
Smart Dust Mote Core Architecture

Brett Warneke, Sunil Bhave
CS252, Spring 2000: Project Report

Berkeley Sensor and Actuator Center, 497 Cory Hall, Berkeley CA 94720
{warneke, sunil}@eecs.berkeley.edu

Abstract
The Smart Dust project is exploring the limits of

autonomous sensing and communication by packing an
entire system into a cubic millimeter at a relatively low
cost. These volumetric constraints correspond to energy
constraints on the system. Therefore, the mote
"intelligence" must operate on the absolute minimum
energy while providing necessary features. The mote can be
partitioned into four subsystems: sensors and analog signal
conditioning, power system, transceiver front end, and the
core. The core is essentially all the digital circuits in the
system, including the receiver back end, sensor processing
circuits, computation circuits, and memory. One
requirement of the core is that it have a degree of on-the-fly
reconfigurability determined by the changing needs of the
mission. In this project we define an ultra-low energy
architecture for the mote core that will meet the needs of the
military base monitoring scenario.

Introduction
The goal of the Smart Dust project is to build cubic-

millimeter scale sensing and communication platforms
(figure 1) that form a distributed sensor network[1,2] and
can monitor environmental conditions in both military and
commercial applications. These networks will consist of
hundreds to thousands of “dust motes” and a few
interrogating transceivers. The dust motes are comprised of
various subsystems from different fabrication technologies.
Many sensors, including temperature, pressure, and
acceleration sensors, from MEMS and CMOS processes can
be attached to a mote. An ASIC handles measurement
recording, data storage, and system control. A receiver
circuit converts photocurrent from an incoming laser into a
data stream to be used to interrogate or reconfigure the
mote. Several transmission systems can also be utilized,
such as a passive corner cube reflector (CCR)[3] for
communication to a base station, or an integrated laser with
beam steering MEMS structures[4] for inter-mote
communication. Finally, all of the components are mounted
onto a thick-film battery charged by a solar cell.

The most difficult constraints in the Smart Dust design
are those regarding the minimum energy consumption
necessary to drive the circuits and MEMS devices. When
fitting the entire mote within a 1mm3 volume, the energy
density of the power supply is the primary issue. Current
technology yields batteries with ~1J/mm3 of energy and a
high series resistance. Modern capacitors can achieve as
much as ~10mJ/mm3 with a low series resistance. Series

resistance affects the peak power that can be pulled from the
source.

In typical low power mixed-signal systems, most
designers consider performance in terms of cycles, samples,
or bits, maximizing performance first and minimizing power
second. With the strict power constraints for Smart Dust, we
are forced to consider performance in terms of Joules: given
a cubic-millimeter battery, there is one Joule of energy to
use. With the CCR, communication costs about 1nJ/bit,
while sensing can be achieved at ~1nJ/sample. Modern
processors, such as the StrongARM SA1100[5], can perform
computations as low as ~1nJ/instruction. With these energy
figures, one can make cost tradeoffs between the amount of
computation, the amount of data transmitted and the sensor
sampling frequency. However, by using a closer mapping of
the application needs to the architecture and targeting ultra-
low energy from the start, we believe we can achieve orders
of magnitude reduction in the energy cost per instruction.

Keeping this in mind, the goals of the project were:

• Determine the exact functional needs for a particular
scenario including necessary signal processing and
computation functions. In addition, the exact amount of
reconfigurability needed was to be determined.

• Map the necessary functionality of the core into various
possible architectures.

• Evaluate the choices using Wattwatcher (Verilog power
estimator) and/or Powermill (switch-level power
estimator) to determine the lowest energy solution.

Figure 1: Conceptual Diagram of the Smart Dust Mote for
1mm3 autonomous distributed sensing and communication

Core Functionality Specification
In order to allow us to make realistic tradeoffs, a

particular application scenario was chosen to guide the
design. We chose the case of military base monitoring
wherein on the order of a thousand Smart Dust motes are
deployed outside a base by a micro air vehicle to monitor
vehicle movement. The motes can be used to determine
when vehicles were moving, what type of vehicle it was, and
possibly how fast it was travelling. The motes may contain
sensors for vibration, sound, light, IR, temperature, and
magnetization. CCRs will be used for transmission, so
communication will only be between a base station and the
motes, not between motes. A typical operation for this
scenario would be to acquire data, store it for a day or two,
then upload the data after being interrogated with a laser.
However, to really see what functionality the architecture
needed to provide and how much reconfigurability would be
necessary, an exhaustive list of the potential activities in this
scenario was made.

The operations that the mote must perform can be
broken down into two categories: those that provoke an
immediate action and those that reconfigure the mote to
affect future behavior.
• Immediate operations

o Transmit ID – provides a mote health report
o Transmit current reading from sensor x
o Transmit current readings from all sensors
o Send logged data for sensor x
o Are you logging data?
o Do you have data logged?
o Store the following value as the real time clock

counter reference time
o Turn on/off the transmission training sequence

– the base station is going to move or has
stopped moving

• Reconfiguration operations
o Start logging data from sensor x with samples

every t seconds
o Stop logging data
o Set the receiver wakeup interval to t seconds –

may be from a second to a day
o Set logging threshold
o Set filter coefficients
o Set FFT bin width and positions
o Apply a FIR filter to the data stream from

sensor x
o Broadcast logged data every t seconds

(Scattercast mode) – don’t waste energy
turning on the receiver

o Take an FFT on sensor x and immediately
transmit if the spectral content in band y is
above z

o Take an FFT on sensor x and store any bands
that exceed the threshold

o If sensor x exceeds z, then turn on sensor y and
transmit/log its information

From this list of operations, a list of basic activities
that the various logical portions would need to do (i.e.
receiver – timing recovery, data recovery, decode packet).
The list of activities was then broken down into a list of
specific functions that the architecture would need to
support, such as selecting a sensor, move the time stamp to
memory, calculate the CRC, compare a value to a threshold,
etc. The comprehensive list can be found at http://www-
bsac.eecs.berkeley.edu/~warneke/cs252/Military_Base_Scen
ario.html.

Proposed Architecture
Trimming the application space of a general purpose

microprocessor can achieve only so much in terms of energy
savings. Instead we propose to implement an ultra-low
power ASIC design with on-the-fly reconfigurability of the
computational blocks.

Looking through the functional specifications for the
core, we realized that each operation is regulated by a timed
event; hence a bank of timers forms the basis of the
architecture. For minimum energy, a direct mapping of a
particular function into hardware is generally best, but from
the list of specifications it was clear that a certain amount of
reconfigurability would be necessary. Thus, the timers
enable setup memories that configure functional blocks into
data paths that provide only the capabilities necessary for
that event. These paths are data-driven so that functional
blocks are only powered up when their inputs are ready,
minimizing standby power and glitching. A block diagram
of this new architecture is shown in figure 2.

Figure 3 details a section of the timer bank and setup
memory. The timer is loaded from the timer value memory,
setting its period. When the timer expires, it enables setup
memory 1, which configures the data path to perform the
desired function. When the data path has finished its
operation, setup memory 1 will release its configuration and

Figure 2: Top-level diagram of the mote and the proposed
core architecture architecture

Sensors

Power
Supply

Receiver
Front
End

ADC

Real
Time
Clock

CCR
Driver

Ti
m

er
Ba

nk

Se
tu

p
M

em
ro

y

Reconfigurable
Datapath

Components

SRAM

CORE

either the timer value can be loaded into the timer and the
countdown restarted or setup memory 2 can be enabled.
Setup memory 2 will then configure the data path for another
operation, thus facilitating multiple operations per timer
event. Additional setup memory can be added for more
involved sequences.

Multiple timer periods are desirable for several
situations. For example, one might want to sample a sensor
at a slow rate until an interesting signal is detected. At that
point, the sampling rate should increase. In addition, the
motes might be deployed without anyone coming back to
talk to them for a day, so it would be desirable to be able to
set the receiver wake-up timer to not wake-up for 24 hours,
but then it should decrease the period dramatically to 10’s of
seconds in case one doesn’t make it back to talk to the mote
at exactly the right time. The proposed architecture
facilitates this by providing multiple timer values that can be
loaded into the timer depending on the results of the data
path computation.

Another feature of this architecture is energy-driven
operation modes. An energy-monitoring unit selects between
multiple banks of setup memory and timer values depending
on the current level of the energy stores. Each bank can
have different timer periods and algorithms to control
energy expenditure.

Two types of packets can be sent to the mote,
corresponding to the two types of operations. Immediate
mode operations use the packet body to configure the data
path right away. Reconfiguration operations load the packet
body into the setup memory for future configuration.

Figure 4 shows the functional blocks included in the
reconfigurable data path. For the communications back end,
there is a data recovery block, timing recovery block, FIR
filter, packet encoder that does bits stuffing and adds the
flag byte, packet decoder that does bit unstuffing, CRC
block, and a FIFO. Incoming packets are stored in the FIFO
until the CRC can be verified, at which point the packet
body will be used as described above. The global setup

memory holds certain timer-independent configuration bits,
such as timer enables. The sensor registers are used to store
previous sensor readings to use in computing data changes.
Various computation blocks can be included in the data
path, such as an adder, comparator, and FFT unit.

All of the functional units in the data path are data
driven. The setup memory only powers up and enables the
first set of units that are needed, such as the sensor and
ADC. Once these units have done their job, they assert a
done signal that is routed, based on the configuration
memory, to the next unit, such as the adder, and powers it up
and enables it. Likewise, when this unit has finished its job,
it will power up and enable the next device in the chain.
The last unit in the path will cause the timer to reload its
value and cause the setup memory to stop configuring the
data path. The advantages of this data driven technique
include minimizing the standby power by keeping
components powered down until exactly when they are
needed, and ensuring that the inputs are stable before the
next device is powered up, which minimizes glitches.

It is significant to note that since this architecture does
not use shared busses as in traditional microcontrollers, the
functional components can be configured for certain parallel
operations. For example, a sensor reading could be both
stored in SRAM and transmitted with the CCR, although this
is not necessarily a desirable capability.

A large number of wires will be necessary to
implement this architecture in order to allow configurable
connectivity between so many units and to distribute all the
control signals. Two potential choices for implementing the
wires include point-to-point routing of control and data
wires between each block and a mesh of wires with routing
switches, similar to an FPGA. We focused on the former
approach in this work since at this point the design seemed
small enough that the point-to-point wiring would not be too
onerous and the mesh would not show significant
advantages.

Timer value 1

Timer value 2

Timer

Setup Mem 1

Setup Mem 2

Timer value 1Timer value 1

Timer value 2Timer value 2

TimerTimer

Setup Mem 1Setup Mem 1

Setup Mem 2Setup Mem 2

Figure 3: Timer and associated setup memories: The
timer allows multiple timer periods. The different setup
memories allow multiple data path configurations per
event. Energy-driven operation isfacilitatedby multiple
banks of setup memory facilitated

Adder

Timing Recovery

Mote ID Mem

Data Addr Reg

Sensor Reg n

Comparator

Threshold Mem n

Packet Decoder
Config Mem

FFT

Config Mem

FIR Filter

Data Recovery

Packet Encoder

CRCFIFO

Immediate Mode Setup Reg

Global Setup Reg

AdderAdder

Timing RecoveryTiming Recovery

Mote ID MemMote ID Mem

Data Addr RegData Addr Reg

Sensor Reg nSensor Reg n

ComparatorComparator

Threshold Mem n

Packet DecoderPacket Decoder
Config MemConfig Mem

FFTFFT

Config MemConfig Mem

FIR FilterFIR Filter

Data RecoveryData Recovery

Packet EncoderPacket Encoder

CRCCRCFIFOFIFO

Immediate Mode Setup Reg

Global Setup Reg

Figure 4: Functional blocks whose connectivity is
configured by the setup memory when a timer expires. The
global setup memory is always enabled.

Figure 5 delineates the operation of the architecture by
show the configuration for one of the most common tasks,
acquiring sensor data, checking if it has changed more than a
threshold value, then storing the result to memory. The
colors indicate the order that components and signals
become active, clearly showing the data driven nature.

One potential hazard of this architecture is that the
done signals can glitch as the blocks are powered up, which
would provide a false trigger to the next stage. A second
issue is that despite the fact that the blocks are powered
down, the internal nodes do not discharge immediately. For
example, an 8-bit comparator whose 1V Vdd line is supplied
by a PFET, will only discharge 13mV in 100µs with the
PFET turned off. If the inputs change while powered off in
this manner, a new calculation can be performed and only
drop Vdd by 170mV. An advantage of this is that less
charge will be needed when the block is powered up again.
However, this stored charge will also allow the block to
continue to drive its outputs despite being powered down, so
the outputs will generally need tri-state buffers. These
hazards will require some extra work at the circuit level to
make this architecture work.

Hspice simulations were used to determine the power
and energy consumption of some of the blocks to test the
feasibility of the proposed architecture. We used a standard
cell library for the National Semiconductor 0.25µm process
as the basis of the design. A 1V supply was used with a VT

of 0.55V. Initially we simulated the timer since it runs
continuously and thus is a significant portion of the power
consumption. A 12-bit, loadable countdown timer running
at 10kHz consumes 5.4nW, or 540fJ per cycle. The same
simulation in PowerMill gave 5.2nW, demonstrating
comparable results to Hspice while running more than 100
times faster. Next, we simulated the 8-bit comparator with a
power-up/down PFET. We adjusted the rise and fall time of

the power control signal between 1ns and 10µs and the W/L
of the PFET from 1/0.24 to 100/0.24. The circuit was
power cycled from the initial operating point to charge up
the internal nodes, the comparator inputs were changed to
effect a new comparison, and a second power cycle was run.
The energy was computed for the second power cycle,
including 1µs of on-time. The energy consumption only
varied by about 10% and was approximately 95fJ. The
average power consumption during the 1µs of on-time was
measured to be about 2.9nW with about 30% variation. The
average power consumption for the off-time with the
internal nodes charged, was about 6.4pW with 3% variation.
From these numbers we can determine when it is worthwhile
to perform power cycling. By dividing the energy consumed
in the power cycling by the static power consumed when the
module is powered up, we find the maximum amount of time
that the circuit can be on before it is beneficial to turn it off.
In this case, we find that the comparator should be turned off
if it is idle more than 33µs, or running slower than 31kHz.
Since the maximum speed that anything in the core would
run at is 10kHz, and most operations would occur at speeds
on the order of 100Hz down to 0.01Hz (100sec), this power
cycling scheme is very advantageous.

We are currently in the process of estimating the
energy consumption for the configuration shown in figure 5
using PowerMill. A corresponding subroutine on an ARM8
would consume 1.44nJ at 1V and 10kHz[6]. The
preliminary results from the Hspice simulations above
indicate that we should be able to achieve at least two orders
of magnitude lower energy consumption with the proposed
architecture. In addition, a microcontroller being designed
for ultra-low energy operation and targeted at the same
scenario as the proposed architecture will provide a more
realistic comparison between a conventional microprocessor
architecture and the proposed architecture.

Timer value 1

Timer value 2

Timer

Setup Mem 1

Setup Mem 2

Ad
de

r

Data Addr Reg

Sensor
Reg

Co
m

pa
ra

to
r

Threshold Mem

Sensor ADC

SRAM

PWR PWR

PWR

PWR

PWR

Do
ne

Data
Done

Data

PWR

PWR

Addr
Data

Zero

WE

True

False Done

Open control signals are
driven by the setup memory

543210
Zero

Timer value 1

Timer value 2

Timer

Setup Mem 1

Setup Mem 2

Ad
de

r

Data Addr Reg

Sensor
Reg

Co
m

pa
ra

to
r

Threshold Mem

Sensor ADC

SRAM

PWR PWR

PWR

PWR

PWR

Do
ne

Data
Done

Data

PWR

PWR

Addr
Data

Zero

WE

True

False Done

Open control signals are
driven by the setup memory

543210
Zero

Figure 5: Example configuration to sample data, find the change in value, and store it in the SRAM is the
change exceeds a certain threshold. The colors indicate the order in which the components and signals become
active, starting with the timer, proceeding to the SRAM and back to the timer.

Conclusion
Since Smart Dust has very limited energy resources,

our goal for this project was to minimize energy
consumption through architecture, while providing the
necessary functionality and reconfigurability for a particular
scenario. The proposed architecture uses a reconfigurable
data-driven data path, which facilitates power cycling of the
functional units, thereby reducing the standby energy
consumption to a minimum. HSPICE simulations were
performed on two key elements of the architecture, namely
the timer and the comparator, to determine if power cycling
was advantageous.

References
1. J. M. Kahn, R. H. Katz, and K. S. J. Pister, “Mobile

Networking for Smart Dust”, ACM/IEEE Intl. Conf. on
Mobile Computing and Networking, Seattle, WA,
August 17-19, 1999.

2. B. Atwood, B. Warneke, K.S.J. Pister, “Preliminary
Circuits for Smart Dust,” Proceedings of the 2000
Southwest Symposium on Mixed-Signal Design, San
Diego, California, February 27-29, 2000.

3. P. B. Chu, N. R. Lo, E. Berg, and K. S. J. Pister,
“Optical Communication Using Micro Corner Cube
Reflectors”, Tenth IEEE International Micro Electro
Mechanical Systems Conference (MEMS 97), Nagoya,
Japan, Jan. 26-30, 1997, pp. 350-5.

4. Last, M., Pister, KSJ, "2-DOF Actuated Micromirror
Designed for Large DC Deflection", MOEMS '99,
Mainz, Germany, Aug29-Sept 1.

5. StrongARM SA1100 microprocessor datasheet.
6. Peggy Laramie, “Instruction Level Power Analysis and

Low Power Design Methodology of a Core Processor”,
M.S. Thesis , UC Berkeley, 1998.

