
International Journal of Computer Applications (0975 – 8887)

Volume 6– No.9, September 2010

7

Software Testing – Goals, Principles, and Limitations
 S.M.K Quadri

 Head of Department
 Department of Computer Sciences

 University of Kashmir (India)

 Sheikh Umar Farooq
Research Scholar

Department of Computer Sciences
University of Kashmir (India)

ABSTRACT

Software testing is an activity which is aimed for evaluating

quality of a program and also for improving it, by identifying

defects and problems. Software testing strives for achieving its

goals (both implicit and explicit) but it does have certain

limitations, still testing can be done more effectively if certain

established principles are be followed. In spite of having

limitations, software testing continues to dominate other

verification techniques like static analysis, model checking, and

proofs. So it is indispensable to understand the goals, principles

and limitations of software testing so that the effectiveness of

software testing could be maximized.

General Terms

Software Engineering, Software Testing.

Keywords

Software Testing, Testing goals, Testing principles, Testing

Limitations.

1. INTRODUCTION
Software testing is a process of verifying and validating that a

software application or program meets the business and

technical requirements that guided its design and development

and works as expected and also identifies important errors or

flaws categorized as per the severity level in the application

that must be fixed [8]. Software testing is also used to test the

software for other software quality factors like reliability,

usability, integrity, security, capability, efficiency, portability,

maintainability, compatibility etc. Testing approach differs for

different software’s, level of testing and purpose of testing.

Software testing should be performed efficiently and

effectively, within the budgetary and scheduling limits. Due to

large number of testing limitations like Exhaustive (total)

testing is impossible, compromise between thoroughness, time

and budget, it is impossible to be sure that we have removed

each and every bug in the program[16]. Following established

principles can make testing easier and more effective, and can

also ensure that testing goals are achieved to its maximum

despite having certain limitations. They also ensure that a

process is repeatable. Software testing is a very important

quality filter and needs to be planned taking into account its

goals, principles and limitations.

2. TESTING GOALS
A goal is a projected state of affairs that a person or system

plans or intends to achieve. A goal has to be accomplishable

and measurable. It is good if all goals are interrelated. In

testing we can describe goals as intended outputs of the

software testing process. Software testing has following goals:

2.1 Verification and Validation
It would not be right to say that testing is done only to find

faults. Faults will be found by everybody using the software.

Testing is a quality control measure used to verify that a

product works as desired [10]. Software testing provides a

status report of the actual product in comparison to product

requirements (written and implicit). Testing process has to

verify and validate whether the software fulfills conditions laid

down for its release/use [8]. Testing should reveal as many

errors as possible in the software under test, check whether it

meets its requirements and also bring it to an acceptable level

of quality.

2.2 Priority Coverage
Exhaustive testing is impossible [9]. We should perform tests

efficiently and effectively, within budgetary and scheduling

limitations. Therefore testing needs to assign effort reasonably

and prioritize thoroughly. Generally every feature should be

tested at least with one valid input case. We can also test input

permutations, invalid input, and non-functional requirements

depending upon the operational profile of software. Highly

present and frequent use scenarios should have more coverage

than infrequently encountered and insignificant scenarios. A

study by [3] on 25 million lines of code also revealed that

70-80% of problems were due to 10-15% of modules , 90% of

all defects were in modules containing 13% of the code, 95% of

serious defects were from just 2.5% of the code. Pareto

principle also states that 80 percent of all software defects

uncovered during testing will likely be traceable to 20 percent

of all program components [2]. The problem, of course, is to

isolate these suspect components and to thoroughly test them.

Overall we target a wide breadth of coverage with depth in high

use areas and as time and budget permits.

2.3 Balanced
Testing process must balance the written requirements,

real-world technical limitations, and user expectations. The

testing process and its results must be repeatable and

independent of the tester, i.e., consistent and unbiased [4].

 Apart from the process being employed in development there

will be a lot unwritten or implicit requirements. While testing,

the software testing team should keep all such requirements in

mind. They must also realize that we are part of development

team, not the users of the software. Testers personal views are

but one of many considerations. Bias in a tester invariably leads

to a bias in coverage. The end user's viewpoint is obviously

vital to the success of the software, but it is not all that matters

as all needs cannot be fulfilled because of technical, budgetary

or scheduling limitations. Every defect/shortcoming has to be

prioritized with respect to their time and technical constraints.

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.9, September 2010

8

2.4 Traceable
Documenting both the successes and failures helps in easing

the process of testing. What was tested, and how it was tested,

are needed as part of an ongoing testing process. Such things

serve as a means to eliminate duplicate testing effort [10]. Test

plans should be clear enough to be re read and comprehended.

We should agree on the common established documentation

methods to avoid the chaos and to make documentation more

useful in error prevention.

2.5 Deterministic
Problem detection should not be random in testing. We should

know what are we doing, what are we targeting, what will be

the possible outcome. Coverage criteria should expose all

defects of a decided nature and priority. Also, afterward

surfacing errors should be categorized as to which section in

the coverage it would have occurred, and can thus present a

definite cost in detecting such defects in future testing. Having

clean insight into the process allows us to better estimate costs

and to better direct the overall development.

3. TESTING PRINCIPLES
A principle is an accepted rule or method for application in

action that has to be, or can be desirably followed. Testing

Principles offer general guidelines common for all testing

which assists us in performing testing effectively and

efficiently. Principles for software testing are:

3.1 Test a program to try to make it fail
Testing is the process of executing a program with the intent of

finding errors [9]. Our objective should be to demonstrate that a

program has errors, and then only true value of testing can be

accomplished. We should expose failures (as many as possible)

to make testing process more effective.

3.2 Start testing early
If you want to find errors, start as early as possible. This helps

in fixing enormous errors in early stages of development,

reduces the rework of finding the errors in the initial stages.

Fixing errors at early phases cost less as compared to later

phases. For example, if a problem in the requirements is found

after releasing the product, then it would cost 10–100 times

more to correct than if it had already been found by the

requirements review. Figure 1 depicts the increase in cost of

fixing bugs detected/fixed in later phases.

Figure 1. Cost of fixing bugs in different phases.

3.3 Testing is context dependant
Testing is done differently in different contexts. Testing should

be appropriate and different for different points of time. For

example, a safety-critical software is tested differently from an

e-commerce site. Even a system developed using the waterfall

approach is tested significantly differently than those systems

developed using agile development approach. Even the

objectives of testing differ at different point in software

development cycle. For example, the objective of unit and

integration testing is to ensure that code implemented the

design properly. In system testing the objective is to ensure the

system does what customer wants it to do [15]. Type of testing

approach that will be used depends on a number of factors,

including the type of system, regulatory standards, user

requirements, level and type of risk, test objective,

documentation available, knowledge of the testers, time and

budget, development life cycle.

3.4 Define Test Plan
Test Plan usually describes test scope, test objectives, test

strategy, test environment, deliverables of the test, risks and

mitigation, schedule, levels of testing to be applied, methods,

techniques and tools to be used. Test plan should efficiently

meet the needs of an organization and clients as well. The

testing is conducted in view of a specific purpose (test

objective) which should be stated in measurable terms, for

example test effectiveness, coverage criteria. Although the

prime objective of testing is to find errors, a good testing

strategy also assesses other quality characteristics such as

portability, maintainability and usability.

3.5 Design Effective Test cases
Complete and precise requirements are crucial for effective

testing. User Requirements should be well known before test

case design. Testing should be performed against those user

requirements. The test case scenarios shall be written and

scripted before testing begins. If you do not understand the user

requirements and architecture of the product you are testing,

then you will not be able to design test cases which will reveal

more errors in short amount of time. A test case must consist of

a description of the input data to the program and a precise

description to the correct output of the program for that set of

input data. A necessary part of test documentation is the

specification of expected results, even if providing such results

is impractical [9]. These must be specified in a way that is

measurable so that testing results are unambiguous.

3.6 Test for valid as well as invalid

conditions
In addition to valid inputs, we should also test system for

invalid and unexpected inputs/conditions. Many errors are

discovered when a program under test is used in some new and

unexpected way and invalid input conditions seem to have

higher error detection yield than do test cases for valid input

conditions [9]. Choose test inputs that possibly will uncover

maximum faults by triggering failures.

3.7 Review Test cases regularly
Repeating same test cases over and over again eventually will

no longer find any new errors. Therefore the test cases need to

be regularly reviewed and revised, and new and different tests

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.9, September 2010

9

need to be written to exercise different parts of the software or

system to potentially find more defects. We should target and

test susceptible areas. Exploratory Testing can prove very

useful. Exploratory testing is any testing to the extent that the

tester actively controls the design of the tests as those tests are

performed and uses information gained while testing to design

new and better tests[7].

3.8 Testing must be done by different

persons at different levels
Different purposes are addressed at the different levels of

testing. Factors which decide who will perform testing include

the size and context of the system, the risks, the development

methodology used, the skill and experience of the developers.

Testing of individual program components is usually the

responsibility of the component developer (except sometimes

for critical systems); Tests at this level are derived from the

developer’s experience. Testing at system/sub-system level

should be performed by the independent persons/team. Tests at

this level are based on a system specification [6]. Development

staff shall be available to assist testers. Acceptance Testing is

usually performed by end user or customer. Release Testing is

performed by Quality Manager. Figure 2 shows persons

involved at different levels of software testing.

Figure 2: Software Testing Levels.

3.9 Test a program innovatively
Testing everything (all combinations of inputs and

preconditions) is not feasible except for trivial cases. It is

impossible to test a program sufficiently to guarantee the

absence of all errors [9]. Instead of exhaustive testing, we use

risks and priorities to focus testing efforts more on suspected

components as compared to less suspected and infrequently

encountered components.

3.10 Use both Static and Dynamic testing
Static testing is good at depth; it reveals developers

understanding of the problem domain and data structure.

Dynamic testing is good at breadth; it tries many values,

including extremes that humans might miss. To eliminate as

many errors as possible, both static and dynamic testing should

be used [12].

3.11 Defect clustering
Errors tend to come in clusters. The probability of the existence

of more errors in a section of a program is proportional to the

number of errors already found in that section [9], so additional

testing efforts should be more focused on more error-prone

sections until it is subjected to more rigorous testing.

3.12 Test Evaluation
We should have some criterion to decide whether a test is

successful or not. If limited test cases are executed, the test

oracle (human or mechanical agent which decides whether

program behaved correctly on a given test [1]) can be tester

himself/herself who inspects and decides the conditions that

makes test run successful. When test cases are quite high in

number, automated oracles must be implemented to determine

the success or failure of tests without manual intervention. One

good criterion for test case evaluation is test effectiveness

(number of errors it uncovers in given amount of time).

3.13 Error Absence Myth
System that does not fulfill user requirements will not be

usable even if it does not have any errors. Finding and fixing

defects does not help if the system built does not fulfill the

users’ needs and expectations. In addition to positive software

testing (which verify that system does what it should do), we

should also perform negative software testing (which verify that

system does not do what it should not do).

3.14 End of Testing
Software testing is an ongoing process, which is potentially

endless but has to be stopped somewhere. Realistically, testing

is a trade-off between budget, time and quality [13]. The effort

spent on testing should be correlated with the consequences of

possible program errors [11]. The possible factors for stopping

testing are:

1. The risk in the software is under acceptable limit.

2. Coverage of code/functionality/requirements reaches a

specified point.

3. Budgetary/scheduling limitations.

4. TESTING LIMITATIONS
Limitation is a principle that limits the extent of something.

Testing also has some limitations that should be taken into

account to set realistic expectations about its benefits. In spite

of being most dominant verification technique, software testing

too has following limitations:

1. Testing can be used to show the presence of errors,

but never to show their absence! [5]. It can only

identify the known issues or errors. It gives no idea

about defects still uncovered. Testing cannot

guarantee that the system under test is error free.

2. Testing provides no help when we have to make a

decision to either "release the product with errors for

meeting the deadline" or to "release the product late

compromising the deadline".

3. Testing cannot establish that a product functions

properly under all conditions but can only establish

International Journal of Computer Applications (0975 – 8887)

Volume 6– No.9, September 2010

10

that it does not function properly under specific

conditions [14].

4. Software testing does not help in finding root causes

which resulted in injection of defects in the first

place. Locating root causes of failures can help us in

preventing injection of such faults in future.

5. CONCLUSION
Software testing is a vital element in the SDLC and can furnish

excellent results if done properly and effectively.

Unfortunately, Software testing is often less formal and

rigorous than it should, and a main reason for that is because

we have struggled to define best practices, methodologies,

principles, standards for optimal software testing. To perform

testing effectively and efficiently, every one involved with

testing should be familiar with basic software testing goals,

principles, limitations and concepts. Already lot of work has

been done in this field, and even continues today. Implementing

testing principles in real world software development, to

accomplish testing goals to maximum extent keeping in

consideration the testing limitations will validate the research

and also will pave a way for future research.

6. REFERENCES
[1] Antonia Bertolina, ‖Software Testing Research and

Practice‖, Proceedings of the abstract state machines 10th

international conference on Advances in theory and

practice,1-21,2003.

[2] Dolores R. Wallace, Laura M. Ippolito, Barbara B.

Cuthill,‖ Reference Information for the Software

Verification & Validation Process‖, DIANE Publishing,

1996.

[3] Drake, T. (1996) ―Measuring software quality: a case

study.‖ IEEE Computer, 29 (11), 78–87.

[4] Edward L. Jones ―Grading student programs – a software

testing‖, Proceedings of the fourteenth annual Consortium

for Computing Sciences in Colleges, 2000.

[5] Miller, William E. Howden, "Tutorial, software testing &

validation techniques", IEEE Computer Society Press,

1981.

[6] Ian Somerville, ‖Software Engineering‖, Addison-Wesley,

2001.

[7] James Bach, ―Exploratory Testing Explained‖, v.1.3

4/16/03.

[8] John E. Bentley, Wachovia Bank, Charlotte NC, ―Software

Testing Fundamentals—Concepts, Roles, and

Terminology‖, SUGI 30.

[9] Myers, Glenford J., ―The art of software testing‖, New

York: Wiley, c1979. ISBN: 0471043281

[10] Nick Jenkins. ―A Software Testing Primer‖, 2008.

[11] Peter Sestoft,‖ Systematic software testing‖, Version 2,

2008-02-25.

[12] Programming Research Ltd, ―Static and Dynamic Testing

Compared‖.

[13] Rajat Kumar Bal,‖Software Testing‖.

[14] Salim Istaq et al., ―Debugging, Advanced Debugging and

Runtime Analysis―, (IJCSE) International Journal on

Computer Science and Engineering‖ Vol. 02, No. 02,

2010, 246-249.

[15] Shari Lawrence Pfleeger, ―Software Engineering, Theory

and Practice‖, Pearson Education, 2001.

[16] Sheikh Umar Farooq and S.M.K. Quadri, ‖Effectiveness

of Software Testing Techniques on a Measurement Scale‖,

Oriental Journal of Computer Science & Technology, Vol.

3(1), 109-113 (2010).

