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Abstract

This paper describes a formalisation of the relation based language Ruby in Zermelo-
Fraenkel set theory (ZF) using the Isabelle theorem prover. We show how a very small
subset of Ruby, called Pure Ruby, easily can be formalised as a conservative extension of
ZF and how many useful structures used in connection with VLSI design can be defined
from Pure Ruby. The inductive package of Isabelle is used to characterise the Pure Ruby
subset by an inductive definition, to allow proofs to be performed by structural induction
over the Pure Ruby elements. Finally we demonstrate how various kinds of proofs may
be automated and the explicit type checking of ZF hidden by the definition of specialised
tactics.

1 Introduction

Ruby [2] is a relation based language intended for specifying VLSI circuits. A circuit is
described by a binary relation between appropriate, possibly complex domains of values,
and simple relations can be combined into more complex relations by a variety of combining
forms. The Ruby relations generate an algebra which defines a set of equivalences. These
equivalences are used in the Ruby design process which typically involves a transformation
from a “specification” to an “implementation” both expressed in Ruby. The implementation
describes the same (or a smaller) relation as the specification but in another form, which in
a given interpretation is said to be implementable. This design style is referred to as design
by calculation and is demonstrated in [3, 7, 9].

To support this style of design we have constructed a tool called T-Ruby, which is based
on a formalisation of Ruby as a language of functions and relations [10]. The T-Ruby system
enables the user to perform the desired transformations in the course of a design, to simulate
the behaviour of a class of implementable relations, and to translate the final Ruby description
of such relations into a VHDL description for subsequent synthesis by a high-level synthesis
tool.

This paper describes a formalisation of Ruby, called RubyZF, within the Isabelle theorem
prover [6] using a formulation of Zermelo-Fraenkel set theory (ZF). The work follows the line
started by Rossen [8] and continued in the T-Ruby system. The development of RubyZF serves
three purposes in connection with T-Ruby: to give Ruby a machine verified semantics, to prove
general transformation rules for inclusion in T-Ruby’s database; and to prove conditions and
conjectured rewrite rules originating from a concrete series of transformations used in a design.



Naturally RubyZF may in itself serve as a platform for further Ruby developments as e.g. by
proofs of various refinement steps.

ZF was a natural choice for Ruby since the basic objects of Ruby are relations, which are
conventionally modelled as sets of pairs. The basic objects of ZF are in fact sets in contrast
to for example HOL [1] where the basic objects are functions. Set theory has a tremendous
expressive power and its few basic concepts are well understood. Usually it is regarded as
clumsy and not very well suited for doing automated proofs but with the extensive work of
e.g. Larry Paulson, it has become possible to use ZF. This means that from a Ruby point of
view ZF is natural and from a ZF point of view Ruby is feasible.

Several factors favoured the use of the Isabelle theorem prover. Naturally having the de-
velopment of ZF in the standard distribution of Isabelle meant that the formalisation of Ruby
could start at a reasonable high level. Secondly, the fairly high degree of automation available
in Isabelle was interesting as many of the proofs in Ruby follow the same pattern (equality
proofs). Finally Isabelle’s advanced parsing and pretty printing features were important since
RubyZF is meant to be used directly in connection with T-Ruby. The user should not be
bothered with too may syntax variations.

2 Introduction to Ruby

The definition of Ruby used in this work is based on the so-called Pure Ruby subset as
introduced by Rossen [8]. This makes use of the observation that a very large class of the
relations which are useful for describing VLSI circuits can be expressed in terms of four
basic elements: two relations and two combining forms, which are usually defined in terms of
synchronous streams of data as shown in Figure 1. These four are binary relations and the
notation aRb means that a is related to b by R, and is synonymous with (a,b) € R.
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Figure 1: The basic elements of Pure Ruby

In the figure the variables a,b. .. are of type sig(7"), where sig(7) is the type of streams of
values of type 7. This is usually represented as a function of type Z — 7, where we identify
Z with the time. T ranges over the possible channel types, ChTy, and when reasoning about
Ruby we are interested in making a distinction between three kinds of channel types: base
types, pairing of types, and a list of a type. Thus signals can be expressed as:

sig = time — ChTy
ChTy BasChTy

| ChTy x ChTy
| nlist[n](ChTy)



where nlist[n]a are lists of length n. Since nlists are parameterised in n, Ruby relations may
have dependent product types. The base types, BasChTy, will typically be natural numbers,
bits etc. but no explicit restriction is made. Note that Ruby relations are binary relations
on single signals such that composite signals are always represented as a function from time
to the composite type. Thus in equation 4 above (a1, a2) does not stand for a conventional
ordered pair of two signals but rather for the paring of two signals into one signal.

Viewed as relations spread(f) is the lifting to streams of the pointwise relation described
by f. If f is a relation of type a ~ 3 (the type of binary relations between values of type o and
type ) then spread(f) is of type sig(a) ~ sig(/3). For notational convenience, and to stress
the idea that it describes the lifting to streams of a pointwise relation of type « ~ 3, this type
will be denoted o ~ 3. D — the delay element — relates a stream to another stream which
has an offset of one time tick, (F'; G) describes relational composition and [F, G| relational
product.

If we view the four Pure Ruby elements as circuits then spread(f) describes the syn-
chronously clocked combinational circuit with the functionality of f. D describes the basic
sequential circuit (a latch), (F'; G) sequential composition of two circuits and [F, G| parallel
composition.
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Figure 2: Graphical interpretations of the four Pure Ruby elements

A feature of Ruby is that relations and combinators not only have an interpretation in
terms of circuit elements, but also have a natural graphical interpretation, corresponding
to an abstract floorplan for the circuits which they describe. The conventional graphical
interpretation of spread (or, in fact, of any other circuit whose internal details we do not wish
to show) is as a labelled rectangular box. The components of the domain and range are drawn
as wire stubs, whose number reflects the types of the relations in an obvious manner: a simple
type gives a single stub, a pair type two and so on. The components of the domain are drawn
up the left hand side and the components of the range up the right. The remaining elements
of Pure Ruby are drawn in an intuitively obvious way, as illustrated in Figure 2.

3 Introduction of Isabelle/ZF and RubyZF

The purpose of this section is to give a brief introduction to the Isabelle logical framework
and the concrete logic used in this work. A thorough presentation of the system is given in [6].
Isabelle is a generic logical framework meant for defining different proof systems. The user
must distinguish between two levels of abstraction, the meta-level and the object-level, where
the former is used to define a particular object logic. The basic Isabelle system defines the
meta logic which is a fragment of intuitionistic high-order logic and the meta language which
is the simple typed lambda calculus. Inference rules and axioms in Isabelle are all theorems
of the meta logic, usually containing a meta implication.



Isabelle is implemented in Standard ML (SML) and the proof commands are SML fun-
ctions changing the current proof state. The major proof method is backward proof applying
tactics to the current proof state. The main tactics apply lists of rules to a subgoal using
various forms of resolution. Tactics can be composed into new more complex tactics using
tacticals, which are high-order SML functions. The simple tacticals are used for compo-
sing tactics sequentially, alternatively, repeatedly, but also more complex tacticals exist for
expressing control structures, depth-first search etc.

Isabelle has a built in generic parsing mechanism allowing a flexible mixfix notation of
new defined symbols in the object logic. Furthermore the user may define translations, which
will only affect the appearance of an object, keeping the internal representation unchanged.

The distribution of Isabelle includes an implementation of Zermelo-Fraenkel set theory
built as an extension to classical first-order logic. A large number of theories for basic mat-
hematics already exist in the standard distribution of ZF and are introduced in [4]. In ZF
desired typing of variables is stated directly in the goal assumptions. The Isabelle meta type
system is used very little in ZF since only two types are defined: i for sets and o for proposi-
tions. Figure 3 shows the correspondence of mathematical and ASCII notation of a selection
of symbols used in this work (a mixture of meta and ZF symbols). Furthermore the notation

[IP1;...;Pn|]==>Q is a shorthand for nested implication.
ac A a:A Vz - P(x) ALL x.P(x), !!x.P
ACB | A<=B dz - P(x) EX x.P(x)
(a,b) <a,b> P=Q P ==>
AxB |AxB Azca - b(z) | lam x:A.b(x), %x.b
A—B |A->B f(a) ffa, f(a)

Figure 3: ASCII notation of selected symbols

3.1 Generic Packages

Three generic packages have been used extensively in this work and are all set up in the
standard distribution of ZF; the simplifier, the classical reasoning package and the inductive
definition package.

The simplifier performs conditional and unconditional rewriting using contextual infor-
mation and takes a simplification set as argument. The set contains a number of rewrite rules
and possibly the specification of tactics to be applied in specific cases. The simplifier can
both rewrite the assumptions and the conclusion.

The classical reasoning package provides a number of tactics to prove theorems in the
style of the sequent calculus. They take a classical rule set as argument, which contains a
collection of introduction and elimination rules divided into either safe and unsafe rules. Safe
rules can be applied blindly but unsafe rules must be handled more carefully. For example
fast_tac tries to solve a goal completely using depth-first search.

The inductive package is based on a fixedpoint approach and permits the formalisation of
all monotone inductive definitions [5]. The inductive definitions are expressed as a subset of
an existing set given the desired inference rules as Isabelle meta implications. The package is
used in Section 4.4.



3.2 Customising ZF to Ruby Proofs

Setting up rule lists of related rules to a specific domain speeds up the process of developing
proofs considerably. Furthermore it is a great help for the user to be able to lift the reasoning
to a more general level. In RubyZF three main lists of rules are defined: Ruby_type, RubyI
and RubyE containing Ruby type rules, introduction rules and elimination rules respectively.
Additionally the type list includes type theorems for nlist-constructors, signal-constructors
and arithmetic operations, as Ruby proofs generally involve reasoning about these. Finally
a classical rule set, RubyZF _cs, is set up as an extension to the rule set ZF_cs provided in
Isabelle. The rules from RubyI are added to ZF_cs as introduction rules and the rules from
RubyE are added as safe elimination rules.

3.2.1 Type Checking Tactics

ZF is basically untyped, but types can of course be modelled as sets of values. This means
there is no distinction between type-goals and other goals. However, type checking is tedious
and would take up a large amount of time working in ZF. Therefore a number of specialised
tactics have been developed in RubyZF to solve type goals automatically. If normal resolution
is used, the type checking tactics may instantiate variables inappropriately, thus leading to
unsolvable proofs. Type checking therefore makes use of the tactic typechk tac (included
in ZF) which solves any subgoal in the complete proof state of the form a € A, where a is
not a schematic variable. To be able to update the type information interactively and enable
the tactics to use the updated information, all the rules from Ruby_type are also stored in
an SML reference variable called basictypeinfo. The following type checking tactics are
provided:

typeit trls uses typechk_tac with the supplied theorems ¢ris plus the theorems contained
in basictypeinfo.

typchk trls tac first applies tac and then type checks the proof state as typeit.

resolve_tac_c trls thms i performs a 'resolve_tac thms i’ and then type checks the proof
state as above.

eresolve_tac_c trls thms i performsa’eresolve_tac thms i’ and then type checks the proof
state as above.

Typically the tactics are applied with no extra type information (#rls is empty) since all
necessary type information is contained in basictypeinfo.

Special versions of the classical tactics are provided to make these tactics more useful
in proofs with many type conditions. The original names of the tactics are kept but now
suffixed with an ’_t’ and take an extra argument containing the extra type rules to be used
(apart from the rules in basictypeinfo). For example the typed version of fast_tac is called
fast_tac_t.

4 Formalising Pure Ruby

This section will take us through the formalisation of Ruby in standard Zermelo-Fraenkel set
theory implemented in Isabelle. We describe a semantical embedding of the Ruby algebra



in ZF, i.e. we define new Ruby constructors directly as a conservative extension of ZF. We
formalise the basic concepts of Pure Ruby and first define a theory of signals, then the four
Pure Ruby elements and finally construct a set containing all Pure Ruby relations of certain
types.

Much work has been put into hiding the implementation and most of the set-theoretical
reasoning, for example by exploiting the advanced parsing and pretty-printing features in
Isabelle. We follow the same style of development as described by Paulson [4] and introduce
standard introduction and elimination rules for all new constructors and a large number of
rewrite rules to lift the reasoning close to the Ruby-level.

4.1 Signals

The theory of signals defines the set of streams and a number of functions to combine and
destruct signals. The theory is based on a theory defining the fixed length lists, nlists, which
is not presented in this paper. However, nlists are defined in terms of listn from the ZF
distribution together with the usual operations on nlists such as: nnil, the nil-element; ncons,
to concatenate an element to the front of the list; and nsnoc, to concatenate an element to
the back of the list. The need for nsnoc will be apparent in connection with the recursive
combinators in Section 5.3. The definition of the theory signal is shown in Figure 4.

Signal = Nlist + Univ +

consts
time,ChTy,BasChTy,ChEl,snil :: "i"
sig,pri,sec HERS T B
spair dr "[E,i1=>1" ("(<_#/2>)™)
scons po "[i,i,i]=>i" ("(CL_e>_|/_1)™M)
ssnoc tr "[i,i,i]=>i" (M(<e_l/7_HmM
translations
"sig(A)" == "time -> A"
defs

time_def "time integ"

(lam t:time.nnil)"

(lam t:time.<a‘t,b‘t>)"

(lam t:time.ncons(n,a‘t,l1‘t))"
t

(lam t:time.nsnoc(n,l‘t,a‘t))"

snil_def '"smnil

spair_def "<a # b>
scons_def "[a@>1|n]
ssnoc_def "[1<@a|n]

pri_def ‘"pri(a) (lam t:time.fst(a‘t) )"

sec_def "sec(a) == (lam t:time.snd(a‘t) )"
chel_def "ChEl == univ(Union(BasChTy))"
chty_def "ChTy == Pow (ChE1)"

rules
nat_in_base "nat:BasChTy"

end

Figure 4: Definition of signals

Signals make use of the Isabelle facility to define translations and are represented as
functions from time to a type, where time is integers (from the standard distribution). Four
constructor functions are defined for signals: snil constructs a signal from nnil, spair pairs



two signals and scons and ssnoc concatenates a signal to a signal list from the front or the
back respectively. Type rules for each of them are proved automatically by the tactic typeit:

snil_type snil:sig(nlist[0]A)

spair_type [la:sig(A);b:sig(B)|] ==> <a#tb>:sig(A*B)

scons_type [la:sig(A);1:sig(nlist[n]A) |1==> [a@>1|n]:sig(nlist[succ(n)]A)
ssnoc_type [la:sig(A);1:sig(nlist[n]A) |1==> [1<@a|n]:sig(nlist[succ(n)]A)

In the subsequent Ruby proofs we need elimination rules for four different cases of signals
corresponding to the constructors above. The elimination rule for signal pairs is proved for
example by exploiting extensionality of functions and pairs. The other three are proved in a
similar fashion:

sig_pairE [l c:sig(A*B);

''a b.[| c=<a#b>;a:sig(d);b:sig(B) []==>P |]==> P
sig_nlistOE [l c:sig(nlist[0]A); c=snil==>P |]==> P

sig_nlistE [l c:sig(nlist[succ(n)]A);
''a 1.[| c=[a@>1|n];a:sig(A);1:sig(nlist[n]A) |]1==>P|]==>P
sig_ssnocE [l c:sig(nlist[succ(n)]A);

''a 1.[| c=[1<@aln];a:sig(A);1l:sig(nlist[n]A) [1==>P|]==>P

Two destructor functions, pri and sec, are defined for signal pairs and the expected
equality rules proved. Furthermore signal pairing and concatenation have the conventional
injection properties:

pri_iff a:sig(A) ==> pri(<a#b>)
sec_iff b:sig(B) ==> sec(<a#b>)

a
b

spair_inject [| <x1#x2> = <xla#x2a>; x1l:sig(A); x2:sig(B);
xla:sig(C); x2a:sig(D);
[l x1 = xla; x2 =x2a |] ==>P |] ==> P
scons_inject [| [a@>laln] = [b@>1b|n]; a:sig(A); b:sig(B);
la:sig(nlist[n]C); 1lb:sig(nlist[n]E);
[ 1a=1b; a=b |] ==>P |] ==>P
scons_iff [l a:sig(A); b:sig(B); la:sig(nlist[n]C);
1b:sig(nlist[n]E) |1 ==>
[a@>1laln] = [b@>1b|n] <-> la = 1b & a = b

The lower part of Figure 4 defines the sets of channel elements and channel types. In
Section 4.4 we will need a set which is large enough to contain all Ruby channel types, in
order to define the set of Pure Ruby relations inductively. The two following theorems state
that both pairs and nlists are contained in the channel types:

prod_in_chty [| A:ChTy; B:ChTy |] ==> A*B: ChTy
nlist_in_chty [| A:ChTy; n:nat |] ==> nlist[n]A: ChTy

Finally the defined rule nat_in_base is an example of how new types can be added to the
set of base channel types.

4.2 Relational definitions

This theory defines various sets describing the values of the domain and range of signal rela-
tions. The definitions are given in Figure 5 together with syntactic translations for relations,
~, and signal relations, <”>. 4

The set dtyp(R) defines a subset of A if R € A ~° B. These sets are needed in subsequent



Relation = Signal +

consts
dtyp,rtyp,ddtyp,rdtyp,
rrtyp,drtyp :: "i=>i"
"@rel" o "[i,il=>iv (/0" [73,72] 72)
"@srel" ir "[i,il=>ir (" (L<m>/0) [73,72] 72)
translations
||A"’Bl| == "POW(A * B)H
"A<Y>B" == "sig(A)“sig(B)"
defs
dtyp_def "dtyp(R) == range(Union(domain(R)))"
rtyp_def "rtyp(R) == range(Union(range(R)))"
ddtyp_def  "ddtyp(R) == domain(dtyp(R))"
rdtyp_def  "rdtyp(R) == range(dtyp(R))"
rrtyp_def  "rrtyp(R) == range(rtyp(R))"
drtyp_def  "drtyp(R) == domain(rtyp(R))"
end

Figure 5: Auxiliary definitions on relations

proofs in connection with simple combinators. For dtyp the following properties can be
proved:

dtyp_sig [l <x,y>:R; x:sig(A) |1 ==> x:sig(dtyp(R))
dtyp_rel [l R <= sig(A)*sig(B); x:sig(dtyp(R)) |1 ==> x:sig(A)
sub_dtyp_rtyp R:A<">B==> R:dtyp(R)<">rtyp(R)

Similar properties are proved for the four sets defined for relations on signal pairs (relations
for which R € A x B~ C x D), i.e. the sets ddtyp etc.

4.3 Pure Ruby

The four Pure Ruby elements introduced in Section 2 are defined in ZF as shown in Figure 6.
7ZF does not have a special notion of types, as for example HOL does, so all types must
be supplied explicitly. However for spread, serial and parallel composition the types can be
inferred from the relational arguments. This unfortunately is not possible in the case of the
delay element, thus the type must be given as a parameter. In contrast to conventional Ruby
notation serial composition is written as two semi-colons to distinguish it from Isabelle’s no-
tation for nested implication, and parallel composition is written with double square brackets
to distinguish it from ZF list notation.

For each of the four elements of Pure Ruby, type, introduction and elimination rules are
proved. For the spread element the rules are:

spread_type f:A"B ==> spread(f):A<">B
spreadl [l ALL t:time.<x‘t,y‘t>:f; f:A"B; x:sig(A); y:sig(B) |1 ==> <x,y>:spread(f)
spreadE [l <x,y>:spread(f); [|ALL t:time.<x‘t,y‘t>:f []==> P |] ==> P

Similar rules are proved for the delay element (D). Also the rules for serial and parallel
composition are very similar. The rules for parallel composition reflect the fact that it relates



PureRuby = Relation +

consts

spread,D HH "i=>i"

par tr "[A,il=>dr (O, /721D )

Ii@serll . n [1,1] =>il| (ll (_ ; ;/ _) n [60’61] 60 )
defs

spread_def "spread(f)== {xy:sig(domain(f)) #* sig(range(f)).
EX x y. xy=<x,y> & (ALL t:time.<x‘t,y‘t>:f)}"
delay_def "D(A) == {xy:sig(A) * sig(A).
EX x y. xy=<x,y> &
(ALL t:time.x‘t = y‘(t $+ $#1))}"
{xz:domain(R) * range(S).
EX x z y. xz = <x,2> & <x,y>:R & <y,z>:S}"

comp_def "R ;; S

par_def "[[R,S1] == {xy:(sig(dtyp(R) * dtyp(S)) * sig(rtyp(R) * rtyp(S))).
EX x y. xy = <x,y> &
<pri(x),pri(y)>:R & <sec(x),sec(y)>:S }"
end

Figure 6: Definition of the four Pure Ruby elements

signal pairs and not conventional pairs:

par_type [l R:A<™>B; S:C<™>E |] ==> [[R,S]1]: (A*C)<~>(B+*E)

parl [l <x1,y1>:R; <x2,y2>:S; xl:sig(A); x2:sig(B);
yl:sig(C); y2:sig(E) |11 ==> <<x1#x2>,<yl#y2>>:[[R,S]]
parE [l <<x1#x2>,<yi#y2>> :[[R,S1]; [l <x1,y1>:R; <x2,y2>:S |]==> P;

x1:sig(A); x2:sig(B); yl:sig(C); y2:sig(E) |] ==> P

To verify that the above definitions in ZF actually describe the same Pure Ruby con-
structors as defined in Section 2, we prove that they enjoy the mathematical properties
expected. As an example let us look at the equality rule for serial composition:

comp_iff [| R:A<">B; S:B<™>C; x:sig(d); z:sig(C) |1 ==>
<x,z>: R;;S <-> (EX y:sig(B). <x,y>:R & <y,z>:S)

The theorem is proved in one step by fast_tac. It is easily seen that this theorem expresses
the same property as the definition of serial composition given in Section 2 (Equation 3) under
the assumption that the types are correct.

4.3.1 Distributivity of Serial and Parallel Composition

A useful example of the use of the typed tactics is to prove equality rules in the Ruby algebra.
Here we prove the distributivity of serial and parallel composition which can be expressed as:

Vr € ay ot ﬂlvs € az ok BQVT € p1 ok ’YlVU € B2 ot Y2t [R? S] ; [T? W] = [(R ; T)a (S ; W)]

This is entered into Isabelle as a meta implication with the relation types as premises.

- val prems = goal PureRuby.thy
"[l R:A1<">B1; S:A2<">B2; T:B1<™>C1l; W:B2<">C2 [|] ==>
[[R,s11 ;5 [LT,Wll = [LR ;; T),(S ;5 WI1";
Level 0O
1. [[R,s11 ;; LCLT,WI1 = [[R ;5 T,S ;; Wil



Many proofs in connection with Ruby consist of proving equalities of relational expressions
written in a pointfree notation. Therefore a special tactic, prove_equal, has been developed
to start such proofs. An equality is split into two implications and appropriate data values
are added to the relations and typed properly according to the premises.

- by (prove_equal prems 1);
Level 1
1. tx y. [l <x, y> : [[R,8]] ;; [[T,wll; x : sig(Al * A2);
y : sig(C1l * C2) |1 ==> <x, y> : [[R ;; T,5 ;; W1l
2. Mx y.[l <x, y> : [[R ;; T,S ;; WIl; x : sig(Al * A2);
y @ sig(Cl * €2) |1 ==> <x, y> : [[R,S]1]1 ;; LLT,wl]

Both these subgoals can be solved by the typed version of the classical prover, fast_tac_t,
using the classical rule-set RubyZF _cs:

- by (ALLGDALS (fast_tac_t RubyZF_cs prems));
No subgoals!

The goals cannot be solved by the standard version of fast_tac as it will make wrong instan-
tiations of type variables.

4.4 The Ruby Relation Type

To be able to reason about Ruby relations by structural induction over the four elements of
Pure Ruby, we construct a set containing all Pure Ruby relations. We define the set pure
inductively, as shown in Figure 7, using Isabelle’s inductive package. Each element of pure is
a triple containing a relation, its domain type and its range type which are subsets of signal
relations on channel elements, on channel types and channel types respectively (the domains
field). The inductive set is characterised by four introduction rules, one for each Pure Ruby
element, as stated in the intrs field. Three specialised type rules are needed to typecheck
the inductive definition:
spread_chel_rel [| A:ChTy; B:ChTy; f:A"B |] ==> spread(f):ChE1<~>ChEl

D_chel_rel A:ChTy ==> D(A):ChE1<">ChE1l
par_chel_rel [l S:ChE1<~>ChEl; R:ChE1<~>ChEl|]==> [[R,S]]:ChE1<~>ChE1l

The above type rules together with a few others are stated in the type_intrs field. The
inductive definition then returns a number of theorems e.g. the four introduction rules, an
elimination rule and an induction rule.

The set of Pure Ruby relations, <R>, is defined as the subset of signal relations which
belong to the set pure. Pure Ruby type rules are proved in one step by fast_tac_t using the
introduction rules from above inductive definition:

spreadR [| A:ChTy; B:ChTy; £f:A"B |] ==>spread(f) :A<R>B

delayR A:ChTy ==> D(A):A<R>A

compR [l R:A<R>C; S:C<R>B 1 ==> R;;S : A<R>B

parR [l R:A1<R>B1; S:A2<R>B2 |] ==> [[R,S]] : A1%A2<R>B1%B2

The rule expressing structural induction over Pure Ruby relations is easily proved by the
induction theorem for pure. Note that the predicate P is a function of both the relation and



RubyType = PureRuby +

consts
pure HE
"@rrel" i "[i,i]=>i ("(_<R>/_)" [73,72]1 72)
inductive
domains "pure" <= "(ChE1<~>ChE1l)*ChTy*ChTy"
intrs
spread  "[| A:ChTy; B:ChTy; f:A"B |] ==> <spread(f),A,B>:pure"
delay "A:ChTy ==> <D(A),A,A>: pure"
comp "[l <R,A,B1>: pure; <S,B2,C>: pure|]l==> <R;;S,A,C>:pure"
par "[l <R,A1,B1>:pure; <S,A2,B2>:pure|]==

<[[R,S11,A1%A2,B1%B2>:pure"
type_intrs "[spread_chel_rel,D_chel_rel,comp_type,
par_chel_rel,prod_in_chty]"

defs
rrel_def "A<R>B== {r:A<">B. <r,A,B>:purel}"
end
Figure 7: Definition of the Pure Ruby set
its type:

rubyrel_induct [IR: A<R>B ;

1'f A B.f:A"B ==> P(A,B,spread(f));

'"MA.P(A,A,D(A));

'""R' S A Bl B2 C.[| R:A<R>B1; S:B2<R>C ;P(A,B1,R);
P(B2,C,S) |1 ==> P(A,C,R;;S) ;

'"R S A1l A2 B1 B2.[| R:A1<R>B1; S:A2<R>B2; P(A1,B1,R);
P(A2,B2,S)|] ==> P(A1xA2,B1xB2,[[R,S]1])

|17 ==> P(A,B,R);

5 Circuits and Combinators

This section uses the formalisation of Pure Ruby from the previous section as a platform
for defining various Ruby circuits and combinators commonly used in connection with VLSI
design. Circuits are generally non-parameterised signal relations and the combinators are
parameterised signal relations typically combining signal relations into new signal relations.
First we introduce a suite of relations, usually known as wiring relations, describing different
kinds of wiring patterns as lifted pointwise relations. Many of these wiring relations are
used to define a number of combining forms which combine one or more relations into new
relations (similar to what we have seen for serial and parallel composition). The circuits and
combinators are defined solely in terms of Pure Ruby and the combinators are divided into
either simple or recursive ones.

For each circuit and combinator the same 4 kinds of rules are proved: a signal type rule,
a Ruby type rule, an introduction rule and an elimination rule. The two type rules state the
general signal relation type and that the relation belongs to the set of Pure Ruby relations.
The introduction and elimination rules follow the same pattern as we saw in Section 4.3 for
the Pure Ruby elements.



5.1 Wiring Relations

In Ruby various types of component inter-connections are described by lifted pointwise re-
lations and are often known as wiring relations. They are typically used to “glue together”
adjacent relations by getting the respective wiring patterns to match. In this section we pre-
sent a number of the basic wiring relations together with a suite of wiring relations used in
connection with nlists and thus parameterised in their size.

The relation ¢ (Id(A)) is the polymorphic identity relation for all types A and relates two
equal signals of data. reorg describes the conversion between the two possibilities of pairing
three elements. cross relates a pair of values to the reversed pair. Finally dub relates a stream
to two copies of the same stream thus describing a conventional fork. The standard graphical
interpretations of some of the wiring relations, together with their (polymorphic) types of the
signals, are shown in Figure 8 and clearly expresses their intended behaviour.

Y— Y
p § a a
L S D a °
L reorg Cross dub

Figure 8: Graphical interpretation of simple wiring relations

All definitions of wiring relations follow the same pattern and are the lifting of a combina-
tional relation by the spread element. Unlike conventional Ruby notation all wiring relations
have to be explicitly parameterised in their types. The definitions are shown in Figure 9. The
two relations lwir and rwir describes special wiring patterns which will be used in the next
section to define relational inverse.

We show a signal type rule, a Ruby type rule, an introduction rule and an elimination
rule for the wiring relation reorg:

reorg_type reorg(A,B,C): (A*B)*C<">A*BxC

reorgR [1A:ChTy;B:ChTy;C:ChTyl] ==> reorg(A,B,C): (A*B)*C<R>AxB*C
reorgl [la:sig(A);b:sig(B);c:sig(C) |1 ==>

< <<a#b>#c>,<a#<b#c>> >:reorg(4,B,C)
reorgE [l < <<a#b>#c>,<d#<e#f>> >:reorg(A,B,C) ;[la=d;b=e;c=f|]==> P;

a:sig(A’);b:sig(B’);c:sig(C’);d:sig(A’?);e:sig(B’’);
f:sig(C’?)|] ==> P

Recursive combinators usually relates signals of nlists as will be seen in Section 5.3 and
we therefore need to be able to concatenate single elements to either side of the nlists. Since
all definitions in Ruby are given in a pointfree notation these operations are also defined as
relations on signals.

The relation apl,, (append left) relates an element a; and a list of n elements as to a list
of n 4+ 1 elements where a; is concatenated to the front of ay. The relation apr, (append
right) is similar to apl,, but the element is appended to the back of the list. The graphical
interpretations of apl,, and apr,, are depicted for a specific size, n, in Figure 10.

The definitions of the nlist related wiring relations are shown in the lower part of Figure 9.
The relation NNIL relates two empty signal nlists of any type. As for reorg above four rules



Wiring = RubyType +

consts
Id,dub HE TS
NNIL,cross,lwir,rwir,apl,apr :: "[i,i]=>i"
reorg i "[i,1,1i] => i"
defs
Id_def "Id(A) == spread({xy:A*A.EX x. xy=<x,x>})"

lwir_def "lwir(A,B) spread ({ab:Ax (A*(B*B)) .
EX a b.ab = <a,<a,<b,b>>>})"
spread ({ab: (A*(A*B)) *B .
EX a b.ab = <<a,<a,b>>,b>})"
reorg_def "reorg(A,B,C)== spread({ab: ((A*B)*C)*(A*(B*C)).
EX a b c.ab =<<<a,b>,c>,<a,<b,c>>>})"
spread({ab: ((AxB)*(B*A)).
EX a b. ab = <<a,b>,<b,a>>})"
spread({ab: (A*(AxA)). EX a. ab = <a,<a,a>>})"
spread({ab: (nlist[0]JA * nlist[0]B).
ab = <nnil,nnil>})"
spread({ab: (A*nlist[n]A) * nlist[succ(n)]A.
EX al a2.ab = <<al,a2>,ncons(n,al,a2)>})"
spread({ab: (nlist[nJA*A) * nlist[succ(n)]A.
EX al a2.ab = <<al,a2>,nsnoc(n,al,a2)>})"

rwir_def '"rwir(A,B)

cross_def '"cross(A,B)

dub_def "dub (A)
NNIL_def "NNIL(A,B)

apl_def  "apl(A,n)

apr_def  "apr(A,n)

end

Figure 9: Definition of simple wiring relations

nIist4(a). 7 nlist5 () a:l_
I nlist4(ar)——

nlist5 ()

a——" i

aply apry
Figure 10: Graphical interpretation of apl,, and apr,, for n = 4.

are proved as e.g. for apr:

apr_type apr(A,n):nlist[n]A * A<">nlist[succ(n)]A

aprR A:ChTy ==> apr(A,n):nlist[n]A * A<R>nlist[succ(n)]A
aprl [la:sig(A); 1l:sig(nlist[n]A)|] ==> <<1#a>,[1<@aln]>:apr(A,n)
aprE [l <<la#a>,[1b<@b|n]>:apr(A,n);a:sig(A1);b:sig(A2);

la:sig(nlist[n]A3); lb:sig(nlist[n]A4);
[la=b;la=1lb |[] ==> P |] ==> P

5.2 Simple Combinators

Combinators are usually high-order functions which, given appropriate relational arguments,
return signal relations. All the definitions are given in a pointfree notation in terms of Pure
Ruby elements. This has the advantage of maintaining the simplicity of the basic theory,
of permitting structural induction, and general transformation rules. Unfortunately it also
makes the definitions look very complicated and we therefore show that they are equivalent



to the more conventional definitions using data values. Thus for all combinators we prove the
conventional type, introduction and elimination rules plus the above equality rule.

Figure 11 demonstrates how relational inverse can be defined in terms of Pure Ruby
using the wiring relations Iwir and rwir. Furthermore the figure illustrates the graphical
interpretation of Fst and Snd.

lwir ; [¢, [R, ] ] ; rwir Fst(R) Snd(R)

Figure 11: Graphical interpretation of inversion, Fst and Snd

In Figure 12 the definitions of some of the simple combinators are given. As mentioned
in Section 4.3 all type arguments must be given explicitly in ZF, but in many cases they can
be deduced from the relational arguments by dtyp, rtyp etc.

We first prove that the non-parameterised version of inversion, ~, equals the type para-
meterised version, inv’. l.e. that no information is lost when deducing the types from the

relations:
inv’ _iff R:A<™>B ==> R~ = inv’(A,B,R)
Using the above theorem the 4 conventional rules are easily proved. Clearly inverse of R
is a Pure Ruby relation if R is (stated by invR) as it is only constructed from Pure Ruby

elements. The last theorem, inv_iff, shows that the definition actually corresponds to the
more conventional definition using data values.

inv_type R:A<™>B ==> R~ :B<™>A

invR R:A<R>B ==> R~ :B<R>A

invI [l <b,a>:R; a:sig(A); b:sig(B) |] ==> <a,b>:R"

invE [l <a,b>: R";R:A<™>B; [l <b,a>:R |] ==>P |] ==> P
inv_iff R:A<">B ==> <a,b>: (R”) <-> <b,a>:R

The combinator § (called below, and written as | | in Isabelle) describes partial composition
for two relations whose domain and range types are both pair types: in R S, the second
component in the domain of R is connected to the first component of the range of S. The
graphical interpretation of this is with R below S as shown in Figure 13. The dashed lines to
the left suggest how below is constructed from Pure Ruby.

The Isabelle definition of below is given in the lower part of Figure 12. We first prove
that the non-parameterised version, ||, equals the type parameterised version, below’:

below’_iff [IR :A*B<™>C*De; S:ExF<™>B*G |] ==>
R || S = below’(A,B,C,De,E,F,G,R,S)

We prove a similar family of rules to the above, where the last rule again expresses that



SimpComb = Wiring +

consts

inv’ i "li,i,i]=>i"

below’ HH "li,i,i,i,i,i,1i,1i,i]=>1i"

"inv" e "i=>i" (M) [rol 70

Fst,Snd i "[i,i]=>i"

below e "[i,i]=>i" ("(_ |1/ )" [67,66] 66 )

beside e "[i,i]=>i" ("(_ --/ )" [67,66] 66 )
defs

inv’_def  "inv’(A,B,R)== lwir(B,A);;[[Id(B),[[R,Id(A)]1]11];;rwir(B,A)"

inv_def "R~ == inv’ (dtyp(R) ,rtyp(R),R)"
Fst_def "Fst (A,R) = [[R,Ia(A)]1]"
Snd_def "Snd (A,R) = [[Id(A),RI]"

below’_def "below’(A,B,C,De,E,F,G,R,S) ==
reorg(A,E,F);;Snd(A,S);; (reorg(A,B,G)7);;
Fst(G,R) ;; reorg(C,De,G)"

below_def "R || S == below’ (ddtyp(R) ,rdtyp(R) ,drtyp(R) ,rrtyp(R),
ddtyp(S) ,rdtyp(S) ,rrtyp(S),R,S)"
beside_def "R -- S = (R~ |l (&)™)~
end

Figure 12: Definition of simple combinators

R

Al

reorg ; Snd(R) jyeorg™% Fst(S) ; reorg

Figure 13: Graphical interpretation of below and beside



| | has the expected mathematical properties in terms of data values:

below_type [IR :A*B<">C*De; S:ExF<">B*G|]==> R || S:(A*E)*F<~>C*(De*G)

belowR [IA:ChTy; B:ChTy; C:ChTy; De:ChTy; E:ChTy; F:ChTy; G:ChTy;
R :A*B<R>C*De; S:E*F<R>B*G|]==> R || S:(A*E)*F<R>C*(Dex*G)
belowl [l a:sig(A); c:sig(C); d:sig(De); e:sig(E); f:sig(F);

g:sig(G); <<a#b>,<c#d>>:R; <<e#f>,<b#g>>:S; b:sig(B)|]==
< <<a#ted>#f>,<c#<d#g>> > : R || S
belowE [l < <<a#te>#f>,<c#<d#g>> > : R || S ;
'1b. [| <<a#b>,<c#d>>:R; <<e#f>,<b#g>>:S; b:sig(B) |]==>P;
R:A*B<™>C#De; S:E+F<™>B#H; a:sig(A’); c:sig(C’);
d:sig(De’); e:sig(E’); f:sig(F’); g:sig(G’)|[] ==> P
below_iff [| a:sig(A’);c:sig(C’);d:sig(De’);e:sig(E’);f:sig(F’);
g:sig(G’); R:A*B<">C*De; S:ExF<™>BxG |] ==>
< <<a#e>#f>,<c#<d#g>> > : R || S <>
(EX b:sig(B).<<a#b>,<c#d>> :R & <<e#f>,<b#tg>> :S)

The combinator <+ (beside, which is written as -- in Isabelle) is also depicted in Fi-
gure 13 and can be defined in terms of below and inverse. We prove that it has the expected
mathematical properties:

beside_iff [l a:sig(A’); b:sig(B’); c:sig(C’); e:sig(E’); f:sig(F’);
g:sig(G’); R:AxB<™>C*De; S:DexE<™>FxG |[|] ==>
< <a#<b#ed>>,<<Lc#f>#g> > : R ——- § <>
(EX d:sig(De).<<a#b>,<c#d>> :R & <<d#e>,<f#g>> :3)

The Ruby relations generate a relational algebra which defines a large number of equiva-
lences. These are used in the practical design process with Ruby usually performed in the
T-Ruby system. Most equality rules concerning simple combinators can be proved automa-
tically by the tactic ProveSimp, which is similar to the one used to prove assoc_comp in
Section 4.3.1:

fun ProveSimp prems =
prove_equal prems 1
THEN ALLGOALS (fast_tac_t RubyZF_cs prems);

where RubyZF_cs contains all introduction and elimination rules for the simple combinators
and wiring relations and additionally all type rules have been added to basictypeinfo.
Equations proved by above tactic are for example:

compinv [ R:A<™>B; S:B<™>C [|]==> (R ;; S)~ = S”;;R"

NNILinv NNIL(A,B)~ = NNIL(B,A)

fstsndpar [| R:A<™>B; S:C<">De |]==> Fst(C,R);;Snd(B,S) = [[R,S]]

abides [l R:A*B<~>Cx*De; S:De*E<™>F*G; T:H*I<*>B*J; U:J*K<™>ExL []==>

(R -—-9IICT --1U) = RIIT)--(5]1U)

To demonstrate the use of the Pure Ruby induction theorem we sketch a proof of the
so-called retiming property of Pure Ruby relations. The retiming property states that the
absolute time can be changed without affecting the behaviour of the circuit. In Ruby this
can be expressed by surrounding a relation with a delay and an inverse delay element:

- val prems = goal SimpComb.thy
"1IR.R:A<R>B ==> R = D(A) ;; R ;; D(B)™";
Level 0O
1. !'!R. R : A<R>B ==> R = D(A) ;; R ;; D(B)~

Applying the rule rubyrel_induct leads to the four subgoals below (one for each Pure Ruby



element) which are easily proved. The actual proofs are not shown here:

- by (eresolve_tac [rubyrel_induct] 1);
Level 1
1. ''"R £ AB. £ : A"B ==> spread(f) = D(A) ;; spread(f) ;; D(B)~
2. ''R A. D(A) =D(A) ;; D(A) ;; DA™
3. '"R Ra S A B1 B2 C.
[l Ra : A<R>B1; S : B2<R>C; Ra = D(A) ;; Ra ;; D(B1)";
S =D(B2) ;; S ;; DO~ |1 ==>
Ra ;; S =D(A) ;; (Ra ;; S) ;; D(O)~
4. ''R Ra S A1 A2 B1 B2.
[l Ra : A1<R>B1; S : A2<R>B2; Ra = D(Al1l) ;; Ra ;; D(B1)";
S =D(A2) ;; S ;; D(B2)™ |] ==>
[[Ra,S]1] = D(A1 * A2) ;; [[Ra,S1] ;; D(B1 * B2)~

5.3 Recursive Combinators

This section shows examples of recursively defined combinators, typically used to describe
circuits with repetitive structures. Figure 14(a) illustrates how a combinator, mapf, which
maps a relation to each element of a list, recursively can be defined in terms of Pure Ruby.
The suffix f reflects that the argument relation of mapf is a function from its position in the
structure to a signal relation. Figure 14(b) depicts the conventional graphical interpretation
of mapf.

A FACO
_/ R(n) \_ nIistl[n+1]aé nIist[ln—l—l]a

NG R |

Figure 14: Graphical interpretation of mapf, ;.

The type-parameterised version of map, mapf’, is defined in Isabelle using the primitive
recursion operator over natural numbers, rec. It is shown in Figure 15 and follows the figure
above. As for the simple combinators we define a version of map, mapf, where the type
information is deduced from R. We prove that they describe the same relation:

mapf’_iff [l n:nat; R:nat->A<">B |] ==> mapf(n,R) = mapf’(A,B,n,R)

The conventional rules are proved for the mapf combinator. In particular mapfR shows
that mapf,, (R) is a Pure Ruby relation if R is, and the two theorems mapf _zero and mapf_succ



RecComb = SimpComb +

consts
mapf i "[i,i]=>i"
colf,rowf o "[i,i,i]=>i"
mapf’ o "[i,i,i,i]=>i"
colf’ o "[i,i,i,i,i]=>i"
defs

mapf’_def "mapf’(A,B,n,R) ==
rec(n,NNIL(A,B),
wx y. (apr(A,x)”);; [[y,R‘x]] ;; apr(B,x))"
mapf_def "mapf(n,R)== mapf’(dtyp(Union(range(R))),
rtyp(Union(range(R))),n,R)"
colf’_def "colf’(A,B,C,n,R) ==
rec(n,Fst(B,NNIL(A,C)) ;; cross(nlist[0]C,B),
%x y.Fst(B,apr(A,x)~) ;; (y Il (R‘x)) ;3
Snd (B,apr(C,x)))"
colf_def "colf(B,n,R) == colf’(ddtyp(Union(range(R))),B,
rrtyp(Union(range(R))),n,R)"
rowf_def '"rowf(B,n,R) == (colf(B,n,lam m:nat.((R‘m)~) ))~"
end

Figure 15: Definition of recursive combinators

colf o1 (R) |B rowf 41 (R)
—R()— nlistn + o
nlistln + a____nlistin + 1o
. —{R()— | B RO RO —{R@m)—2
i | :
B alistin + 10
E

Figure 16: Graphical interpretation of colf,; and rowf, ;.

express that mapf enjoys the expected mathematical properties.

mapf_type [| n:nat; R:nat -> A<">B|]==> mapf(n,R): nlist[n]A<">nlist[n]B
mapfR [l n:nat; R:nat -> A<R>B|]==> mapf(n,R): nlist[n]A<R>nlist[n]B
mapf_zero <snil,snil>: mapf(0,R)
mapf_succ [| n:nat; R:nat->A<">B; a:sig(A); b:sig(B);
la:sig(nlist[n]A); lb:sig(nlist[n]B) [] ==
<[la<@a|n], [1b<@b|n]> : mapf (succ(n),R) <->
(<a,b>:R‘n & <la,lb>: mapf(n,R))

Similarly the column and row structures depicted in Figure 16 can be defined in terms of
Pure Ruby. Their definition in Isabelle is given in Figure 15 and the expected rules can be



proved. For example the simplification rules for colf:

colf_zero b:sig(B) ==> < <snil#b>,<b#snil> > :colf(B,0,R)
colf_succ [In:nat; R:nat->A*B<">B*C; a:sig(A’); c:sig(C’); bs:sig(B);
bO:sig(B); la:sig(nlist[n]A’);lc:sig(nlist[n]C’)[] ==>
< <[la<@a|n]#bs>,<b0#[1lc<@c|n]> >: colf(succ(n),R) <->
(EX bn:sig(B) . (<<aitbs>,<bn#c>>:R‘n &
<<la#bn>,<bO#lc>>:colf(n,R)))

Note that in the case of colf,,(R) the type B cannot be deduced from the relation, since colf is
not limited by the relation R in the zero case. Choosing the second part of the domain side
of R would be too restrictive in the zero case. Thus we could not prove that the notational
shorthand colf were equal to the full parameterised definition colf’.

6 Conclusion

ZF proved to be a well-suited basis for a Ruby formalisation. The Pure Ruby relations could
easily be embedded, their types represented and the Pure Ruby set could be characterised by
an inductive definition. The whole development is made as a conservative extension of ZF
which means that it is both consistent and sound. The explicit type parameters, especially
for wiring relations, makes the RubyZF notation a little clumsy, however, types can always
easily be deduced from the context. Furthermore we demonstrated that for most combinators
(e.g. relational inverse) a notational shorthand can be defined where the types can be deduced
from the relational arguments. Due to the simplicity (purity) of ZF the system can serve as
a reference implementation of Ruby, or in other words as a “lynchpin” for implementations
of Ruby within other formalisms.

The development of specialised tactics in connection with type checking considerably
increases the productivity and clarity in doing the proofs. The user is very seldom bothered
with subgoals relating to type checking as this is all done behind the scenes. Extending
fast_tac with type checking enabled us to solve a large number of goals automatically which
could not be solved with the standard version.

The parser and pretty printing mechanisms allowed us to obtain a syntax very close to
the conventional Ruby syntax. However working in a huge theory like ZF it would be useful
to be able to overwrite previous definitions for example such that parallel composition could
be written with single square brackets.

The development of new theories is an interactive process where the definitions, even in
underlying theories, are often changed. Our experience clearly shows that the use of general
rule lists and automatic proof tactics means that most proofs can be left unchanged. So even
if proofs are initially developed using low-level tactics it pays off to construct a high-level
proof later.
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