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Abstract— Anomaly detection is important for the correct
functioning of wireless sensor networks. Recent studies have
shown that node mobility along with spatial correlation of
the monitored phenomenon in sensor networks can lead to
observation data that have long range dependency, which could
significantly increase the difficulty of anomaly detection. In this
paper, we develop an anomaly detection scheme based on multi-
scale analysis of the long range dependent traffic to address this
challenge. In this proposed detection scheme, discrete wavelet
transform is used to approximately de-correlate the traffic data
and capture data characteristics in different time scales. The
remaining dependencies are then captured by a multi-level
hidden Markov model in the wavelet domain. To estimate the
model parameters, we propose an online discounting Expecta-
tion Maximization (EM) algorithm, which also tracks variations
of the estimated models over time. Network anomalies are
detected as abrupt changes in the tracked model variation
scores. We evaluate our detection scheme numerically using
typical long range dependent time series.

I. INTRODUCTION

A wireless sensor network consists of a set of spatially
scattered sensors that can be used to monitor and protect
critical infrastructure assets, such as power grids, automated
railroad control, water and gas distribution, etc. However, due
to the unattended operating environment of sensor networks,
it could be easy for attackers to compromise sensors and
conduct malicious behaviors. Anomaly detection is thus
critical to ensure the effective functioning of sensor networks.
An anomaly detection procedure usually consists of two
steps: first, collect network measurements and model the
normal traffic as a reference; second, apply a decision rule to
detect whether current network traffic deviates from the refer-
ence.Traditional anomaly detection methods usually assume
that the network measurements are either independent or
short range dependent. However, recent studies have shown
that node mobility along with spatial correlation of the
monitored phenomenon in sensor networks can lead to Long
Range Dependent (LRD) traffic [1], which could lead to high
false alarms using traditional methods.

In this paper, we develop an anomaly detection scheme
based on multi-scale analysis of the long range dependent
traffic. Discrete Wavelet Transform (DWT) is used to ap-
proximately de-correlate autocorrelated stochastic processes.
Most of the literature work on using DWT for anomaly
detection use the first order or second order statistics (mean
or variance) of the wavelet coefficients for anomaly de-
tection, e.g., detect changes in the mean or variance of
the wavelet coefficients over a moving window [2], [3].
In contrast, we build a probabilistic model for the wavelet
coefficients through a multi-level hidden Markov model
(HMM), in the expect to capture the remaining dependency

This work was supported by the Defense Advanced Research Projects
Agency (DARPA) under award number 013641-001 for the Multi-Scale
Systems Center (MuSyC), through the FRCP of SRC and DARPA, US Air
Force Office of Scientific Research MURI award FA9550-09-1-0538, and
Army Research Office MURI award W911-NF-0710287

Shanshan Zheng and John S. Baras are with the Institute for Systems
Research and the Department of Electrical and Computer Engineering, Uni-
versity of Maryland, College Park, {sszheng, baras}@umd.edu

978-1-61284-799-3/11/$26.00 ©2011 IEEE

among the transformed data thus better model the network
traffic and improve detection accuracy. We design a forward-
backward decomposition scheme and an online discounting
Expectation Maximization (EM) algorithm to estimate model
parameters. The online EM algorithm can also track the
structure changes of the estimated HMMs by evaluating a
model variation score using the symmetric relative entropy
between the current estimated model and a previous esti-
mated model. Network anomalies are then detected as abrupt
changes in the tracked model variation scores .

II. RELATED WORK

Network anomaly detection is an important problem and
has received numerous research efforts. It involves modeling
of the normal traffic as a reference, and computing the statis-
tical distance between the analyzed traffic and the reference.
The modeling of the normal traffic can be based on various
statistical characteristics of the data. For example, Lakhina
et al. [4] proposed to use Principal Component Analysis
to identify an orthogonal basis along which the network
measurements exhibit the highest variance. The principal
components with high variance model the normal behavior
of a network, whereas the remaining components of small
variance are used to identify and classify anomalies. Spectral
density [5] and covariance [6], have also been used for
modeling normal network traffic.

Besides these methods, wavelet transform is another pop-
ular technique used for modeling network traffic, especially
for the LRD traffic. Abry et al. [7] proposed a wavelet-
based tool for analyzing LRD time series and a related
semi-parametric estimator for estimating LRD parameters.
Barford et al. [2] assume that the low frequency band signal
of a wavelet transform represents the normal traffic pattern.
They then normalize both medium and high frequency band
signals to compute a weighted sum. An alarm is raised if
the variance of the combined signal exceeds a pre-selected
threshold. The key feature of these wavelet-based methods
lies in the fact that wavelet transform can turn the long range
dependency among the data samples into a short memory
structure among the wavelet coefficients [7]. In our work,
we build a wavelet-domain multi-level hidden Markov model
for the LRD network traffic. The merit of our method is
the model’s mathematical tractability and its capability of
capturing data dependency.

To measure the deviation of the analyzed traffic from the
reference model, various statistical distances can be used,
including simple threshold, mean quadratic distances [8],
and entropy[9]. Entropy is a measure of the uncertainty of a
probability distribution. It can be used to compare certain
qualitative differences of probability distributions. In our
detection scheme, we apply the symmetric relative entropy as
a distance measure. The online EM algorithm can efficiently
compute the symmetric relative entropy between the current
estimated HMM model and a previous estimated one. An
anomaly is then detected as abrupt changes in the symmetric
relative entropy measurements.
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III. LONG RANGE DEPENDENT TRAFFIC IN WIRELESS
SENSOR NETWORKS

A time series {x(t)}}¥, is considered to be long range
dependent if its autocorrelation function p(k) decays at a rate
slower than an exponential decay. Typically, p(k) asymptoti-
cally behaves as ck*7 =2 for 0.5 < H < 1, where ¢ > 0 is a
constant and H is the Hurst parameter. The intensity of LRD
is expressed as the speed of the decay for the autocorrelation
function and is measured by the Hurst parameter, i.e., as
H — 1, the dependence among data becomes stronger. It can
be shown that > > ; p(k) = oo. Intuitively, LRD implies that
the process has infinite memory, i.e., individually small high-
lag correlations have an important cumulative effect. This is
contrast to the conventional Short Range Dependent (SRD)
process which are characterized by an exponential decay of
the autocorrelations resulting in a summable autocorrelation
function. LRD is an important property for traffic modeling
as it is likely to be responsible for the decrease in both the
network performance and the quality of service [8] .

A wireless sensor network operates on the IEEE 802.15.4
standard. It has been shown recently [1] that the traffic
generated from a single mobile node in the wireless sensor
network can be represented by an ON/OFF process X (¢),
where the probability density function of the ON period 7,
can be approximated by a truncated Pareto distribution [1]
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with t,in (tmaz) denoting the minimum (maximum) ON
time and ~y, denoting the tail index. The value of vy, depends
on the variability of node mobility pattern and the spatial cor-
relation of the monitored phenomena by the network. Using
this traffic model for wireless sensor networks, we analyze
the dynamic behaviors of network traffic measurements, such
as the packet round trip time, the number of received packets
per second, etc., by conducting experiments using Network
simulator 2 (NS-2). It is found that the LRD property do exit
in the simulated data traces, with typical Hurst parameters
between 0.8 and 0.9. Incorporating LRD precisely in the
design of anomaly detection schemes for wireless sensor
networks is critical.

IV. WAVELET DOMAIN HIDDEN MARKOV MODEL FOR
LONG RANGE DEPENDENT TRAFFIC

Wavelet transforms have been popular for analyzing auto-
correlated measurements due to their capability to compress
multi-scale features and approximately de-correlate the auto-
correlated stochastic processes. We build a Hidden Markov
Model (HMM) for the wavelet transform coefficients of the
network traffic. The basic idea for transform domain model
is that a linear invertible transform can often ‘restructure’ an
signal, generating transform coefficients whose structure is
simpler to model.

A. Wavelet domain hidden Markov model

In wavelet transform, the measurements xz(t),t =
1,..., N are decomposed into multiple scales by a weighted
sum of a certain orthonormal basis functions,

N L
2(t) = arkbr i)+ Y Y dmktmi(t),

k=1 m=1 k
where ¢; 1, ;5 are the orthonormal basis, ar i, dm.k
are the approximation and detail coefficients. The approx-
imation coefficients ar,  provide the general shape of the
signal, while the detail coefficients d,, . from different scales
provide different levels of details for the signal content,

with d; ;, providing the finest details and dr, ;. providing
the coarsest details. In our work, we apply the Discrete
Wavelet Transform (DWT) to the network traffic. A discrete
wavelet transform is a wavelet transform for which the basis
functions are discretely sampled. DWT can be explained
using a pair of quadrature mirror filters, which includes a
high pass filter h[n] and a low pass filter g[n]. Efficient
methods have been developed for decomposing a signal using
a family of wavelet basis functions based on convolution with
the corresponding quadrature mirror filters. A 2-level discrete
wavelet transform using the corresponding quadrature mirror
filters is illustrated in Fig. 1.

Level 2 approximation
coefficients

Level 2 detail
coefficients

Level 1 detail
coefficients

Fig. 1: 2-level discrete wavelet transform

However, the wavelet transform cannot completely de-
correlate real-world signals, i.e., a residual dependency struc-
ture always remains among the wavelet coefficients. We use a
hidden Markov model to capture the remaining dependency.
It is based on two properties of the wavelet transform
observed in literature [10], [11]: first is the Clustering
property, which means that if a particular wavelet coefficient
is large/small, the adjacent coefficients are very likely to
also be large/small; second is the Persistence property, which
means that large/small values of wavelet coefficients tend to
propagate across scales.

For a signal z(t) that is decomposed into L scales, with
wavelet coefficients d; 5, k= 1,...,n;and j =1,...,L,
we assume that each wavelet coefficient is associated with
a hidden state s; ;. We then use a hidden Markov model to
characterize the wavelet coefficients through the factorization

P({dyi 51,6}, {drisspitity)

nr, L—1
=p(sL,1) H P(SL,j|8L,j71) H p(si1]siv1,1)
=2 i=1
L—1 n; L ny
T T pGiglsig—rssivnrio) [T T p(diglsis). (1)
i=1 j=2 i=1j=1

This factorization involves three main conditional indepen-
dence assumptions: first, conditioned on the states at the
previous coarser scale ¢ + 1, the states at the scale ¢ form
a first order Markov chain; second, conditioned on the
corresponding state at the previous coarser scale ¢ + 1, i.e.,
Sit1,[5/2]> and the previous state at the same scale, i.e.,
8; j—1, the state s; ; is independent of all states in coarser
scales; third, the wavelet coefficients are independent of
everything else given their hidden states. The three inde-
pendence assumptions are critical for deriving the inference
algorithms for this wavelet domain HMM. Fig. 2 illustrate a
hidden Markov model for a 3-level wavelet decomposition.

B. Estimating model parameters using an Expectation-
Maximization (EM) algorithm

Denote the set of the wavelet coefficients and their hid-
den states by D = {{dp;}:%,...,{d1};2;} and S =
{{spitity, ..., {s14};2,} respectively, where n; is the
number of wavelet coefficients in the i*" scale. The param-
eters of the HMM include the following three probabilities:
first is the initial probability for the state sy, i, i.e., T, =

4061



Fig. 2: HMM for 3-level wavelet decomposition

P(sp1 = k); second is the two types of state transition
probabilities, i.e.,

i,1 _ _ _ .
’/Tkllk2 = P(Si’l = k1|8i+171 = kg) for i < L,

7T2.1|k27k3 = P(Sz‘,j = kl\si,j—l = ko, Si4+1,[5/2] = ks)%
and third is the conditional probability of the wavelet co-
efficients given their hidden states at the i*" scale, i.e.,
P(d; j|si ; = k), which can be modeled by a mixture Gaus-
sian distribution. For simplicity and presentation clearity, we
use a single Gaussian distribution to catpure P(d; j|s;; =
k), ie, P(d;jlsi; = k) ~ N(ui,ob), where ui and o}
are the mean and the standard deviation for the state k in
the ¥ scale. The extension to mixture Gaussian distribution
is stralghtforward These model parameters, denoted by 6 =
{7k, 7Tk1 ko> Thot ko, i i, ot }, can be estimated from the real
data using the maximum likelihood criterion. Due to the in-
tractability of direct maximization of the likelihood function,
we apply an Expectation Maximization (EM) algorithm to
estimate the parameters.

The EM algorithm provides an maximum likelihood esti-
mation of model parameters by iteratively applying an E-step
and a M-step. In the E-ste (p the expected value of the log
likelihood function Q(8|6") = Egip,ew [log Po(S,D)] is
computed. Then in the M- step, the parameter that maximizes
Q(0810Y) is computed, i.e., 0 = argmaxe Q(0)6).
To implement the two steps, we define the following poste-
rior probabilities,

W = Plsi; = kD),
72’11,]62 = P(Si,l = kq, Sit+1,1 = k2|D), for i < L
VWl hoks = P(sij=k1,8ij-1 = ka,si[j/2) = ks|D).

According to equation (1), maximizing Q(6]0)) using
Lagrange method leads to the following estimation of 0,

_ L1
Tk =Y, >
T, uz 2,
Al Viey ko i Zj 2 Vkl,kz k3
k1|k2 - = il Tkilkaks =

)
ZZEIC Y,k ZIG)C Zj 2 k2 ks

i Z;l 17 kddlj N2 Z; 171@ (di,j —13)?
Ky = ni _4,j (o) = ne i
2t I S/
where K represents the domain of the hidden states. The
computation of the posterior probabilities is a little more in-
volved. Using a brute force computation by direct marginal-
ization will take O(N - |K|V) operations, where N is
the length of the input signal. However, by exploiting the
sparse factorization in equation (1) and manipulating the
distributive property of ‘+’ and ‘x’, we are able to design
an forward-backward decomposition algorithm to compute
these posterior probabilities with computational complexity

b

O(N -|K|F*+1), where L is the wavelet decomposition level
and much smaller than V.

C. Forward-backward decomposition

Our algorithm extends the classical forward-backward de-
composition algorithm for a one-level hidden Markov model
to our multi-level case. The key point is to only maintain L
appropriate hidden states in both the forward and backward
variables for computational efficiency.

1) Forward decomposition: Let

Si,j = {SL,[Z"'*Lj]u~~-73i+1,[2—1ﬂ75i,j7
Si—1,2(j—1)1++ > 81,21‘—1(]'_1)}7 and
Dij = Adpr<rei-rj1, - dig1 <147, dik<j

difl,kSZ(jfl)a teey dl,kSQi*I(j—l)}7

we define the forward variable to be o, ; = P(S; ;,D; ;).
Denote [ag on-1;] = f(h,ap;) for h,j € ZT to be
a dynamic programming algorithm with input parameters
(h,ap,j) and output parameter o on-1;. The pseudo-code
for computlng the forward variables’ usmg dynam1c program-
ming is shown in Table I. Its correctness can be proved
using the three conditional independence assumptions in our
HMM. For simplicity and presentation clarity, in Table I we
assume that the input data length N is an order of 2, and
denote the conditional probability P(d; ;|s; ;) by gl(d i)
and P(Sl]|S’LJ 15 Si+1, (3/2-\) by 92(37,,3)

TABLE I: Computing forward variables

Initialization: a1 = P(sr1,dp1)
For k;, =1to 2=LN

Qp2L-1f, = f(Lyark,)

apk+1=91(dr g, +1) ZSL,,CL [92(SLkr+1) 'O‘L2L*1kL]
end

function [ay on—1;] = f(h, ap j)
If h ==2,
ar2j-1 = g1(di2j-1) 225, ,[92(s1,25-1) - @z 4]
a12; = g1(di2;ls1,25) Doy, [92(51,25) - 1,251
else
an—1,2j-1 = g1(dn-1,2j-1) Z [92(8h—1,2j-1) - @n,j]
Sh—1,2j—2
ayon—2(2j—1) = f(h— 1, an-12j-1)
an—1,25 = 91(dn—1,2;) Z [92(8h—1,27) - @1 2n—2(2—1)]

Sh—1,2j—1
Qrp oh—2(25) = f(h—1, Oéh—1,2j)
End

There is one implementation issue for the algorithm in
Table I, namely, the numerical under- or over-flow of «; ;
as P(S; ;,D; ;) becomes smaller and smaller with the in-
creasing number of observations. Therefore, it is necessary to
scale the forward variables by positive real numbers to keep
the numeric values within reasonable bounds. One solution is
to use a scaled version @; ; = cl L, where ¢; j = > g, S Qi

In this way, &;; represents the probability P(S; ; |DZ7 i)
and c¢; ; represents the probability P(d; ;|D; ;\d; ;). It is
straightforward to prove that both ¢i,j and a; ; do not depend
on the number of observations. The algorithm for computing
(@i, j,ci ;) can be obtained by adding a normalization step
after each update of «; ; for the algorithm in Table 1.
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2) Backward decomposition: Let DY ; b = D D; j, we de-
fine the backward variable to be 3; ; = P(Ds ;|S; ;). which
can be computed using a similar dynamic programming
algorithm as the one in Table I. To avoid the numerical under-
or over-flow problem, instead of computing 3; ;, we compute
a scaled version f3;; as is shown in Table II. The scaled

backward variable represents the probability % .
The correctness of the algorithm in Table II can be “verified
using the three conditional independence assumptions in our

HMM. Due to space limit, we omit the proof here.
TABLE II: Computing scaled backward variables

Initialization: (31 /2 =1
For k;, =2 LN to 1

Bri, = f(L,B1pr-15,) _
= dr, kr)BL,
51,2L—1(kjL—1) = ZSLJ‘L arlde kL)ii(ji kL) L
end
function [By, ;] = f(h, By 2n-1;)
If h ==2,
2 _ 91(d1,25)92(51,24)-B1,2;
/61,2j71 - Zsl 25 (ld — )621 2(]1 2 1)2;
2 _ g1(d1,25-1)92(81,25-1)"P1,25 -1
162;j - Zsl 2j—1 = C1,25— i =
€lse
Br-1,2j = f(h — 1,81 2n—22;)

91(dn—1,2;)92(Sh—1,2;) Br—1.2;
Ch—1,2;

@1;2]1_2(2.7*1) = Esh—lLQj
Br-1,2j—1=f(h— 1,51 9n-2(25_1)) )

3 g1(dn—1,2j-1)9g2(Sh—1,2j-1)Bh-1.2—
ﬂ}b7j — ZSh o 1 h—1,25—1 2 h—1,2j—1 h—1,2j—1

Ch—1,2j—1
End

3) Computing posterior probabilities:

_ P(D¢ .|S: 5 - =

P(8;|Di;) and B; j = p((r%ﬁpj)) we have & ; - (i j =
P(S; ;D) according to the Markovian property of our
HMM. Then the posterior probability (-) can be computed

Since a;; =

as

NoT = Z@M - Bi,
Vi ks > @i Bia,

Lj _ 3 91(dr j)g2(5L.5)
’Ykl,]kg = Zal,QL_l(j—l) By T

CL,j
T - DA 2i-1(—1 /81,3 91(dij)-g2(si.5)
k1,k2,k3 Eai+1¢[j/2]ﬁi,j M ,if j is odd.

Without confusion, we omit the Varlables under > for the
above equations. The correctness of these equations can
be derived according to the three conditional independence
assumptions in our HMM.

,if j is even,

V. ANOMALY DETECTION BY TRACKING HMM MODEL
VARIATIONS

A first thought on the anomaly detection problem is to
treat the anomalies as abrupt changes in the HMM modeled
data and then apply change-point detection methods to detect
these abrupt changes. However, it is found that directly
applying change-point detection methods to the HMM mod-
eled data is computationally expensive. We designed here
a lightweight anomaly detection scheme based on detecting
the structure changes of the estimated HMM. An important
requirement for anomaly detection is to make the decision

making process online. Therefore, we first develop an online
EM algorithm for HMM model estimation.

A. An online discounting EM algorithm

Before we present the online EM algorithm, we first
introduce the so called limiting EM algorithm [12]. Let x
denote the hidden states and y denote the observations.
If the joint probability distribution py(x,y) belongs to an
exponential family such that

Po(x,y) = h(x,y) exp({¢(0), ss(x,y)) — A(0))
where (-) denotes the scalar product, ss(x,y) is the sufficient
statistics and A(6) is some log-partition function. If the
equation (Vg¢(6), ss) — Vg A() = 0 has a unique solution,
denoted by 6 = 6(ss), then the limiting EM algorithm obeys
the simple recursion

ssk41 = Eo- [E(ss,) [ss(x, y) Iy ],

where 0* represents the true model parameter . Since
Eo«[Eglss(x,y)|y]] may be estimated consistently from
the observations by > | Eg[ss(zs,y:)|y:] . an online
EM algorithm can be obtained by using the conventional
stochastic approximation procedure

8§81 = Vit 1 B (s,) [58(ht1, Yrt 1) Yot 1]+ (1= Ye1) S5,
where 7 is a time discounting factor. The estimation of
model parameters can then be derived from the sufficient
statistics ss. It is proved [12] that under suitable assump-
tions, this online EM algorithm is an asymptotically efficient
estimator of the model parameter 6*.

It is not difficult to see that the joint probability distribu-
tion P(S,D) for our HMM model satisfies the above men-
tioned conditions for applying the limiting EM algorithm.
For each wavelet coefficient d; ;, we have the following suf-
ficient statistics for computing the HMM model parameters,

le Zm 1 (Slm:kSzJ|Dw)
%zl,kj = Zm -1 P(s1,m = k,8:|Dij) - dim.
A = iy Plstn = k. 81|Diy) - &
lil ko yks — ZZfzja P(si,m = k1, 81,m-1 = ka,
St41,[m/2] = k3, Sij|Dij),

where [ € {1,..., L} is the scale index, k € K is the hidden

state index, and n;’J represents the number of observed
wavelet coefficients in scale [ after d; ; arrives, i.e.,

ij [20-451 i 1>,
nl = 1—i - . .
A it l <.
It is straightforward to prove that the HMM model

parameters {wfﬁlkz kot Mk 0%} can be updated using
{0 A 7] o as follows,
! 225, Tl ko ks
Tkilkaks  — i ) ()
D ks 2080, Tlks ks
21
. % )
)
Dok 2os,, U
2k Zs» Tk 2k 2s., ]
1\2 i, , 2
(o) = - i, —( ) “4)

2208, Zk 25,

Note that the HMM parameter 7% and 7rk |k, CAN be updated
using the sufficient statistics TL . = P(sp1 = k,8i;|D; ;)
and 7 Tl ! = P(si1 = k1, 81411 = k2,S; j|D; ;). But we omit
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the related discussions here, as the computations are similar.

The next step is to demgn recurswe (onhne) updates of the
sufficient statistics Tl k, Tl k, Tl k, and Tl k17 ko ks . According
to the Markovian property of our HMM, the’ onhne updates
of the sufficient statistics can be achieved by following
a similar dynamic programming procedure as the one for
computing the scaled forward variables &; ;. Recall that &; ;
is computed by adding a normalization step after «y ; is
computed in the algorithm in Table I. The sufficient statistics
are updated once &; ; is updated. For illustration purpose,
we only show here how to update the sufficient statistics
when ay, 251 in Table I is computed. Updates for the other
cases are similar. For [ € {1,..., L}, let y,_1 2;_1 be a time
discounting factor, and 5271 be the Dirac Delta function such

that
! 1 ifl=h-1,
Op—1 = 0
Define

ifl#h—1.

rh =4t . 1@ ;
h—1,2j—1 = 9p—1 " Th—1,2j—-1  ®h—1,2j—1,
81 vh-1.2j-1)91(dn-1,2j-1)/ch ;>
g1(dn—1,2j—1)92(Sh—1,2;—1)0n ;

Ch—1,2j—1 '
We then have the following equations for updating the
sufficient statistics,

l _
th—1,2j—1 = (1-

l _ £l .
dp—1,2j-1 = Oh—17h—1,2j—1

=121
Tk = Th-1,2j-1
l h,j
+ lho12j1 E 92(Sn—1,2j-1)1 5, (5)
Sh—1,2j—2
Ah=12j—1 _ I
Tk = Tho1,2j-14h-1,2j-1
l ~h,j
+ tho12j-1 E 92(8h—1,2j-1)7 1, (6)
Sh—1,2j—2
Zh=12j-1 _ I 2
Tk = 7’h—1,2j—1dh—1,2j—1
l —h,j
+ tho125-1 Z 92(sn-1,2j-1)7 5, (D
Sh—1,2j—2
h—1,2j—1 _ |
Lkika ks — 9n—1,2j-1
l h,j
+ tho19j-1 E 92(8h-1,2j-1) * T\ 1 jp g (8)
Sh—1,2j—2

The correctness of these updates can be proved using the
three conditional independence assumptions in our HMM.
Due to space limit, we omit the proof here.

B. Change-point detection on model variations

To measure the structure changes of the estimated HMM
models over time, we use the concept of the symmetric
relative entropy to define a model variation score. Denote
the model at time ¢t — 1 and ¢ by P;_; and P, respectively,
then the model variation score is deﬁned to be

= lim lD(PtHPt 1)+ hm D(Pt 1||Pt)
n—oo M,
where D(p| |q) represents the relatlve entropy of distribution
p to g, and n represents the length of the input data. It is
natural to let n — oo as we can then compare the two models
under the stationary states in the limit of n — oo.
It can be proved that

lim D(Pt||Pt 1)

n—oo N,

L
+3 > >(w)'D

L

1 3 t 3 t—1
ZgD Wkl\kz,kg) ||(7T121\k2,k3) )
=1

()", @) N (k) (03)' ),

where 7}, = P(s;; = k). Therefore, besides the probability
distributions 7, iz ks and N (p},, o}.) provided by the online
EM algorithm, the computation of lim,, %D(PtHPt,l)
also involves the computation of the probability distributions

kl,k27k3 = P(S’L] khsz,] 1 - k2731+1 [i/21 = k&) and

7}, The estimation of 7}, and 7}, ko ks Can be obtained from

,m

the sufficient statistics 7',.l and Tl as follows,
L,k Z,kl ,kQ k)

7 _
7rk - § :TLk‘ v Tkyka,ks = 2 :

S[ m Sl,m
The other relative entropy hm —D(P;_1||P;) can be com-

lm
Tikr ko ks *

puted similarly. We can see - that Tiie symmetric model varia-
tion score actually captures two types of changes. The first is
the changes in the transition probabilities of the hidden states
while the second is the changes in the generation pattern of
the observed data from a fixed state. By using the symmetric
relative entropy as a distance measure between two HMM
models, it is expected that not only the changes of the data
generation pattern will be detected, but also the changes in
the hidden states can also be detected.

VI. EVALUATIONS

We evaluate the performance of our anomaly detection
algorithm numerically. The algorithm performances are eval-
uated using the detection latency and the Receiver Operating
Characteristic (ROC) curve, which is a plot of the detection
rate versus the false alarm rate at different threshold values.
The selection of the wavelet basis used in our anomaly
detection scheme is based on a balance between its time
localization and frequency localization characteristics [2]. In
our experiments, we found that for the Daubechies family
wavelets, the D2 (Haar wavelets) and D4 wavelets can give
us reasonably good performance. Hence we use the Haar
wavelets for all the experiments in this paper.

In the numerical experiments, two well known LRD time
series including the Fractional Gaussian Noise (FGN) and
the Autoregressive Fractionally Integrated Moving Average
(ARFIMA) model, are used for generating data. We then
inject two types of model variations into the time series as
anomalies. First is the mean level shift, i.e., a step function
with a constant amplitude will be imposed on the original
signal. Second is to vary model parameters for the data
generation process, including the standard deviation and the
Hurst parameter for FGN and ARFIMA. The duration for
the normal state and the anomaly state is generated from
exponential distribution with different mean values.

We first discuss the detection performance on mean level
shifts in the synthetic LRD time series. Fig. 3 shows one
representative example. The top figure illustrates the time
series, which is generated from an ARFIMA model with
Hurst parameter 0.9 and length 2'°. The standard deviation
for the generated data sequence is set to be 1. The mean level
shift occurs at the first quarter of the time series and ends at
the middle with intensity 0.75, which is less than the standard
deviation. The bottom two figures show the corresponding
model variation scores computed by our online EM algorithm
with 5-level and 4-level wavelet decomposition respectively.
The x axis represents the scaled time due to wavelet trans-
form and the y axis represents the model variation score.

From Fig. 3, we can see that the visual inspection of the
injected mean level shift from the time series directly can
be difficult. However, in the tracked model variation scores,
there are abrupt changes at the two time locations where the
mean level shift starts and ends. These two abrupt changes
suggest where the injection starts and ends. Especially when
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Fig. 3: Effects of different decomposition levels

the wavelet decomposition level is 5, these are the only 2
abrupt changes that exist. When the wavelet decomposition
level is 4, there are some false alarms, therefore the de-
composition level of the wavelet transform is an important
parameter for the anomaly detection scheme. A higher level
decomposition can give higher detection rate and smaller
false alarm rate. However, since an L-level decomposition
has a 2~ time aggregation scale, i.e., it transforms the data
samples within a 2% time window to the wavelet domain
so the wavelet coefficients within this window is time-
indistinguishable, a higher level decomposition would often
give longer detection latency than that of a lower level
decomposition. In our experiments, we found that a 5-level
wavelet decomposition can give a reasonable good balance
between detection accuracy and latency.

The intensity of the injected mean level shift also affects
the detection performance. Fig. 4 shows the ROC curve and
detection latency for the injected mean shift with different in-
tensities. Each curve is obtained over 1000 simulation traces
with the 5-level wavelet decomposition. As is expected, for
higher injected mean level shifts, the detection becomes
much easier, in terms of lower false alarms, higher detection
rates, and smaller detection latency.
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Fig. 4: Effects of different injected intensities

For the second type of anomalies, i.e., the one that varies
model parameters for the data generation process, similar
good performances are observed for our detection method.
When the variation becomes larger, the detection becomes
easier. Due to space limit, we omit the results here.

For performance comparison, we implement a baseline
method adapted from [2], in which only the mean and
variance of the wavelet coefficients is used for anomaly

detection. It is observed that our method can always beat
this baseline method. For example, Fig. 5 shows the ROC
curves and detection latency for our method and the baseline
methods on the detection of Hurst parameter changing from
0.9 to 0.7.
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Fig. 5: Comparison of our method and the baseline method

VII. CONCLUSIONS

In this paper, we studied the anomaly detection problem
for LRD traffic in wireless sensor networks. We proposed
a wavelet-domain hidden Markov model for capturing the
properties of network traffic. The wavelet transform is
able to turn the long range dependency that exists among
the sample data into a short memory structure among its
wavelet coefficients. The HMM in the wavelet-domain is
used to further capture the remaining dependency among the
wavelet coefficients, thus model the traffic variability more
accurately. Network anomalies are then detected as abrupt
changes in the tracked HMM model structures. We evaluate
the performance of our algorithm numerically using typical
LRD time series. In the future work, we plan to study the
optimization of model parameters for the wavelet domain
HMM model, in order to achieve better performance.
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