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Abstract

We consider the problem of estimating the shape and ra-
diance of an object from a calibrated set of views under
the assumption that the reflectance of the object is non-
Lambertian. Unlike traditional stereo, we do not solve the
correspondence problem by comparing image-to-image. In-
stead, we exploit a rank constraint on the radiance tensor
field of the surface in space, and use it to define a dis-
crepancy measure between each image and the underlying
model. Our approach automatically returns an estimate of
the radiance of the scene, along with its shape, represented
by a dense surface. The former can be used to generate
novel views that capture the non-Lambertian appearance of
the scene.

Figure 1: (COLOR) Scenes with strong specularities or
made of translucent materials with no distinct point features
are a challenge to most stereo algorithms.

1 Introduction

Multi-frame stereo seeks to reconstruct the three-
dimensional shape of a scene from a collection of
images taken from different vantage points, and is one of
the classical problems of computer vision. The task can
be conceptually1 decomposed into two steps: establishing
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02-1-0720, AFOSR F49620-03-1-0095 and Intel 8029. We thank J.-
Y. Bouguet and R. Grzeszczuk for data.

1Some algorithms merge these two steps into one, and others integrate
correspondence information over regions in the image, rather than individ-

correspondencebetween points in different views, and
triangulatingtheir positions in space.

The greatest challenge to most stereo algorithms comes
from the first step2: successful correspondence depends on
the material properties of objects in the scene as well as
on the light distribution, which in real environments can be
quite complex.

1.1 Relation to prior work

Establishing correspondence requires introducing assump-
tions on the photometric properties of the scene. This is
done, overtly or covertly, in any stereo algorithm3. The
most common assumption is that the scene isLambertian,
i.e., the energy radiated from any point in the scene does
not depend on the outgoing direction, so that correspon-
dence can be easily established by comparing the irradiance
of individual images. Deviations from Lambertian reflec-
tion are often modeled as “noise” or “outliers” and either
minimized by choice of cost functionals, or rejected us-
ing robust statistical methods. For instance, one can se-
lect candidates for correspondence in each image, com-
pute the cross-correlation score among putative correspon-
dences, and then test whether they are consistent with a
common epipolar geometry. This works well when the
scene is composed mostly of matte surfaces with few spec-
ular highlights. However, for objects that areshinyand con-
centrated light distributions (see Fig. 1), this approach fails.

The problem with this classical approach is that it at-
tempts to establish correspondencefrom image to image.
This requires that the irradiance profile of corresponding
neighborhoods in different images be similar, i.e., that the
surface be close to Lambertian, modulo noise and outliers.
This requirement can be lifted if one were to use an explicit
model of the photometry of the scene, and therefore estab-
lish correspondencefrom model to images.

ual points; we will review these methods in Sect. 1.1.
2Multiple view geometry, which addresses the triangulation step, is

now well understood, and several textbooks are now available.
3It is straightforward to show that if a scene has arbitrary reflectance

properties and one can change the light distribution from frame to frame,
correspondence cannotbe established [18].



In addressing non-Lambertian reflection, this work re-
lates to several studies on specular reflections in stereo
matching and reconstruction. Bhat and Nayar [1] consider
the likelihood of correct stereo matching by analyzing the
relationship between stereo vergence and surface rough-
ness, and also propose a trinocular system where only two
images are used at a time in the computation of depth at
a point. Brelstaff and Blake [2, 3] excise specularities as
a pre-processing step; similar techniques are used also by
Okutomi and Kanade [15], while Nayar et. al. [12] have
considered using polarized filters to remove specularities.
Ikeuchi formulates the reconstruction problem for specular
surfaces in a photometric stereo setting [8], and [13, 19]
estimate surface shape with arbitrary reflectance exploit-
ing Helmholtz reciprocity. In space carving techniques
[11] brightness constancy is extended to photometric con-
sistency relative to a common model.

There is also a relation between our work and that of
Faugeras and Keriven [5], who cast the traditional multi-
frame stereo in a variational framework and use level set
methods [16] to solve it. They address the correspondence
problem by best approximating the brightness constancy as-
sumption at local neighborhoods of the image4, thus obtain-
ing in effect a dense correspondence wherever the bright-
ness gradient is non-zero. Jin et. al. [10] modify the cost
functional to minimize the effects of isolated specularities.

This work also relates to the general problem of estimat-
ing reflectance properties as well as shape from sequences
of images; for instance, Yu et. al. use known shape to es-
timate global illumination [18]; see also work on light field
rendering, such as [4, 6, 14] and references therein.

None of the algorithms described, however, returns an
estimate of both the shape and the (non-Lambertian) reflec-
tion of the scene.

1.2 Contributions of this paper

We address the problem of stereo reconstruction specifi-
cally for non-Lambertian objects; we work with a calibrated
stereo rig, although extensions to uncalibrated cameras are
conceptually straightforward. Unlike traditional stereo, we
do not compare image to image, but instead compare each
image directly to a model. Our model is not in an ex-
plicit functional form for the reflectance distribution func-
tion; instead, it is aconstraint on the rank of the radi-
ance tensor field(Sect. 2.1). We show that this model is
implied by (and is therefore more general than) standard
diffuse+specular reflection models commonly used in com-
puter graphics (Prop. 1). In addition to robustness to devia-

4This is done by looking for corresponding patches that maximize a
normalized cross-correlation score, the underlying assumption being that
of brightness constancy of corresponding points modulo local contrast and
scaling.

tions from Lambertian reflection that comes from having an
explicit model, our approach enjoys additional benefits that
are not found in traditional stereo algorithms. First, it auto-
matically returns an estimate of theradianceprofile of the
scene, along with itsshape. The former can be used to gen-
erateview-dependent“radiance maps” (as opposed to “tex-
ture maps”) that can be used to synthesize novel images that
preserve the shiny appearance of objects (Sect. 3.2), yield-
ing results comparable to light field rendering (Fig. 4 and 5).
Second, since we work in a variational framework, we esti-
mate adense surfacedirectly, and therefore we do not need
to interpolate or triangulate meshes; we integrate our cost
functionals on entire regions of the image, and therefore we
do not need photometrically distinct “feature points” to be
present in the scene (Sect. 3.1). We validate our analysis
and algorithms with experiments on real objects with com-
plex reflectance properties (Sect. 4) and ground truth.

2 Local modeling of radiance and im-
age discrepancy

In this section we introduce the model of photometry, based
on theradiance tensor field, and the measure of discrepancy
betweenmodel and imagesthat is the basis of our approach.

2.1 The radiance tensor field

Let S be a (smooth) surface embedded inR3, P ∈ S the
generic point on it, with coordinatesX = [X1, X2, X3] ∈
R3 with respect to an inertial reference frame. We denote
with TP S the tangent plane to the surface at the pointP .
The generic vector on the tangent plane (embedded in Eu-
clidean space) has coordinatesv ∈ R3. Let an ideal per-
spective camera be characterized by a Euclidean reference
frame g ∈ SE(3), that describes the change of coordi-
nates between the inertial reference frame and the frame
attached to the optical center of the camera, represented by
a rotation matrix and a translation vector5. Therefore, if
π : R3 −→ R2 denotes the canonical central projection6,
the pointP projects onto each image in the coordinates
x = π(gP ).

Our measurements are obtained at a discrete numbern of
camera poses,g1, g2, . . . , gn, and at a discrete numberm of
pixels which we represent, for convenience, in a neighbor-
hood of each pointP , as the projection of a tessellation of
the tangent planeΩP ⊂ TP S via the vectorsv1, v2, . . . , vm,
as in Fig. 2. Therefore, for each pointP , we can associate

5 g acts on a pointP with coordinatesX viagP , which has coordinates
RX + T whereR ∈ SO(3) is an orthonormal matrix with positive
determinant andT ∈ R3. The push-forward action ofg on vectorsλ ∈
TR3 with coordinatesV is given byg∗λ, which has coordinatesRV.

6π(X) = [X1/X3, X2/X3].
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Figure 2:The local coordinate frame on the tangent plane,
its discretization, and the projection onto an image.

an array of measurements, one column for each view and
one row for each pixel in a neighborhood ofπ(gjP ):

R(P ) =

 ρ(v1, g1) . . . ρ(v1, gn)
...

...
ρ(vm, g1) . . . ρ(vm, gn)

 (1)

whereρ(vi, gj) can be though of as an approximation of
the radiance of the surface at a point. Notice thatRij

.=
ρ(vi, gj) depends onP via the irradiance equation ([7] page
208), assuming a pin-hole projection:

Rij = Ij(π(gj(P + vi))) ∀ vi ∈ ΩP (2)

for all j = 1, 2, . . . , n. The mapS → Rm×n; P 7→ R(P )
defines a tensor field onS, R(·) which, for any fixedP ,
is anm × n matrix, called theradiance tensor, or simply
“radiance”. In practice, the imagesIj are measured only up
to noise, so what is available is

Ĩj(x) = Ij(x) + wj(x); R̃ij = Rij + wij (3)

wherewj(x) measures the discrepancy of the data from the
model and can be considered as the realization of a random
process (and therefore assumed to have a distribution asso-
ciated to it), or simply as an unknown matrix whose norm
we wish to minimize. We callR̃ the measured radiance
tensor field obtained by substituting the noisy imagesĨ in
equation (2).

In general, the radiance tensor depends on the material
properties of the surface and the lighting condition. For in-
stance, for the simplest case of Lambertian reflection,R(P )
has rank one at every point since, by the Lambertian as-
sumption, the radiance is independent of the viewpoint, and
therefore all the columns ofR are equal. For more complex
materials, the rank ofR will be greater than one in general
but, in general, it will be less than full. Prop. 1 shows that
for ideal surfaces that obey a “diffuse+specular” reflection
model, the (point-wise) rank of the radiance tensor is two.
In order to set up the notation to state the proposition, we

choose a reference frame〈e1, e2〉 for the tangent planeTP S
with the origin atP :〈e1, e1〉 = 1, 〈e2, e2〉 = 1, 〈e1, e2〉 =
0. Let NP S be the outward unit normal toS at P , so that
e1 × e2 = NP S. Then〈e1, e2, N〉 forms a Euclidean ref-
erence frame forR3 aroundP , where we have indicated the
normal vector withN as a short-hand forNP S. We de-
note withgP the change of coordinates between the inertial
reference frame and〈e1, e2, N〉 (see Fig. 2). We can pa-
rameterize each unit vectorλ in the upper half-sphere atP ,
H2

P , with polar coordinates(θλ, φλ) ∈ [0, π/2]× [0, 2π]. In
other words,θλ is the angle betweenλ andN andφλ is the
angle betweenλ ande1, for all λ ∈ H2

P .
The interaction of light with the surfaceS can be ex-

pressed, for most materials that we are going to deal
with, by thebidirectional reflectance distribution function
(BRDF7). This is a function of two directions inH2

P , the in-
cident direction, parameterized by(θi, φi) and the reflected
direction, parameterized by(θo, φo), as well as the wave-
length and polarization of the incident radiation, which we
will ignore. Ward’s (anisotropic) elliptical Gaussian model
[17] approximates the BRDFβ with a combination of a dif-
fuse term and a specular term:

β(θi, φi, θo, φo) =

=
ρd

π
+

ρs exp[− tan2 δ(cos2 γ/α2
x + sin2 γ/α2

y)]

4παxαy

√
cos θi cos θo

(4)

whereρd is the diffuse reflectance coefficient andρs is the
specular reflectance coefficient;αx andαy are the standard
deviations of the microscopic surface slope (surface rough-
ness) in the direction ofe1 ande2 respectively. They are
related to the properties of the material and we will con-
sider them to be constant in a neighborhood ofP . Let h be
the half vector between the direction(θi, φi) and(θo, φo); δ
is the angle betweenh andN , γ is the angle betweenh and
e1; (δ, γ) are the polar coordinates forh, and are therefore a
function of(θi, φi, θo, φo). The radiance in the direction de-
termined by the pointxj is given by integrating the BRDF
against the light distributionL in all directions(θi, φi):

ρ(0, gj) =

∫ 2π

0

∫ π/2

0

β(θi, φi, θo, φo) ·

L(θi, φi) cos θi sin θidθidφi (5)

where the direction from P tocj , the j-th camera center,

in the frame of the pointP , i.e.,gP
−1
∗

(
cj−P
‖cj−P‖

)
(see foot-

note 5), is represented in polar coordinates(θo, φo).

Proposition 1 (radiance tensor rank). Let S be made of
a material that obeys a reflection model (4). Furthermore,
consider a surface patchΩP ⊂ TP S that is small compared

7The BRDF is a simplified description of the radiometry of purely re-
flective (ideal) materials that yields an approximation of the radiance com-
monly used in computer graphics. It measures the ratio between the re-
flected energy along the direction(θo, φo) due to the energy coming from
the direction(θi, φi) and the incoming energy.



to the distance ofP from the light sources and from the
cameras. Then, ifR(P ) is computed forvi ∈ ΩP as in
equation(1), we have

rank(R(P )) ≤ 2 ∀ P ∈ S.

Proof. To facilitate computing the radianceρ(vi, gj) for
each vi ∈ ΩP ⊂ TP S; i = 1, 2, . . . ,m, in the di-
rection of the origin of the reference frame of camera
j = 1, 2, . . . , n, we will denote withg̃j(vi) the direction

g(P+vi)
−1
∗

(
cj−(P+vi)
‖cj−(P+vi)‖

)
from P + vi to cj in the frame

at the pointP + vi : 〈e1(vi), e2(vi), N〉. SinceTP S is a
plane, we can choose〈e1(vi), e2(vi), N〉 to coincide with
the reference frame atP : 〈e1, e2, N〉. Under the assump-
tion thatΩP is small, we can approximatẽgj(vi) with g̃j(0).
Again, (θo, φo) are the polar coordinates ofg̃j(0). Under
the same assumption, we can also approximate the incom-
ing light distribution at the pointP + vi with L(θi, φi). If
we denote withρ(vi|λ) the radiance of pointvi along the
directionλ, by equation (5), the radiance in the direction
towardcj is given by

ρ(vi, gj) = ρ (vi|g̃j(vi)) u ρ (vi|g̃j(0))

=
∫

β(vi, θi, φi, θo, φo)L(θi, φi) cos θi sin θidθidφi

=
∫ 2π

0

∫ π/2

0

ρd(vi)
π

L(θi, φi) cos θi sin θidθidφi

+
∫

ρs(vi) exp[− tan2 δ(cos2 γ/α2
x + sin2 γ/α2

y)]
4παxαy

√
cos θi cos θo

·

L(θi, φi) cos θi sin θidθidφi

= ρd(vi)s1 + ρs(vi)s2(gj)

where

s1
.=

∫ 2π

0

∫ π/2

0

1
π

L(θi, φi) cos θi sin θidθidφi

s2(gj)
.= s2(θo, φo) =

=
∫ 2π

0

∫ π/2

0

exp[− tan2 δ(cos2 γ/α2
x + sin2 γ/α2

y)]
4παxαy

√
cos θi cos θo

·

L(θi, φi) cos θi sin θidθidφi.

The intuition behind this proposition is that, in the limit
where the light sources are far, and the patchΩP is small,
the specularity is either absent, or it “washes out” the entire
patch. Of course, these conditions are only a mathemat-
ical idealization, and are not verified in practice. Indeed,
this very fact is exploited in the next section to set up a
cost function for stereo reconstruction. In view of the claim
above, one can then write the radiance tensor as the sum
of two rank-one matrices. The relevance of Prop. 1 will be
discussed in Sect. 5.

Corollary 1 (local radiance model). At each pointP of
an ideal surfaceS that obeys the conditions of Prop. 1, the
radiance tensor field is given by

R(P ) = d1(v)sT
1 (g) + d2(v)sT

2 (g) (6)

wheredi(v) stands for[di(v1), di(v2) . . . , di(vm)]T , and
si(g) stands for[si(g1), si(g2), . . . , si(gn)]T , i = 1, 2.

The reader should notice thatdi(v), si(g), i = 1, 2 are
functions of the pointP on the surface. The notationd
is suggestive of the fact thatdi is mainly due to thedif-
fusecomponent of the radiance (that does not depend on
the viewpoint), whereass is suggestive ofspecular, since
si depends only on the viewing direction.

2.2 A discrepancy measure for non-
Lambertian scenes

Naturally, real scenes do not satisfy the conditions of Prop.
1, so themeasuredtensorR̃(P ) has rank greater than2.
The key idea here is to use this rank discrepancy to set up
a matching criterion for stereo reconstruction. This is done
by setting up an error function between the measured radi-
ance tensor̃R(P ) and the modelR(P ) at each pointP (see
equation (3)):

Φ(P ) .= ‖R̃(P )− d1(v)sT
1 (g)− d2(v)sT

2 (g)‖2
F (7)

where we have chosen the squared Frobenius norm to
compare radiance tensors, although any other matrix norm
would do. ClearlyΦ(P ) will depend on the coordinates of
P . In addition,Φ(P ) will also depend on the normal atP ,
sincevi lives inTP S: Φ(P ) = Φ(X, N). If we define

φij = R̃ij − d1(vi)s1(gj)− d2(vi)s2(gj), (8)

whereR̃ij is the(i, j)-th element ofR̃(P ), then the squared
Frobenius norm is the sum of the square of each element
φij . The surfaceS can then be found as the minimizer of
the energyE

.=
∫

S
Φ(P )dA:

Ŝ
.= arg min

S

∫
S

Φ(P )dA (9)

wheredA is the area measure onS. As we have noted,
since the actual measured tensorR̃ will in general have full
rank, we can write it, for eachP , using the singular value
decomposition (SVD) as

R̃(P ) =
r∑

i=1

d̃i(v)s̃T
i (g)

wherer = min{m,n}. Since, from the rank constraint of
Prop. 1, we can choose the basis ofR arbitrarily, we can
have

di(v) = d̃i(v) and si(g) = s̃i(g) i = 1, 2 (10)



andR(P ) = d̃1(v)s̃T
1 (g)+d̃2(v)s̃T

2 (g). The functionΦ can
therefore be written as

Φ(P ) = ‖d̃3(v)s̃T
3 (g)+ d̃4(v)s̃T

4 (g)+ · · ·+ d̃r(v)s̃T
r (g)‖2

F .
(11)

By the properties of the SVD, we have that

〈d̃i(v), d̃j(v)〉 = a2
i δij and 〈s̃i(g), s̃j(g)〉 = b2

i δij

(12)
whereai, bi ∈ R andδij = 1, if i = j; δij = 0, otherwise.

3 Estimation of shape and radiance
for non-Lambertian scenes

In this section we present our algorithm to recover the rep-
resentation of shape and radiance described in the previous
section from a collection of images.

3.1 Shape estimation

Shape, in our context, is described by a representation of the
surfaceS relative toanyEuclidean reference frame. When
S is represented explicitly, one can look for the solution
Ŝ via a local descent along the gradient ofE. The first-
order optimality condition is given in the following theo-
rem, which is not proven here for reasons of space (see [9]):

Theorem 1 (optimality condition). Let ΦX,ΦN be the
first-order derivative ofΦ with respect toX and N and
ΦXN ,ΦNN be the second-order derivatives. We assume
that ΦNN can be decomposed as:ΦNN =

∑k
i=1 λipip

T
i

whereλi ∈ R andpi ∈ R3 (note that this is always possi-
ble in thatΦNN is real and symmetric). LetH be the mean
curvature andII(t) be the second fundamental form of a
vectort ∈ TP (S). Then we have that, at the optimumS,

2HΦ − 〈ΦX, N〉 − 2H 〈ΦN , N〉 − trace(ΦXN )

+NT ΦXNN +

k∑
i=1

λiII((I − NNT )pi) = 0 (13)

A flow based on the first-order derivatives is given by the
following partial differential equation:

St = 2HΦ− 〈ΦX, N〉 − 2H 〈ΦN , N〉 . (14)

The calculation of the flow above reveals some interesting
structure, as major simplification occur after equation (12).

Theorem 2 (differentiation of the score). Let ξ indi-
cate the arguments ofΦ, i.e., ξ is one of X1, X2, X3,
N1, N2, N3. Then

Φ̇ =
m,n∑
i,j=1

2φij
˙̃Rij (15)

where the dot indicates differentiation with respect toξ.

Proof. We defineφi
.= R̃i − d1(vi)s1(g) − d2(vi)s2(g)

and φj
.= R̃j − d1(v)s1(gj) − d2(v)s2(gj), where

R̃i and R̃j are shorthands to[R̃i1, R̃i2, . . . , R̃im]T and
[R̃1j , R̃2j , . . . , R̃nj ]T respectively. Expanding the deriva-
tive we get

Φ̇ =

n,m∑
i,j=1

φ̇2
ij =

n,m∑
i,j=1

2φij

(
˙̃Rij − ḋ1(vi)s1(gj) −

d1(vi)ṡ1(gj) − ḋ2(vi)s2(gj) − d2(vi)ṡ2(gj)
)

=

n,m∑
i,j=1

2φij
˙̃Rij

+

n∑
i=1

ḋ1(vi) 〈φi, s1(g)〉 +

m∑
j=1

ṡ1(gj) 〈φj , d1(v)〉

+

n∑
i=1

ḋ2(vi) 〈φi, s2(g)〉 +

m∑
j=1

ṡ2(gj) 〈φj , d2(v)〉 .

However, from equation (11) we see thatφi is in the
span of s̃3(g), s̃4(g), . . . , s̃r(g) and φj is in the span of
d̃3(v), d̃4(v), . . . , d̃r(v). Therefore, from equations (10)
and (12), we can see that the only term to contribute to the

derivative is
∑n,m

i,j=1 2φij
˙̃Rij .

As a consequence of the previous result, the flow can be
written explicitly as:

St = 2HΦ−
m,n∑
i,j=1

2φij

〈
∂R̃ij

∂X
+ 2H

∂R̃ij

∂N
,N

〉
(16)

We implement the flow (16) using level set methods [16].

3.2 Radiance estimation

Once the surfacêS has been found, one can use the repre-
sentation of the radiance to generate images by “radiance-
mapping” the tensorR(P ) onto the surfaceS. Naturally,
the visualization ofS in this case is view-dependent, since
different columns ofR(P ) contribute to the image of the
same pointP depending on the viewpointgi.

The radiance map is provided by the functionsdi(v) and
si(g) for i = 1, 2, estimated at each point of the surface,P ,
using the singular value decomposition of the measured ra-
diance tensor̃R, according to Corollary 1 and equation (10).
Given a novel vantage pointg′, the corresponding function
si(g′), i = 1, 2 is interpolated from the existingsi(gj). No-
tice thatdi(v), i = 1, 2 does not depend on the viewpoint,
and therefore does not need to be interpolated. This desir-
able byproduct of our framework results from comparing
each image to a model. Notice that the images generated
from the radiance map are significantly different than those
generated by “texture mapping” the imagesĨ onto the sur-
faceS. In fact, the functionssi(g) depend directly on the



Figure 3: Estimated shape (top), compared with pseudo-
ground truth (bottom), obtained with a 3D laser scanner and
manual mesh cleaning. Our results improve those obtained
with the algorithm of [10] (middle).

viewpoint, and therefore one can generate radiometrically
accurate synthetic images from an arbitrary vantage point.
When the viewpoint moves, the highlights move on the es-
timated surface, giving an overall result that is comparable
with purely image-based rendering techniques.

4 Experiments

In this section we test the algorithm on the two ob-
jects shown in Fig. 1, both courtesy of J.-Y. Bouguet and
R. Grzeszczuk (Intel). Van Gogh is made of polished metal,
and is highly specular. Pseudo-ground truth has been gen-
erated by laser scanning followed by manual mesh polish-
ing (Fig. 3). Buddha is actually a synthetic scene, meant
to simulate translucent material. Ground truth is available
(Fig. 6). In Fig. 3 we show the estimates of shape produced
by the algorithm described in Sect. 3.1, together with the
estimates obtained with the algorithm of [10], both com-
pared with pseudo ground truth, obtained with a laser scan-
ner. Our estimate is obviously not as crisp as the ground
truth, but it does capture important details on the face. Fig. 7
shows the evolution of the estimate of shape. In Fig. 8 we
show synthetic images generated using the radiance map,

Figure 4: (COLOR) Synthetic images using the estimated
radiance tensor (top) compared with the true images taken
from the same vantage point. Note that one can actually
readthe text at the base of the bust. This is a true radiance
estimate, not a texture map.

as described in Sect. 3.2. Note that the specularities move
with the viewpoint (best viewed in the movies download-
able fromhttp://vision.ucla.edu ). In Fig. 4 we
show a few synthetic images compared with the real images
from the same vantage point. In Fig. 6 we show the esti-
mated shape for the Buddha in Fig. 1. In this case, ground
truth is available since the images are synthetic. We also
show the results obtained with the algorithm of [10]. In
Fig. 5 we show images synthesized from the model, com-
pared with corresponding true images. In Fig. 7 we show
the evolution of shape, and in Fig. 8 we show several novel
views.

5 Discussion

We have presented a novel algorithm for estimating dense
shape and non-Lambertian photometry from a collection of
images. Our algorithm relies on a constraint on the rank
of the radiance tensor field, which is equivalent to dif-
fuse+specular reflection models, commonly used in com-
puter graphics, in the sense elucidated in Prop. 1. While one
could dismiss the analysis and just introduce the cost func-
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Figure 7:Shape evolution for Van Gogh (top) and Buddha (bottom).

Figure 8:(COLOR) Synthetic images obtained from the estimated radiance. As it can be seen, the appearance changes with
the vantage point.

tion (7) point-blank without detracting from the algorithm
proposed (which is validated experimentally), the proposi-
tion indicates precisely under what conditions the rank con-
straint is satisfied, i.e., what the underlyingmathematical
modelis. Of course, as we have pointed out, real surfaces
do notsatisfy the conditions of Prop. 1. Instead, it is this
very discrepancy from the idealized model that we exploit
to define a constraint that can be used for reconstruction.
Those that object to the restrictiveness of the model laid out
in Prop. 1 will be relieved to know that extension to higher
rank is conceptually and computationally trivial. However,
it can be verified experimentally that, for most scenes, an
increase in the rank of the model does not yield a signifi-
cant improvement in the reconstruction, further validating
the mathematical model proposed.

Our algorithm can handle sharp changes of the radiance

profile: In Fig. 4, one can actuallyread the text at the
base of the bust from the reconstructed radiance. On the
other hand, our algorithm does notrequirestrong texture or
point features to be visible, and returns a dense estimate of
shape, with no need to interpolate or triangulate a surface
from sparse points.

Note also that, although the measured radiance tensorat
a given pointP is assembled using a local approximation of
the surface with the tangent planeTP S, this does not mean
that our algorithm only works for planar surfaces: In fact,
the radiance tensor at a nearby pointQ is computed using
the tangent planeTQS that is not constrained to be similar
to TP S. If one thinks ofR(P ) as a “signature” attached to
P ∈ S, the model imposes no constraint that nearby points
should have similar signatures.

More analysis and experimental results are collected in



a technical report [9] and displayed at the websitehttp:
//vision.ucla.edu .

Figure 5:(COLOR) Synthetic images obtained with the es-
timated radiance tensor field (top) compared with the true
images taken from the same vantage point.

Figure 6: Estimated shape (top), compared with ground
truth (bottom), also compared with the results obtained by
the algorithm of [10] (middle).
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