
TensorTextures: Multilinear Image-Based Rendering

M. Alex O. Vasilescu∗ and Demetri Terzopoulos†

University of Toronto, Department of Computer Science
New York University, Courant Institute of Mathematical Sciences

Figure 1: Frames from the Treasure Chest animation. The chest contains a TensorTexture mapped onto a planar surface, which appears to
have considerable 3D relief when viewed from various directions (images 1–3) and under various illuminations (images 3–5).

Abstract

This paper introduces a tensor framework for image-based render-
ing. In particular, we develop an algorithm called TensorTextures
that learns a parsimonious model of the bidirectional texture func-
tion (BTF) from observational data. Given an ensemble of images
of a textured surface, our nonlinear, generative model explicitly rep-
resents the multifactor interaction implicit in the detailed appear-
ance of the surface under varying photometric angles, including lo-
cal (per-texel) reflectance, complex mesostructural self-occlusion,
interreflection and self-shadowing, and other BTF-relevant phe-
nomena. Mathematically, TensorTextures is based on multilinear
algebra, the algebra of higher-order tensors, hence its name. It is
computed through a decomposition known as the N -mode SVD,
an extension to tensors of the conventional matrix singular value
decomposition (SVD). We demonstrate the application of Tensor-
Textures to the image-based rendering of natural and synthetic tex-
tured surfaces under continuously varying viewpoint and illumina-
tion conditions.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gen-
eration; I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism—Color, shading, shadowing, and texture

Keywords: Image-Based Rendering, Textured Surface Render-
ing, Bidirectional Texture Function, Tensors, Tensor Decomposi-
tion, Multilinear Algebra, Statistical Learning

∗mrl.nyu.edu/∼maov
†mrl.nyu.edu/∼dt
0

To appear in ACM Transactions on Graphics, 23(3), August, 2004.
(Proceedings of ACM SIGGRAPH 2004, Los Angeles, CA, August
8–12, 2004.)

1 Introduction

The appearance of rendered surfaces is determined by a complex
interaction of multiple factors related to scene geometry, illumi-
nation, and imaging. The well-known BRDF accounts for sur-
face microstructure at a point. Its generalization, the bidirectional
texture function or BTF [Dana et al. 1999] captures the appear-
ance of extended, textured surfaces. The BTF accommodates spa-
tially varying reflectance, surface mesostructure (i.e., 3D texture
caused by local height variation over rough surfaces) [Koenderink
and van Doorn 1996], subsurface scattering, and other phenomena
over a finite region of the surface. It is a function of six variables
(x, y, θv, φv, θi, φi), where (x, y) are surface parametric (texel) co-
ordinates and where (θv, φv) is the view direction and (θi, φi) is the
illumination direction (a.k.a. the photometric angles). Several BTF
acquisition devices have been described in the literature (see, e.g.,
[Dana et al. 1999; Malzbender et al. 2001; Sattler et al. 2003; Han
and Perlin 2003]). In essence, these devices sample the BTF by ac-
quiring images of a surface of interest from several different view-
points under several different illuminations. Given only sparsely
sampled BTF data, image-based rendering (IBR) (see, e.g., [Gortler
et al. 1996; Levoy and Hanrahan 1996; Matusik et al. 2003]) is
applicable to the challenging problem of rendering the appearance
of a textured surface viewed from an arbitrary vantage point un-
der arbitrary illumination. This important problem has recently at-
tracted considerable attention [Liu et al. 2001; Malzbender et al.
2001; Tong et al. 2002; Furukawa et al. 2002; Meseth et al. 2003;
Suykens et al. 2003; Koudelka et al. 2003].

TensorTextures is a new image-based technique for rendering tex-
tured surfaces from sparsely sampled BTF data. More specifically,
from an ensemble of sample images of a textured surface, the of-
fline analysis stage of our TensorTextures algorithm learns a gen-
erative model that accurately approximates the BTF. Then, in the
online synthesis stage, the learnt generative model serves in ren-
dering the appearance of the textured surface under arbitrary view
and illumination conditions. Fig. 1 shows an example Tensor-
Texture. Although the coins in the treasure chest appear to have
considerable 3D relief as we vary the view and illumination di-
rections, this is in fact a TensorTexture mapped onto a perfectly
planar surface. The TensorTextures model has learned a compact

representation of the variation in appearance of the surface under
changes in viewpoint and illumination, including complex details
due to surface mesostructure, such as self-occlusion, interreflection,
and self-shadowing. Unlike the BTF synthesis method of Tong et
al. [2002] and similar algorithms, our technique is purely image
based—it avoids the nontrivial problem of estimating 3D geomet-
ric mesostructure and/or macrostructure from the image data.

Unlike all previous methods, TensorTextures is a nonlinear BTF
model. Mathematically, TensorTextures stems from a multilinear
(i.e., tensor) algebra approach to the analysis of image ensembles
[Vasilescu and Terzopoulos 2002]. Here, we apply the multilinear
theory in the context of computer graphics. TensorTextures may
be regarded as the first instantiation of a novel, multilinear frame-
work for image-based rendering. A major technical advantage of
our framework is that the underlying tensor formulation can disen-
tangle and explicitly represent each of the multiple factors inherent
to image formation. This stands in contrast to principal components
analysis (PCA), a linear (i.e., matrix) model typically computed
using the singular value decomposition (SVD), which has so far
been the standard BTF representation/compression method [Sattler
et al. 2003] and is, in fact, subsumed by our multilinear framework.
A major limitation of PCA is that it captures the overall variation
in the image ensemble without explicitly distinguishing what pro-
portion is attributable to each of the relevant factors—illumination
change, viewpoint change, etc. Our method prescribes a more so-
phisticated tensor decomposition that further analyzes this overall
variation into individually encoded constituent factors using a novel
set of basis functions.

Unfortunately, there does not exist a “tensor SVD” that offers all
the nice mathematical properties of the matrix SVD, and there are
several ways to decompose tensors [Kolda 2001]. Furukawa et al.
[2002] propose a compression method that expresses sampled BTF
data as a linear combination of lower-rank tensors, but this is inad-
equate as a possible generalization of PCA. Although the authors
report improved compression rates over PCA, their method suffers
from the same fundamental drawback: It does not permit separate
dimensionality reduction (compression) to be guided independently
in viewing, illumination, and spatial variation, as our method does.

Harnessing the power of multilinear algebra, the algebra of higher-
order tensors, our approach contributes a novel, explicitly multi-
modal model with which to tackle the BTF modeling/rendering
problem. Our model is computed through a tensor decomposition
known as the N -mode SVD, a natural extension to tensors of the
conventional matrix SVD.

2 Tensor Concepts

A tensor is a higher order generalization of a vector (1st-order
tensor) and a matrix (2nd-order tensor). Tensors are multilin-
ear mappings over a set of vector spaces. The order of tensor
A ∈ IRI1×I2×...×IN is N .1 An element of A is denoted as
ai1...in...iN , where 1 ≤ in ≤ In. In tensor terminology, column
vectors are referred to as mode-1 vectors and row vectors as mode-
2 vectors. The mode-n vectors are the column vectors of matrix
A(n) ∈ IRIn×(I1I2...In−1In+1...IN) that results from flattening the
tensor A, as illustrated in Fig. 2.

The mode-n product of a tensor A ∈ IRI1×I2×...×In×...×IN and
a matrix M ∈ IRJn×In is denoted by A ×n M. Its result is

1We denote scalars by lower case letters (a, b, . . .), vectors by bold lower
case letters (a,b . . .), matrices by bold upper-case letters (A,B . . .), and
higher-order tensors by calligraphic upper-case letters (A,B . . .).

I

A

1

I
2

I
2

I
1

I
3

I
2

I
3

I
1

I
2

I
3

I
3

I
1

I
1

I
1

I
1

I
2

A
(3)

I

A
(2)

1

I
2

I
3

I
2

I
1

I
3

I
3

(1)

Figure 2: Flattening a (3rd-order) tensor. The tensor can be flat-
tened in 3 ways to obtain matrices comprising its mode-1, mode-2,
and mode-3 vectors (from [Vasilescu and Terzopoulos 2002]).

a tensor B ∈ IRI1×...×In−1×Jn×In+1×...×IN whose entries are
bi1...in−1jnin+1...iN =

∑
in

ai1...in−1inin+1...iN mjnin . 2 The
mode-n product can be expressed in terms of flattened matrices as
B(n) = MA(n).

A matrix D ∈ IRI1×I2 is a two-mode mathematical object with two
associated vector spaces, a row space and a column space. The SVD
orthogonalizes these two spaces and decomposes the matrix as D =
U1SUT

2 , the product of an orthogonal column-space represented
by the left matrix U1 ∈ IRI1×J1 , a diagonal singular value matrix
S ∈ IRJ1×J2 , and an orthogonal row space represented by the right
matrix U2 ∈ IRI2×J2 . This matrix product can be rewritten in
terms of mode-n products as D = S ×1 U1 ×2 U2.

By extension, an order N > 2 tensor D is an N -dimensional array
with N associated vector spaces. The N -mode SVD is a general-
ization of the SVD that orthogonalizes these N spaces and decom-
poses the tensor as the mode-n product of the N orthogonal spaces,

D = Z ×1 U1 ×2 U2 . . . ×n Un . . . ×N UN , (1)

as illustrated in Fig. 3 for the case N = 3. Tensor Z , known as
the core tensor, is analogous to the diagonal singular value matrix
in conventional matrix SVD. It is important to realize, however,
that the core tensor does not have a diagonal structure; rather, Z
is in general a full tensor. The core tensor governs the interaction
between the mode matrices Un, for n = 1, . . . , N . Mode matrix
Un contains the orthonormal vectors spanning the column space of
the matrix D(n) that results from the mode-n flattening of D, as
was illustrated in Fig. 2.

Our N-mode SVD algorithm for decomposing D according to
equation (1) is as follows:

1. For n = 1, . . . , N , compute matrix Un in (1) by computing
the SVD of the flattened matrix D(n) and setting Un to be the
left matrix of the SVD.3

2The mode-n product of a tensor and a matrix is a special case of the in-
ner product in multilinear algebra and tensor analysis. Note that for tensors
and matrices of the appropriate sizes, A×m U×n V = A×n V ×m U
and (A×n U) ×n V = A×n (VU).

3For a non-square, m × n matrix A, the matrix U in the SVD
A = USVT can be computed more efficiently, depending on which

D

U
1

= X X
-
R
1

I
3

U
2

U
3

Z

R
1

I
2

I
3

I
1 I

1
I
2

-
R
3

-
R
2

-
R
3

-
R
1

-
R
2

Figure 3: Three-mode tensor decomposition and dimensionality
reduction through truncation. The data tensor D can be decom-
posed into the product of a core tensor Z and N mode matrices
U1 . . .UN ; for the N = 3 case illustrated here, D = Z ×1 U1 ×2

U2 ×3 U3. Deletion of the last mode-1 eigenvector of U1 incurs
an approximation error equal to σ2

R̄1
, which equals the Frobenius

norm of the (grey) subtensor of Zi1=R̄1
.

2. If it is needed, solve for the core tensor as follows:

Z = D ×1 UT
1 ×2 UT

2 . . . ×n UT
n . . . ×N UT

N . (2)

Dimensionality reduction is useful for data compression in image-
based rendering algorithms. Optimal dimensionality reduction in
matrix PCA results from the truncation of eigenvectors associated
with the smallest singular values in the SVD. Multilinear analysis
admits an analogous dimensionality reduction scheme, but it offers
much greater control, enabling a tailored truncation of each mode in
accordance with the importance of the mode to the rendering task.

A truncation of the mode matrices of the data tensor D results
in an approximation D̂ with reduced ranks R1 ≤ R̄1, R2 ≤
R̄2, . . . , RN ≤ R̄N , where R̄n = rankn(D) = rank(D(n)) =
rank(Un) is the n-rank of D for 1 ≤ n ≤ N . The error of this
approximation is

‖D − D̂‖2 =

R̄1∑

i1=R1+1

· · ·
R̄N∑

iN =RN +1

Z2
i1i2...iN

(3)

≤
R̄1∑

i1=R1+1

σ2
i1 + · · · +

R̄N∑

iN =RN +1

σ2
iN

; (4)

that is, it is bounded by the sum of squared singular values associ-
ated with the discarded singular vectors, where the singular value
associated with the mth singular vector in mode matrix Un is equal
to the Frobenius norm ‖Zin=m‖ of subtensor Zin=m of the core
tensor Z (Fig. 3). The truncated mode matrix is denoted Ûn.

Computing the optimal dimensionality reduction is unfortunately
not straightforward in multilinear analysis. Truncation of the mode
matrices that result from the N -mode SVD algorithm yields a rea-
sonably good reduced-dimensionality approximation D̂, but it is
generally not optimal. See [Lathauwer et al. 2000] (also [Kroo-
nenberg and de Leeuw 1980] and [Tucker 1966]) for an iterative,
alternating least squares (ALS) algorithm that improves the mode
matrices Ûn and hence D̂, although it does not guarantee a globally
optimal result.

dimension of A is smaller, by decomposing either the m × m matrix
AAT = US2UT and then computing VT = S+UT A or by decompos-
ing the n×n matrix AT A = VS2VT and then computing U = AVS+,
where the “+” superscript denotes the pseudoinverse.

(a) (b)

T
ex
el
s

Views

Illuminations

(c)

Figure 4: Image acquisition and representation. Images are ac-
quired from several different view directions over the viewing
hemisphere (a) and, for each viewpoint, under several different il-
lumination conditions over the illumination hemisphere (b). The
ensemble of acquired images is organized in a third-order tensor
(c) with view, illumination, and texel modes. Although the contents
of the texel mode are vectors of RGB texel values, for clarity they
are displayed as 2D images in this and subsequent figures.

3 Multilinear Analysis

Given an ensemble of images of a textured surface, we define an
image data tensor D ∈ IRT×I×V , where V and I are, respectively,
the number of different viewing conditions and illumination con-
ditions associated with the image acquisition process, and T is the
number of texels in each texture image. As a concrete example,
which we will use for illustrative purposes, consider the synthetic
scene of scattered coins shown in Fig. 4. A total of 777 sample
RGB images of the scene are acquired from V = 37 different view
directions over the viewing hemisphere (Fig. 4(a)), each of which
is illuminated by a light source oriented in I = 21 different direc-
tions over the illumination hemisphere (Fig. 4(b)). The size of each
image is T = 240 × 320 × 3 = 230400. Images acquired from an
oblique viewing angle are rectified with respect to the frontal image
acquired from the top of the viewing hemisphere.

We organize the rectified images as a 3rd-order tensor D ∈
IR230400×21×37, a portion of which is shown in Fig. 4(c). In prin-
ciple, we can apply the N -mode SVD algorithm from Section 2 to
decompose this tensor as follows:

D = Z ×1 Utexel ×2 Uillum ×3 Uview, (5)

into the product of three orthonormal mode matrices and a core ten-
sor Z that governs the interaction between the different modes. The
mode matrices encode the second-order statistics of each of the fac-
tors. The column vectors of the 37×37 mode matrix Uview span the
view space. The rows of Uview encode an illumination and texel in-
variant representation for each of the different views. The column

Eigentextures
T
ex
el
s

Figure 5: Utexel contains the PCA eigenvectors, which are the prin-
cipal axes of variation across all images.

T
ex
el
s

Illumination

Variation

Variation

View

Figure 6: A partial visualization of the 37 × 21 TensorTextures
bases of the coins image ensemble.

vectors of the 21 × 21 mode matrix Uillum span the illumination
space. The rows of Uillum encode a view and texel invariant rep-
resentations for each of the different illuminations.4 Fig. 5 shows
the column vectors of the 230400 × 777 mode matrix Utexel, which
span the texel space and are, in fact, the PCA eigenvectors (i.e.,
“eigenimages” or “eigentextures”), since they were computed by
performing an SVD on the matrix D(texel) obtained by mode-3 flat-
tening the data tensor D. Hence, our multilinear analysis subsumes
PCA, as we show formally in [Vasilescu and Terzopoulos 2002].

TensorTextures models how the appearance of a textured surface
varies with view and illumination. The TensorTextures representa-
tion (Fig. 6) is the product

T = Z ×1 Utexel (6)

= D ×2 UT
illum ×3 UT

view, (7)

where the second equation is preferable in practice, since it pre-
scribes computation of the relatively small matrices Uview and Uillum

rather than the generally large matrix Utexel that PCA would com-
pute. Thus, TensorTextures transform eigentextures into a tenso-
rial representation of the variation and co-variation of modes (view
and illumination). It characterizes how viewing parameters and il-
lumination parameters interact and multiplicatively modulate the
appearance of a surface under variation in view direction (θv, φv),
illumination direction (θi, φi), and position (x, y) over the surface.

TensorTextures is a more compact representation than PCA. In our
example, PCA would decompose the image ensemble into 777 ba-
sis vectors (eigentextures), each of dimension 230400, and repre-
sent each image by a coefficient vector of length 777, which spec-
ifies what proportion of each basis vector to accumulate in order
to obtain that image. By contrast, TensorTextures decomposes the
image ensemble into 37 × 21 basis vectors of the same dimension,
and represents each image by two coefficient vectors, one of length
37 to encode the view and the other of length 21 to encode the il-
lumination. Thus, each image is represented by 37 + 21 = 58

4The first coordinates of the row vectors of Uview (Uillum) encode the
directions on the viewing (illumination) hemisphere associated with the ac-
quired images. This information is not provided explicitly; it is learned by
the decomposition from the image ensemble.

l
1

l
2

l
3

[]

v
1

v
2

[

[

v
1

v
2

v
1

v
2

v
1

v
2

l
1

l
2

l
3

l
1

l
2

l
3

...

...

v
3

v
3

v
3

v
3

l
1

l
2

l
3

Variation

Variation

Illumination

View

Figure 7: The lower left image is rendered by multiplicatively mod-
ulating each of the TensorTextures basis vectors with the coeffi-
cients in the view coefficient vector v and the illumination coeffi-
cient vector l.

coefficients. Fig. 7 shows how these coefficients multiplicatively
modulate the TensorTextures basis vectors in order to approximate
(or render) an image.

More importantly, our multilinear analysis enables a strategic di-
mensionality reduction, which is a mode-specific version of the
conventional linear dimensionality reduction of PCA. In particular,
we truncate the mode matrices Uview and Uillum to obtain Ûview and
Ûillum, and apply the aforementioned iterative ALS algorithm [Lath-
auwer et al. 2000] until convergence in order to improve these trun-
cated mode matrices. Whereas dimensionality reduction in PCA re-
sults in unpredictable image degradation, multilinear models yield
image degradation that can be controlled independently in viewing
and illumination.

Fig. 8 compares TensorTexture image compression against PCA
compression. Note in Fig. 8(c) that the 95.2% reduction of the
illumination dimensionality suppresses illumination effects such as
shadows and highlights, but that it does not substantially degrade
the clarity of the texture, since the rank of the view mode matrix
has not been reduced. However, a comparable compression using
PCA results in the blurred texture of Fig. 8(b). Although the RMS
error of the TensorTexture compression relative to the original im-
age (Fig. 8(a)) is larger than the PCA compression, its “perceptual
error” [Teo et al. 1994] is smaller, yielding a substantially better
image quality than comparable PCA compressions. Fig. 8(d) shows
the degradation of the TensorTexture if we drastically compress in
the view mode. Applying PCA compression in Fig. 8(e), we re-
tain the 111 (out of 777) most dominant eigentextures. Applying
TensorTextures, we compress the dimensionality of the illumina-
tion mode from 21 to 3 (Rillum = 3) in Fig. 8(f). Since Rview = 37,
we retain 37 × 3 TensorTexture basis vectors, equaling the number
of retained PCA basis vectors. The total number of coefficients rep-
resenting the compressed images is 37 + 3. Fig. 8(d–e) illustrate
the same scenario with 31 × 4 TensorTexture basis vectors.

4 Multilinear Rendering

Our TensorTextures basis (eq. (7) and Fig. 6) leads to a straightfor-
ward rendering algorithm, which is illustrated in Fig. 7. To render
an image d, we compute

d = T ×2 lT ×3 vT , (8)

(a) Original (b) PCA (c) TensorTexture (d) TensorTexture

37 basis vectors 37 views, 1 illum : 37 basis vectors 2 views, 21 illums : 42 basis vectors
95.2% Compression 95.2% Compression 94.6% Compression

25.43 RMS Error 34.31 RMS Error 30.52 RMS Error

(e) PCA (f) TensorTexture (g) PCA (h) TensorTexture

111 basis vectors 37 views, 3 illums : 111 basis vectors 124 basis vectors 31 views, 4 illums : 124 basis vectors
85.7% Compression 85.7% Compression 84.0% Compression 84.0% Compression

14.78 RMS Error 20.65 RMS Error 13.46 RMS Error 18.35 RMS Error

Figure 8: The “perceptual error” incurred by compressing the illumination representation of the TensorTextures model is smaller than that of
indiscriminate PCA compression in a subspace of comparable dimension. (a) Original image. (b–h) PCA and TensorTexture compressions
of image (a) using various numbers of basis vectors. The label above each image indicates the type of compression, while the annotations
below indicate the basis set, the compression rate, and the root mean squared (RMS) error relative to the original image (a). For example,
the PCA compression (e) retains 111 of the 777 most dominant eigentexture basis vectors, while the TensorTexture image compression (f)
retains 111 TensorTextures bases associated with Ûview ∈ IR37×37 and Ûillum ∈ IR21×3, which reduces the illumination representation from
21 dimensions to 3 (Rillum = 3). The RMS error of the PCA-compressed images are lower, as expected, yet comparable TensorTexture
compressions have the better perceptual quality.

where v and l are, respectively, the view and illumination repre-
sentation vectors associated with the desired view and illumination
directions. These will in general be novel directions, in the sense
that they will differ from the observed directions associated with
sample images in the ensemble. Given a novel view (illumination)
direction, we first find the three nearest observed view (illumina-
tion) directions which form a triangle on the view (illumination)
hemisphere that contains this novel direction. We then compute the
novel view (illumination) representation vector v (l) as a convex
combination, using homogeneous barycentric coordinates, of the
view (illumination) representation vectors associated with the three
observed view (illumination) directions. Note that this algorithm is
appropriate for a planar surface, since every texel of the rendered
texture shares the same view/illumination representation. The algo-
rithm (8) was applied in the Treasure Chest animation to render the
coins TensorTexture on a planar surface in the chest under continu-
ously varying view and illumination directions (Fig. 1).

When rendering a TensorTexture d on a curved surface, the view
vj and illumination lj representation vectors associated with each
texel j of d are computed with respect to the given view and illu-
mination directions as well as the direction of the surface normal at
the center of texel j. The RGB value dj for texel j is then computed
as follows:

dj = Tj ×2 lTj ×3 vT
j , (9)

where Tj is a subtensor of the TensorTexture which governs the
interaction between view and illumination for texel j (Fig. 9).

=

vi
ew

illum.

te
x
el
s T

vTj l

l
d

j

vT
1 1

T
j

T

1

Figure 9: TensorTexture rendering when every texel j has a differ-
ent associated view vj and illumination lj direction.

5 Additional Results

We have applied the TensorTextures algorithm to two synthetic im-
age ensembles: The “coins” ensemble, which has served to illus-
trate our TensorTextures algorithm, and a “corn” image ensem-
ble whose TensorTextures representation is illustrated in Fig. 10.
Fig. 11 demonstrates the application of the algorithm of eq. (9) to
render the corn TensorTexture onto a perfect cylinder that forms
the head of a scarecrow, lit from two different directions. As the
cylinder is rotated, the TensorTexture shows the desired 3D effects,
including self-occlusion and self-shadowing between the corn ker-
nels. Fig. 12 shows the closing shot of an animated short called
Scarecrows’ Quarterly in which we have employed the TensorTex-

T
ex
el
s

Illumination

Variation

Variation

View

Figure 10: TensorTexture bases for the corn texture.

Figure 11: Renderings, with different light source directions, of the
corn TensorTexture mapped onto a cylinder that forms the scare-
crow’s head.

tured scarecrow head.

Both of our synthetic image datasets were acquired by rendering 3D
graphics models of surfaces featuring considerable mesostructure.
As was the case of the coins, the images of the corn surface were
also acquired by rendering the surface from 37 different view and
21 different illumination directions. Both the coins and the corn
TensorTexture models retain 37 × 11 = 407 TensorTexture basis
vectors by reducing the illumination mode from 21 to 11, while re-
taining all of the basis vectors of the view mode in order to maintain
the sharpness of the rendered images.

It takes considerable time to render each of the original sample
images because of the nontrivial scene geometries and rendering
methods employed. In particular, Alias’ Maya consumed around
180 seconds on average to render the coins images and around 20
seconds on average to render the corn images on a 2GHz P4 with
1GB of RAM. After our TensorTextures model has been computed
offline, the online rendering of the TensorTextures is significantly
more efficient. For the coins example, the rendering of the Tensor-
Textured surfaces for arbitrary viewpoints and illuminations, im-
plemented in not especially well-optimized Matlab code, took on
average 1.6 seconds per image on the same workstation. Further-
more, because it is image-based, the TensorTextures online render-
ing speed is independent of the scene complexity.

We have also applied our TensorTextures algorithm to images

Figure 12: Still from the Scarecrows’ Quarterly animation.

of natural textured surfaces from the University of Bonn BTF
database. The materials and methods for the image acquisition
are detailed in [Sattler et al. 2003]. Fig. 13 shows “Impalla” (a
stone) and “Corduroy” TensorTextures mapped onto spheres us-
ing the rendering algorithm of eq. (9). The TensorTextures bases
were computed from ensembles of RGB sample images, each of
size 256 × 256 × 3, acquired under 81 view and 81 illumination
directions. The image data were organized as 81 × 81 × 196608
tensors D. The view and illumination mode matrices were com-
puted in accordance with step 1 of the N -mode SVD algorithm, and
their dimensionality was reduced from 81 to 61 and from 81 to 27,
respectively, yielding the reduced mode matrices Ûview ∈ IR81×61

and Ûillum ∈ IR81×27. The 61 × 27 TensorTextures bases vectors
were computed according to (7). As a final demonstration, we have
created a Flintstone Phonograph animation which maps the Impalla
TensorTexture on the planar “turntable” surface (Fig. 14).

6 Conclusion

We have introduced a multilinear approach to the image-based ren-
dering of textured surfaces. Our TensorTextures algorithm provides
a parsimonious, explicitly multifactor approximation to the bidi-
rectional texture function (BTF). It is computed through a tensor
decomposition known as the N -mode SVD, which is a natural ex-
tension to tensors of the conventional matrix singular value decom-
position (SVD). We have demonstrated the algorithm in example
applications to synthetic and natural texture image ensembles.

We believe that our approach can handle data sets that result from
the variation of additional factors, such as BTF scale (i.e., zooming
into or away from a textured surface), high dynamic range (HDR)
BTF acquisition at multiple exposures, or temporally varying BTFs,
such as aging skin or leaves changing colors in the fall. In future
work, we would also like to incorporate into TensorTextures a vari-
ant of view-dependent displacement maps [Wang et al. 2003].

Figure 13: “Impalla” (left) and “Corduroy” (right) TensorTex-
tures rendered on spheres. A third order image data tensor as-
sociated with 81 viewpoint directions, 81 illumination directions,
and 196608 texels (256 rows × 256 cols. × 3 channels) was em-
ployed to the TensorTextures bases T = D ×2 UT

illum ×3 UT
view.

Image compression was obtained by retaining 61 × 27 TensorTex-
tures basis associated with Ûview ∈ IR81×61 and Ûillum ∈ IR81×27,
which reduces the viewpoint representation from 81 dimensions to
61 (Rview = 61) and the illumination representation from 81 dimen-
sions to 27 (Rillum = 27).

Figure 14: Still from the Flintstone Phonograph animation.

Acknowledgements

We thank Jared M. Silver for his valuable assistance with 3D mod-
eling, animation, and audio production. We also thank Svetlana
Stenchikova for exploring programming issues, as well as Davi
Geiger, Lexing Ying, Tamara Kolda, and Lieven de Lathauwer for
helpful discussions. Greg Ward provided encouragement and com-
ments on a draft.

References

DANA, K.J., VAN GINNEKEN, B., NAYAR, S.K., AND KOEN-
DERINK, J.J. 1999. Reflectance and texture of real-world sur-
faces. ACM Trans. Graphics 18, 1, 1–34.

FURUKAWA, R., KAWASAKI, H., IKEUCHI, K., AND SAKAUCHI,
M. 2002. Appearance based object modelling using texture
database: Acquisition, compression and rendering. In 8th Eu-
rographics Workshop on Virtual Environments, 257–266.

GORTLER, S.J., GRZESZCZUK, R., SZELISKI, R., AND COHEN,
M.F. 1996. The lumigraph. Computer Graphics (Proc. SIG-
GRAPH) 30, 43–45.

HAN, J.Y. AND PERLIN, K. 2003. Measuring bidirectional tex-
ture reflectance with a kaleidoscope. ACM Trans. Graphics
(Proc. SIGGRAPH) 22, 741–748.

KOENDERINK, J.J., AND VAN DOORN, A.J. 1996. Illuminance
texture due to surface mesostructure. Journal of the Optical So-
ciety of America 13, 3, 452–463.

KOLDA, T.G. 2001. Orthogonal tensor decompositions. SIAM
J. Matrix Analysis and Applications 23, 1, 243–255.

KOUDELKA, M.L., MAGDA, S., BELHUMEUR, P.N., AND
KRIEGMAN, D.J. 2003. Acquisition, compression, and synthe-
sis of bidirectional texture functions. In Proc. 3rd Int. Workshop
on Texture Analysis and Synthesis (Oct), Nice, France, 59–64.

KROONENBERG, P., AND DE LEEUW, J. 1980. Principal compo-
nent analysis of three-mode data by means of alternating least
squares algorithms. Psychometrika 45, 69–97.

LATHAUWER, L. DE, MOOR, B. DE, AND VANDEWALLE, J.
2000. On the best rank-1 and rank-(R1, R2, . . . , Rn) approx-
imation of higher-order tensors. SIAM J. Matrix Analysis and
Applications 21, 4, 1324–1342.

LEVOY, M., AND HANRAHAN, R. 1996. Light field rendering.
Computer Graphics (Proc. SIGGRAPH) 30, 31–42.

LIU, X., YU, Y., AND SHUM, H.-Y. 2001. Synthesizing
bidirectional texture functions for real-world surfaces. ACM
Trans. Graphics (Proc. SIGGRAPH) 20, 97–106.

MALZBENDER, T., GELB, D., AND WOLTERS, H. 2001. Polyno-
mial texture maps. Computer Graphics (SIGGRAPH 01) (Aug),
519–528.

MATUSIK, W., PFISTER, H., BRAND, M., AND MCMILLAN, L.
2003. A data driven reflectance model. Computer Graphics
(SIGGRAPH 03) 22, 3 (July), 759–769.

MESETH, J., MULLER, G., SATTLER, M., AND KLEIN, R. 2003.
BTF rendering for virtual environments. In Proc. Virtual Con-
cepts 2003 (Nov), 356–363.

SATTLER, M., SARLETTE, R., AND KLEIN, R. 2003. Efficient
and realistic visualization of cloth. In Proc. Eurographics Sym-
posium on Rendering, 167–177.

SUYKENS, F., BERGE, K. VON, LAGAE, A., AND KLEIN, R.
2003. Interactive rendering with bidirectional texture functions.
Comp. Graphics Forum (Proc. Eurographics) 22, 3, 463–472.

TEO, P. AND HEEGER, P. 1994. Perceptual image distortion. In
Proc. IEEE Conf. Image Processing (Nov), 982–986.

TONG, X., ZHANG, J., LIU, L., WANG, X., GUO, B., AND
SHUM, H.-Y. 2002. Synthesis of bidirectional texture functions
on arbitrary surfaces. ACM Trans. Graphics (Proc. SIGGRAPH)
21, 3, 665–672.

TUCKER, L. 1966. Some mathematical notes on three-mode factor
analysis. Psychometrika 31, 279–311.

VASILESCU, M. A. O., AND TERZOPOULOS, D. 2002. Multilin-
ear analysis of image ensembles: TensorFaces. In Proc. Euro-
pean Conf. Computer Vision, 447–460.

WANG, L., WANG, X., TONG, X., LIN, S., HU, S., GUO, B.,
AND SHUM, H.Y. 2003. View displacement mapping. ACM
Trans. Graphics (Proc. SIGGRAPH) 22, 3, 334–339.

