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Abstract

This article discusses the challenges in climate science from the emerging view-

point of stochastic-statistical properties of turbulent dynamical systems. The

mathematical topics discussed here include empirical information theory, fluc-

tuation-dissipation theorems, reduced-order stochastic modeling, and the devel-

opment of mathematically unambiguous exactly solvable test models for climate

science that capture crucial features of vastly more complex scientific problems.

The applied mathematics topics include the emerging development of multiscale

algorithms for filtering/data assimilation and superparametrization for climate

science and other problems in science and engineering, as well as suitable un-

ambiguous mathematical test problems for their behavior. Interesting contem-

porary research directions and specific open problems are mentioned throughout

the article. The perspective here should also be useful for applications to other

complex dynamical systems arising in neural science, material science, and en-

vironmental/mechanical engineering. © 2011 Wiley Periodicals, Inc.

1 Introduction
The climate is an extremely complex coupled system involving significant phys-

ical processes for the atmosphere, ocean, and land over a wide range of spatial

scales from millimeters to thousands of kilometers and timescales from minutes

to decades or centuries [17, 113]. Climate change science focuses on predicting

the coarse-grained, planetary-scale, long-time changes in the climate system due

to either changes in external forcing or internal variability such as the impact of

increased carbon dioxide [111]. For several decades the predictions of climate

change science have been carried out with some skill through comprehensive com-

putational atmospheric and oceanic simulation (AOS) models [17, 111, 113, 118]

that are designed to mimic the complex physical spatiotemporal patterns in na-

ture. Such AOS models, either through lack of resolution due to current computing

power or through inadequate observation of nature, necessarily parametrize the

impact of many features of the climate system such as clouds, mesoscale and sub-

mesoscale ocean eddies, sea ice cover, etc. Thus, there are intrinsic model errors
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in the AOS models for the climate system and a central scientific issue is the ef-

fect of such model errors on predicting the coarse-grained, large-scale, long-time

quantities of interest in climate change science.

The central difficulty in climate change science is that the dynamical equations

for the actual climate are unknown. All that is available from the true climate in

nature are some coarse-grained observations of functions such as mean or variance

of temperature, tracer greenhouse gases such as carbon dioxide, or the large-scale

horizontal winds. Thus, climate change science must cope with predicting the

coarse-grained dynamic changes of an extremely complex system only partially

observed from a suite of imperfect models for the climate. Basic questions arise

such as the following:

(A) How to measure the skill (i.e., the statistical accuracy) of a given model

in reproducing the present climate and predicting the future climate in an

unbiased fashion?

(B) How to make the best possible estimate of climate sensitivity to changes in

external or internal parameters by utilizing the imperfect knowledge avail-

able of the present climate? What are the most sensitive parameters for

climate change given uncertain knowledge of the present climate?

(C) How do coarse-grained measurements of different functionals of the pre-

sent climate affect the assessments in (A) and (B)? What are the weights

that should be assigned to different functionals of the present climate as

targets to improve the performance of the imperfect AOS models? Which

new functionals of the present climate should be observed in order to im-

prove the assessments in (A) and (B)?

Predicting how climate will change is one of the great societal and intellectual

challenges of our time. Furthermore, predicting and understanding the seasonal,

yearly, decadal, and centennial impacts of climate change for issues ranging from

extreme weather events to sea level rise to the evolving extent of deserts involves

assessing the impacts of climate change on a variety of significant temporal and

spatial scales. This is especially difficult because energy often flows intermittently

from the smaller unresolved or marginally resolved scales in contemporary AOS

models to impact much larger and longer spatiotemporal scales of motion of in-

terest in the above problems [78]. While contemporary AOS models have high

skill for the midlatitude upper troposphere, notable deficiencies in contemporary

climate models involve assessing the multiscale impacts of clouds in the tropics

[109], sea ice and land ice in the polar regions [50], as well as the role of the

observed mesoscale and submesoscale turbulence in the ocean [119].

During the past fifteen years, the faculty members at the Courant Institute in the

Center for Atmosphere and Ocean Science (CAOS) have been at the cutting edge

in contributing to all these issues through the modus operandi of modern applied

mathematics involving rigorous mathematical theory, quantitative and qualitative
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models for crucial issues in climate science, novel multiscale asymptotic and nu-

merical models, and data-driven methods to constrain complex models by observa-

tions and theories. Examples include the first theories and models for large-scale

behavior of clouds in the tropics consistent with observations [12, 62, 63, 65, 83,

99, 100, 101], the development and use of ideas from empirical information the-

ory to quantify and improve long-range forecasting skill and climate sensitivity

[6, 36, 37, 47, 66, 68, 87, 89, 90, 96], the first detailed observations and theory for

the Greenland and West Antarctic ice sheet collapse [51, 58], and the first accurate

assessment of the central role of moist entropy and low-level moisture transports

in determining subtropical and midlatitude climate circulations from observed data

[71, 114, 115].

The goal of the present article is not to review all of the above interdisciplinary

developments but instead to emphasize the author’s personal view on the statistical-

stochastic, multiscale framework for large-dimensional turbulent dynamical sys-

tems that is emerging at the present time and the central role it is likely to play

for uncertainty quantification and sensitivity in climate change science in the near

future. The mathematical toolkit utilized below includes empirical information

theory, fluctuation-dissipation theorems, and systematic physics-constrained, sta-

tistical-stochastic modeling for large-dimensional turbulent dynamical systems;

the use of these ideas in climate change science is only beginning. The author

hopes that this article inspires other mathematicians to contribute to these impor-

tant emerging topics. While the bibliography of this paper is not comprehensive,

many of the cited papers contain substantial additional references to the climate

science literature.

2 Climate Change Science and the Statistical Dynamics
of Complex Systems

While the actual equations governing climate dynamics on earth are unknown,

it is natural to assume that these dynamics are Markovian; i.e., the future state

depends only on the present state, on a suitably large space of (hidden) variables

v 2 RP , P � 1. Thus, it is reasonable to assume that the perfect dynamical

system for the climate is given by

(2.1) vt D F.v/ C �.v/ PW
for v 2 RP where � is a P � K noise matrix and PW 2 RK is K-dimensional

white noise. Already in (2.1), for simplicity in exposition, the important time-

varying effects of the seasonal cycle and diurnal cycle [34, 105] have been ignored;

furthermore, again for simplicity in exposition, no jump process contributions in

(2.1) have been included.

The associated Fokker-Planck equation for the probability density p.v; t / is

(2.2) pt D � divv.F.v/p/ C 1
2

divv rv.Qp
� � LFP p;
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where Q D ��T. To illustrate the reasonable nature of the Markovian assumption

on a sufficiently large phase space, consider the microscale process in the atmo-

sphere where cloud water forms on condensation nuclei from dust particles in the

atmosphere in the presence of small-scale turbulence; there is no doubt here that

the dynamics is Markovian and microphysics models have been made, but a de-

tailed precise description of the dynamics is not available. This example motivates

the crucial difficulty in climate change science; the detailed dynamics of the cli-

mate system are unknown and even the dimension of the phase space RP ; P � 1,

is unknown. In fact, all that is actually known about the present climate are certain

coarse-grained statistical measurements of functionals

(2.3) E.u/ for u 2 RN ; N � P;

for a training interval of time. These measurements encompass satellite data,

weather station data, ocean buoys, ice cores, coral data, etc., where the extensive

earth observing or training period has only occurred in the last 50 to 100 years.

The coarse-grained statistical measurements are quantities such as the mean and

variance of temperature in the Northern and Southern Hemisphere or over the con-

tinents, tracer gases in the atmosphere, like carbon dioxide, or geochemical tracers

in the ocean. Successful predictions in climate change science are hampered by the

fact that the actual dynamics in (2.1) is a turbulent large-dimensional system with

positive Lyapunov exponents on essentially all spatiotemporal scales, as verified in

our common experience with weather, storms, and gazing at the turbulent surface

of the ocean. The use of statistical descriptions like (2.1) and (2.2) for the cli-

mate system is not new and goes back to early predictability studies for simplified

atmosphere models [24, 73, 74, 75].

2.1 The Imperfect Models
The imperfect models are naturally assumed to be given by a known dynamical

system

(2.4) .vM /t D FM .vM / C �M .vM / PW ; vM 2 RM ;

which has a similar structure as in (2.1), but the phase space for the imperfect

model, RM , is often completely different from the natural system with usually

M � P ; the natural system in (2.1) and the imperfect model in (2.4) share in com-

mon the coarse-grained variables u 2 RN . The imperfect models in (2.4) range

from comprehensive AOS climate models with billions of variables [17, 111, 113,

118] to lower-dimensional statistical-stochastic models for suitable low-frequency

teleconnections ([84, 86] and references therein) to purely data-driven regression

models with varying degrees of statistical sophistication ([91, 107] and references

therein). A simple example illustrating the fundamental difficulties in climate sci-

ence in trying to use imperfect models like those in (2.4) to predict the sensitivity

issues in (2.1) for the perfect model is presented next [89].
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A typical situation with model error for complex systems arises when the true

system has additional degrees of freedom that are hidden from the family of im-

perfect models utilized to study this system either through lack of scientific under-

standing or the practical lack of computational resolution. The simplest example

with these features is to consider the true system as given by the two linear sto-

chastic equations

(2.5)
du

dt
D au C v C F;

dv

dt
D qu C Av C � PW ;

where PW is white noise; the system of equations in (2.5) has a smooth Gaussian

statistical steady state provided that

(2.6) a C A < 0; aA � q > 0:

Assume that the variable v in (2.5) is hidden from the modeling process where all

imperfect models are given by the scalar stochastic equation

(2.7)
duM

dt
D ��M uM C FM C �M

PWM :

The natural requirement �M > 0 is needed for (2.7) to have a Gaussian statistical

steady state.

Now consider the situation where the model in (2.7) has been tuned to match

the single-time statistics for u in (2.5) with perfect fidelity by matching the mean

and variance of uM with u; elementary calculations show this is true for a one-

parameter family of models parametrized by �M > 0 provided that FM , �2
M satisfy

the equilibrium mean and variance equations

(2.8)
FM

�M
D � AF

aA � q
;

�2
M

2�M
D � �2

2.a C A/.aA � q/
� E:

Thus, the conditions in (2.8) for FM and �M guarantee perfect model fidelity for

any �M > 0. In many practical situations such as actual experiments or climate

science, it is important to understand the response of the natural system to external

forcing, ıF , and to hope that the response of the imperfect model captures the

features of this response. The natural system response for (2.5) occurs by replacing

F in (2.5) by F C ıF , while the same experiment in the model for (2.7) involves

replacing FM by FM C ıF . For both the natural system in (2.5) and the model

system in (2.7), the only change in the equilibrium response is through the change

in mean

(2.9) ıu D � A

aA � q
ıF; ıuM D 1

�M
ıF;

while the variance of u for the perfect model and uM for the imperfect model stays

constant at the same value E determined through the second equality in (2.8).

Now assume that the natural system satisfies the stability conditions in (2.6) with

A > 0. We claim that no model from (2.7), even with perfect fidelity in (2.8) for

any �M > 0, can match the sensitivity of the natural system correctly; this is easy
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to see from (2.9) since for A > 0, sign.ıu/ D �sign.ıF /, but for all models from

(2.7), sign.ıuM / D sign.ıF / and the perfect and model sensitivity are always

anticorrelated! Thus, even though the climate models satisfying (2.7) and (2.8) are

tuned to exactly match the true climate, these imperfect models are intrinsically

deficient in calculating the crucial climate sensitivity for A > 0.

2.2 Systematically Improving Climate Models Through Empirical
Information Theory

With a subset of variables u 2 RN and a family of measurement functionals

EL.u/ D .Ej .u//, 1 � j � L, for the perfect system, empirical information

theory [57, 104] builds the least biased probability measure �L.u/ consistent with

the L measurements of the present climate, xEL. There is a unique functional on

probability densities [57, 104] to measure this given by the entropy

(2.10) S D �
Z

� log �;

and �L.u/ is the unique probability so that S.�L.u// has the largest value among

those probability densities consistent with the measured information, xEL. All inte-

grals as in (2.10) are over the phase space RN unless otherwise noted. For example,

measurements of the mean and second moments of the perfect system necessarily

lead to a Gaussian approximation [96, 104] to the perfect system from measure-

ments, �L.u/ D �G.u/. Any model of the perfect system produces a probability

density �M .u/. The natural way [70, 104] to measure the lack of information in

one probability density q.u/ compared with the true probability density p.u/ is

through the relative entropy P.p; q/ given by

(2.11) P.p; q/ D
Z

p log

�
p

q

�
:

This asymmetric functional on probability densities P.p; q/ has two attractive fea-

tures [70, 96, 104] as a metric for model fidelity: (1) P.p; q/ � 0 with equality if

and only if p D q, and (2) P.p; q/ is invariant under general nonlinear changes of

variables.

The first issue to contend with is the fact that �L.u/ is not the actual perfect

model density but only reflects the best unbiased estimate of the perfect model

given the L measurements xEL. Let �.u/ denote the probability density of the

perfect model, which is not actually known. Nevertheless, P.�; �L/ precisely

quantifies the intrinsic error in using the L measurements of the perfect model xEL.

Consider an imperfect model with its associated probability density �M .u/; then

the intrinsic model error in the climate statistics is given by P.�; �M /. In practice,

�M .u/ is determined by no more information than that available in the perfect

model.

Consider a class of imperfect models M. The best imperfect model for the

coarse-grained variable u is the M� 2 M so that the perfect model has the smallest
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additional information beyond the imperfect model distribution �M�.u/, i.e.,

(2.12) P.�; �M�/ D min
M2MP.�; �M /:

Also, actual improvements in a given imperfect model with distribution �M .u/

resulting in a new �M
post.u/ should result in improved information for the perfect

model, so that P.�; �M
post/ � P.�; �M /. Otherwise, objectively, the model has not

been improved compared with the original perfect model. The following general

principle [82, 87] facilitates the practical calculation of (2.12):

�M
L0 / D P.�; �L/ C P�

�L; �M
L0

�
D .S.�L/ � S.�// C P�

�L; �M
L0

�
for L0 � L:

(2.13)

The entropy difference, S.�L/�S.�/ in (2.13), precisely measures an intrinsic er-

ror from the L measurements of the perfect system. With (2.13) and a fixed family

of L measurements of the actual climate, the optimization principle in (2.12) can

be computed explicitly by replacing the unknown density � by the hypothetically

known �L in these formulas so that, for example, �M� is calculated by

(2.14) P�
�L; �

M�

L0

� D min
M2MP�

�L; �M
L0

�
:

The most practical setup for applying the framework of empirical information

theory developed above arises when both the perfect system measurements and the

model measurements involve only the mean and covariance of the variables u so

that �L is Gaussian with climate mean xu and covariance R while �M is Gaussian

with model mean xuM and covariance RM . In this case, P.�L; �M / has the explicit

formula [66, 104]

P.�L; �M / D
�

1

2
.xu � xuM /�.RM /�1.xu � xuM /

�

C
�
�1

2
log det.RR�1

M / C 1

2
.tr.RR�1

M / � N /

�
:

(2.15)

Note that the first term in brackets in (2.15) is the signal, reflecting the model error

in the mean but weighted by the inverse of the model covariance R�1
M , while the

second term in brackets, the dispersion, involves only the model error covariance

ratio RR�1
M . The intrinsic metric in (2.15) is invariant under any (linear) change of

variables that maps Gaussian distributions to Gaussians, and the signal and disper-

sion terms are individually invariant under these transformations; this property is

very important.

As a simple illustration of these concepts, let’s assume the elementary perfect

and imperfect climate models discussed in (2.5) and (2.7) above, where as shown

below, empirical information theory reveals an intrinsic barrier for the imperfect

models to prediction of the sensitivity for A > 0. The formula in (2.15) applies
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exactly to these models with perfect fidelity with

(2.16) P.�ı ; �M
ı / D 1

2
E�1

ˇ̌
ˇ̌� A

aA � q
� 1

�M

ˇ̌
ˇ̌2 jıF j2:

In this situation with A > 0, the attempt to minimize the information theoretic

model error in the sensitivity through the general principle in (2.12) is futile be-

cause no finite minimum over �M of (2.16) is achieved and necessarily �M ! 1
in the approach to this minimum value; in other words, there is an intrinsic barrier

to skill in sensitivity that cannot be overcome with the imperfect models in (2.7)

even though they satisfy perfect model fidelity in (2.8). In this situation, infor-

mation theory predicts that one needs to enlarge the class of models beyond (2.7)

by introducing more degrees of freedom in the model. On the other hand, if the

natural system satisfies (2.6) with A < 0, then using (2.16) to minimize the lack

of information in the sensitivity in the models that satisfy perfect fidelity in (2.8)

results in the unique model with

(2.17) ��
M D �A�1.aA � q/; A < 0;

and this model captures both the model fidelity and model sensitivity to this forcing

parameter exactly.

The relative entropy in (2.11) occupies a central role in statistics [9, 10, 128]

and large-deviation theory in the limit of large sample sizes [122, 123]. The em-

pirical point of view presented here is useful for developing unbiased empirical

statistical/physics-based models and has been utilized to predict the location and

structure of Jupiter’s Red Spot from observations of the Galileo mission, as well as

the behavior of large-scale quantities in statistical fluid dynamics [104]. Kleeman

[66] first applied these ideas to the prediction skill for long-range forecasting in per-

fect models, and these concepts have been developed extensively by scientists in

CAOS at CIMS with many applications and associated theory [6, 47, 67, 68, 96] in

the context of perfect models. Recent research utilizing empirical information the-

ory has focused on important coarse-grained descriptions of perfect and imperfect

models and improving the long-range forecasting and sensitivity of imperfect mod-

els [36, 37, 87, 89, 90]. This is an active and important area blending concepts from

mathematics, statistics, and physics, and an exciting area for future research devel-

opments. One of the current directions involves utilizing the fluctuation-dissipation

theorem (FDT) for (2.1) and (2.4), which is briefly discussed next.

2.3 Fluctuation-Dissipation Theorems for Turbulent Dynamical Systems
and Climate Change Science

The fluctuation-dissipation theorem is one of the cornerstones of the statistical

physics of identical molecules of gases and liquids [108]. In a very brief seminal

article from 1975, Leith [72] suggested that if FDT can be established for suitable

coarse-grained functionals in climate science, then climate change assessments can

be performed simply by gathering suitable statistics in the present climate. Here is

a brief summary of FDT for the stochastic dynamical system in (2.1) [82, 105].
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The ideal equilibrium state associated with (2.1) is the probability density peq.v/

that satisfies LFP peq D 0 and the equilibrium statistics of some functional A.v/

are determined by

(2.18) hA.v/i D
Z

A.v/peq.v/dv:

Next, perturb the system in (2.11) by the change ıw.v/f .t/; that is, consider the

perturbed equation

(2.19) vı
t D F.vı/ C ıw.v/f .t/ C �.vı/ PW :

Calculate perturbed statistics by utilizing the Fokker-Planck equation associated

with (2.19) with initial data given by the unperturbed statistical equilibrium. Then

FDT [82] states that if ı is small enough, the leading-order correction to the statis-

tics in (2.18) becomes

(2.20) ıhA.v/i.t/ D
Z t

0

R.t � s/ıf .s/ds;

where R.t/ is the linear response operator that is calculated through correlation

functions in the unperturbed climate

(2.21) R.t/ D hA.v.t//B.v.0//i; B.v/ D �divv.wpeq/

peq

:

The noise in (2.1) is not needed for FDT to be valid, but in this form the equilibrium

measure needs to be smooth. Such a rigorous FDT response is known to be valid

for a wide range of dynamical systems under minimal hypotheses [45].

There are important practical and computational advantages for climate change

science when a skillful FDT algorithm is established. The FDT response operator

can be utilized directly for multiple climate change scenarios, multiple changes

in forcing, and other parameters, such as damping and inverse modeling directly

[42, 43], without the need for running the complex climate model in each indi-

vidual case. Note that FDT is a type of dynamic statistical linearization and does

not involve linearizing the underlying nonlinear dynamics. The direct application

of FDT to the natural perfect model in (2.1) is hampered by the fact that the dy-

namics in (2.1), the equilibrium measure in (2.18), and even the dimension of the

phase space in (2.1) and (2.18) are unknown. Recently an important link [90] was

established through empirical information theory and FDT between the skill of

specific prediction experiments in the training phase for the imperfect model when

the climate is observed and the skill of the model for long-range perturbed climate

sensitivity.

There is a growing literature in developing theory [34, 81, 82, 91, 105] and algo-

rithms for FDT [1, 2, 3, 4, 5, 8, 16, 42, 43, 44, 72] for forced dissipative turbulent

systems far from equilibrium. In fact, the earliest algorithms that tested the orig-

inal suggestion of Leith [72] utilized kicked perturbations without model error to

evaluate the response operator [8, 16], and these algorithms have been improved
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recently [1, 3]; their main limitation is that they can diverge at finite times when

there are positive Lyapunov exponents [1, 3, 16]. Alternative algorithms utilize

the quasi-Gaussian approximation [82] in the formulas in (2.21); these algorithms

have been demonstrated to have high skill in both mean and variance response

in the midlatitude upper troposphere to tropical forcing [42, 43] as well as for a

variety of other large-dimensional turbulent dynamical systems that are strongly

mixing [2, 4, 82]. There are recent blended response algorithms that combine the

attractive features of both approaches and give very high skill for both the mean and

variance response for the L-96 model [2, 76] as well as suitable large-dimensional

models of the atmosphere [4] and ocean [5] in a variety of weakly and strongly

chaotic regimes. Finally, there are linear regression models [116] that try to cal-

culate the mean and variance response directly from data; these linear regression

models can have very good skill in the mean response but necessarily have no skill

[91] in the variance response; they necessarily have an intrinsic barrier [87, 89, 90]

for skill in model response when the perfect model has a large variance response.

In fact, one can regard all of the above approximations as defining various systems

with model error in calculating the ideal response of a perfect model [82]; this is

a useful exercise for understanding the information theoretic framework for model

error and response proposed recently [90], and examples are presented there.

2.4 Statistically Exactly Solvable Test Models Capturing Crucial Features
of Climate Change Science

An important role of mathematics in applied sciences is to develop simpler ex-

actly or easily solvable test models with unambiguous mathematical features that

nevertheless capture crucial features of vastly more complex systems in science

and engineering. Such models provide firm underpinning for advancing scientific

understanding and developing new numerical or statistical algorithms. With all of

the difficult issues in climate science mentioned in the present article, such un-

ambiguous test models assume a crucial role. Here, two such models are briefly

described.

First, introduce a family of test models for climate change science that have

direct qualitative relevance for actual observed features for tracers in the atmo-

sphere [13, 112] with the additional attractive feature of exactly solvable statistics

for the mean and covariance [34, 35, 88] with many degrees of freedom despite the

inherent statistical nonlinearity. Thus, they are physically relevant unambiguous

test models for uncertainty in climate change science [87, 89, 90]. The models

have a zonal (east-west) mean jet U.t/, a family of planetary and synoptic scale

waves with north-south velocity v.x; t/ with x being a spatially periodic variable

representing a fixed midlatitude circle in the east-west direction, and tracer gas

T .x; t/ with a north-south environmental mean gradient ˛ and molecular diffusiv-

ity � [13, 88]. The dynamical equations for these variables are

dU

dt
D ��U C f .t/ C � PW ;(2.22a)
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dv

dt
D P

�
@

@x

�
v C �v.x/ PWv C fv.x; t/;(2.22b)

@T

@t
C U.t/

@T

@x
D �˛v.x; t/ C �

@2T

@x2
� dT T:(2.22c)

The functions f .t/ and fv.x; t/ are known time-periodic functions with period of

one year, reflecting the changing external forcing of the seasonal cycle, while PW
and PWv represent random white noise fluctuations in forcing arising from hidden

nonlinear interactions and other processes [92, 95]. The equation in (2.22b) for

the turbulent planetary waves is solved by Fourier series with independent scalar

complex variable versions of the equation in (2.22a) for each different wave num-

ber k [92, 95]; in Fourier space the operator yPk has the form yPk D ��k C i!k

with frequency !k D ˇk=.k2 C Fs/ corresponding to the dispersion relation of

baroclinic Rossby waves and dissipation �k D �.k2 C Fs/ where ˇ is the north-

south gradient of rotation, Fs is the stratification, and � is a damping coefficient;

the white noise forcing for (2.22b) is chosen to vary with each spatial wave number

k to generate an equipartition energy spectrum for planetary scale wave numbers

1 6 jkj 6 10 and a jkj�5=3 turbulent cascade spectrum for 11 6 jkj 6 52 (see

[92, 95]). Any other turbulent energy spectrum can be imposed on v. The zonal

jet U.t/ D xU .t/ C U 0.t/, where xU .t/ is the climatological periodic mean with

� , and � chosen so that this jet is strongly eastward while the random fluctuations

U 0.t/ have a standard deviation consistent with such eastward dynamical behavior.

While U.t/; v.x; t/ have exactly solvable Gaussian statistics mimicking features of

the atmosphere, the tracer T .x; t/ has non-Gaussian behavior due to the nonlinear

tracer flux term U 0.t/@T
@x

in (2.22c) with intermittent fat tails like realistic tracers

in the atmosphere [88, 112]; nevertheless, T .x; t/ has exactly solvable mean and

covariance climate statistics following [32, 33, 34] with explicit formulas.

These procedures define the exactly solvable statistics for the perfect climate.

Actual AOS models utilized in climate change science typically have too much

additional damping, and one can mimic this here in the representative AOS models

by increasing the two parameters � and v for (2.22a) and (2.22b) to �M and vM to

define the AOS model velocity fields U.t/M D xUM .t/ C U 0
M .t/; vM .x; t/, with

model error. The turbulent tracer in an AOS model is usually calculated roughly

by an eddy diffusivity [17, 111, 113, 118],

U 0
M .t/

@T

@x
D ���

M Txx;

and in the present models there is an exact explicit formula for ��
M . Thus, the AOS

model tracer satisfies

(2.23)
@TM

@t
C xUM .t/

@TM

@x
D

� ˛vM .x; t/ C .� C ��
M /

@2TM

@x2
� dT TM C �T

PW .x; t/;
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where PW .x; t/ denotes space-time white noise forcing with variance �T to over-

come deterministic model error. With (2.23) the AOS model with .UM ; vM ; TM /

has Gaussian statistics.

Note that the above perfect and imperfect climate models do not have positive

Lyapunov exponents but nevertheless exhibit nonnormal transient growth through

the nonzero mean gradient ˛ > 0 for the tracer. These models have been utilized as

unambiguous test models for all the issues of climate change science, information

theory, prediction, and FDT described earlier in this section [87, 89, 90]. These

are also important test models for the real-time recovery of turbulent tracer fields

from partial observations, an important topic with much practical interest in climate

science, as well as other disciplines [35]. A complete development of the turbulent

statistics of such test models is presented in [88]. Similar exactly solvable test

models with intermittent positive Lyapunov exponents are developed elsewhere

[14, 30, 31] and mentioned briefly in Section 3 in the context of filtering.

There is recent interest in deriving reduced stochastic models for climate and

extended-range weather prediction. An attractive property of atmospheric low-

frequency variability is that it can be efficiently described by just a few large-scale

teleconnection patterns (see [11, 15, 28] and references therein). These patterns

exert a huge impact on surface climate and seasonable predictability. Reduced sto-

chastic models are an attractive alternative for climate sensitivity studies via FDT

[91] because they are computationally much more efficient than state-of-the-art cli-

mate models and often have been shown to have comparable long-range prediction

skill [27, 37, 85].

Systematic mathematical stochastic-mode reduction strategies [86, 102, 103]

have been utilized recently to develop normal forms for reduced stochastic climate

models [84]. The one-dimensional normal form was applied in a regression strat-

egy in [84] for data from a prototype AOS model [28] to build one-dimensional

stochastic models for low-frequency patterns such as the North Atlantic Oscilla-

tion (NAO) and the leading principal component (PC-1) that has features of the

Arctic Oscillation. These one-dimensional, normal-form stochastic models have

been utilized to show the high skill of FDT algorithms despite deterministic, struc-

tural instability to both changes in external forcing and dissipation parameters as

well as test models for climate sensitivity and model error via information the-

ory [81, 87]. The canonical, one-dimensional stochastic models for low-frequency

variability [84] are given by the scalar stochastic equation

(2.24) dx D ŒF C ax C bx2 � cx3�dt C .A � Bx/dW C �dWA;

with corresponding Fokker-Planck equation

(2.25)
@p

@t
D � @

@x
Œ.F C ax C bx2 � cx3/p� C 1

2

@2

@x2
Œ..Bx � A/2 C �2/p�:

As calculated elsewhere [84], the Fokker-Planck equation in (2.25) has an ex-

plicit, smooth equilibrium distribution peq.x/ with a Gaussian tail provided that

the physically imposed restriction c > 0 is satisfied. The explicit form of the PDF,
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peq.x/, allows one to calculate explicit forms of the ideal response operator to per-

turbations in forcing F or the dissipation parameter a as well as explicit analytic

expressions for the FDT linear response operator and various approximations [81].

One of the striking features of atmospheric general circulation models is that there

are different regimes of low-frequency behavior despite unimodal, nearly Gaussian

PDFs for the low-frequency variables [11, 15, 27, 29, 85]. The stochastic models

are studied in parameter regimes where this behavior occurs and in the vicinity of

where there is deterministic, structural instability.

Figure 1 from [81] illustrates how intermittent regimes can happen in a stochas-

tic dynamical system with nearly unimodal PDFs, and (2.24)–(2.25) is the simplest

model that illustrates this phenomenon, which is very different from the usual (of-

ten incorrect!) association of regimes necessarily with multiple peaks in the PDFs.

The information-theoretic perspective on model error and long-range prediction

has been applied to these stochastic models recently [38, 87] as an elementary un-

ambiguous test problem.

3 Multiscale Algorithms for Turbulent Dynamical Systems:
Superparametrization, Filtering or Data Assimilation,

and Judicious Model Errors
The complexity of anisotropic turbulent processes over a wide range of spatial

and temporal scales in atmospheric and oceanic flows requires novel computational

strategies, even with the current and next generations of supercomputers. This

is especially important since energy often flows intermittently from the smaller

unresolved or marginally resolved scales to affect the largest observed scales in

such anisotropic turbulent flows due to the effects of rotation, stratification, and

moist processes [78]. Atmospheric weather and climate processes cover about 10

decades of spatial scales, from a fraction of a millimeter to planetary scales. A

similarly staggering range of interconnected scales characterizes the oceanic circu-

lation. While the smaller scales (of order millimeters to tens of meters) are com-

paratively less complex, as they fall within the inertial range of turbulence, scales

above this range and up to the planetary scales are dominated by an array of inter-

mittent and anisotropic turbulent processes that cannot be described by traditional

closures. For example, atmospheric motions on scales between 100 m and 100 km

show an abundance of processes associated with dry and moist convection, clouds,

waves, boundary layer, topographic, and frontal circulations. Oceanic scales from

10 m to 100 km display a similar range of behaviors, albeit without phase transi-

tions, but with a two-component density reflecting temperature and salt variations.

On the atmospheric side, a major stumbling block in the accurate prediction

of weather and short-term climate on the planetary and synoptic scales is the ac-

curate parametrization of moist convection. Moist convective processes involve

intermittency in space and time due to complex evolving chaotic and quiescent re-

gions, without statistical equilibration and with only moderate scale separation, so
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that traditional turbulence closure modeling fails [49, 110, 120]. Cloud-resolving

models realistically represent convective-scale and mesoscale processes with fine

computational grids. However, due to their extremely high computational cost,

they cannot be applied to large ensemble-size weather prediction or climate simu-

lations. This state of affairs, unfortunately, will remain for the foreseeable future.

In ocean models used for coupled climate simulations, the situation is arguably

even worse. Here the computational grid is typically on the order of 100 km, near

the spectral peak of the ocean’s kinetic energy (which is dominated by baroclinic

eddies somewhat larger than the deformation scale). Eddy-permitting simulations

for ocean-only process studies are now becoming common [48], but even these

leave a vast frontier of scales, from order 50 km down to the 10-m scale where

inertial range turbulence finally takes over, almost completely unaddressed.

The development of novel approaches that would directly address the multi-

scale nature of the problem is needed. In atmospheric modeling, superparametriza-

tion (SP), or more specifically to its initial application, cloud-resolving convection

parametrization [39, 40, 41, 117, 129], uses a spatially periodic two-dimensional

cloud-system-resolving model in each column of a large-scale model to explicitly

represent small-scale and mesoscale processes and interactions among them. In

this context, SP blends conventional parametrization on a coarse mesh with de-

tailed cloud-resolving modeling on a finer mesh. This approach has been shown

to be ideal for parallel computations on supercomputers and has yielded promising

new results regarding tropical intraseasonal behavior [39, 40, 41, 61].

The SP approach to convective parametrization in the atmosphere is powerful

and invites application of SP to a broader array of problems in climate–atmosphere–

ocean science such as mesoscale and submesoscale eddies in the ocean and gravity

wave drag in the stratosphere, as well as other science and engineering problems.

However, that particular approach is difficult to replicate because of the ad hoc

nature of its development. Recently, however, the author and collaborators have

shown how multiscale models may be exploited to enable rigorous, systematic

development of SP schemes [80, 129]. Moreover, a general statistical numeri-

cal analysis framework has been introduced recently [93] that illustrates why such

methods can successfully model systems with only modest scale separation and

without statistical equilibration of the small-scale dynamics [93].

Filtering or data assimilation is the process of obtaining the best statistical esti-

mate of a natural system from partial observations of the true signal from nature. In

many contemporary applications in science and engineering, real-time filtering of a

turbulent signal from nature involving many degrees of freedom is needed to make

accurate predictions of the future state. This is obviously a problem with significant

practical impact. Important contemporary examples involve the real-time filtering

and prediction of weather and climate as well as the spread of hazardous plumes

and pollutants or the prediction of storm surges in environmental science and en-

gineering. Thus, an important emerging scientific issue is the real-time filtering

through observations of noisy signals for turbulent nonlinear dynamical systems as
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well as the statistical accuracy of spatiotemporal discretizations for filtering such

systems. See the recent review article [95] and the many references therein, as well

as the introductory graduate textbook [94].

From the practical standpoint, the demand for operationally practical filtering

methods escalates as the model resolution is significantly increased. In the cou-

pled atmosphere-ocean system, the current practical models for prediction of both

weather and climate involve general circulation models where the physical equa-

tions for these extremely complex flows are discretized in space and time and the

effects of unresolved processes are parametrized according to various recipes; the

result of this process involves a model for the prediction of weather and climate

from partial observations of an extremely unstable, chaotic dynamical system with

several billion degrees of freedom. These problems typically have many spatiotem-

poral scales, rough turbulent energy spectra in the solutions near the mesh scale,

and a very large dimensional state space yet real-time predictions are needed. There

is an inherently difficult practical issue of small ensemble size in filtering statisti-

cal solutions of these complex problems due to the large computational overload in

generating individual ensemble members through the forward dynamical operator.

The above discussion motivates the need for systematic mathematical ideas in

devising algorithms for superparametrization (SP) and filtering/data assimilation

(FDA) for large-dimensional turbulent dynamical systems, as well as new types of

statistical/stochastic numerical analysis to assess the performance skill of various

proposed algorithms. Thus, there is a natural link between the viewpoint developed

here and the earlier discussion in Section 2. The recent review paper [95] and

graduate text [94] contain much more detailed material for the interested reader on

this emerging viewpoint for FDA for turbulent dynamical systems.

The general mathematical approach to SP or FDA for large-dimensional turbu-

lent dynamical systems advocated here is a four-stage process:

(i) Multiscale formulation: A multiscale physical/mathematical formulation

into larger-scale mean and smaller-scale fluctuating components in space-

time (for examples, see [69, 80, 106, 129] and references therein).

(ii) Small-scale model: A mathematical model to represent the behavior of the

smaller scales, typically involving a spatial periodic approximation and an

imposed scale gap (see [93, 129]).

(iii) Computational strategies to reduce the cost of the small-scale models by

making judicious model errors: Mathematical algorithms that allow for

computationally efficient but statistically accurate implementation of the

small-scale model as an SP or FDA algorithm in a larger-scale model

while retaining statistical accuracy [80, 129]. This can be implemented

by replacing more expensive three-dimensional models by much simpler

two-dimensional [39, 41] and even cheaper stochastic models [46, 60, 86,

93, 94, 95].
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(iv) A posteriori validations of the FDA and/or SP approximations: The accu-

racy of the approximations made during steps (ii) and (iii) must be eval-

uated, with particular attention on the ability of the SP representation or

FDA algorithm to capture multiscale interactions.

The multiscale SP and FDA methods discussed here can be contrasted to recent

complementary ideas in applied mathematics. In the work of the author and col-

laborators [80, 129], a theoretical link has been established between SP algorithms

and heterogeneous multiscale methods (HMM) [20, 23, 25, 121]. HMM algo-

rithms are a mathematical synthesis of earlier work (see [82, 97] and references

therein) as well as an abstract formulation that leads to new multiscale algorithms

for complex systems with widely disparate timescales [20, 23, 25, 121]. However,

as noted in [80, 129], there are significant differences in the regimes of nonlinear

dynamics being modeled by SP algorithms as compared with HMM. A key differ-

ence between SP and HMM lies in that while reduced HMM time-steppers have

been analyzed and applied for various physical systems with wide scale separation,

� D 10�3; 10�4, with � the scale separation ratio between large and small scales,

and rapid local statistical equilibration in time [20, 23, 25, 121], the skill and suc-

cess of superparametrization algorithms relies on intermittency in space and time

due to complex evolving strongly chaotic and quiescent regions without statisti-

cal equilibration despite only modest values of scale separation, � D 1=6 to 1=10

[80, 124, 127, 129]. Another related mathematical tool is the so-called gaptooth

scheme [7]. The gaptooth method has formal similarity with SP but only works

well on problems with an inertial manifold and for systems in which most modes

are strongly decaying. The SP methods discussed here, by contrast, work in the

strongly wavelike unstable regimes where there is intermittency and without even

local equilibration, let alone an inertial manifold, as shown in a recent paper [93].

This work introduces a class of mathematical test models for SP that are simple

enough to be analyzed with large confidence in a given physical context, yet reveal

essential mechanisms and features of both SP and HMM numerical algorithms.

This nonclassical numerical analysis of model test problems provides firm mathe-

matical underpinnings for the proposed new algorithms. Such test models can be

designed in any physical context following the recipe developed there. The empha-

sis is on models with intermittent strongly unstable fluctuations and only moderate

scale separation without statistical equilibration, so that more traditional numerical

closure methods such as HMM cannot be applied. In the remaining parts of this

section we illustrate a general idealized framework for mathematical issues related

to steps (i) and (ii) on page 934 and then discuss examples and important issues

regarding judicious model error for FDA and SP.

3.1 Simple Gaussian Closure Models for Turbulent Dynamical Systems
In climate atmosphere ocean science, it is often useful [79, 82, 104] to consider

the turbulent dynamical system from (2.1) with a special structure (note that the
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notation here is different from that in (2.1)),

(3.1) ut D Lu C B.u; u/ C S.u/ C xF C F 0; u 2 RN ;

where xF is time-dependent deterministic forcing and F 0 is zero-mean random forc-

ing. In applications the linear operator L involves rotation, stratification, topogra-

phy, drag dissipation, etc.; B.u; u/ denotes the quadratic effect of nonlinear advec-

tion, while S.u/ denotes nonlinear source terms such as heating from clouds. Here

and below, the decomposition of a variable such as u into

(3.2) u D xu C u0

denotes the formal decomposition of the random field u into its mean xu and fluc-

tuations u0 with u0 � 0. For simplicity in exposition it is assumed here that the

source term S.u/ is cubic so that

(3.3) S.u/ D S.xu C u0/ � S.xu/ CS1.xu/ u0 CS2.xu/.u0; u0/ CS3.xu/.u0; u0; u0/;
where the last two terms are bilinear and trilinear forms in the fluctuations u0.
Closure approximations for statistical solutions of (3.1) are developed by using the

(Reynolds) decomposition u D xu C u0 in (3.1) and computing separate dynamic

equations for the mean and fluctuations. First, the exact average equation for the

mean is given by

xut D Lxu C B.xu; xu/ C S.xu/ C xF C B.u0; u0/
C S2.xu/.u0; u0/ C S3.xu/.u0; u0; u0/:

(3.4)

To derive an exact equation for the fluctuations it is convenient to introduce the

linear operator depending on xu defined by

(3.5) L.xu/v0 � Lv0 C B.xu; v0/ C B.v0; xu/ C S1.xu/v0:
The exact equations for the fluctuations are given by

(3.6) u0
t D L.xu/u0 C F 0 C ŒB.u0; u0/ C S2.xu/.u0; u0/ C S3.xu/.u0; u0; u0/�;

where in (3.6) Œf � D f 0 D f � xf . So far both (3.4) and (3.6) are exact formulas.

The Gaussian closure for (3.1) consists of replacing the last two terms in (3.6), the

forcing and the term in brackets, which are turbulent fluctuations, by a model with

additional damping, ��M u0, with �M > 0 and Gaussian random forcing, assumed

here for simplicity to be white noise forcing, �M
PW . Thus, the Gaussian closure

model for the fluctuations is given by

(3.7) .u0
M /t D L.xuM /u0

M � �M u0
M C �M

PW :

Note that u0
M is a Gaussian random field with zero mean at each instant of time so

that

.u0
M ; u0

M ; u0
M / D 0,(3.8a)

and
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the statistics of u0
M are completely determined by the symmetric

covariance matrix, CM � u0
M u0T

M .
(3.8b)

In particular, it is easy to calculate from (3.7) that CM satisfies the Lyapunov equa-

tion for the covariance

(3.9) .CM /t D .L.xuM / � �M /CM C CM .L.xuM / � �M /T C QM ;

with QM > 0 given by QM D �M �T
M . With (3.6) and (3.8), the equation for the

mean of the Gaussian closure model is given by

.xuM /t D LxuM C B.xuM ; xuM / C S.xu/ C xF
C B.u0

M ; u0
M / C S2.xuM /.u0

M ; u0
M /:

(3.10)

The equations for the covariance in (3.9) and the mean (3.10) completely specify

the entire dynamics for the Gaussian closure model; furthermore, this is a realiz-

able closure since CM .0/ > 0 and (3.9) guarantee CM .t/ > 0 for all times. While

the Gaussian closure models provide an important theoretical framework for il-

lustrating the general use of the decomposition in item (i) on page 934, practical

implementation is hampered by the fact that the covariance equation in (3.9) cannot

be solved directly for large-dimensional turbulent dynamical systems with N � 1.

Nevertheless, with judicious model error, such closure models can have very high

skill for filtering turbulent dynamical systems [14, 94, 95]; non-Gaussian variants

involving nonlinear stochastic parameters, finite-state Markov chains, and Gauss-

ian mixtures can have even more skill for filtering and superparametrization (see

Section 3.3 below). Such approximations become much more relevant for both SP

and FDA when they are implemented on the small scales in a multiscale environ-

ment as illustrated next [93].

3.2 Multiscale Test Models for Superparametrization and Filtering
Following [93], the goal here is to show briefly how to develop simple multiscale

Gaussian mathematical test models for studying the issues in the list on page 934

for SP and FDA, as well as the accuracy of HMM algorithms with much wider scale

separation. In the derivation here the multiscale test models mimic (3.7), (3.9), and

(3.10) in a formal multiscale environment. This is made explicit by introducing

two spatial scales, X and x 2 RN with X D �x, and two timescales t and 	 with

	 D t=� with � < 1, a scale separation parameter.

Assume that the physical field has the multiscale decomposition

(3.11) u D xu.X; t/ C u0.X; x; t; 	/:

For a function f .t; 	/,

(3.12) hf i.t/ D �

Z ��1

0

f .t; 	/dt

denotes the empirical time average over the fluctuations for a fixed value of �.

Repeating the derivation of the Gaussian closure model in this multiscale context
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yields the mean model for xuM .X; t/ involving only the large-scale variables .X; t/

.xuM /t D LxuM C B.xuM ; xuM / C S.xu/ C xF C h B.u0
M ; u0

M /i
C S2.xuM /h .u0

M ; u0
M / i;

(3.13)

and the leading-order multiscale equation for the covariance CM .X; t; 	/

(3.14)
@CM

@	
D �.L.xuM / � �M /CM C �CM .L.xuM / � �M /T C �QM

with .X; t/ regarded as frozen variables. Note that the two averaging terms in

the large-scale equation from (3.13) are determined from the small-scale time-

averaged covariance by

(3.15) hB.u0
M ; u0

M /i C Su.xuM /h.u0
M ; u0

M /i � L .xuM .X; t//hCM i.X; t/;

where L is just a pointwise linear operator on the large scales. Thus, the dynamics

of the mean in (3.13) is completely determined by the empirical time average of

the covariance matrix in (3.14). In turn, this small-scale covariance depends non-

linearly (and nonlocally!) on this mean state. The equations in (3.13), (3.14), and

(3.15) are a more systematic version of the test models for SP proposed in [93],

and the above viewpoint should be relevant for future applications and statistical

numerical analysis.

In [93], a test model is developed for a single, real-valued scalar field u in a

single space dimension. A scalar differential operator is chosen to include advec-

tion, dispersion, and dissipation, as in typical anisotropic systems. In the Fourier

representation of the small-scale dynamics, a uniform damping and variance are

chosen to yield a �5=3 turbulent spectrum. Thus, if the interaction with the large-

scale field is ignored, the statistical equilibrium state for the small-scale dynamics

is an energetic turbulent field without scale separation. Intermittency is built in by

making the large-time behavior of the small-scale dynamics dependent on u. The

resulting small-scale dynamics can then be solved exactly, and its effects on the

large-scale dynamics explored precisely. In one parameter regime limit, the small-

scale dynamics equilibrates on the short timescale (the HMM limit), leading to a

solvable equilibrium statistical closure on the large scales. Even here, however,

nontrivial pattern formation in the large-scale dynamics can be generated solely

by interaction with the small scales. The more interesting and relevant parame-

ter regime leads to no small-scale equilibration on the short timescale, and hence

no closed statistical equilibrium model for the large-scale dynamics. The regimes

of success and failure of the large-scale dynamics in this limit are then delineated

systematically. This is the great advantage of the test-model approach: the error

entailed in a specific SP scheme can be determined. Much more systematic math-

ematical work understanding step (iii) on page 934 needs to be developed in the

context of superparametrization; namely, how can cheaper models capture the sta-

tistical dynamics of more complex systems. Examples already exist in the context

of turbulent diffusion where time alternating superpositions of one-dimensional
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plane wave random fields can be used to simulate accurate large-scale statistics of

a turbulent tracer in a field with many spatiotemporal scales [21, 22, 77, 97].

3.3 Judicious Model Errors in Filtering Turbulent Dynamical Systems:
Stochastic Parametrization Extended Kalman Filters (SPEKF)

All of the above theoretical developments utilize Gaussian closures as test mod-

els for highly anisotropic inhomogeneous turbulent systems. Can simple mod-

els incorporate non-Gaussian features of turbulent dynamical systems yet have the

advantage of cheap computational overhead for filtering turbulent dynamical sys-

tems from sparse observations? A key feature of turbulence is bursts of energy

across multiple scales with intermittent instability and random forcing. Stochastic

parametrization extended Kalman filters (SPEKF) have been introduced and ana-

lyzed recently [30, 31, 94, 95] as computationally cheap algorithms which make

judicious model errors that retain high filtering skill for complex turbulent signals

[14, 46, 59, 95]. For example, aliasing is usually viewed as a bad feature of numer-

ical algorithms; in the present context, judicious use of aliasing yields stochastic

superresolution [59, 94, 95].

The basis for the SPEKF algorithms is the following system for the complex

scalar partially observed turbulent signal u (the reader can think of a Fourier am-

plitude of turbulence at a given spatial wavenumber) coupled with stochastic addi-

tive forcing and multiplicative damping/instability coefficients b and � , which are

learned “on the fly” from the observed turbulent signal

du.t/ D Œ.��.t/ C i!/u.t/ C b.t/ C f .t/�dt C �udWu.t/;(3.16a)

db.t/ D Œ.��b C i!b/.b.t/ � yb/�dt C �bdWb.t/;(3.16b)

d�.t/ D �d� .�.t/ � y�/dt C �� dW� .t/;(3.16c)

where Wu and Wb are independent complex Wiener processes with independent

components and W� is a real Wiener process. There are nine parameters in the

system (3.16): two damping parameters �b and d� , two oscillation frequencies !

and !b , two stationary mean terms yb and y� , and noise amplitudes �u, �b , and �� ;

f is a deterministic forcing. The advantage of the equations in (3.16) is that they

have non-Gaussian dynamics but nevertheless exactly solvable first and second-

order statistics, so they are readily implemented practically in a filtering algorithm.

The equations in (3.16) have rich statistical behavior in a variety of regimes, and

this complex behavior can be utilized to test the filter performance of a wide va-

riety of Gaussian filter approximations [14]. Such models are also useful as an

unambiguous testbed for all of the issues of prediction and model error discussed

in Section 2.
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4 Concluding Discussion and Future Directions
Here, we briefly mention several topics for mathematical research directly con-

nected with this expository article and not discussed in detail in Sections 2 and 3

above.

4.1 Mathematically Rigorous FDT and Stochastic-Statistical
Numerical Analysis

The recent paper [45] only begins the mathematically rigorous analysis of fluc-

tuation-dissipation theorems for turbulent dynamical systems. Much more rigorous

work should be done for time-periodic systems, general multiplicative noise, and

rigorous FDT representation formulas. Further developments of the important role

of information theory for model error and sensitivity are needed beyond references

[81, 87, 89, 90, 91]. The recent papers [34, 105] contain much of the formal re-

search program and demonstrate it on an exactly solvable test model. Besides the

statistical/stochastic numerical analysis research program described in Section 3,

there is a great need for mathematical theory and the assessment of numerical al-

gorithms that capture the long-time statistical dynamics of turbulent dynamical

systems with high accuracy. Wang has carried out this important research program

for the example of a turbulent dynamical system arising in the large Prandtl num-

ber limit of classical Rayleigh-Benard convection [125, 126], and this work serves

as a model for further research.

4.2 Physics Constrained Data-Driven Statistical-Stochastic Models
It is extremely important to develop data-driven reduced stochastic-statistical

models of turbulent dynamical systems for long-range forecasting and uncertainty

quantification. Standard linear regression models can have some skill but suffer

from inherent mathematical limitations and intrinsic barriers in skill [91]. Ad hoc

nonlinear regression models can exhibit improved skill in a training time series

(see references in [107]) but can suffer unphysical finite-time blowup of statistical

solutions, as well as unphysical pathology in their invariant measure [107]. There

are rigorous proofs [130] that physics-constrained stochastic mode reduction mod-

els that are Markovian have the physically correct asymptotic behavior for their

invariant measure for low-frequency variability but they require further generaliza-

tions to include non-Markovian memory effects for many applications. There is

a wide array of data-driven clustering algorithms [26, 27, 52, 53, 54, 55, 56, 85]

to develop multiple regime Markov models for use in prediction. Giannakis and

the author [36, 37, 38] apply empirical information theory to assess the skill of

coarse-grained partitions of phase space and reduced Markov models for long-

range prediction. The methods of Horenko [38, 52, 53, 54, 55, 56] are especially

promising in this context but need further physical constraints to be more useful

for long-range forecasting. This is an exciting area for future interdisciplinary re-

search.
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4.3 Multiscale Models, Waves, and PDEs for the Tropics
This is a very important topic for climate science research to explain observa-

tions, develop theories, and improve numerical models [99]. It is also a very inter-

esting topic with many new phenomena for rigorous PDE analysis [18, 19, 98, 109]

with many open problems. Due to the lack of space, it is not discussed here despite

the author’s enthusiasm for these topics. Nevertheless, the interested reader can

consult the above references, as well as the current research/expository article [64]

for these developments.
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