〈xi〉 ∈ LN, the chain 〈yi〉 ∈ LN defined by

y0 = x0 and yi+1 = yi∇xi+1 for each i ∈ N

is ultimately stationary.

A widening operator on a fixed abstract domain L is not at all unique. In this paper we
will discuss two widening operators previously introduced for the IntvR, and three for
CPn.

The use of widening is as in the following proposition: the covering condition en-
sures that the outcome is a prefixed point; and the procedure terminates thanks to the
termination condition.

Proposition 2.14 (convergence of iteration sequences) Let (L,v) be a poset; F :
L→ L be a monotone function; ⊥- ∈ L be such that ⊥- v F (⊥- ); ∇ : L× L→ L be a
widening operator; and 〈Xi〉i∈N ∈ LN be the infinite sequence defined by

X0 = ⊥- ; and, for each i ∈ N, Xi+1 =

{
Xi (if F (Xi) v Xi)

Xi∇F (Xi) (otherwise)

Then the sequence 〈Xi〉i∈N is increasing and ultimately stationary; moreover its limit⊔
i∈NXn is a prefixed point of F such that ⊥- v

⊔
i∈NXn. ut

Example I: Interval Domains The interval domain IntvZ over integers is introduced
in [4]; we will be using its variant IntvR over reals.
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Definition 2.15 (interval domains Intv) The domains of intervals of integers, and of
reals, are defined by

IntvZ := {⊥} ∪ { [l, u] | l ∈ Z ∪ {−∞}, u ∈ Z ∪ {∞}, l ≤ u } ,
IntvR := {⊥} ∪ { [l, u] | l ∈ R ∪ {−∞}, u ∈ R ∪ {∞}, l ≤ u } .

For both of these, the order v is the inclusion order of intervals, with ⊥ being the least.

Each of the above has a Galois connection withL = P(R). For example, the abstraction
function α : P(R) → IntvR maps X ∈ P(R) to the interval [min(X),max(X)]; and
the concretization function γ : IntvR → P(R) maps [l, u] to {r ∈ R | l ≤ r ≤ u}
and ⊥ to ∅. It is straightforward to extend the last Galois connection P(R)
 IntvR to
P(Rn) 
 (IntvR)

n: this is done in a pointwise manner; precisely speaking the latter
arises as a composition of two Galois connections via (P(R))n.

It is straightforward to interpret a (loop-free) imperative program c on the interval
domain, as a monotone function JcKIntv : (IntvR)

n → (IntvR)
n. We have the following

fact that is well-known in the community; we leave the precise syntax for a program c
implicit (one can use a syntax like the one of WHILEdt presented later).

Lemma 2.16 Let c be a loop-free imperative program. We have JcK v ~γ(JcKIntv), where
~γ is the function in Prop. 2.11 applied to P(Rn)
 (IntvR)

n. ut

We go on to describe two widening operators for IntvR that appear in the literature.

Definition 2.17 (widening operator∇Intv [4]) Let Intv = IntvZ or IntvR. The follow-
ing function ∇Intv : Intv × Intv→ Intv is a widening operator on Intv.

[l1, u1]∇Intv[l2, u2] =
[

if l1 ≤ l2 then l1 else −∞, if u1 ≥ l2 then u1 else∞
]

Definition 2.18 (widening operator∇IntvZ,c ) Let c ∈ Z be fixed. The following func-
tion∇IntvZ,c : IntvZ × IntvZ → IntvZ is a widening operator on IntvZ.

[l1, u1]∇IntvZ,c [l2, u2] :=
[

if min(l1, l2) > −c then min(l1, l2) else −∞ ,

if max(u1, u2) < c then max(l1, l2) else∞
]

Example II: the Domain of Convex Polyhedra The domain of convex polyhedra,
introduced in [7], is one of the most commonly used relational abstract domains.

Definition 2.19 (domain of convex polyhedra CPn) An n-dimensional convex poly-
hedron is the intersection of finitely many (closed) affine half-spaces. We denote the set
of convex polyhedra in Rn by CPn. Its poset structurev is given by the inclusion order.

The domain of convex polyhedra is usually defined over integers and that forms a Galois
connection withP(Zn). However, convex polyhedra over reals (or rationals)—although
they have also been used for abstract interpretation [11, 12]—do not form a Galois
connection in which P(Rn) is a concrete domain. Consider a disk; there is no smallest
convex polyhedron that contains it.

We use the following axiomatic “quick fix” that, if theoretically cumbersome, suf-
fices for our goal of program verification.
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Definition 2.20 (approximable subset Rn) A subset S ⊆ Rn of the n-dimensional
Euclidean space is approximable if there exists the smallest polyhedron that contains it.
The set of all approximable subsets S ⊆ Rn is denoted by Apprn.

Lemma 2.21 1. We have a Galois connection Apprn 
 CPn: its concretization car-
ries a convex polyhedron P to P considered as a subset of Rn; and its abstraction
is defined by the definition of Apprn.

2. Let c be a loop-free imperative program, in which n variables occur freely. Its
interpretation JcK : P(Rn)→ P(Rn)—defined in the obvious manner—restricts to
a function JcK : Apprn → Apprn.

3. Let c be the same as above. Its interpretation JcKCP : CPn → CPn can be defined,
much like in [7], using constraint systems and generator systems as presentations
of convex polyhedra. This satisfies JcK v ~γ(JcKCP). ut

What corresponds to Prop. 2.12 needs some care to formulate.

Proposition 2.22 Let F : Apprn → Apprn be a continuous function; ⊥- ∈ Apprn be
such that ⊥- v F (⊥- ); F : CPn → CPn be a monotone function such that F v ~γ(F );
and x ∈ CPn be such that F (x) v x and α(⊥- ) v x.

Then the least fixed point lfp⊥- F relative to ⊥- —it need not lie in Apprn but exists
in P(Rn)—is over-approximated by x, that is, lfp⊥- F v γ(x). ut

The above results let us work with the Galois connection Apprn 
 CPn for static
analysis.

We go on to discuss three widening operators for CPn that appear in the literature.
There we will need to explicitly manipulate presentations of a convex polyhedron by a
constraint system and a generator system. We only present the definition of the former;
further details are found in [7].

Definition 2.23 A constraint system C is a system
{
f1(x) ≤ c1, . . . , fm(x) ≤ cm

}
of (R-coefficient) linear inequalities. The convex polyhedron {x ∈ Rn | fi(x) ≤
ci, ∀i} induced by C is denoted by con(C).

We will be studying three widening operators on CPn in the extended nonstandard
setting. They are namely: the standard widening operator ∇S [9];3 the widening op-
erator ∇M up to M [10, 12]; and the precise widening operator ∇N [2]. We briefly
describe the former two; the definition of the last is omitted for the lack of space.

Definition 2.24 (standard widening∇S) Let P1, P2 ∈ CPn; and C1 and C2 be con-
straints system that induce P1 and P2, respectively. The standard widening operator
∇S : CPn × CPn → CPn is defined by

P1∇SP2 :=


P2 if P1 = ∅

con

(
{ϕ ∈ C1 | C2 implies ϕ, i.e. ϕ is everywhere true in P2}
∪
{
ψ ∈ C2

∣∣∃ϕ ∈ C1. P1 = con(C1[ψ/ϕ])
} )

otherwise.

3 The name “standard” is confusing with the distinction between standard and nonstandard
entities in NSA. The use of “standard” in the former sense is scarce in this paper.
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Intuitively P1∇SP2 is represented by the set of those linear constraints of P1 which are
satisfied by every point of P2. The second argument of ∪ in the second case is there to
deal with singularities and not essential.

The following second widening operator ∇M refines ∇S . This is what we use in
our implementation. Here M is a parameter.

Definition 2.25 (widening up to M , ∇M ) Let P1, P2 ∈ CPn, and M be a (given) fi-
nite set of linear inequalities. The widening operator up to M is defined by

P1∇MP2 :=
(
P1∇SP2

)
∩ con

(
{ϕ ∈M | Pi ⊆ con({ϕ}) for i = 1, 2}

)
.

The parameter M is usually taken to be the set of linear inequalities that occur in the
program under analysis.

3 Abstract Interpretation Augmented with Infinitesimals

Building on the theoretical foundations we have just described, we now present an
abstract interpretation framework for the analysis of WHILEdt programs—and hence
the hybrid dynamics modeled thereby. We introduce two abstract hyperdomains over ∗R
(by intervals and by convex polyhedra) as the transfer of the corresponding (standard,
over R) abstract domains. We then interpret WHILEdt programs in them, and transfer
the five widening operators mentioned in §2.3 to the nonstandard setting. We classify
them into uniform ones—for which termination is guaranteed even in the nonstandard
setting—and nonuniform ones.

3.1 Abstract Domains over Hyperreals

Definition 3.1 (interval hyperdomain ∗IntvR) The interval hyperdomain over ∗R is
defined by

∗IntvR := {⊥} ∪
{
[l, u] | l ∈ ∗R ∪ {−∞}, u ∈ ∗R ∪ {∞}, l ≤ u

}
.

It comes with an obvious Galois connection P(∗R)
 ∗IntvR.

The notation ∗IntvR here might seem strange: it is a variant of IntvR and is hence more
like Intv∗R. The following characterization, however, justifies our notation. In fact the
characterization is what allows us to transfer all the properties of IntvR to ∗IntvR. We
present its proof, since it is a prototype of most of the proofs that follow.

Proposition 3.2 The interval hyperdomain ∗IntvR coincides with ∗(IntvR), the ∗-transform
(see (3)) of the (standard) interval domain IntvR.

Proof. The following LR-sentence is valid in R, by the definition of the set IntvR.

∀x ∈ R.
(
x ∈ IntvR ⇔ x ∈

(
{⊥} ∪ {[l, u] | l ∈ R∪ {−∞}, u ∈ R∪ {∞}, l ≤ u}

) )
.

Therefore by Lem. 2.7, its ∗-transform (a L∗R-sentence)

∀x ∈ ∗R.
(
x ∈ ∗(IntvR)⇔ x ∈

(
{⊥}∪{[l, u] | l ∈ ∗R∪{−∞}, u ∈ ∗R∪{∞}, l ≤ u}

) )
.

is valid in ∗R (where we used Lem. A.2.4). This is the claim itself. ut
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We extend convex polyhedra to the current nonstandard setting, too.

Definition 3.3 (convex polyhedra over ∗R) A convex polyhedron on (∗R)n is an in-
tersection of finite number of affine half-spaces on (∗R)n, that is, the set of points
x ∈ (∗R)n that satisfy a certain finite set of linear inequalities. The set of all convex
polyhedra on (∗R)n is denoted by CP

∗R
n .

It comes with an obvious Galois connection Appr∗R,n 
 CP
∗R
n , where Appr∗R,n ⊆

P((∗R)n) is defined in the same way as in Def. 2.20.

Proposition 3.4 The set CP
∗R
n of all convex polyhedra over ∗Rn is a (proper) subset of

∗CPn, the ∗-transform of the (standard) domain of convex polyhedra over Rn. ut

What lies in the difference between the two sets CP
∗R
n ( ∗CPn is, for example, a disk as

a subset of R2 (hence of ∗R2). In ∗CP2 one can use a constraint systemC whose number
of inequalities is a hypernatural number m ∈ ∗N; using e.g. m = ω = [(0, 1, 2, . . . )]
allows us to approximate a disk with progressive precision.

In the following development of nonstandard abstract interpretation, we will use
∗CPn as an abstract domain since it allows transfer of properties in the standard world
(over R). We note, however, that our over-approximation of the interpretation JcK of a
loop-free WHILEdt program c is always given in CP

∗R
n , i.e. with finitely many linear

inequalities.

3.2 Theory of Hyper Abstract Interpretation

We have seen that the “hyperdomains” ∗IntvR and ∗CPn are in Galois connections to the
concrete domains P(∗R) and Appr∗R,n, respectively; hence to them all the abstract in-
terpretation infrastructure in §2.3 apply. This, however, does not suffice for our purpose
of static analysis of WHILEdt programs. The reason is simply that the interpretation JcK
of a WHILEdt program c may fail to be continuous. A simple counterexample is given
by c ≡ (x:=x+dt).

Fortunately it turns out that we can rely on the ∗-transform (§2.1) of the theory
in §2.3, where it suffices to impose a weaker condition of ∗-continuity—instead of the
(standard) continuity—on the function JcK. This theoretical framework of hyper ab-
stract interpretation, which we shall describe here, is an extension of the transferred
domain theory studied in [3, 18]. Part of the latter is found also in Appendix B.

Definition 3.5 (hyper-Galois connection) A hyper-Galois connection, denoted by ∗L
∗α


∗γ

∗L, is a quintuple
(∗L, ∗L, ∗α, ∗γ) of: the ∗-transform of a poset L; that of a poset L; the

∗-transform ∗α : ∗L → ∗L of a function α : L → L; and the ∗-transform ∗γ : ∗L → ∗L
of γ. We require that the data (L,L, α, γ) forms a Galois connection (Def. 2.10).

The above ∗α is an internal function (i.e. ∗α ∈ ∗(L→ L)); see Appendix A for details.
The notion of ∗-continuous function f ′ : ∗L → ∗L is defined analogously, namely

that f ′ is the ∗-transform of some continuous function f : L→ L. See Appendix B.
Here is the counterpart of Prop. 2.12. As announced, it only requiresF ’s ∗-continuity.
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Theorem 3.6 Let (L,v) be a cpo, (L,v) be a poset such that L
α


γ
L, and consider

the induced hyper-Galois connection ∗L
∗α


∗γ

∗L. Let F : ∗L → ∗L be a ∗-continuous

function; ⊥- ∈ ∗L be such that ⊥- ∗v F (⊥- ), and F : ∗L → ∗L be an internal function
that is monotone with respect to ∗v. Assume that F ∗v (~∗γ)(F ); and that x ∈ ∗L is a
prefixed point of F , i.e. F (x) ∗v x.

Then x over-approximates lfp⊥- F , that is, lfp⊥- F
∗v ∗γ(x). ut

We shall use Thm. 3.6 in over-approximating loop semantics in WHILEdt. Some
care is needed here. By ∗-transforming standard Galois connectionsP(Rn)
 (IntvR)

n

and Apprn 
 CPn we obtain hyper-Galois connections Def. 3.5 to which Thm. 3.6 ap-
plies. The resulting concrete hyperdomains, however, are ∗(P(Rn)) and ∗Apprn; these
are not precisely what we expect, namely P((∗R)n) and Appr∗R,n ⊆ P((∗R)n). The
former two are proper subsets of the latter two, respectively; more specifically the for-
mer consist of all the internal entities (Def. A.3) that reside in the latter.

These gaps are not a problem, by the following result.

Proposition 3.7 1. Let c be a WHILEdt command (that can contain loops). The subset
∗(P(Rn)) of P((∗R)n) is closed under the collecting semantics JcK, that is, JcKS is
internal if S is internal.

2. Let c be a loop-free WHILEdt command (that can contain loops). The subset ∗Apprn
of P((∗R)n) is closed under JcK. ut

Our goal is over-approximation of the semantics of iteration of a loop-free WHILEdt

program c, relying on Thm. 3.6. Towards the goal, the next step is to find a suitable
F : ∗L→ ∗L that “stepwise approximates” F = JcK, the collecting semantics of c.

The next result implies that the ∗-transformation of J KIntv and J KCP (in standard
abstract interpretation, §2.3) can be used in such F .

Proposition 3.8 Let L
α


γ
L be a Galois connection. Assume that F : L → L is

stepwise approximated by F : L → L, that is, F v ~γ(F ). Then the (internal) function
∗F : ∗L→ ∗L is over-approximated by ∗F : ∗L→ ∗L, i.e. ∗F ∗v (∗~γ)(∗F ). ut

We summarize what we observed so far, on nonstandard abstract interpretation.

Corollary 3.9 (soundness of ∗IntvR and ∗CPn for WHILEdt) 1. Let c be a loop-free
WHILEdt command; ⊥- ∈ P((∗R)n) be an internal element (i.e. an element of
∗(P(Rn))); and x ∈ ∗IntvR be such that (∗JcKIntv)(x) ∗v x and ⊥- ∗v x. Then we
have an over-approximation lfp⊥- JcK ∗v x.

2. Let c be a loop-free WHILEdt command; ⊥- ∈ Appr∗R,n be an internal element
(i.e. an element of ∗(P(Rn))); and x ∈ ∗CPn be such that (∗JcKCP)(x) ∗v x and
⊥- ∗v x. Then we have an over-approximation lfp⊥- JcK ∗v x. ut
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3.3 Hyperwidening and Uniform Widening Operators

Towards our goal of using Thm. 3.6, the last remaining step is to find a prefixed point
x, i.e. F (x) ∗v x. This is where widening operators are standardly used; see §2.3.

We can try ∗-transforming a (standard) notion—a strategy that we have used repeat-
edly in the current section. This yields the following result, that has a problem that is
discussed shortly.

Theorem 3.10 Let (L,v) be a poset and ∇ : L × L → L be a widening operator
on L. Let F : ∗L → ∗L be a monotone and internal function; and ⊥- ∈ ∗L be such
that ⊥- ∗v F (⊥- ). The iteration hyper-sequence 〈Xi∈∗N〉—indexed by hypernaturals
i ∈ ∗N—that is defined by

X0 = ⊥- , Xi+1 =

{
Xi (if F (Xi)

∗v Xi)

Xi
∗∇F (Xi) (otherwise)

for all i ∈ ∗N

reaches its limit within some hypernatural number of steps and the limit
⊔
i∈NXi is a

prefixed point of F such that ⊥- ∗v
⊔
i∈NXi. ut

The problem of Thm. 3.10 is that the finite-step convergence of iteration sequences for
the original widening operator is now transferred to hyperfinite-step convergence. This
is not desired. All the entities from NSA that we have used so far are constructs in deno-
tational semantics—whose only role is to ensure soundness of verification methodolo-
gies4 and on which we never actually operate—and therefore their infinite/infinitesimal
nature has been not a problem. In contrast, computation of the iteration hypersequence
〈Xi∈∗N〉 is what we actually compute to over-approximate program semantics; and
therefore its termination guarantee within i ∈ ∗N steps (Thm. 3.10) is of no use.

As a remedy we introduce uniformity of (standard) widening operators. It strengthen
the original termination condition (Def. 2.13) by imposing a uniform bound i for sta-
bility of arbitrary chains 〈xi〉 ∈ LN. Logically the change means replacing ∀∃ by ∃∀.

Definition 3.11 (uniform widening) Let (L,v) be a poset. A function∇ : L×L→ L
is said to be a uniform widening operator if the following two conditions hold.

– (Covering) For any x, y ∈ L, x v x∇y and y v x∇y.
– (Uniform termination) Let x0 ∈ L. There exists a uniform bound i ∈ N such that:

for any ascending chain 〈xk〉 ∈ LN starting from x0, there exists j ≤ i at which the
chain 〈yk〉 ∈ LN, defined as follows, stabilizes (i.e. yj = yj+1).

y0 = x0, yk+1 = yk∇xk+1 for all k ∈ N

It is straightforward that uniform termination implies termination. The following the-
orem is a “practical” improvement of Thm. 3.10; its proof relies on instantiating the
uniform bound i in a suitable LR-formula with a Skolem constant, before transfer.

4 Recall that WHILEdt is a modeling language and we do not execute them
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Theorem 3.12 Let (L,v) be a poset and ∇ ∈ L × L → L be a uniform widening
operator on L. Let F : ∗L → ∗L be a monotone and internal function; and ⊥- ∈ L be
such that ∗⊥- ∗v F (∗⊥- ). The iteration sequence 〈Xi〉i∈N defined by

X0 = ∗⊥- , Xi+1 =

{
Xi (if F (Xi)

∗v Xi)

Xi
∗∇ F (Xi) (otherwise)

for all i ∈ N

reaches its limit within some finite number of steps; and the limit
⊔
i∈NXi is a prefixed

point of F such that ∗⊥- ∗v
⊔
i∈NXi. ut

Note that uniformity of ∇ is a sufficient condition for the termination of nonstan-
dard iteration sequences (by ∗∇); Thm. 3.12 does not prohibit other useful widening
operators in the nonstandard setting. Furthermore, there can be a useful (nonstandard)
widening operator except for the ones ∗∇ that arise via standard ones∇.

We investigate uniformity of some of the commonly-known widening operators

Theorem 3.13 Uniformity of the five widening operators in §2.3 is listed in the table
below. Among them three are uniform; two are not.

interval domain Intv convex polyhedra CPn
∇Intv (Def. 2.17) ∇IntvZ,c (Def. 2.18) ∇S (Def. 2.24) ∇M (Def. 2.25) ∇N ( [2])

X × X X ×
ut

4 Example, Implementation and Experiments

drain

valve

switchy

Water-level monitor is a commonly used example of hybrid sys-
tems [1]. See the figure on the right. There is a water tank with a
constant drain (2 cm per second). When the water level y gets lower
than 5 cm the switch is turned on, which eventually opens up the valve
but only after a time lag of two seconds. While the valve is open, the
water level y rises by 1 cm per second. Once y reaches 10 cm the switch is turned off,
which will shut the valve but again after a time lag of two seconds.

Its WHILEdt model is found in Fig. 1, on the left. Here x is the water level, l is the
counter for the time lag p is the pump switch and s is the signal from the sensor.

The verification goal is to see that the level x stays within 1 cm and 12 cm (1 ≤
x ≤ 12). As is customary in abstract interpretation we turn the program into a con-
trol flow graph, presented in Appendix C. We classify the other variables into continu-
ous/numerical ones (l, x) and discrete ones (p, s). Accordingly we have:

– (∗R2)4 as a concrete domain, corresponding to two continuous values (∗R2) for
each of (p, s) ∈ {(0, 0), . . . , (1, 1)}; and

– (∗CP2)
4 as an abstract domain, the soundness of whose use is guaranteed in Cor. 3.9.

In fixed-point computation we use ∇M , the widening operator up to M (Def. 2.25).
The set M of linear constraints is taken from the program: M = {x ≤ 5, x ≥ 5, x ≤
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(*Water-Level Monitor*)
l := 0; x := 1; p := 1; s := 0;
while true do {

if p = 1 then x := x + dt
else x := x - 2 * dt;

if (x <= 5 && p = 0) then s := 1
else {if (x >= 10 && p = 1)

then s := 1
else s := 0

};
if s = 1 then l := l + dt

else skip;
if s = 1 && l >= 2

then {p := 1 - p; s := 0; l := 0}
else skip

};;

(*Thermostat*)
x := 22; p := 0;
while true do {

if p = 0 then x := x - 3 * x * dt
else x := x + 3 * (30 - x) * dt;

if x >= 22 then p := 0
else {if x <= 18 then p := 1

else skip
}

};;

Fig. 1. Example WHILEdt code

10, x ≥ 10, l ≤ 2, l ≥ 2}. As is common in abstract interpretation (see e.g. [5]), we add
delays of widening by an extrapolation threshold.

The iteration sequence we obtain is depicted in Appendix C, together with other
details. In the end we successfully obtain a prefixed point x and that implies 1 − dt ≤
x ≤ 12 + dt is an invariant. This is what we wanted modulo infinitesimal gaps.
Implementation We implemented a prototype tool for analysis of WHILEdt programs.
The tool currently supports: CPn as an abstract domain; and∇M (Def. 2.25) as a widen-
ing operator. Its input is given by: 1) a WHILEdt program; 2) an initial state; 3) the set
M of linear constraints used in ∇M ; and 4) an extrapolation threshold as well as the
timing of widening delays (the last can also be given interactively). Its output is a con-
vex polyhedron that over-approximates the set of reachable memory states.

Our tool consists principally of the following two components: 1) an OCaml fron-
tend for parsing and forming an iteration sequence; and 2) a Mathematica backend that
executes operations on convex polyhedra. The two components are interconnected by a
C++ program, via MathLink.
Experiments We analyzed two WHILEdt programs—water-level monitor and thermo-
stat (Fig 1)—with our prototype. They are common hybrid system examples; see [1]
and also §4. The experiments were on Apple MacBook Pro with 2.6 GHz Dual-core
Intel Core i5 CPU and 8 GB memory.
Water-Level Monitor This is a piecewise-linear dynamics and a typical example used
in hybrid automata literature. Our tool automates the analysis presented in §4; the exe-
cution time was 34.051 sec.
Thermostat This example exhibits dynamics that is beyond piecewise-linear; and is
hence in principle beyond the reach of hybrid-automaton model checker, unless suit-
able approximation is employed. Our approach of nonstandard abstraction successfully
analyzes this example; without explicit piecewise-linear approximation; we believe this
result witnesses a potential of our approach. Our tool executes in 6.692 sec. and outputs
an approximation from which we obtain an invariant 18− 54 ∗ dt ≤ x ≤ 22+ 24 ∗ dt.

The tool is admittedly of an experimental nature and leaves a lot of room for im-
provement. For example, automatic extraction of the set M from the program will be
straightforward. Supporting abstract domains and widening operators other than CPn
and ∇M is imminent future work.
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A Further on NSA in Superstructure

The definitions and results listed below are all well-established and commonly used in
NSA. We follow [14, Chap. II], in which more details can be found.

Remark A.1 (choice of the index set I) In §2.1 we used the set N of natural numbers
as the index set I . It is common in NSA, however, to use I that is bigger than N, and
an ultrafilter F ⊆ P(I) over I . The merit of doing so is that the resulting monomor-
phism ∗( ) (see below) can be chosen to be an enlargement; see [14, Chap. II]. In what
follows, however, we favor concreteness and keep using I = N as the index set.

The transfer principle is a powerful result and we rely on it in the subsequent de-
velopments. Here are the first examples of its use; they are proved by transferring a
suitable formula A.

Lemma A.2 1. For a ∈ V (X) \X we obtain an injective map

∗( ) : a −→ ∗a , (b ∈ a) 7−→ (∗b ∈ ∗a) (4)

as a restriction of ∗( ) in (3).
2. If a is a finite set, the map (4) is an isomorphism a

∼=→ ∗a.
3. Let a→ b be the set of functions from a to b. We have ∗(a→ b) ⊆ ∗a→ ∗b.
4. ∗(a1 × · · · × am) = ∗a1 × · · · × ∗am; and ∗(a1 ∪ · · · ∪ am) = ∗a1 ∪ · · · ∪ ∗am.
5. For a binary relation r ⊆ a × a, we have ∗r ⊆ ∗a × ∗a. Moreover, r is an order if

and only if ∗r is an order. ut

Internal Sets The distinction between internal and external entities is central in NSA.
In this paper however it is much of formality, since all the entities we use are internal.
Here we present only the relevant definitions, leaving their intuitions to [14, §II.6]. In
Appendix B, especially Rem. B.7, we will see that being internal is crucial for transfer.

Definition A.3 (internal entity) An element b ∈ V (∗X) is internal with respect to
∗( ) : V (X) → V (∗X) if there is a ∈ V (X) such that b ∈ ∗a. It is external if it is not
internal.

Lemma A.4 A function f : ∗a→ ∗b is internal if and only if f ∈ ∗(a→ b). ut

The Ultrapower Construction We collect some necessary facts about the ultrapower
construction of the monomorphism ∗( ) in (3). Its details are beyond our scope; they
are found in [14, §II.4].

The map ∗( ) in fact factorizes into the following three steps.

V (X)
∗( )

//

( ) ��

V (∗X)⋃
n∈N
(
Vn(X) \ Vn−1(X)

)I
[ ]
//
∏0
F V (X)

M
OO (5)
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The first factor ( ) maps a ∈ V (X) to the constant function a such that a(i) = a
for each i ∈ I; recall that we have chosen I = N (Rem. A.1). The second [ ] takes a
quotient modulo the ultrafilter F ; finally the third factor M is the so-called Mostowski
collapse.

For an intuition let us exhibit these maps in the simple setting of §2.1. The first factor
( ) corresponds to forming constant streams: a 7→ a = (a, a, . . . ). The second [ ] is
quotienting modulo ∼F of (2). The third map M does nothing—it is a book-keeping
function that is only needed in the extended setting of superstructures.

The next result [14, Thm. 4.5] is about “starting from the lower-left corner” in (5).
It follows from the definition of M and is a crucial step in the proof of the transfer
principle (Lem. 2.7). It serves as an important lemma, too, later for the semantics of
WHILEdt.

Lemma A.5 (Łoś’ theorem) Let A be a formula in LX with its free variables con-
tained in {x1, . . . , xm}; and a1, . . . , am ∈

⋃
n∈N

(
Vn(X) \ Vn−1(X)

)I
. Then

∗A
[
M [a1]/x1, . . . ,M [am]/xm

]
is valid

⇐⇒
{
i ∈ I | A[a1(i)/x1, . . . , am(i)/xm] is valid

}
∈ F .

As a special case, let S ∈ V (X), then

M [a] ∈ ∗S ⇐⇒ a(i) ∈ S for almost every i. ut

Corollary A.6 Let a, b ∈ V (X); and for each i ∈ I , fi ∈ (a → b) and xi ∈ a. Then
M [(fi)i∈I ] is an internal function ∗a→ ∗b; and M [(xi)i∈I ] ∈ ∗a. Moreover,

M [(fi(xi))i∈I ] =
(
M [(fi)i∈I ]

)(
M [(xi)i∈I ]

)
. ut

B Appendix: Domain Theory, Transferred

The semantics of WHILEdt is most naturally introduced by solving recursive equations
on the flat domain over hyperreals. Here we present necessary theoretical foundations—
they are like in [3, §2.2] and [18]—identifying the set ∗R ∪ {⊥} as a hyperdomain and
*-transferring domain theory.

The current section is an adaptation is what appeared in the appendix of [18]; and
the definitions and results are similar to those in [3, §2.2], where what we call a hyper-
domain is called an internal domain, and a *-continuous function is called an internal
continuous function. The way we formulate these notions is however a bit different: we
favor more explicit use of *-transforms, since this aids deductive verification via the
transfer principle.

Definition B.1 In what follows we employ the theory of NSA presented in Appendix A.
As the base set of a superstructure V (X) (Def. 2.2), we take X = R ∪ B ∪Var.

Definition B.2 (hyperdomain) A hyperdomain is the pair of *-transforms (∗D, ∗v) of
a cpo (D,v).
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Example B.3 The set P(Var → R) is a complete lattice with respect to the inclu-
sion order ⊆, therefore is a cpo. Its ∗-transfer

( ∗(P(Var→ R)
)
, ∗⊆

)
constitutes a

hyperdomain.
We note that the set ∗

(
P(Var→ R)

)
coincides with the set of internal subsets of

the space {f : ∗Var→ ∗R | f is an internal function}. Moreover, under the assumption
that Var is a finite set (e.g. the set of variables occurring in a program c), we can see
that the last set {f : ∗Var→ ∗R | f is an internal function} coincides with the function
space Var→ ∗R. For this we use Lem. A.2.4.

Note that ∗v is an order in ∗D (Lem. A.2.5). Hyperdomain is the notion on which we
wish to establish a suitable fixed point property.5 Towards that goal, we first formulate
the definitions of cpo and continuous function as LX -formulas, so that they can be
transferred.

BinRela,r :≡ r ⊆ a× a Refla,r :≡ ∀x ∈ a. (x, x) ∈ r
Transa,r :≡ ∀x, y, z ∈ a.

(
(x, y) ∈ r ∧ (y, z) ∈ r ⇒ (x, z) ∈ r

)
AntiSyma,r :≡ ∀x, y ∈ a.

(
(x, y) ∈ r ∧ (y, x) ∈ r ⇒ x = y

)
Poseta,r :≡ BinRela,r ∧ Refla,r ∧ Transa,r ∧ AntiSyma,r

HasBota,r :≡ ∃x ∈ a.∀y ∈ a. (x, y) ∈ r
AscCna,r(s) :≡ ∀x, x′ ∈ N. (x ≤ x′ ⇒ (s(x), s(x′)) ∈ r)
UpBda,r(b, s) :≡ ∀x ∈ N. ((s(x), b) ∈ r)
Supa,r(p, s) :≡ UpBda,r(p, s) ∧ ∀b ∈ a. (UpBda,r(b, s)⇒ (p, b) ∈ r)

Recall that the inclusion N ⊆ X is assumed (Def. 2.2). These formulas are used in:

CPOa,r :≡ Poseta,r ∧ HasBota,r∧
∀s ∈ (N→ a).

(
AscCna,r(s)⇒ ∃p ∈ a.Supa,r(p, s)

)
,

Contia1,r1,a2,r2(f) :≡ ∀s ∈ (N→ a1).∀p ∈ a1.(
AscCna1,r1(s) ∧ Supa1,r1(p, s)⇒ Supa2,r2(f(p), f ◦ s)

)
.

(6)

Definition B.4 (*-continuous function) Let (∗D1,
∗v1) and (∗D2,

∗v2) be hyperdo-
mains. A function f : ∗D1 → ∗D2 is *-continuous if it is internal and satisfies the *-
transform of the formula ContiD1,v1,D2,v2

. That is to be precise: ∗(ContiD1,v1,D2,v2
)(f)

is valid.6 The set of *-continuous functions from ∗D1 to ∗D2 is denoted by ∗D1 →∗ct
∗D2.

Lemma B.5 (∗D1 →∗ct
∗D2) =

∗(D1 →ct D2). Here→ct denotes the set of continu-
ous functions.

5 We believe an even more general setting is possible, by defining a hyperdomain to be an
internal set D′ ∈ V (∗X) that satisfies a suitable formula like CPOa,r in (6). Here we do not
need such generality.

6 We note that the condition is different from (somewhat informal) “∗Conti∗D1,∗v1,∗D2,∗v2(f)
is valid.” In the former a chain s ranges over internal functions s ∈ ∗(N→ D1), while in the
latter s can also be an external function ∗N→ ∗D1.
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Proof. Assume f ∈ ∗(D1 →ct D2). The following closed formula is valid in V (X):

∀f ′ ∈ (D1 → D2).
(
f ′ ∈ (D1 →ct D2)⇔ Conti(f ′)

)
,

where Conti is short for ContiD1,v1,D2,v2 . By transfer we have

∀f ′ ∈ ∗(D1 → D2).
(
f ′ ∈ ∗(D1 →ct D2)⇔ ∗Conti(f ′)

)
(7)

valid in V (∗X). Thus f satisfies ∗Conti(f ′). Obviously f is internal; therefore f ∈
(∗D1 →∗ct

∗D2).
Conversely, assume f ∈ (∗D1 →∗ct

∗D2). By the definition of *-continuity, f is
internal, hence by Lem. A.4 we have f ∈ ∗(D1 → D2). Moreover, using the definition
of *-continuity and (7), we have f ∈ ∗(D1 →ct D2). ut

Lemma B.6 Let (∗D, ∗v) be a hyperdomain. Then a *-continuous function f : ∗D →
∗D has a least fixed point. Moreover, the function ∗µ that maps f to its least fixed point
(∗µ)(f) is *-continuous.

Proof. By the usual construction in a cpo, we obtain the map

µ : (D →ct D)→ct D , f 7→
⊔
n∈N f

n(⊥) .

Continuity of µ is easy and standard. As its *-transform we obtain a function ∗µ :
(∗D →∗ct

∗D) →∗ct
∗D, where we used Lem. B.5 and A.2. The fact that ∗µ returns

least fixed points is shown by the transfer of the following LX -formula.

∀f ∈ (D →ct D).
(
f(µ(f)) = µ(f) ∧ ∀x ∈ D. (f(x) = x ⇒ µ(f) v x)

)
ut

Remark B.7 It is crucial in the previous lemma that f : ∗D → ∗D is an internal
function. Specifically: recall that a formula A must be closed in order to be transferred
(Lem. 2.7); and that in LX only bounded quantifiers (∀x ∈ s with some bound s) are
allowed. For internal f we find such a bound by f ∈ ∗(D → D); for external f this is
not possible.

C Appendix: Details of the Water-Level Monitor Example

As preparation, we represent the WHILEdt program shown in §4 that expresses the
behavior of a water-level monitor, as the control flow graph in Fig. 2. The iteration
sequence we obtain in the analysis is presented in Fig. 3 to Fig. 6. The value of dt is
fixed to be 0.6 in these graphs just for maintaining the appearance of them.

In this section, the word “state” means an abstracted hyperstate. The graph legend
shows the program point. For example, the topmost graph in Fig. 3 shows the state on
p = 1 ∧ s = 0 from the program point A to B in Fig. 2 in the first iteration (“A0-B0”).
The topmost graph in Fig. 4 shows the state on p = 1 ∧ s = 1 at the program point D
in Fig. 2 in the third iteration (“D2”). When the graph is not given for a program point,
the state at the program point is the same as that in the previous iteration. For example,
the state on p = 1 ∧ s = 0 at E in the fifth iteration is the same as the graph whose
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Fig. 2. Control flow graph of water-level monitor
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Fig. 3. p=1 and s=0
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Fig. 4. p=1 and s=1
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Fig. 5. p=0 and s=0
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Fig. 6. p=0 and s=1
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legend is “D02-F02” in Fig. 3. The program point where we choose not to widen by
extrapolation threshold is explicitly presented by adding “Do not widen” to the graph
legend.

We denote the state at the program point, e.g. “A01” byA1. Ak isBk−1tFk−1, the
convex hull of Bk−1 and Fk−1. Bk is Ak if we chose “do not widen”, or Bk−1∇MAk
otherwise. Ck, Dk, Ek, Fk can be computed in a obvious manner.

When starting static analysis, we set the states at all program points to⊥ (the empty
convex polyhedron). At first, the assignments in the entry node are evaluated and A0 =
con{p = 1, s = 0, x = 1, l = 0}. Then we compute the states as follows:

B0 = ⊥∇MA0 = A0

C0 = con{p = 1, s = 0, x = 1 + dt, l = 0} by applying x := x+ dt because p = 1

D0 = C0 because (x ≤ 5 ∧ p = 0) ∨ (x ≥ 10 ∧ p = 1) is interpreted as ff at “C00”
and s is already assigned to 0

E0 = F0 = D0 because s = 0

A1 = B0 t F0 = con{p = 1, s = 0, 1 ≤ x ≤ 1 + dt, l = 0}
B1 = B0∇MA1

= con{p = 1, s = 0, x = 1, l = 0}∇Mcon{p = 1, s = 0, 1 ≤ x ≤ 1 + dt, l = 0}
= con{p = 1, s = 0, 1 ≤ x ≤ 5, l = 0}

Note that M = {x ≤ 5, x ≥ 5, x ≤ 10, x ≥ 10, l ≤ 2, l ≥ 2}. We can iteratively
compute in this way and at “B13”, we reach a prefixed point and soundly approximate
the least fixed point. The result means that the level of the water x always satisfies
1− dt ≤ x ≤ 12 + dt.

D Appendix: Omitted Proofs

In the proofs we use the following LR-formulas.

Definition D.1 We define the following LR-formulas:

ReflL,v :≡ ∀l ∈ L. (l, l) ∈v

TransL,v :≡ ∀l,m, n ∈ L.
((

(l,m) ∈ v ∧ (m,n) ∈v
)
⇒ (l,m) ∈ v

)
AntiSymL,v :≡ ∀l,m ∈ L.

((
(l,m) ∈v ∧(m, l) ∈ v

)
⇒ l = m

)
PosetL,v :≡ ReflL,v ∧ TransL,v ∧ AntiSymL,v

GaloisL1,v1,L2,v2,α,γ :≡ ∀x ∈ L1. ∀y ∈ L2.
(
α(x) v2 y ⇔ x v1 γ(y)

)
AscCnL,v(s) :≡ ∀n,m ∈ N.

(
n ≤ m⇒ s(n) v s(m)

)
SupL,v(p, s) :≡

(
∀n ∈ N. s(n) v p

)
∧ ∀q ∈ L.

((
∀n ∈ N. s(n) v q

)
⇒ p v q

)
CpoL,v :≡ PosetL,v ∧ ∀s ∈ N→ L.

(
AscCnL,v(s)⇒ ∃p ∈ L. SupL,v(p, s)

)
MonotoneL1,v1,L2,v2

(f) :≡ ∀x, y ∈ L1. x v1 y ⇒ f(x) v2 f(y)
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ContiL1,v1,L2,v2
(f) :≡ ∀s ∈ N→ L1. ∀p ∈ L1.((

AscCnL1,v1
(s) ∧ SupL1,v1

(p, s)
)
⇒ SupL2,v2

(
f(p), f ◦ s

))
BasisL,v(⊥- , f) :≡ ⊥- v f(⊥- )
CoverL,v,∇ :≡ ∀x, y ∈ L. (x v x∇y) ∧ y v x∇y)
TermL,v,∇ :≡ ∀x ∈ N→ L. AscCn(x)⇒(
∀y ∈ N→ L.

((
y(0) = x(0) ∧ ∀n ∈ N. y(n+ 1) = y(n)∇x(n+ 1)

)
⇒ ∃k ∈ N. y(k) = y(k + 1)

))
WidenL,v,∇ :≡ CoverL,v,∇ ∧ TermL,v,∇

WidenSeqL,v,∇(X,⊥- , F ) :≡
X(0) = ⊥- ∧ ∀n ∈ N. X(n+ 1) = X(n)∇F (X(n)).

D.1 Proof of Prop. 3.4

Proof. The constraint system C for a (standard) convex polyhedron P ∈ CPn can be
expressed by a pair (A,b) of an m × n-matrix A and an m-vector b, where m is
the number of linear inequalities in C. The same applies to a (nonstandard) convex
polyhedron P ∈ CP

∗R
n . For each of X ∈ {R, ∗R}, let us denote, by ConstrX,m,n, the

set of all convex polyhedra over Xn that can be expressed with m linear inequalities.
Then CPn =

⋃
m∈N ConstrR,m,n (with

⋃
m∈N expressed using an existential quan-

tifier ∃m ∈ N) is a valid LR-sentence by Def. 2.19. By the transfer principle (Lem. 2.7),
we have a valid L∗R-sentence ∗(CPn) =

⋃
m∈∗N Constr∗R,m,n. It has as its subset the

set CP
∗R
n =

⋃
m∈N Constr∗R,m,n since N ⊆ ∗N. This proves the claim. ut

D.2 Proof of Thm. 3.6

Proof. Let L,L ∈ U be sets, v∈ P(L × L) and v∈ P(L × L) be binary relations on
L and L respectively, α : L → L and γ : L → L be functions. Then, the following
LR-sentence is valid (because it is equivalent to Prop. 2.12):

∀F ∈ L→ L. ∀F ∈ L→ L. ∀⊥- ∈ L. ∀⊥- ∈ L. ∀x ∈ L.(
CpoL,v ∧ PosetL,v ∧ ContiL,v,L,v(F ) ∧MonotoneL,v,L,v(F ) ∧ GaloisL,v,L,v,α,γ

∧ F v ~γ(F ) ∧ ⊥- v F (⊥- ) ∧ ⊥- v γ(⊥- ) ∧ ⊥- v x ∧ F (x) v x

⇒ lfp⊥- F v γ(x)
)
.
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By applying Lem. 2.7 to this LR-sentence, we have the following valid L∗R-sentence:

∀F ∈ ∗(L→ L). ∀F ∈ ∗(L→ L). ∀⊥- ∈ ∗L. ∀⊥- ∈ ∗L. ∀x ∈ ∗L.(
∗CpoL,v ∧ ∗PosetL,v ∧

∗ContiL,v,L,v(F ) ∧ ∗MonotoneL,v,L,v(F ) ∧
∗GaloisL,v,L,v,α,γ

∧ F ∗v ∗~γ(F ) ∧ ⊥- ∗v F (⊥- ) ∧ ⊥- ∗v ∗γ(⊥- ) ∧ ⊥- ∗v x ∧ F (x) ∗v x

⇒ ∗lfp⊥- F
∗v ∗γ(x)

)
.

This yields the statement of this theorem. For example, we can confirm that ∗GaloisL,v,L,v,α,γ

holds, that is, (∗L, ∗L, ∗α, ∗γ) is a hyper-Galois connection, from the hypothesis L
α


γ
L

in the theorem statement . ut

D.3 Proof of Thm. 3.10

Proof. Let L ∈ U be a set,v∈ P(L×L) be a binary relation on L and∇ : L×L→ L
be a function. Then, the following LR-sentence is valid (because it is equivalent to
Prop. 2.14):

∀F ∈ L→ L. ∀⊥- ∈ L. ∀X ∈ N→ L.

PosetL,v ∧MonotoneL,v,L,v(F ) ∧ BasisL,v(⊥- , F ) ∧WidenL,v,∇

∧WidenSeqL,v,∇(X,⊥- , F )
⇒ ∃i ∈ N. ∀j ∈ N. i ≤ j ⇒ X(i) = X(j)

∧∀k ∈ N.
((
∀l ∈ N. k ≤ l⇒ X(k) = X(l)

)
⇒ F

(
X(k)

)
v X(k)

)
.

By applying Lem. 2.7 to this LR-sentence, we have the following valid LR-sentence:

∀F ∈ ∗(L→ L). ∀⊥- ∈ ∗L. ∀X ∈ ∗(N→ L).
∗PosetL,v ∧ ∗MonotoneL,v,L,v(F ) ∧ ∗BasisL,v(⊥- , F ) ∧ ∗WidenL,v,∇

∧∗WidenSeqL,v,∇(X,⊥- , F )
⇒ ∃i ∈ ∗N. ∀j ∈ ∗N. i ≤ j ⇒ X(i) = X(j)

∧∀k ∈ ∗N.
((
∀l ∈ ∗N. k ≤ l⇒ X(k) = X(l)

)
⇒ F

(
X(k)

) ∗v X(k)
)

This yields the statement of this theorem. Note that the well-definedness of the iteration
hyper-sequence (by induction on i ∈ ∗N) is implicit in the above transfer arguments.

ut
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D.4 Proof of Thm. 3.12

Proof. We can characterize uniform widening operators as an LR-sentence as follows
(covering condition has been already expressed as an LR-formula in Def. D.1):

UnifTermL,v,∇ :≡ ∀x0 ∈ L. ∃i ∈ N. ∀x ∈ N→ L. (AscCn(x) ∧ x(0) = x0)⇒(
∀y ∈ N→ L.

((
y(0) = x(0) ∧ ∀n ∈ N. y(n+ 1) = y(n)∇x(n+ 1)

)
⇒ ∃j ∈ N.

(
j ≤ i ∧ y(j) = y(j + 1)

)))
UnifWidenL,v,∇ :≡ CoverL,v,∇ ∧ UnifTermL,v,∇

Let L ∈ U be a set, v ∈ P(L× L) be a binary relation on L and ∇ : L× L→ L be a
function. Then, we can see directly that the following LR-sentence is valid:

∀⊥- ∈ L. ∃i ∈ N. Ψ(⊥- )(i), (8)

where

Ψ(⊥- )(i) =
∀F ∈ L→ L. ∀X ∈ N→ L.

PosetL,v ∧MonotoneL,v,L,v(F ) ∧ BasisL,v(⊥- , F ) ∧ UnifWidenL,v,∇

∧WidenSeqL,v,∇(X,⊥- , F )
⇒ ∀j ∈ N. i ≤ j ⇒ X(i) = X(j)

∧ ∀k ∈ N.
((
∀l ∈ N. k ≤ l⇒ X(k) = X(l)

)
⇒ F

(
X(k)

)
v X(k)

)
.

Assume that ⊥- ∈ L is given. Then, by the LR-sentence (8), there exists i ∈ N such
that Ψ(⊥- )(i) holds. Therefore, by transferring Ψ(⊥- )(i), ∗Ψ(⊥- )(i) holds for such i ∈ N.
Note that ∗Ψ(⊥- )(i) is the following L∗R-sentence (⊥- and i are dealt with as constants
in the following L∗R-sentence because ⊥- and i are defined outside the L∗R-sentence):

∀F ∈ ∗(L→ L). ∀X ∈ ∗(N→ L).
∗PosetL,v ∧ ∗MonotoneL,v,L,v(F ) ∧ ∗BasisL,v(

∗⊥- , F ) ∧ ∗UnifWidenL,v,∇

∧∗WidenSeqL,v,∇(X,
∗⊥- , F )

⇒ ∀j ∈ ∗N. i ≤ j ⇒ X(i) = X(j)

∧∀k ∈ ∗N.
((
∀l ∈ ∗N. k ≤ l⇒ X(k) = X(l)

)
⇒ F

(
X(k)

) ∗v X(k)
)
.

This yields Thm. 3.12. ut

D.5 Proof of Thm. 3.13

We prove the uniformity and nonuniformity of five widening operators (∇Intv,∇IntvZ,c ,
∇S , ∇M ,∇N ) in this order.
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Proof. Let 〈Xi〉i be a iteration sequence defined by ∇Intv, a basis [l0, u0] and a mono-
tone function F . By definition of ∇Intv and the construction of 〈Xi〉i, regardless of
the function F , 〈Xi〉i consists of at most 4 elements: [l0, u0], [−∞, u0], [l0,∞] and
[−∞,∞]. Thus for any basis [l0, u0] and monotone function F , we can reach a prefixed
point by iterating the widening operator at most 3 times and this means the widening
operator∇Intv is uniform. ut

Proof. Let d ∈ Z be a constant less than c that is used in the definition of∇IntvZ,c . And
let 〈xi〉 ∈ IntvNZ be an ascending chain defined by xk = [d + k, d + k]. Then, it takes
c − d steps for the convergence of the iteration sequence defined using ∇IntvZ,c . So we
can choose d ∈ Z so that it takes arbitrary large number of steps. This yields that this
widening operator is not uniform. ut

Proof. Let d ∈ Z be a constant less than c that is used in the definition of∇IntvZ,c . And
let 〈xi〉 ∈ IntvNZ be an ascending chain defined by xk = [d + k, d + k]. Then, it takes
c − d steps for the convergence of the iteration sequence defined using ∇IntvZ,c . So we
can choose d ∈ Z so that it takes arbitrary large number of steps. This yields that this
widening operator is not uniform. ut

Proof. The constraints in M may be added in the iteration sequence, but by the def-
inition of the standard widening ∇S , a constraint in M will never appear once it is
violated. Therefore the number of steps for an iteration sequence to converge is at most
#(M) larger than the case of standard widening. ut

Proof. Assume that P1 = con{0 ≤ x ≤ 1, 0 ≤ y ≤ 1, z = 0} ∈ CP3, P2 ∈ CP3

includes P1 and the linear equation “z = 0” is not included in C2. Then P1 yN P2

holds because #eq(C1) > #eq(C2). The maximum number of steps for an iteration
sequence starting from P2 to converge is #C2. This is not limited uniformly because
you can define P2 such that #C2 is as large as you like. ut


