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Abstract High-porosity granular materials such as

loose sands can implode when subjected to compressive

stresses. The mechanism of deformation is diffuse in

that the jump in the strain rate tensor has three inde-

pendent eigenvalues (full rank), in contrast to the jump

in the strain rate tensor for a deformation band-type

instability that has one eigenvalue (rank one). Recently,

the mechanism of volume implosion has been studied in

the context of material instability. In this paper we move

one step further and consider the effect of a volume

constraint associated with the presence of fluids in the

pores of granular materials that have a tendency to

implode. The upshot of this constraint is that at the

onset of liquefaction the solid matrix deforms in a

nearly isochoric fashion at the same time that the pore

fluid pressure increases. The corresponding eigenmode

(e-mode) is represented by jumps in the strain rate

tensor and rate of pore fluid pressure. The framework

presented in this work is used to analyze the onset of

liquefaction instability in very loose Hostun RF sand

tested in undrained triaxial compression and extension.

Keywords Bifurcation � Instability � Liquefaction �
Undrained condition � Saturated sands

1 Introduction

Liquefaction occurs when a saturated granular soil is

converted into a liquid. Soil liquefaction can damage

structures in many ways as the supporting ground sinks

or even pulls apart [19, 21, 23]. The physical mecha-

nism of liquefaction is well understood. If we subject

an assembly of loose, dry sands either to static or dy-

namic loading, the grain-to-grain contacts will eventu-

ally collapse until the particles find a more stable,

denser configuration. The process is not that of stable

compaction or densification since the volume changes

abruptly, suggesting momentary loss of stability, and so

the term ‘volume implosion’ seems more apt to char-

acterize the process. However, if the same loose sand is

fully saturated and subjected to the same load, implo-

sion is not possible since the water is trapped in the

pores and cannot compress. As the water is squeezed

inside the collapsing pores, the fluid pressure rapidly

increases causing the contact forces between the par-

ticles to disappear. Thus the soil is converted into a

suspension. For many years now a persistent question

has been that of finding the trigger for liquefaction.

What mathematical condition signals the onset of liq-

uefaction instability?

Soil liquefaction is a multiscale, multiphysics prob-

lem, originating at the pore scale level but rapidly

propagating to the particle cluster and specimen scales.

Particulate mechanics can shed much light onto what

transpires at the particle scale [15, 17, 39] leading to

‘instability’ at the macroscale, including particle mo-

tion and the associated pore-scale hydrodynamics.

However, because slip at a particle contact does not

necessarily constitute what we would normally con-

sider as collapse at the macroscale, it is difficult to infer

when liquefaction has occurred from the motion of the

individual particles alone. The process needs to be

propagated to the macroscale level to have a more

meaningful definition of ‘liquefaction.’ Hence, whereas
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particulate mechanics provides insight into the more

fundamental mechanism of pore collapse, we shall take

a macroscale approach in our characterization of the

trigger for liquefaction.

Two macroscale criteria for failure in soils are

commonly employed for interpreting triaxial test re-

sults [24, 38]: (a) when the principal stress difference

reaches a maximum value, (r1–r3)max; and (b) when

the effective principal stress ratio reaches a peak value,

(r¢1/r¢3)max. The two conditions are reached simulta-

neously in drained tests, but not in undrained tests

where confusion arises as to what constitutes ‘insta-

bility’ and what constitutes ‘failure.’ This is most

unfortunate considering that liquefaction occurs during

undrained testing, and not during drained testing.

Similar macroscale criteria but based on the use of a

so-called flow liquefaction surface along with a steady-

state line have been developed for undrained triaxial

testing on loose sands [31, 35–37].

The macroscale criteria stated above are based so-

lely on triaxial stress paths and do not extend directly

to three-dimensional loading conditions. Also, they do

not reflect the kinematics of deformation at the mo-

ment of instability, whether the sample failed by liq-

uefaction or by deformation banding. Finally, the

procedure assumes that the sample is deforming

homogeneously throughout testing that it suffices to

determine the stresses from the total loads applied to

the sample. Recently, it has been demonstrated that

minute perturbations in the density of the soil sample

could trigger deformation banding [2, 8]. A heteroge-

neous sample sheared at a given mean density could be

simulated to localize into a shear band, even if the

imposed heterogeneity is very slight, when the equiv-

alent homogeneous sample with the same density

would not manifest any form of instability. It may be

argued that this could also be true with liquefaction

instability simulations.

Our point of departure in this paper is the definition

of incremental stability revisited and elaborated by

Borja [6] for the case of single phase solid materials.

Loss of stability occurs when the constitutive tangent

operator becomes singular and results in non-unique

strain rates. The condition coincides with that of a sta-

tionary stress rate (for a symmetric constitutive tangent

operator), and the calculated eigen-strain rates define

the corresponding eigenmode (e-mode). In general the

e-mode has a full determinant rank, three for a 3D

problem, for example, and can be fully quantified,

including its sign, except for its norm. Now, if the e-

mode is assumed to have the form of a slip tensor of

determinant rank one, then loss of stability coincides

with the loss of ellipticity of the governing problem (for

a symmetric acoustic tensor). In physical terms the e-

mode defines a deformation band and is determined

from the condition of stationary traction rates [33].

Evidently, a full-rank e-mode is more appropriate for

investigating the onset of liquefaction instability. We

shall describe such e-mode as ‘‘diffuse,’’ as opposed to

the rank-one e-mode which we shall term ‘‘localized.’’

For a mixture consisting of solids and fluids it is not

so evident what constitutive tangent operator must

become singular to signal the onset of liquefaction. We

thus resort to an integral expression first used by Hill

[18] to demonstrate a general theory of uniqueness and

stability in elastoplastic solids. We show that for un-

drained bifurcation the relevant constitutive tensor

pertains to that of the total mixture, even if the solid

skeleton follows a constitutive law that utilizes the

effective stresses. The presence of pore fluids imposes a

volume constraint that alters the e-mode; this con-

straint is derived from balance of mass which we de-

velop in this paper in a form that accommodates for the

compressibility of both the solid grains and fluids. Fi-

nally, we demonstrate with a numerical example the

triggering of liquefaction instability in a loose, satu-

rated sand. The e-mode, often neglected in many sta-

bility analyses, is in fact very crucial in describing the

associated kinematic bifurcation response since it

indicates whether the type of instability is diffuse or

localized. Thus, we also calculate the e-mode consis-

tent with the identified singular point. Since liquefac-

tion often entails large deformation, we shall adopt

nonlinear continuum mechanics throughout this paper.

As for notations and symbols, bold-faced letters

denote tensors and vectors; the symbol ‘�’ denotes an

inner product of two vectors (e.g. a � b = aibi), or a

single contraction of adjacent indices of two tensors

(e.g. c � d = cijdjk); the symbol ‘:’ denotes an inner

product of two second-order tensors (e.g. c : d = cijdij),

or a double contraction of adjacent indices of tensors

of ranks two and higher (e.g. C : � ¼ Cijkl�kl); the

symbol ‘�’ denotes a juxtaposition of two vectors,

(a � b)ij = aibj, or of two symmetric second-order

tensors, ða� bÞijkl ¼ aijbkl:

2 Balance laws

2.1 Balance of mass

Consider a two-phase mixture composed of a solid

matrix whose voids are continuous and completely fil-

led with fluid (see [4, 5, 7, 26] for a detailed mathe-

matical background). We denote the volume fraction

by /a = Va/V for a = solid and fluid, where Va is the
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portion of the total volume V of the mixture occupied

by constituent a. The volume fractions satisfy the sat-

uration condition

/s þ /f ¼ 1: ð1Þ

The partial mass density is qa = /aqa, where qa is the

intrinsic mass density, so the total mass density of the

mixture is

q ¼ qs þ qf: ð2Þ

We denote the time derivative with respect to the solid

motion by

dð�Þ
dt
¼ @ð�Þ

@t
þ gradð�Þ � v; ð3Þ

where v is the velocity of the solid and grad is the

spatial gradient operator. In this paper we shall take

the more abbreviated superposed dot to mean the

same time derivative, i.e. _a ¼ da=dt: The time

derivative with respect to the fluid motion is given by

dfð�Þ
dt
¼ @ð�Þ

@t
þ gradð�Þ � vf; ð4Þ

where vf is the velocity of the fluid. The two time

derivatives in (3) and (4) are related by the equation

dfð�Þ
dt
¼ dð�Þ

dt
þ gradð�Þ � ev; ev ¼ vf � v: ð5Þ

In terms of the motion of the solid, balance of mass

for the solid and fluid are given, respectively, by

dqs

dt
þ qsdivðvÞ ¼ 0; ð6Þ

dqf

dt
þ qfdivðvÞ ¼ �divðqÞ; ð7Þ

where q ¼ qf
ev is the Eulerian relative flow vector of

the fluid relative to the solid, ev ¼ vf � v is the relative

velocity of the fluid to the solid, and div is the spatial

divergence operator.

For barotropic flows [27] the intrinsic bulk modulus

of the constituent a can be defined as

Ka ¼ qap0aðqaÞ; ð8Þ

where pa is the intrinsic Cauchy pressure in the a
constituent (compressive normal force acting on this

constituent per unit area of the same constituent).

Here we assume that pa has a functional relationship

with the intrinsic mass density qa. The bulk modulus Ka

is a property of the material, and in this paper we shall

assume this quantity to be constant for the solid and

fluid. Essentially this implies that for barotropic flow

the functional relation takes the logarithmic form

pa ¼ pa0 þKa ln
qa

qa0

� �

; ð9Þ

where pa0 is the intrinsic pressure at reference intrinsic

mass density qa0. Inserting (8) into (6) and (7) gives

d/s

dt
þ /s

Ks

dps

dt
þ /sdivðvÞ ¼ 0; ð10Þ

d/f

dt
þ /f

Kf

dpf

dt
þ /fdivðvÞ ¼ � 1

qf

divðqÞ: ð11Þ

Next we set

/s dps

dt
¼ �KdivðvÞ; ð12Þ

where K is the bulk modulus of the solid matrix (not to

be confused with the intrinsic bulk modulus Ks for the

solid constituent). A specific form for K may be

derived from an assumed functional relationship

among the state variables ps, qs and /s [7]. Adding

(10) and (11) and inserting (12) results in the following

balance of mass for the mixture in Eulerian form

BdivðvÞ þ /f

Kf

dpf

dt
¼ � 1

qf

divðqÞ; ð13Þ

where

B :¼ 1� K

Ks
ð14Þ

is the Biot coefficient. For soils K� Ks, and B may be

assumed equal to unity.

Now, let F denote the deformation gradient of the

solid motion and J = det(F) represent the corresponding

Jacobian. We define the Kirchhoff pore fluid pressure as

hf ¼ Jpf; ð15Þ

with material time derivative, relative to the solid

motion, given by

dhf

dt
¼ J

dpf

dt
þ pf

dJ

dt
; ð16Þ

in which dJ=dt � _J ¼ JdivðvÞ following nonlinear

continuum mechanics. The Lagrangian form of (13)

may then be written by introducing J on both sides of

this equation and using the Piola identity to get
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B� pf

Kf

� �

dJ

dt
þ /f

Kf

dhf

dt
¼ � 1

qf

DIVðQÞ; ð17Þ

where pf = /fpf is the partial pore fluid pressure,

Q ¼ JF�1 � q ð18Þ

is the Piola transform of q, and DIV is the divergence

operator evaluated with respect to the reference con-

figuration. We shall provide a physical meaning to the

Piola transform Q in the next section.

We now consider a solid body with initial placement

B and bounded by surface @B; where the latter admits

the decomposition @B ¼ @Bh [ @Bq and ; ¼ @Bh \ @Bq;

and where @Bh and @Bq are portions of the entire

boundary where the Kirchhoff fluid pressures and

velocity fluxes are prescribed. Balance of mass for the

mixture takes the form

B� pf

Kf

� �

_J þ /f

Kf

_hf ¼ �
1

qf

DIVðQÞ in B ð19Þ

_hf ¼ _hf0 on @Bh ð20Þ

Q �N ¼ Q0 on @Bq ð21Þ

We note that Q�N = q�n, where n = JN�F–1 is the push-

forward of the reference unit normal N (cf. Nanson’s

formula, see [30]).

2.2 Balance of linear momentum

Without loss of generality we shall consider a quasi-

static loading condition and write the balance of linear

momentum in Lagrangian form as

DIVðPÞ þ q0g ¼ 0; q0 ¼ Jq; ð22Þ

where P is the first Piola–Kirchhoff total stress tensor,

g is the gravity acceleration vector, and q is the

saturated mass density of the mixture [cf. (2)]. For

bifurcation analysis it is more useful to consider the

rate form of (22), which is given by

DIVð _PÞ þ _q0g ¼ 0; ð23Þ

where

_q0 �
dðJqÞ

dt
¼ Jð _qs þ _qfÞ þ _Jðqs þ qfÞ: ð24Þ

Since _J ¼ JdivðvÞ; we get

_q0 ¼ J½ _qs þ qsdivðvÞ� þ J½ _qf þ qfdivðvÞ�
¼ �JdivðqÞ ¼ �DIVðQÞ

ð25Þ

after using the mass balance equations (6) and (7).

Hence, the Piola transform Q has the physical signifi-

cance that its divergence with respect to the reference

configuration is the negative of the time derivative

(with respect to the solid motion) of the pull-back mass

density q0. Note that for a mixture of two or more

constituents, _q0 ¼ 0 if there is no relative flow of the

fluid relative to the solid matrix.

A critical aspect of balance of linear momentum for a

mixture of two or more constituents lies in the

decomposition of the total stress tensor. To this end we

recall the following stress tensor decomposition

emerging from continuum principles of thermodynam-

ics in the absence of non-mechanical energy for a solid

matrix whose voids are completely filled with fluid [7]:

r ¼ r0 � Bpf1; ð26Þ

where r is the total Cauchy stress tensor, r0 is a

constitutive (or effective) Cauchy stress that is energy-

conjugate to the rate of deformation of the solid

matrix, and 1 is the second-order identity tensor

(Kronecker delta). As a matter of sign convention, a

positive normal stress implies tension in the present

case. The stress quantity r0 in (26) is known as the Nur

and Byerlee [29] effective stress, which reduces to the

Terzaghi [34] effective stress when B = 1.

Multiplying both sides of (26) by J gives

s ¼ s0 � Bhf1; ð27Þ

where s ¼ Jr and s0 ¼ Jr0 are the symmetric total

and effective Kirchhoff stress tensors, respectively.

Contracting the right index of s by F–t gives

P ¼ P0 � BhfF
�t; ð28Þ

where P ¼ s � F�t and P0 ¼ s0 � F�t: Taking the time

derivative of (28) with respect to the solid motion gives

_P ¼ _P0 � Bhf
_F�t � B _hfF

�t � _BhfF
�t; ð29Þ

where _B ¼ � _K=Ks:

We now put these results together. For the solid

body B; let @B ¼ @Bt [ @Bu and ; ¼ @Bt \ @Bu; and

where @Bt and @Bu are portions of the entire boundary

where nominal traction rates and solid velocities are

prescribed. Note that the same boundary @B was

decomposed earlier into @Bh and @Bq; which have no

connection with @Bt and @Bu:

For the momentum equation we denote the solution

pair by ð _P; vÞ; and to be admissible we must have

DIVð _PÞ �DIVðQÞg ¼ 0 in B ð30Þ
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v ¼ _u0 on @Bu ð31Þ

_P �N ¼ _t0 on @Bt ð32Þ

where N is the unit outward normal vector to @B; and

u0 and t0 are prescribed boundary displacements and

nominal tractions, respectively.

3 Local stability and uniqueness

Suppose we consider an alternative solution pair

ð _P�; v�Þ 6¼ ð _P; vÞ that also satisfies the partial differen-

tial equation (30) and boundary conditions (31) and

(32). We explore the existence of this alternative

solution with the trivial identity

Z

B
DIV½ðv� � vÞ � ð _P� � _PÞ�dV

¼
Z

B
ð _F� � _FÞ : ð _P� � _PÞdV

þ
Z

B
ðv� � vÞ � ½DIVð _P�Þ �DIVð _PÞ�dV: ð33Þ

In addition, we augment the integral equation above

with balance of mass,

Z

B
B� pf

Kf

� �

ð _J� � _JÞ þ /f

Kf
ð _h�f � _hfÞ

"

þ 1

qf

DIVðQ� �QÞ
�

dV ¼ 0; ð34Þ

in which _J� is kinematically linked with v*, and ð _h�f ;Q
�Þ

also constitutes an alternative solution pair that may be

different from ð _hf;QÞ: By Gauss theorem the integral

on the left-hand side of (33) is

Z

B
DIV½ðv� � vÞ � ð _P� � _PÞ�dV

¼
Z

@B
ðv� � vÞ � ð _P� � _PÞ �N dA ¼ 0; ð35Þ

since both solutions are required to satisfy the

boundary conditions (31) and (32).

Now, we consider the condition ½½Q�� ¼ Q� �Q ¼ 0:

This case is of interest since it suggests that the jump

from one solution to the other occurs in the absence of

fluid flow. This is not to say that Q itself is

zero—drainage could still occur during deformation.

By using the jump that occurs at bifurcation, we thus

distinguish between local undrained deformation

(Q = 0) and local undrained bifurcation ð½½Q�� ¼ 0Þ: For

the latter case the second integral on the right-hand

side of (33) is zero since both solutions are required to

satisfy the momentum balance equation (30) for a fixed

flow vector Q. Thus, any pair of possible solutions must

satisfy the condition

Z

B
ð _F� � _FÞ : ð _P� � _PÞdV ¼ 0; ð36Þ

subject to the constraint

Z

B
B� pf

Kf

� �

ð _J� � _JÞ þ /f

Kf
ð _h�f � _hfÞ

" #

dV ¼ 0: ð37Þ

Uniqueness is guaranteed for every point and every

pair of stresses and deformation gradients linked by the

constitutive equation if

ð _F� � _FÞ : ð _P� � _PÞ[0; ð38Þ

subject to the constraint

B� pf

Kf

� �

ð _J� � _JÞ þ /f

Kf
ð _h�f � _hfÞ ¼ 0: ð39Þ

In this case the material is said to be incrementally sta-

ble. Note that this definition of stability does not depend

on the flow boundary conditions—balance of mass is

viewed only as a constraint on the mode shape on what is

otherwise a classical solid mechanics stability problem.

Uniqueness is lost when the jump in the first Piola–

Kirchhoff stress rate vanishes, i.e.

½½ _P�� ¼ _P� � _P ¼ 0: ð40Þ

This is a stronger condition than simply requiring that

the inner product in (38) vanish by orthogonality. In an

appendix at the end of this paper, we demonstrate that

for incrementally linear materials the ‘milder’ orthog-

onality condition produces additional skew-symmetric

terms that could violate the equilibrium condition.

Hence, we shall choose the condition of stationary

stress rate, (40), as our relevant criterion for loss of

incremental stability.

The formulation simplifies considerably in the spa-

tial description. Recall that s ¼ P � Ft; taking the time

derivatives and evaluating the jumps in the rates we

obtain

½½ _s�� ¼ P � ½½ _Ft�� þ ½½ _P�� � Ft; ð41Þ

where

½½ _F�� ¼ ½½l�� � F; ½½l�� ¼ @½½v��
@x
¼ @ðv

� � vÞ
@x

¼ l � l�; ð42Þ
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and ½½l�� is the jump in the velocity gradient. Setting

½½ _P�� ¼ 0 in (41) results in the equivalent condition for

loss of local stability associated with a stationary stress

rate

½½ _s�� � ðs� 1Þ : ½½l�� ¼ 0; ð43Þ

where ðs� 1Þijkl ¼ sildjk; and djk = Kronecker delta.

The jump in the total Kirchhoff stress rate in this case

may be obtained from (27) as

½½ _s�� ¼ ½½ _s0�� � ½½ _B��hf1� B½½ _hf��1; ½½ _B�� ¼ �½½ _K��=Ks: ð44Þ

We now consider the following incremental con-

stitutive equation

_s0 ¼ a : l; _s0� ¼ a : l�; ð45Þ

where a is a rank-four tensor with minor symmetry on

its first two left indices but not on its last two right

indices. We note two important points from the above

relations: (a) the constitutive equation relates the

Kirchhoff effective stress rate tensor _s0 with the

velocity gradient l as motivated by continuum

principles of thermodynamics; and (b) the same

tangent constitutive tensor a is used irrespective of

the direction of the velocity gradient. The latter point

characterizes an incrementally linear material whose

implication to elastoplasticity we shall elaborate in the

next section. For completeness we shall also assume

the following constitutive law for the bulk modulus K

of the solid matrix [cf. (12)]:

_K ¼ C/s _ps ¼ �CKdivðvÞ ¼ �CKtrðlÞ; ð46Þ

where C is a positive coefficient. This relation effec-

tively yields a solid matrix bulk modulus that varies

linearly with the solid pressure, a commonly observed

feature of soil behavior.

Combining the above results yields the following

condition for a stationary stress rate

b : ½½l�� � B1½½ _hf�� ¼ 0; ð47Þ

subject to the constraint

B� pf

Kf

� �

1 : ½½l�� þ /f

JKf
½½ _hf�� ¼ 0; ð48Þ

where

b :¼ a� s� 1� Chf
K

Ks
1� 1: ð49Þ

We can, of course, solve the above problem in many

ways. For example, we can eliminate ½½ _hf�� from (48) and

substitute into (47) to obtain the eigenvalue problem

j : ½½l�� ¼ 0; ð50Þ

where

j ¼ bþ JBKf

/f
B� pf

Kf

� �

1� 1 ð51Þ

is the undrained constitutive tensor. For a nontrivial

solution ½½l�� 6¼ 0 to exist we must have

detðjÞ ¼ 0: ð52Þ

The eigenmode (e-mode) ½½l�� of the singular tensor j

describes the ‘shape’ of the instantaneous jump.

4 Elastoplasticity and condition for liquefaction

For elastoplastic materials the component of the con-

stitutive tensor a in (45) depends on the loading

direction _F and has two branches, one for elastic

unloading and another for plastic loading. In principle

we need to consider all possible loading/unloading

scenarios to figure the most critical instability mode. In

order to reduce the number of possible permutations

we shall consider a so-called ‘‘in-loading comparison

solid’’ [3, 18, 32] which guarantees loss of uniqueness

according to definition (40).

4.1 Comparison solid

An e-mode defines a characteristic kinematical

‘‘shape’’ at bifurcation. It is important to know the

correct sign of the e-mode since it determines if the

volume will dilate or compact. To this end, we assume

two possible velocity gradients l and l* linked by the

kinematical relation (42). Further, we assume a yield

function of the form F ¼ Fðs; jÞ; where j is a plastic

internal variable, and take f ¼ @F=@s: The in-loading

comparison solid postulates plastic loading every-

where, and so

f : ae : l > 0; f : ae : l� > 0; ð53Þ

where ae is the elastic component of the moduli tensor

a: Since the two velocity gradients are linked by the

equation l� ¼ l þ ½½l��; it follows that

f : ae : ½½l�� > 0: ð54Þ
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This last equation is our criterion for selecting the sign

of the e-mode.

For the same in-loading comparison solid let

g ¼ @G=@s; where G is the plastic potential function.

As usual, the flow rule is associative if g = f. The tan-

gent operator a specializes to the form

aep ¼ ae � 1

v
ae : g� f : ae; ð55Þ

where v ¼ f : ae : gþH[0; and where H is the plastic

modulus. The elastoplastic tensors bep and jep may be

constructed accordingly. For the in-loading comparison

solid the condition for undrained bifurcation takes the

form

detðjepÞ ¼ 0: ð56Þ

Since the sign of the e-mode is known, we can

determine whether the instantaneous volume change is

implosive ðtr½½l��\0Þ; explosive ðtr½½l��[0Þ; or isochoric

ðtr½½l�� ¼ 0Þ: Furthermore, (48) uniquely determines the

sign of the pore pressure jump. Since (B–pf/Kf) > 0 and

/f/(JKf) > 0 in general, it follows that tr½½l�� and ½½ _hf��
have opposite signs.

4.2 Isotropic elastoplasticity

We consider in this section the case of isotropic plas-

ticity to highlight the connection between the stability

analysis presented in this paper and the onset of liq-

uefaction instability in saturated granular soils. An

important tool is the spectral decomposition of sym-

metric second-order tensors, and for the symmetric

effective Kirchhoff stress tensor it takes the form

s0 ¼
X

3

A¼1

s0AmðAÞ; mðAÞ ¼ nðAÞ � nðAÞ; ð57Þ

where sA is a principal value with associated principal

direction n(A). The spectral directions satisfy the

identity
P3

A¼1 mðAÞ ¼ 1; so the total Kirchhoff stress

tensor may be obtained from (27) as

s ¼
X

3

A¼1

sAmðAÞ; sA ¼ s0A � Bhf: ð58Þ

The elastoplastic tangent tensor aep can also be

decomposed spectrally,

aep ¼
X

3

A¼1

X

3

B¼1

aABmðAÞ �mðAÞ þ
X

3

A¼1

X

B 6¼A

sB � sA

kB � kA
KðABÞ;

ð59Þ

where

KðABÞ ¼ kBmðABÞ �mðABÞ þ kAmðABÞ �mðBAÞ; ð60Þ

m(AB) = n(A)�n(B), aAB is the 3 · 3 elastoplastic ma-

trix in principal axes, and kA is the elastic principal

stretch.

The jump in the velocity gradient can also be written

in spectral form. First, we recall the polar and spectral

decompositions

F ¼ V �R; V ¼
X

3

A¼1

kAmðAÞ; ð61Þ

where R is a proper orthogonal rotation tensor, kA is a

principal stretch, and n(A) is a principal direction of the

left stretch tensor V (which is coaxial with s by isotropy

and in the absence of plastic spin). Taking the time

derivative gives

_F ¼ _V �RþV � _R ð62Þ

where

_V ¼
X

3

A¼1

_kAmðAÞ þ
X

3

A¼1

X

B 6¼A

xABðkB � kAÞmðABÞ; ð63Þ

and xAB is the spin of the (Eulerian) principal axes of V.

The velocity gradient can be expressed in the form

l ¼ _F � F�1 ¼ _V �V�1 þV � X �V�1; X ¼ _R �Rt:

ð64Þ

Using the spectral forms and taking the jumps, we get

½½l�� ¼
X

3

A¼1

½½ _�A��mðAÞ þ
X

3

A¼1

X

B 6¼A

½½nAB��mðABÞ; ð65Þ

where

nAB½ �½ � ¼ xAB½ �½ � 1� kA

kB

� �

þ wAB½ �½ � kA

kB
ð66Þ

is the jump in total spin, wAB ¼ X : m ABð Þ; and �A ¼
ln kA is a principal logarithmic stretch. Note that wAB

arises from the finite rotation of the stretch tensor V

whereas xAB describes the spin of the principal axes of

V; the former vanishes in the infinitesimal theory

whereas the latter generally does not. The particular

e-mode of interest is characterized by ½½xAB�� ¼
½½wAB�� ¼ 0; where the volume simply implodes at fixed

R and at fixed spectral directions. In this case the jump

in the velocity gradient takes the symmetric form

½½l�� ¼
X

3

A¼1

½½ _�A��mðAÞ: ð67Þ
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4.3 Condition for liquefaction

We now rewrite the condition for liquefaction insta-

bility. Let

jAB ¼ mðAÞ : jep : mðBÞ ð68Þ

For isotropic elastoplasticity the condition of stationary

nominal stress rate may be written in principal

directions as

X

3

B¼1

jAB½½ _�B�� ¼ 0: ð69Þ

For a non-trivial solution to exist we must have

detðjABÞ ¼ 0: ð70Þ

This is the liquefaction condition in principal axes.

The e-mode is defined by the values of ½½ _�B�� along

with spectral representation (67), and its correct sign is

determined from (54). Pore collapse is characterized by

the condition

tr½½l�� ¼
X

3

A¼1

½½ _�A��\0: ð71Þ

Note that the e-mode predicted above is diffuse in the

sense that it does not entail the formation of a

deformation band. The jump in the Kirchhoff pore

pressure rate may be calculated accordingly as

½½ _hf�� ¼
JKf

/f
B� pf

Kf

� �

tr½½l��: ð72Þ

Thus, we can calculate the accompanying jump in the

pore pressure from the jump in tr(l).

Since Kf is typically large, [jAB] may become ill-

conditioned. In this case it may be best not to eliminate

the pore pressure variable but instead use the full

equations (47) and (48). Let

bAB ¼ mðAÞ : bep : mðBÞ ð73Þ

denote the drained elastoplastic tangent matrix in

principal axes. The system of homogeneous equations

can be written in the alternative full form

b11 b12 b13 �B
b21 b22 b23 �B
b31 b32 b33 �B
�B �B �B �/f=ðJKfÞ

2

6

6

4

3

7

7

5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

½b�

½½ _�1��
½½ _�2��
½½ _�3��
½½ _hf��

8

>

>

<

>

>

:

9

>

>

=

>

>

;

¼

0
0
0
0

8

>

>

<

>

>

:

9

>

>

=

>

>

;

; ð74Þ

where B ¼ B� pf=Kf: For a nontrivial solution to exist

we must have

det½b� ¼ 0: ð75Þ

equations (70) and (75) are, respectively, the penalty

and Lagrange multipliers forms of the liquefaction

condition in principal axes.

4.4 Infinitesimal theory, incompressibility,

and axisymmetry

For soils the intrinsic bulk stiffnesses Ks and Kf are

typically very high, relative to the stiffness of the solid

matrix or skeleton, so the assumption of incompress-

ible solid grains and fluids is not unreasonable.This

yields B ¼ B ¼ 1: Further, the infinitesimal theory is

fully recovered by ignoring the initial stress term in the

stiffness tensor, so the liquefaction condition in prin-

cipal axes becomes

c11 c12 c13 �1
c21 c22 c23 �1
c31 c32 c33 �1
�1 �1 �1 0

2

6

6

4

3

7

7

5

½½ _�1��
½½ _�2��
½½ _�3��
½½ _pf��

8

>

>

<

>

>

:

9

>

>

=

>

>

;

¼

0
0
0
0

8

>

>

<

>

>

:

9

>

>

=

>

>

;

; ð76Þ

where cIJ are the small-strain constitutive moduli in

principal axes and _�J are the principal strain rates. Note

that the last row is simply the incompressibility con-

straint.

Axisymmetry, a geometric configuration typically

utilized to describe a cylindrical soil sample loaded in

triaxial testing, may be obtained from (76) by setting

the first index to ‘‘a’’ (for axial) and the second and

third indices to ‘‘r’’ (for radial). The third row becomes

redundant, while the fourth row yields the incom-

pressibility condition ½½ _�r�� ¼ �½½ _�a��=2: After performing

a static condensation, we obtain the reduced matrix

form

ðcaa � carÞ �1
ðcra � crrÞ �1

� �

½½ _�a��
½½ _pf��

� �

¼ 0
0

� �

: ð77Þ

For a non-trivial solution to exist we must have

caa þ crr � car � cra ¼ 0: ð78Þ

This is the liquefaction condition for a homogeneously

deforming triaxial soil sample in the geometrically

linear regime.

We now follow the classical framework of plasticity

theory and assume yield and plastic potential functions

F and G, respectively. By isotropy we can express these
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functions in terms of principal Cauchy effective stres-

ses and define the gradients in principal axes as

fA ¼
@F

@r0A
; gB ¼

@G

@r0B
: ð79Þ

The elastoplastic constitutive matrix in principal axes

has the standard form

cAB ¼ ce
AB �

1

v
egA
efB ð80Þ

where

egA ¼
X

3

C¼1

ce
ACgC; efB ¼

X

3

C¼1

ce
BCfC;

v ¼ ev þH[0; ev ¼
X

3

A¼1

X

3

B¼1

gAce
ABfB[0;

ð81Þ

and H is the plastic modulus.

Next we assume that the elastic moduli matrix in

principal axes, cAB
e , is symmetric and positive definite,

with components

ce
AB ¼ kIAB þ 2ldAB; ð82Þ

where IAB = 1 for all possible indices, k and l are the

elastic Lamé parameters, and dAB is the Kronecker

delta. We are interested in finding a closed-form

expression for the critical plastic modulus Hcr,

defined as the value of H at which the determinant

condition (78) is satisfied for the first time. Indeed, this

expression is available in closed form, given by

Hcr ¼
1

4l
ðega � egrÞðefa � efrÞ � ev: ð83Þ

An analog of Hcr for a shear band bifurcation has been

derived by Rudnicki and Rice [33]. Suffice it to say that

closed-form expressions for Hcr appear easier to derive

for diffuse bifurcations than for localized bifurcations

since we do not need to search for the critical band

orientation with a diffuse mode.

5 Static liquefaction of loose Hostun RF sand

The undrained behavior of very loose Hostun RF

sand has been the subject of much investigation [13,

14, 16, 25]. In this paper we shall use the triaxial

laboratory test data reported by Doanh et al. [13] to

demonstrate the implications of the proposed lique-

faction condition.

5.1 Test data for isotropically consolidated samples

Doanh et al. [13] performed undrained triaxial com-

pression and extension tests on isotropically and

anisotropically consolidated samples of very loose

Hostun RF sand. They used enlarged and lubricated

end platens to produce relatively homogeneous

deformations at large strains, and a triaxial testing

machine with swivels at the top and bottom of the

sample to eliminate moments from a possible eccen-

tricity of the applied forces. In the following discussion

we shall use their test data for the isotropically con-

solidated samples as a benchmark for the liquefaction

instability analysis.

Figure 1 shows the stress paths on the p–q plane for

eight tests on isotropically consolidated samples, four

for compression and four for extension, where

p = (ra¢ + 2rr¢)/3 is the effective mean normal stress and

q = ra¢–rr¢ is the deviator stress, and where ra¢ and rr¢
are the Cauchy axial and radial effective stresses,

respectively (negative for compression, following the

continuum mechanics convention). Initial effective

consolidation pressures of 50, 100, 200 and 300 kPa are

represented by curves 1–4, respectively. As expected,

the peak deviator stress increases with initial confining

pressure, and is greater for compression test than for

extension test for the same initial confining stress, sug-

gesting the influence of the third stress invariant. All

stress paths intersected the p-axis at vertical slopes on

the compression cap, suggesting that this cap is smooth

at the transition from compression to extension.

Figure 2 shows the experimentally derived deviator

stress versus axial strain curves for the compression

and extension tests. Axial strains at peak deviator
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Fig. 1 Stress paths for isotropically consolidated undrained
triaxial compression and extension tests on Hostun RF sand.
Open circles denote peak points. Reproduced from [13]
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stresses tend to increase with initial confining pressures

at approximately 0.1–0.5%. These strains are quite

small although testing was continued at post peak up

until an axial strain of about 15%. For the given range

of initial confining pressure the initial tangent modulus

is nearly constant for all eight tests with an estimated

value 3l = 75,000 kPa, or l = 25,000 kPa. This modu-

lus is significantly greater than the imposed stresses (on

the order of a few hundred kPa), so assuming a con-

stant elastic modulus and ignoring the initial stress

terms in the stiffness matrix seem warranted for this

range of pressures. Fig. 3 shows the experimentally

derived pore pressure response curves normalized with

respect to the initial confining pressures. All four

extension tests exhibited an initially dilatant behavior

(pore pressure decrease), followed by a compactive

behavior (pore pressure increase), while all four com-

pression tests exhibited a compactive behavior

throughout.

Doanh et al. [13] also noted that none of the sam-

ples failed by deformation banding. Instead, liquefac-

tion instability ensued following the peak stresses,

characterized by a marked softening response accom-

panied by continued increase in pore pressure. ‘Total

liquefaction,’ defined by the condition p = q = 0, was

not achieved in any of the eight tests.

5.2 Analysis and discussions

Triaxial liquefaction tests are commonly simulated

numerically with an axisymmetrically loaded element,

the assumption being that the sample is deform-

ing homogeneously. While this approach may be

acceptable at low shear stresses, we have noted from

previous works that the triggering of instabilities at

high shear stresses is influenced to a great extent by the

soil heterogeneity, such as the spatial density variation

of the sample [1, 2, 8]. Such data are typically obtained

from high-resolution imaging, but unfortunately they

are not available for the present case study. Thus, we

shall limit the discussion of this section to the ideal

condition in which the soil specimen is deforming

homogeneously in undrained triaxial extension and

compression.

The stresses and pore pressures measured in the

tests of Doanh et al. [13] were very low compared to

the bulk moduli Ks and Kf, so in the following we as-

sume that the solid grains and fluids are incompress-

ible. Undrained deformation then implies that the

Jacobian determinant is J = 1, which means that the

Cauchy and Kirchhoff stress tensors are the same. A

typical analysis would involve ‘fitting’ yield and plastic

potential functions F and G on test data and postu-

lating a certain hardening/softening law. We shall not

follow this traditional way of analysis but instead focus

on describing the critical plastic modulus Hcr and the

associated e-mode at onset of liquefaction instability.

These two aspects are critical for the eventual simu-

lation of liquefaction phenomena as a boundary-value

problem.

The premise of the analysis is as follows. Suppose

the yield surface F fits the experimental data exactly.

Then we can construct normal vectors on the yield

surface F and measure the slope m = m(g), where
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mðgÞ ¼ @F=@q

@F=@p
; ð84Þ

and g = q/p is the stress ratio given by slopes of the

radial lines emanating from the origin of the p–q plane.

In Fig. 4 we sketch normal vectors to a yield surface

that passes through the data points for the 300 kPa

confining pressure test. The normalized gradients with

respect to the principal effective stresses at the same

stress point are given by

fa ¼ �
1þ 3m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ 27m2=2
p ; fr ¼ �

1� 3m=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ 27m2=2
p ; ð85Þ

where ðf 2
a þ 2f 2

r Þ
1=2 ¼ 1: We see in Fig. 4 that on the

compression cap, m < 0 during triaxial extension and

m > 0 during triaxial compression. The slope m also

defines the gradient to the plastic potential function in

the case of associative flow rule.

In general the flow rule for sand is not associative

[20] except perhaps at the nose of the compression cap

and near the critical state line. To accommodate a non-

associative plastic flow we also define a slope

emðgÞ ¼ @G=@q

@G=@p
; ð86Þ

where G is the plastic potential function, see Fig. 5.

The slope em is generally steeper than m, although, in

general, the two have the same sign. Replacing m with
em in (85) thus gives the relevant expressions for ga and

gr. The critical plastic modulus can then be written in

terms of m and em as

Hcr=l ¼ �
6þ 27m em=4þ 9k=l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ 27m2=2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ 27 em2=2
p : ð87Þ

Since k and l are nonnegative numbers, and since m

and em are assumed to have the same sign, then Hcr < 0

everywhere on the compression cap irrespective of the

slopes. We caution, however, that this expression for

Hcr is not conservative in the presence of soil hetero-

geneity, since deformation then becomes three-

dimensional (instead of axisymmetric), thus enhancing

the onset of liquefaction instability. In other words, the

local critical plastic modulus in a triaxially loaded soil

specimen could in fact be greater than the expression

given above.

We plot the calculated Hcr/l at different stress

points in Figs. 4 and 5, assuming a Poisson’s ratio

m = 0.2 for the soil skeleton (which gives k/l = 1/3).

Note that this parameter is a function solely of the

slopes m and em: In Fig. 4 we assume an associative

flow rule, whereas in Fig. 5 we assume a relation of the

form em ¼ m expð5jgjÞ: The latter relation guarantees

that the two slopes are the same at g = 0 and at

g = gpeak, with j emj[jmj elsewhere to conform with

experimental observations [20].

The following observations can be made from

Figs. 4 and 5. First, shear stresses enhance the potential

for liquefaction instability as can be observed from the

fact that Hcr increases with increasing g. This is com-

monly referred to as shear-induced liquefaction insta-

bility and is well known even from the early works of

Castro [9, 10]. Shear-induced liquefaction instability is

also linked to ‘flow liquefaction’ [19, 22, 35]. Second, a

non-associative flow rule also enhances liquefaction
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instability as can be seen from the fact that the plastic

modulus is higher elsewhere between the nose and the

peak point of the yield surface. What this means is that

with a non-associative plastic flow there is a greater

likelihood of liquefaction even below the peak stress if

the actual plastic modulus matches the critical plastic

modulus below the peak stress. This could have

important implications to modeling liquefaction and

other applications involving diffuse bifurcation as a

boundary-value problem, see Chambon [11], Darve

et al. [12], and Nova [28] for further discussions on

diffuse instability.

5.3 E-mode at liquefaction

Finally, we use the simplified one-element represen-

tation of Hostun RF sand sample to obtain the e-mode

at onset of liquefaction. To this end, suppose we have

identified the critical condition at which H = Hcr. At

onset of liquefaction the in-loading comparison solid

requires that [cf. (54)]

X

3

A¼1

X

3

B¼1

fAae
AB½½ _�B�� ¼ �

9m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ 27m2=2
p l½½ _�a��[0: ð88Þ

Thus, for triaxial compression testing where m > 0 we

must have ½½ _�a��\0; and for triaxial extension testing

where m < 0 we must have ½½ _�a��[0: The signs of these

two jumps clearly check with the known kinematics of

the two tests.

To determine the signs of the pore pressure jump we

expand either row of the matrix equation (77) to yield

c½½ _�a�� � ½½ _pf�� ¼ 0; ð89Þ

where

c ¼ caa � car ¼ cra � crr

¼ �2l
ega þ egr

ega � egr

¼ � 12kþ ð8þ 6 emÞl
9 em

:
ð90Þ

For triaxial compression testing where em[0 we have

c < 0, and since ½½ _�a��\0 for this type of test we con-

clude that ½½ _pf��[0: This is consistent with the known

kinematics of liquefaction. On the other hand, for tri-

axial extension where em\0; we get c > 0 provided
em[� 2k=l� 4=3: In this case, ½½ _pf��[0 since ½½ _�a��[0:

Note that ½½ _pf�� could switch sign and become negative if

the slope em becomes too negatively large. Although

not related to liquefaction, Fig. 3 does show that pore

pressures in very loose saturated sands do indeed be-

come negative in a more kinematically constrained

stress state of triaxial extension.

6 Closure

We have used bifurcation theory to predict the onset of

liquefaction instability and the associated e-modes in

fully saturated granular soils. Liquefaction instability is

equated with loss of uniqueness in the solution for the

solid velocity and pore pressure rate under a locally

undrained condition. The jumps in the strain rates

define a nearly isochoric state of deformation and

would otherwise be contractive if it were not for the

presence of fluids. Note that this definition of lique-

faction instability is not the same as ‘total liquefaction’

commonly associated with complete, or nearly com-

plete, loss of contact forces between the solid grains.

An advantage of the proposed formulation over the

use of so-called flow liquefaction surface to predict

liquefaction instability is that it captures the well-

known kinematics of liquefaction in a general 3D set-

ting, and is as robust as the now well-developed ap-

proach for predicting the onset of deformation bands.

To conclude, we now have a unifying 3D theoretical

framework that predicts whether the soil will form a

deformation band (localized bifurcation), or will im-

plode when it is dry (diffuse bifurcation), or will un-

dergo liquefaction instability when it is saturated

(diffuse bifurcation augmented with balance of mass).

Like the deformation band instability, liquefaction

instability in soil samples should be analyzed as a

boundary-value problem whenever possible. Soil het-

erogeneity plays a very critical role in the prediction of

material instability. It has been shown to enhance shear

band bifurcation, and there is no reason why it should

not enhance the triggering of liquefaction instability.

Soil liquefaction is a multiscale, multiphysics problem,

originating at the pore scale but rapidly propagating to

the specimen scale, so capture of the small scale effects

is essential for an accurate prediction of the inception

of this phenomenon. A viable approach for attacking

the liquefaction problem in a truly multiscale fashion is

to quantify the soil heterogeneity (e.g. spatial density

variation) experimentally and use this information as

input into detailed numerical meso-scale modeling

efforts. Work in this area is currently in progress.
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7 Appendix: Some notes on the stability conditions

Consider an incrementally linear material and take

AA ¼ @P=@F so that _P ¼ AA : _F and _P� ¼ AA : _F� (i.e.
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the same tangent operator is used for the two alter-

native solutions). We can write AA as the sum of a

symmetric part AAsym and a skew-symmetric part AAskw:

Loss of incremental stability occurs when

½½ _F�� : ½½ _P�� ¼ ½½ _F�� : AA : ½½ _F�� ¼ ½½ _F�� : AAsym : ½½ _F�� ¼ 0: ð91Þ

Only the symmetric part survives since a skew-

symmetric matrix automatically yields an orthogonal

metric. Thus, loss of incremental stability occurs when

detðAAsymÞ ¼ 0: ð92Þ

The jump ½½ _F�� can be obtained as the e-vector (or e-

tensor) of AAsym via the homogeneous equation

AAsym : ½½ _F�� ¼ 0: ð93Þ

In this case the jump in the stress rate is not zero but is

equal to

½½ _P�� ¼ ðAAsym þAAskwÞ : ½½ _F�� ¼ AAskw : ½½ _F��: ð94Þ

Now, assume that ð _P; vÞ satisfies (30). To see if the

alternative solution ð _P�; v�Þ also satisfies this same

equation, we write

DIVð _P�Þ �DIVðQ�Þg ¼ DIVðAAskw : ½½ _F��Þ 6¼ 0: ð95Þ

Hence, the alternative solution does not satisfy the

equilibrium condition when the loss of incremental

stability is defined in the sense of (92) (unless AA is

symmetric).

To illustrate the deformation banding analog, we

assume that the kinematical jump has the form

½½ _F�� ¼ um�N; where m and N are Cartesian vectors.

Then

½½ _F�� : ½½ _P�� ¼ u2m �A �m ¼ u2m �Asym �m ¼ 0; ð96Þ

where A = Asym + Askw is the acoustic tensor. Loss of

strong ellipticity occurs when

detðAsymÞ ¼ 0: ð97Þ

The e-vector m may be obtained from the

homogeneous equation

Asym �m ¼ 0: ð98Þ

In this case the jump in the nominal traction rate vector

is not zero but is equal to

½½_t�� ¼ ½½ _P�� �N ¼ uA �m ¼ uAskw �m; ð99Þ

for Askw 6¼ 0: We see that equilibrium is preserved only

by ensuring that the stress and traction rates are sta-

tionary.
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