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Abstract

Over the last couple of years, face recognition researchers
have been developing new techniques. These developments
are being fueled by advances in computer vision techniques,
computer design, sensor design, and interest in fielding
face recognition systems. Such advances hold the promise
of reducing the error rate in face recognition systems by
an order of magnitude over Face Recognition Vendor Test
(FRVT) 2002 results. The Face Recognition Grand Chal-
lenge (FRGC) is designed to achieve this performance goal
by presenting to researchers a six-experiment challenge
problem along with data corpus of 50,000 images. The
data consists of 3D scans and high resolution still imagery
taken under controlled and uncontrolled conditions. This
paper describes the challenge problem, data corpus, and
presents baseline performance and preliminary results on
natural statistics of facial imagery.

1. Introduction
In the past few years, a number of new face recogni-
tion techniques have been proposed. The new techniques
include recognition from three-dimensional (3D) scans,
recognition from high resolution still images, recognition
from multiple still images, multi-modal face recognition,
multi-algorithm, and preprocessing algorithms to correct
for illumination and pose variations. These techniques hold
the potential to improve performance of automatic face
recognition by an order of magnitude over FRVT 2002 [1].

The Face Recognition Grand Challenge (FRGC) is de-
signed to achieve this increase in performance by pursuing
development of algorithms for all of the above proposed
methods.1 Determining the merit of these techniques re-
quires three components: sufficient data; a challenge prob-

∗Please direct correspondence to Jonathon Phillips, jonathon@nist.gov
1This paper discusses ver2.0 of the FRGC. Ver1.0 was a small chal-

lenge problem designed to introduce researchers to the FRGC challenge
problem protocol, procedures, and data formats.

lem that is capable of measuring an order of magnitude im-
provement in performance; and the infrastructure that sup-
ports an objective comparison among different approaches.

The FRGC addresses all three requirements. The FRGC
data corpus consists of 50,000 recordings divided into train-
ing and validation partitions. The data corpus contains high
resolution still images taken under controlled lighting con-
ditions and with unstructured illumination, 3D scans, and
contemporaneously collected still images.

The challenge problem ensures that researchers are
working on sufficiently large problems and that results are
comparable between different approaches. The FRGC chal-
lenge problem consists of six experiments. The experiments
measure performance on still images taken with controlled
lighting and background, uncontrolled lighting and back-
ground, 3D imagery, multi-still imagery, and between 3D
and still images. The infrastructure ensures that results from
different algorithms are computed on the same data sets and
that performance scores are generated by the same proto-
col. To measure progress under FRGC, the Face Recogni-
tion Vendor Test (FRVT) 2005, an independent evaluation
on sequestered data, will be conducted.

There is heated debate among face recognition re-
searchers about which method or technique will have bet-
ter performance. FRGC should provide answers to some
of these questions. In fact, authors of this paper have op-
posing views on one key debate: Will recognition from 3D
imagery be more effective than recognition from high res-
olution 2D imagery? In Section 7 we state five, sometimes
conflicting, conjectures, and relate them to specific experi-
ments that will allow for an assessment of the conjectures
at the conclusion of the FRGC.

2. Design of Data Set and Challenge
Problem

The design of the FRGC starts from performance in FRVT
2002, establishes a performance goal that is an order of
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magnitude greater, and then designs a data corpus and
challenge problem that supports meeting the FRGC perfor-
mance goal.

The starting point for measuring the increase in perfor-
mance is the high computational intensity test (HCInt) of
the FRVT 2002. The images in the HCInt corpus were taken
indoors under controlled lighting. The performance point
selected as the reference is a verification rate of 80% (error
rate of 20%) at a false accept rate (FAR) of 0.1%. This is
the performance level of the top three FRVT 2002 partic-
ipants. An order of magnitude increase in performance is
a verification rate of 98% (2% error rate) at the same fixed
FAR of 0.1%.

A challenge to designing the FRGC is collecting suf-
ficient data to measure an error rate of 2%. Verification
performance is characterized by two statistics: verification
and false accept rates. The false accept rate is computed
from comparisons between faces of different people. These
comparisons are called non-matches. In most experiments,
there are sufficient non-match scores because the number
of non-match scores is usually quadratic in the size of the
data set. The verification rate is computed from compar-
isons between two facial images of the same person. These
comparisons are called match scores. Because the number
of match scores is linear in the data set size, generating a
sufficient number of matches can be difficult.

For a verification rate of 98%, the expected verification
error rate is one in every 50 match scores. To be able to
perform advanced statistical analysis, 50,000 match scores
are required. From 50,000 match scores, the expected num-
ber of verification errors is 1,000 (at the FRGC performance
goal).

The challenge is to design a data collection protocol
that yields 50,000 match scores. We accomplished this by
collecting images for a medium number of people with a
medium number of replicates. The proposed FRGC data
collection called for collecting images of 200 subjects once
a week for an academic year (see section 4 for specific num-
bers), which generates approximately 50,000 match scores.

The design, development, tuning and evaluation of face
recognition algorithms requires three data partitions: train-
ing, validation, and testing. The FRGC challenge problem
provides training and validation partitions to researchers. A
separate testing partition is being collected and sequestered
for an independent evaluation.

The representation, feature selection, and classifier train-
ing is conducted on the training partition. For example, in
PCA-based and LDA-based face recognition, the subspace
representation is learned from the training set. In support
vector machine (SVM) based face recognition algorithms,
the SVM classifier is trained on the data in the training par-
tition.

Challenge problem experiments are constructed from

data in the validation partition. During algorithm develop-
ment, repeated runs are made on the challenge problems.
This allows researchers to assess the best approaches and
tune their algorithms. Repeated runs produce algorithms
that are tuned to the validation partition. An algorithm that
is not designed properly will not generalize to another data
set.

To obtain an objective measure of performance requires
that results be computed on a separate test data set. The
test partition measures how well an approach generalizes to
another data set. By sequestering the data in test partition,
participants cannot tune their algorithm or system to the test
data. This allows for an unbiased assessment of algorithm
and system performance.

The FRGC experimental protocol is based on the FERET
and FRVT 2002 testing protocols. For an experiment, the
input to an algorithm is two sets of images: target and query
sets. Images in the target set represent facial images known
to a system. Images in the query set represent unknown im-
ages presented to a system for recognition. The output from
an algorithm is a similarity matrix, in which each element is
a similarity score that measures the degree of similarity be-
tween two facial images. The similarity matrix is comprised
of the similarity scores between all pairs of images in the
target and query matrices. Verification scores are computed
from the similarity matrix.

3. Description of Data Set

Data for the FRGC was collected at the University of Notre
Dame. The FRGC data corpus is part of an ongoing multi-
modal biometric data collection.

A subject session is the set of all images of a person taken
each time a person’s biometric data is collected. For the
FRGC data for a subject session consists of four controlled
still images, two uncontrolled still images, and one three-
dimensional image. Figure 1 shows a set of images for one
subject session. The controlled images were taken in a stu-
dio setting, are full frontal facial images taken under two
lighting conditions (two or three studio lights) and with two
facial expressions (smiling and neutral). The uncontrolled
images were taken in varying illumination conditions; e.g.,
hallways, atria, or outdoors. Each set of uncontrolled im-
ages contains two expressions, smiling and neutral. The 3D
images were taken under controlled illumination conditions
appropriate for the Vivid 900/910 sensor, not the same as
the conditions for the controlled still images. In the FRGC,
3D images consist of both range and texture channels. The
Vivid sensor acquires the texture channel just after the ac-
quisition of the shape channel. This can result in subject
motion that can cause poor registration between the texture
and shape channels.

The still images were taken with a 4 Megapixel Canon
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Figure 1: Images from one subject session. (a) Four controlled stills, (b) two uncontrolled stills, and (c) 3D shape channel
and texture channel pasted on 3D shape channel.

Table 1: Size of faces in the validation set imagery broken
out by category. Size is measured in pixels between the
centers of the eyes. Reported is mean, median, and standard
deviation.

Mean Median Std. Dev.
Controlled 261 260 19
Uncontrolled 144 143 14
3D 160 162 15

PowerShot G2. Images are either 1704x2272 pixels or
1200x1600 pixels. Images are in JPEG format and storage
sizes range from 1.2 Mbytes to 3.1 Mbytes2.

The 3D images were acquired by a Minolta Vivid
900/910 series sensor. The Minolta Vivid 900/910 series is
a structured light sensor that takes a 640 by 480 range sam-
pling and a registered color image. Subjects stood or sat ap-
proximately 1.5 meters from the sensor. The images for the
FRGC were not acquired using the 900/910’s reduced res-
olution ”fast mode”, so that the images were acquired with
resolution beyond that typically used in 3D face recognition
today.

Table 1 summarizes the size of the faces for the uncon-
trolled, uncontrolled, and 3D image categories. For compar-
ison, the average distance between the centers of the eyes in
the FERET database is 68 pixels with a standard deviation
of 8.7 pixels.

2The identification of any commercial product or trade name does not
imply endorsement or recommendation by the National Institute of Stan-
dards and Technology, Notre Dame, SAIC, or Mitre.

The data for the FRGC experiments was divided into
training and validation partitions. The data in the train-
ing partition was collected in the 2002-2003 academic year.
From the training partition, two training sets were dis-
tributed. The first is the large still training set, which is
designed for training still face recognition algorithms. The
large still training set consists of 12,776 images from 222
subjects, with 6,388 controlled still images and 6,388 un-
controlled still images. The large still training set contains
from 9 to 16 subject sessions per subject, with the mode be-
ing 16. The second training set is the 3D training set that
contains 3D scans, and controlled and uncontrolled still im-
ages from 943 subject sessions. The 3D training set is for
training 3D and 3D to 2D algorithms. Still face recognition
algorithms can be training from the 3D training set when
experiments that compare 3D and still algorithms need to
control for training. There are separate still and 3D training
sets because 3D facial scans were only collected for part of
the 2002-2003 academic year.

Images in the validation partition were collected during
the 2003-2004 academic year. The validation set contains
images from 466 subjects collected in 4,007 subject ses-
sions. The demographics of the validation partition broken
out by sex, age, and race are given in Figure 2. The vali-
dation partition contains from 1 to 22 subject sessions per
subject (see Figure 3).

4. Description of Experiments
The experiments in FRGC ver2.0 are designed to advance
face recognition in general with emphasis on 3D and high
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Figure 2: Demographics of FRGC ver2.0 validation partition by (a) race, (b) age, and (c) sex.
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Figure 3: Histogram of the distribution of subjects for a given number of replicate subject sessions. The histogram is for the
ver2.0 validation partition.

resolution still imagery. Ver2.0 consists of six experiments.

Experiment 1 measures performance on the classic face
recognition problem: recognition from frontal facial images
taken under controlled illumination. To encourage the de-
velopment of high resolution recognition, all controlled still
images are high resolution. In Experiment 1, the biometric
samples in the target and query sets consist of a single con-
trolled still image.

Recently, researchers have observed that multi-still
images of a person can substantially improve perfor-
mance [2][3]. Experiment 2 is designed to examine the ef-
fect of multiple still images on performance. In this experi-
ment, each biometric sample consists of the four controlled
images of a person taken in a subject session. The biomet-
ric samples in the target and query sets are composed of the
four controlled images of each person from a subject ses-
sion.

Recognizing faces under uncontrolled illumination has
numerous applications and is one of the most difficult prob-
lems in face recognition. Experiment 4 is designed to mea-
sure progress on recognition from uncontrolled frontal still
images. In Experiment 4, the target set consists of single
controlled still images, and the query set consists of single

uncontrolled still images.
Proponents of 3D face recognition claim that 3D imagery

is capable of achieving an order of magnitude increase in
face recognition performance. Experiments 3, 5, and 6 ex-
amine different potential implementations of 3D face recog-
nition. Experiment 3 measures performance when both the
enrolled and query images are 3D. In Experiment 3, the tar-
get and query sets consist of 3D facial images.

One potential scenario for 3D face recognition is that the
enrolled images are 3D and the target images are still 2D
images. Experiment 5 explores this scenario when the query
images are controlled while Experiment 6 examines the un-
controlled query image scenario. In both experiments, the
target set consists of 3D images. In Experiment 5, the query
set consists of a single controlled still. In Experiment 6, the
query set consists of a single uncontrolled still. The size of
each experiment in terms of training, target, and query set,
and number of similarity scores is given in Table 2.

5. Baseline Performance

Baseline performance serves to demonstrate that a chal-
lenge problem can be executed, to provide a minimum level
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Table 2: Size of ver2.0 experiments. For each experiment
the size of the training, target, and query set is given. For
the training set the number of biometric samples provided is
divided into still and 3D images. The number of similarity
scores in each experiment’s similarity matrix is provided.

Exp. Training set Target set Query set No. sim
size size size scores
(still/3D) (million)

1 12,776/– 16,028 16,028 257
2 12,776/– 4,007 4,007 16
3 –/943 4,007 4,007 16
4 12,776/– 16,028 8,014 128
5 3772/943 4,007 16,028 64
6 1886/943 4,007 8,014 32

of performance, and to provide a set of controls for detailed
studies. A PCA-based face recogniton was selected as the
baseline algorithm [4].

The initial set of baseline performance results is given
for Experiments 1, 2, 3, and 4. For Experiments 1, 2, and 4,
baseline scores were computed from the same PCA-based
implementation. In Experiment 2, a fusion module was
added to handle multiple recordings in the biometric sam-
ples. Our implementation is based on Moon and Phillips [5]
and Beveridge et al [6]. The algorithm was trained on a sub-
set of 2,048 images from the large training set. The repre-
sentation consists of the first 1,228 eigenfeatures (60% of
the total eigenfeatures). See Section 6 for details on the se-
lection of the training set size and number of eigenfeatures
in the representation. All images were preprocessed by
performing geometric normalization, masking, histogram
equalization, and rescaling pixels to have mean zero and
unit variance. All PCA spaces are whitened. The distance in
nearest neighbor classifier is the cosine of the angle between
two representations in a PCA-space. In Experiment 2, each
biometric sample consists of four still images, and compar-
ing two biometric samples involves two sets of four images.
Matching all four images in both sets produces 16 similarity
scores. For Experiment 2, the final similarity score between
the two biometric samples is the average of the 16 similarity
scores between the individual still images.

A set of baseline performance results is given for Ex-
periment 3 (3D versus 3D face recognition). The baseline
algorithm for the 3D scans consists of PCA performed on
the shape and texture channels separately and then fused.
Performance scores are given for each channel separately
and for the shape and texture channels fused. We also fused
the 3D shape channel and one of the controlled still images.
The controlled still is taken from the same subject session
as the 3D scan. Using the controlled still models a situation
where superior still camera is incorporated into the 3D sen-
sor. The baseline algorithm for the texture channel is same

Figure 4: Baseline ROC performance for Experiments 1, 2,
3, and 4.

as in Experiment 1. The PCA algorithm adapted for 3D is
based on Chang et al [2].

Baseline verification performance results for Experi-
ments 1, 2, 3, and 4 are reported in Figure 4. Verification
performance is computed from target images collected in
the Fall semester and query images collected in the Spring
semester. For these results, the time lapse between images
is between two and ten months. Performance is reported
on a receiver operator characteristic (ROC) that shows the
trade-off between verification and false accept rates. The
false accept rate axis is logarithmic. The results for Experi-
ment 3 are based on fused shape and texture channels. The
best baseline performance was achieved by multi-still im-
ages, followed by a single controlled still, then 3D scans.
The most difficult category was the uncontrolled stills.

Figure 5 shows baseline performance for five configu-
rations of the 3D baseline algorithms: fusion of 3D shape
and one controlled still; controlled still; fusion of 3D shape
and 3D texture; 3D shape; and 3D texture. The best result is
achieved by fusing the 3D shape channel and one controlled
still image. This result suggests that 3D sensors equipped
with higher quality still cameras and illumination better op-
timized to still cameras may improve performance of 3D
systems.

6. Facial Image Statistics
The vast majority of face recognition papers are concerned
with presenting a novel algorithm and demonstrating that it
has superior performance. However, few researchers inves-
tigate the fundamental properties of facial images or the un-
derlying reasons why one class of algorithms is better than
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Figure 5: Baseline ROC performance for Experiment 3
component study. Performance is reported for fusion of 3D
shape and one controlled still image; one controlled still im-
age; fusion of 3D texture and 3D shape; 3D shape; and 3D
texture.

another. A natural starting point for this is the statistics of
facial images.

Similar to issues in image statistics of natural scenes, this
section looks at facial images statistics and underlying prop-
erties of face processing [7]. Initial studies of facial image
statistics could easily fill several papers. However, in this
section, we will briefly introduce the concept by comment-
ing on the effect of training set size on the eigenspectrum
and performance.

Successful development of pattern recognition algo-
rithms requires that one knows the distributional proper-
ties of objects being recognized. A natural starting point
is PCA, which assumes the facial distribution has a multi-
variate Gaussian distribution in projection space. In keep-
ing with Occam’s razor, once the deficiencies of this simple
model have been adequately identified, then it is time to ex-
amine more complex models. The deficiencies of PCA as
a recognition algorithm have been documented. However,
from a facial image statistics perspective, this model has not
been examined.

In the first facial statistics experiment we examine the
effect of the training set size on the eigenspectrum. If the
eigenspectrum is stable, then variance of the facial statis-
tics on the principal components is stable. The eigenspec-
trum was computed for five training sets of size 512, 1,024,
2,048, 4,096, and 8,192. All the training sets are subsets of
the large still training set. The eigenspectra are plotted in
Figure 6. The horizontal is the index for the eigenvalue on a
logarithmic scale and the vertical axis is the eigenvalue on a

Figure 6: The spectrum of the eigenvalues for training sets
of size 8,192, 4,096, 2,048, 1,024, and 512. For the low to
mid order eigenvalues, the plots for all five spectra overlap.
Each of the spectra have high order tails. The tails from left
to right are from the 512, 1,024, 2,048, 4,096, 8,192 training
sets.

logarithmic scale. The main part of the spectrum consists of
the low to mid order eigenvalues. For all five eigenspectra,
the main parts overlap.

The eigenvalues are estimates of the variance of the
facespace distribution along the principal axes. Figure 6
shows that the estimates of the variances on the principal
components are stable as the size of training set increases,
excluding the tails. The main part of the eigenspectrum is
approximately linear, which suggests that to a first order ap-
proximation there is a 1/f relationship between eigen-index
and the eigenvalues.

The natural follow-up question to the eigenspectra obser-
vation is: Are the distribution of the eigen-coefficients sim-
ilar across the training sets? We provide an initial answer to
this question by plotting the estimted density for two coef-
ficients (see Figure 7). The distributions for the first eigen-
coefficients, Figure 7(a), are bimodal. None of the other
coefficient distributions examined were bimodal. The dis-
tribution in Figure 7(b) is more representative of coefficient
distributions. They have the same general distribution for
each training set. These preliminary observations indicate
that the distribution of coefficients deserves greater atten-
tion. The size and composition of the FRGC corpus makes
studies of facial image statistics such as this one possible.

The effect of the size of the training set on perfor-
mance in face recognition has not been studied. The largest
standard training set in the literature is 501 images in the
FERET Sep96 protocol. In the next experiment, we look at
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Figure 7: Estimated densities for the (a) 1st and (b) 5th eigen-coefficients for each training set (the numbers in the legend are
the training set size). To generate the curve label 1024 in (a), a set of images were projected on the 1st eigenfeature generated
the 1024 training set. The set of images projected onto the eigenfeatures was a subset of 512 image in common to all five
training sets. All other curves were generated in a similar manner.

the effect of the size of the training set on PCA performance.
Figure 8 reports performance on Experiment 1 for training
sets of size 512, 1,024, 2,048, 4,096, and 8,192. Verification
performance at a false accept rate of 0.1% is reported (ver-
tical axis). The horizontal axis is the number of eigenfea-
tures in the representation. The eigenfeatures selected are
the first n components. The training set of size 512 approx-
imates the size of the training set in the FERET Sep96 pro-
tocol. This curve approximates what was observed in Moon
and Phillips, where performance increases, peaks, and then
decreases slightly [5]. Performance peaks for training sets
of size 2,048 and 4,096 and then starts to decrease for the
training set of size 8,192. For training sets of size 2,048 and
4,096, there is a large region where performance is stable.
The training sets of size 2,048, 4,096, and 8,192 have tails
where performance degrades to near zero.[6]

There are three immediate conclusions from this exper-
iment: first, increasing the training set increases perfor-
mance to a point; second, selection of the cutoff index is
not critical; and third, performance of the training set of
size 512 is a warning about drawing conclusions from too
small a sample.

7. Conclusions and Conjectures
While the majority of face recognition researchers will
agree that performance can be significantly increased, there
is a contentious debate about how to achieve this goal. The
biggest fault line is the divide between advocates for 3D
face recognition and proponents of high resolution still im-

agery.
The FRGC challenge problems allow for these differ-

ences in opinion to be formulated as testable conjectures.
In the design of the FRGC, we state five conjectures. The
FRGC answers to these conjectures will not be final, but
rather will be part of the process of building a scientific con-
sensus. The answers to our conjectures will change over
time and vary depending on the data set. The FRGC will
be the first opportunity to test the validity of the conjec-
tures. We relate Conjectures I to IV to the FRGC experi-
ments3. Conjecture V characterizes the potential effects of
the FRGC project on operational face recognition systems.

Conjectures I and II directly address the 3D versus 2D
still debate. Conjectures III and IV address special cases of
the 3D versus 2D still debate.

Conjecture I (Bowyer’s)4: The shape channel of one 3D
image is more powerful for face recognition than one 2D
image.

One of the contentions in establishing the criteria for
Conjecture I is specifying comparable images between the
modes. In the spirit of compromise and scientific investiga-
tion (and at the risk of confusion in face recognition com-
munity) we list five criteria for Conjecture I.

Criterion I-A: Performance on Experiment 3 (shape

3Performance will be measured ROC III and differences in perfor-
mance will be based on an appropriate statistical measure.

4The conjectures do not reflect the opinion of NIST, Notre Dame, or
SAIC. The conjectures are designed to be a catalyst for establishing a sci-
entific consensus.
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Figure 8: Verification performance as a function of the num-
ber of eigenfeatures in the representation for different size
training sets. Verification performance at a false accept rate
of 0.1% is reported. The numbers in the legend is the size
of the training set. Performance is for the baseline PCA
algorithm on experiment 1.

only) will be better than Experiment 3 (texture only).
Criterion I-B: Performance on Experiment 3 (shape

only) will be better than Experiment 1 with the images
scaled to 90 pixels between the centers of the eyes. The
proposed ISO SC-37 facial image standard.

Criterion I-C: Performance on Experiment 3 (shape and
texture) will be better than Experiment 1 with the images
scaled to 90 pixels between the centers of the eyes.

Criterion I-D: Performance on Experiment 3 (shape
only) will be better than Experiment 1 with the images at
the original resolution.

Criterion I-E: Performance on Experiment 3 (shape and
texture) will be better than Experiment 1 with the images at
the original resolution.
Conjecture II (Phillips’): One high resolution 2D image is
more powerful for face recognition than one 3D image.

Criteria: The opposite of criteria I-D and I-E.
Conjecture III: Using 4 or 5 well-chosen 2D face images
is more powerful for recognition than one 3D face image or
one multi-modal 3D+2D fusion.

Criterion III-A: Performance on Experiment 2 will be
better than Experiment 3 (shape and texture).

Criterion III-B: Performance on Experiment 2 will be
better than Experiment 3 (shape only).
Conjecture IV: The most promising aspect of 3D is ad-
dressing the case where the known images of a person are
3D biometric samples and the samples to be recognized are
uncontrolled stills.

Criterion IV-A: Performance on Experiment 6 will be

better than Experiment 4.
Conjecture V: Solution to the FRGC will cause rethinking
of how face recognition is deployed.

The recognition engine in a face recognition implemen-
tation is one part of a complex information technology sys-
tem. Other key components of a face recognition imple-
mentation include image collection protocols; storage and
transmissions infrastructure; and international standards for
facial imagery. Current face recognition implementations
are designed to work with a single still image of a person.
The size of the face is 60 to 90 pixels between the centers of
the eyes and image is compressed to approximately 10,000
bytes. Conjecture V posits a change in attitude in thinking
about using face recognition. The results of FRGC may in-
dicate that solutions to face recognition applications require
3D face scans, or multiple facial images, or high resolution
images. Adapting to these conclusions has the potential to
cause a rethinking and re-engineering of how face recogni-
tion is deployed in real-world applications.
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