
Annotated XML: Queries and Provenance

J. Nathan Foster Todd J. Green Val Tannen
{jnfoster,tjgreen,val}@cis.upenn.edu

Department of Computer and Information Science
University of Pennsylvania

ABSTRACT
We present a formal framework for capturing the provenance of
data appearing in XQuery views of XML. Building on previous
work on relations and their (positive) query languages, we dec-
orate unordered XML with annotations from commutative semir-
ings and show that these annotations suffice for a large positive
fragment of XQuery applied to this data. In addition to tracking
provenance metadata, the framework can be used to represent and
process XML with repetitions, incomplete XML, and probabilistic
XML, and provides a basis for enforcing access control policies in
security applications.

Each of these applications builds on our semantics for XQuery,
which we present in several steps: we generalize the semantics of
the Nested Relational Calculus (NRC) to handle semiring-annotated
complex values, we extend it with a recursive type and structural re-
cursion operator for trees, and we define a semantics for XQuery
on annotated XML by translation into this calculus.

Categories and Subject Descriptors
H.2.1 [Database Management]: Data Models

General Terms
Theory, Algorithms, Languages

Keywords
Data provenance, semirings, complex values, XML, XQuery.

1. INTRODUCTION
Recent work has shown that many of the mechanisms for evalu-

ating queries over annotated relations—e.g., incomplete and prob-
abilistic databases, databases with multiplicities (bags), and those
carrying provenance annotations—can be unified in a general frame-
work based on commutative semirings (see definition in §2). Intu-
itively, one of the semiring operations models alternative uses of
data while the other models its joint (or dependent) use. In [16],

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’08, June 9–12, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978-1-60558-108-8/08/06 ...$5.00.

semantics for positive relational algebra (i.e., unions of conjunc-
tive queries) and positive Datalog were defined for relations dec-
orated with annotations from a semiring. The same paper identi-
fied a canonical notation for provenance annotations using semir-
ing polynomials (and formal power series) that captures, abstractly,
computations in arbitrary semirings and therefore serves as a good
representation for implementations [15].

This work has opened up a number of interesting avenues for
investigation but its restriction to the relational model is limiting.
One of the main areas that motivates work on provenance is scien-
tific data processing. In these applications, relational data sources
are often combined with data extracted from hierarchical reposito-
ries of files. XML provides a natural model for tree-structured, het-
erogeneous sources, but current systems for managing XML data
do not provide mechanisms for decorating XML with provenance
annotations and for propagating annotated data through queries. A
major goal of this work is to extend the framework for semiring-
annotated relations described in [16] to handle annotated XML
data.

Besides provenance, our work is also motivated by applications
to incomplete and probabilistic XML data. Incomplete XML has
not received much attention so far (see §8), but significant work has
been done on probabilistic XML. For example, in [27], the uncer-
tainty associated with data obtained by probing the “hidden web”
(i.e., data hidden behind query forms and web services) is repre-
sented using XML trees whose nodes are annotated with boolean
expressions composed of independent Bernoulli event variables.

Starting from these motivations, we develop an extension of the
semiring annotation framework to XML and its premier query lan-
guage, XQuery [11]. Because dealing with lists and ordered XML
does not seem to be related to the way we use semirings (see §8),
we focus on an unordered variant of XML. Previous work [16] pro-
vided strong evidence that the idea of using semirings to represent
annotations is robust. In this work, we describe two new results
that add to this body of evidence:

• We define the semantics for a large fragment of first-order,
positive XQuery—practically all of the features that do not
depend on order—on semiring-annotated XML in two dif-
ferent ways, and show that these agree. The first approach
goes by translation to an extension of the nested relational
calculus [8] (NRC),1 while the second uses an encoding that
“shreds” XML data into a child relation between node identi-
fiers, and a corresponding translation of XPath into Datalog.

• We prove a general theorem showing that the semantics of

1Since NRC is used by itself in various contexts [5, 17], this se-
mantics is of interest even without the connection to XML.

queries commutes with the applications of semiring homo-
morphisms.

By instantiating our semantics using annotations formulated as poly-
nomials over a fixed set of variables with coefficients in N, we ob-
tain our main contribution: a provenance framework for unordered
XML data and a large class of XQuery views. We believe that this
framework has practical potential: it captures an intuitive notion of
provenance useful for scientific applications [15], and the size of
the provenance polynomials is bounded by O(|D||q|) where D is
the XML database and q is the XQuery program that defines the
view.

Additionally, we illustrate two important applications of anno-
tated XML: a security application that shows how to transfer con-
fidentiality policies from a database to a view by organizing the
clearance levels as a commutative semiring, and general strong
representation systems for incomplete and probabilistic annotated
databases that use the provenance polynomials themselves as anno-
tations. The correctness of these systems follows from the commu-
tation with homomorphisms theorem.

In outline, the paper is organized as follows. §2 reviews the no-
tion of commutative semiring annotations. §3 introduces the un-
ordered XML data model (UXML) and the corresponding fragment
of XQuery (UXQuery), and describes our extension of these for-
malisms with semiring annotations. We defer a formal discussion
of the semantics of UXQuery to §6, but illustrate its behavior on
several examples. We describe applications to security and incom-
plete and probabilistic data in §4 and §5. The main technical results
are collected in §6. There we review NRC, describe its extension
to trees (6.1), define its semantics (6.2), give the compilation of
UXQuery into this language (6.3), and state the commutation with
homomorphism theorems (6.4). §7 presents an alternative defini-
tion for a fragment of UXQuery, via an encoding of UXML into
relations and a translation of XPath into Datalog. §8 describes re-
lated work; we conclude with a brief discussion of ongoing and
future work in §9. The long version of this abstract contains the
complete definitions of each of these systems and is available as a
technical report [13].

2. SEMIRING ANNOTATIONS
A commutative semiring (K,+, ·, 0, 1) is an algebraic structure

consisting of a set K, operations + and ·, and distinguished ele-
ments 0, 1 ∈ K such that:

1. (K,+, 0) and (K, ·, 1) are commutative monoids;

2. k1 · (k2 + k3) = k1 · k2 + k1 · k3, and 0 · k = 0.

As shown in [16], commutative semirings and relational data fit
together naturally: when each tuple in a relation is tagged with
an element of K, the semantics of standard query languages can
be generalized to propagate the annotations in a way that captures
bag semantics, probabilistic and incomplete relations, and standard
notions of provenance. An (imperfect) intuition for the meaning of
these annotations is as follows: 0 means that the tuple is not present
or available; k1 +k2 means that the tuple can be produced from the
data described by k1 or that described by k2; and the annotation
k1 · k2 means that it requires both the data described by k1 and that
described by k2. The annotation 1 means that exactly one copy of
the tuple is available “without restrictions.” In the relational set-
ting, it was shown that the axioms of commutative semirings are
forced by standard equivalences on the (positive) relational alge-
bra [16]. In this work, we show that commutative semirings also
suffice for a variety of annotated nested data and their associated
query languages.

We develop our theory for arbitrary commutative semirings, but
use specific semirings in various applications:

• (B,∨,∧, false, true): set-based data;

• (N,+, ·, 0, 1): bag-based data;

• Positive boolean expressions: incomplete/probabilistic data
(see [16] and §5);

• Confidentiality levels: see §4;

• Lineage and why-provenance (it turns out that these are dif-
ferent and correspond to different semirings, see [4]);

• (N[X],+, ·, 0, 1): a “universal” semiring of multivariate poly-
nomials with coefficients in N and indeterminates in X .

The polynomials in N[X] provide a very general and informa-
tive notion of provenance2 and, in fact, capture the generality of
all commutative semiring calculations: any function X −→ K
can be uniquely extended to a semiring homomorphism N[X] −→
K. This fact is relevant to querying since (as in [16]) by Theo-
rem 1 and Corollary 1 below, our semantics for query answering
commutes with applying homomorphisms to annotated data. This
yields the principal result of our framework: a comprehensive no-
tion of provenance for unordered XML and a corresponding frag-
ment of XQuery.

3. ANNOTATED AND UNORDERED XML
We fix a commutative semiringK and consider XML data modi-

fied so that instead of lists of trees (sequences of elements) there are
sets of trees. Moreover, each tree belonging to such a set is deco-
rated with an annotation k ∈ K. Since bags of elements can be ob-
tained by interpreting the annotations as multiplicities (by picking
K to be (N,+, ·, 0, 1)), the only difference compared to standard
XML is the absence of ordering between siblings.3 We call such
data K-annotated unordered XML, or simply K-UXML. Given a
domainL of labels, the usual mutually recursive definition of XML
data naturally generalizes to K-UXML:4

• A value is either a label in L, a tree, or a K-set of trees;

• A tree consists of a label together with a finite (possibly
empty) K-set of trees as its “children”;

• A finiteK-set of trees is a function from trees toK such that
all but finitely many trees map to 0.

In examples, we illustrate K-UXML data by adding annotations
as a superscript notation on the label at the root of the (sub)tree.
By convention omitted annotations correspond to the “neutral” ele-
ment 1 ∈ K.5 Note that a tree gets an annotation only as a member
of a K-set. To annotate a single tree, we place it in a singleton
K-set. When the semiring of annotations is (B,∨,∧, false, true)
we have essentially unannotated unordered XML; we write UXML
instead of B-UXML.

In Figure 1, two K-UXML data values are displayed as trees.
The source value can be written in document style as
2These polynomials can be used, for example, to track provenance
in systems for scientific data sharing, see [15].
3For simplicity, we also omit attributes and model atomic values as
the labels on trees having no children.
4In the XQuery data model, sets of labels are also values; it is
straightforward to extend our formal treatment to include this.
5Items annotated with 0 are allowed by the definition but are use-
less because our semantics interprets 0 as “not present/available”.

Source:

(
az

bx1

dy1

cx2

dy2 ey3

)
Answer:

p

dz·x1·y1+z·x2·y2 ez·x2·y3

Figure 1: Simple for Example.

l ∈ L
k ∈ K
p ::= l | $x | () | (p) | p,p | for $x in p return p

| let $x := p return p | if (p=p) then p else p
| element p {p} | name(p) | annot k p | p/s

s ::= ax::nt
ax ::= self | child | descendant
nt ::= l | *

Figure 2: K-UXQuery Syntax.

<az> <bx1> dy1 </>

<cx2> dy2 ey3 </> </>

where we have abbreviated leaves <l></> as l.
We propose a query language forK-UXML calledK-UXQuery.

Its syntax, listed in Figure 2, corresponds to a core fragment of
XQuery [11] with one exception: the new construct annot k p
allows queries to modify the annotations on sets. With annot k p
any K-UXML value can be built with the K-UXQuery constructs.

We use the following types for K-UXML and K-UXQuery:

t ::= label | tree | {tree}

where label denotes L, tree denotes the set of all trees and {tree}
denotes the set of all finite K-sets of trees. The typing rules for
selected K-UXQuery operators are given in Figure 3.

At the end of this section we discuss this syntax in more de-
tail, and in §6.3 we present a formal semantics that uses the oper-
ations of the semiring to combine annotations. In the rest of this
section, however, we illustrate the semantics informally on some
simple examples to introduce the basic ideas. We start with very
simple queries demonstrating how the individual operators work,
and build up to a larger example corresponding to a translation of a
relational algebra query.

As a first example, let pi = element ai {()} for i ∈ {1, 2}.
That is, each pi constructs a tree with no children. The query (p1)

produces the singleton K-set in which p1 is annotated with 1 ∈
K and the query annot k1 (p1) produces the singleton K-set in
which p1 is annotated with k1 · 1 = k1. We can also construct
a union of K-sets: let q be annot k1 (p1),annot k2 (p2). The
result computed by q depends on whether a1 and a2 are the same
label or different labels. If a1 = a2 = a, then p1 and p2 are the
same tree and so the query then element b {q} produces the left
tree below. If a1 6= a2, then the same query produces the tree on
the right.

b

ak1+k2

b

ak1
1 ak2

2

Next, let us examine a query that uses iteration:

p = element p { for $t in $S return
for $x in ($t)/* return
($x)/* }

Γ ` p1 : {tree} Γ ` p2 : {tree}
Γ ` p1,p2 : {tree}

Γ ` p1 : {tree} Γ, x : tree ` p2 : {tree}
Γ ` for $x in p1 return p2 : {tree}

Γ ` p1 : label Γ ` p2 : label Γ ` p3 : t Γ ` p4 : t

Γ ` if (p1=p2) then p3 else p4 : t

Γ ` p1 : label G ` p2 : {tree}
Γ ` element p1 {p2} : tree

Γ ` p1 : tree

Γ ` name(p1) : label

Γ ` p : {tree}
Γ ` p/ax::nt : {tree}

Γ ` k ∈ K Γ ` p : {tree}
Γ ` annot k p : {tree}

Figure 3: Selected K-UXQuery Typing Rules.

Source:

(
a

bx1

a

cy3 d

cy1

d

a

cy2 bx2)
Answer:

r

cq1 cy1

d

a

cy2 bx2

where q1 = x1 · y3 + y1 · y2

Figure 4: XPath Example.

If $S is the (source) set on the left side of Figure 1, then the answer
produced by p is the tree on the right in the same figure.6 Oper-
ationally, the query works as follows. First, the outer for-clause
iterates over the set given by $S. As $S is a singleton in our exam-
ple, $t is bound to the tree whose root is labeled a and annotation
in $S is z. Next, the inner for-clause iterates over the set of trees
given by ($t)/*:

(bx1

dy1 ,

cx2

dy2 ey3)
It binds $x to each of these trees, evaluates the return-clause in
this extended context, and multiplies the resulting set by the anno-
tation on $x. For example, when $x is bound to the b child, the
return-clause produces the singleton set (dy1). Multiplying this
set by the annotation x1 yields (dx1·y1). After combining all the
sets returned by iterations of this inner for-clause, we obtain the
set (dx1·x1+x2·y2, ex2·y3). The final answer for p is obtained by
multiplying this set by z. Note that the annotation on each child in
the answer is the sum, over all paths that lead to that child in $t,
of the product of the annotations from the root of $t to that child,
thus recording how it arises from subtrees of $S.

Next we illustrate the semantics of XPath descendant naviga-
tion (shorthand //). Consider the query

r = element r { $T//c }

which picks out the set of subtrees of elements of $T whose la-
bel is c. A sample source and corresponding answer computed by
r are shown in Figure 4. In §6.3 we define the semantics of the
descendant operator using structural recursion and iteration. It
6Actually this query is equivalent to the shorter “grandchildren”
XPath query $S/*/*; we use the version with a for-clauses to
illustrate the semantics of iteration.

Source and Answer as K-Relations:
R

A B C

a b c x1

d b e x2

f g e x3

S
B C

b c x4

g c x5

Q
A C

a c x2
1 + x1 · x4

a e x1 · x2

d c x1 · x2 + x2 · x4

d e x2
2

f c x3 · x5

f e x2
3

Source as UXML:
D

R

tx1

A

a

B

b

C

c

tx2

A

d

B

b

C

e

tx3

A

f

B

g

C

e

S

tx4

B

b

C

c

tx5

B

g

C

c

Query:
let$r := $d/R/*,

$rAB := for $t in $r return <t> { $t/A,$t/B } </>,
$rBC := for $t in $r return <t> { $t/B,$t/C } </>,
$s := $d/S/*

return
<Q> { for $x in $rAB,$y in ($rBC,$s)

where $x/B=$y/B
return <t> { $x/A,$y/C } </> } </>

Answer as UXML:
Q

tx2
1+x1·x4

A

a

C

c

tx1·x2

A

a

C

e

tx1·x2+x2·x4

A

d

C

c

tx2
2

A

d

C

e

tx3·x5

A

f

C

c

tx2
3

A

f

C

e

Figure 5: Relational (encoded) example.

has the property that the annotation for each subtree in the answer
is the sum of the products of annotations for each path from the
root to an occurrence of that subtree in the source, like the answer
shown here.

Now we turn to a larger example, which demonstrates how K-
UXQuery behaves on an encoding of a database of relations whose
tuples are annotated with elements ofK (calledK-relations in [16]).
As a sanity check, we verify that our semantics forK-UXQuery on
this data agrees agrees with the semantics given for the positive
relational algebra given previously [16]. Consider the following
relational algebra query

Q = πAC(πAB(R) ./ (πBC(R) ∪ S))

and suppose that we evaluate it over K-relations R(A, B, C) and
S(B, C) shown at the top of Figure 5. The result, cf. [16], is the K-
relation Q(A, C), also shown at the top of Figure 5. For example,
the annotation on 〈d c〉 in Q is a sum of products x1 · x2 + x2 · x4,
which records that the tuple can be obtained by joining two R-
tuples or, alternatively, by joining an R-tuple and an S-tuple.

The rest of Figure 5 shows the K-UXML tree that is obtained
by encoding the relations R and S in an obvious way, the corre-
sponding translation of the view definition into K-UXQuery, and
the K-UXML view that is computed using K-UXQuery. Observe
that the result is the encoding of theK-relationQ. The next propo-
sition states that this equivalence holds in general. (Throughout the
paper we abuse notation and conflate the syntax and semantics of
expressions—i.e., we write e instead of [[e]].)

Source:
D

Rw1

tx1

Ay1

a

By2

bz1

Cy3

c

tx2

Ay1

d

By2

bz2

Cy3

ez3

tx3

Ay1

f

By2

gz4

Cy3

ez5

S

tx4

By5

bz6

Cy6

c

tx5

By5

gz7

Cy6

c

Answer: Q

tq1

Ay1

a

Cy6

c

tq2

Ay1

a

Cy3

c

tq3

Ay1

a

Cy3

ez3

tq4

Ay1

d

Cy6

c

tq5

Ay1

d

Cy3

c

tq6

Ay1

d

Cy3

ez3

tq7

Ay1

f

Cy6

c

tq8

Ay1

f

Cy3

ez5

where q1 = w1 · x1 · x4 · y2 · y5 · z1 · z6

q2 = w2
1 · x2

1 · y2
2 · z2

1
q3 = w2

1 · x1 · x2 · y2
2 · z1 · z2

q4 = w1 · x2 · x4 · y2 · y5 · z2 · z6

q5 = w2
1 · x1 · x2 · y2

2 · z1 · z2

q6 = w2
1 · x2

2 · y2
2 · z2

2
q7 = w1 · x3 · x5 · y2 · y5 · z4 · z7

q8 = w2
1 · x2

3 · y2
2 · z2

4

Figure 6: Extended Annotations Example.

PROPOSITION 1. Let Q be be a query in positive relational
algebra, and I a K-relational database instance. Let v be the
K-UXML encoding of I , and p be the translation of Q into K-
UXQuery. Then p(v), computed according to K-UXQuery, en-
codes Q(I), the K-relation computed according to the semantics
in [16].

In a K-relation, annotations only appear on tuples. In our model
for annotated UXML data, however, every internal node carries an
annotation (recall that, according to our convention, every node in
Figure 5 depicted with no annotation carries the “neutral” element
1 ∈ K). Therefore, we have more flexibility in how we anno-
tate source values—besides tuples, we can place annotations on the
values in individual fields, on attributes on the relations themselves,
and even on the whole database! It is interesting to see how, even
for a query that is essentially relational, these extra annotations par-
ticipate in the calculations. We have worked this out in the final
example of this section, see Figure 6. The query is the same as in
Figure 5 but the source data has additional annotations. Note how
the expressions annotating the tuple nodes in the answer involve
many non-tuple annotations from the source.

So far we have assumed that the annotations belong to an arbi-
trary commutative semiring K and we looked at the expressions
that equate q1, . . . , q8 in Figure 6 as calculations inK. However, if
we work with the semiring of polynomials K = (N[X],+, ·, 0, 1)
where we think of the source annotations as indeterminates (“prove-
nance tokens”) and take

X := {w1, x1, . . . , x5, y1, . . . , y6, z1, . . . , z7}

then the expressions that equate q1, . . . , q8 are the provenance poly-
nomials that annotate the tuple nodes in the answer. This kind of
provenance shows, for example, that some of the tuples in the an-
swer use source data annotated with z1 or y5 although these do
not appear explicitly in the annotations of the answer attributes
or values in the tuples. The annotations in a particular semiring
K can then be computed by evaluating these polynomials in K.
Corollary 1 (commutation with homomorphisms) guarantees that
the result will be the same as that obtained via the semantics on
K-UXML values.

Note also that we can obtain the answer shown in Figure 5 sim-
ply by setting all the indeterminates except for x1, . . . , x5 to 1 and

then simplifying using the semiring laws. When we set these inde-
terminates to 1, some subtrees which were distinguished by anno-
tations become now identified (q1 and q2, q4 and q5); this explains
the sums in the annotations of the answer in Figure 5.

The semantics in §6 allows us to prove the following upper bound:

PROPOSITION 2. If v is a UXML value annotated with indeter-
minates from a setX and p is a UXQuery, then computing p(v) ac-
cording to the N[X]-UXQuery semantics produces an N[X]-UXML
value such that the size of any of the provenance polynomials that
annotate p(v) is O(|v||p|).

K-UXQuery vs. XQuery Although UXQuery only contains
core operators, more complicated syntactic features such as where-
clauses that we used in the examples above can be normalized into
core queries using standard translations [11]. For example, the
where-clause where $x/B=$y/B from Figure 5 normalizes to:

for $a in $x/B/* return for $b in $y/B/* return
if (name($a)=name($b)) then . . . else ()

Our language includes only the downward XPath axes, since the
other axes can be compiled into this fragment [24]. To simplify our
formal system, we also do not identify a value with the singleton
set containing it. This is inessential but it simplifies the compilation
in §6.3. In examples we often elide the extra set constructor when
it is clear from context—e.g., we wrote $x/A above, not ($x)/A.

Unlike these minor differences, we made two essential restric-
tions in the design ofK-UXQuery. The first has to do with order—
we omit orderby and other operators whose semantics depends on
position, since these do not make sense on unordered data. The sec-
ond essential restriction is to positive queries—e.g., the conditional
expression only tests the equality of labels; see §6.1 for further dis-
cussion.

4. A SECURITY APPLICATION
We can model confidentiality policies using commutative semir-

ings. For example, the total order C : P < C < S < T < 0
describes the following levels of “clearance”: P = public, C =
confidential, S = secret, and T = top-secret. It is easy to see that
(C,min,max, 0,P) is a commutative semiring.7 We add 0 as a
separate element. It is needed because items in a K-UXML set
with annotation 0 are interpreted as not belonging to the set (i.e., 0
is so secret, it isn’t even there!), and we do not want to lose data
tagged as T completely.

Our framework solves the following problem. Suppose that an
XML database has been manually annotated with security infor-
mation specifying what clearance one must have for each data sub-
tree they wish to see. Now we use XQuery to produce views of
this database. We would like to compute automatically clearance
annotations for the data in a view, based on how that data was ob-
tained from the already annotated data in the original database. The
two operations of the clearance semiring correspond to alternatives
in obtaining the view data, in which case the minimum clearance
among them suffices, and to joint necessities, in which case the
maximum clearance among them is needed.

We give an example that shows that our annotated XML model is
a particularly flexible framework for such clearance specifications.
Consider the source data in Figure 6, which in fact encodes a rela-
tional database but where we have much more annotation flexibility
than in the [16] model where only tuples are annotated. We anno-
tate with elements from C as follows w1 := C (the entire relation
7Note that the natural order [16] on this semiring is actually the
opposite of the clearance order.

Q
A C

a c w1 · y5 + w2
1 = C · T + C2 = C

a e w2
1 · x2 = C2 · S = S

d c w1 · x2 · y5 + w2
1 · x2 = C · S · T + C2 · S = S

d e w2
1 · x2

2 = C2 · S = S
f c w1 · y5 = C · T = T
f e w2

1 = C2 = C

Figure 7: Security Clearance Example.

R is confidential), x2 := S (in addition, this tuple is secret), and
y5 := T (all values of attribute B in relation S are top-secret), and
finally, the rest of the annotations are P (which plays the role of 1
in this semiring).

The result of the view/query in Figure 5 when applied to this
data is the C-UXML encoding of a relation in which only the an-
notations on the tuples are different from 1 = P (this is because
the query projects out the attribute B, otherwise we could have had
non-P annotations inside the tuples). We show this answer as an
annotated relation in Figure 7. We also show there the polyno-
mials that would annotate the tuples if we would do the calcula-
tions in the provenance semiring N[w1, x2, y5]. These help un-
derstand how the resulting clearances are computed since it is a
consequence of Corollary 1 (commutation with homomorphisms)
that by evaluating the provenance polynomials in C under the val-
uation w1 := C, x2 := S, y5 := T we get the same result as the
C-UXQuery semantics.

Going back to the security application, for the data in the view,
confidential clearance gives access to the first and last tuple, secret
clearance to all but the fifth tuple, etc. Note how the top-secret
annotation of the attribute B in S affects just three of the tuples
in the answer and how in two of those cases the tuples are still
available to lower clearances because they can be also produced
with data from R only.

In the example above the semiring of clearances is a total order
but this can be generalized to non-total orderings, provided they
form a distributive lattice. The distributivity ensures that views that
we consider equivalent actually compute the same clearance for the
results. This follows from the following proposition which gener-
alizes a similar result in [16] for relations and positive relational
algebra.

PROPOSITION 3. If two UXQueries are equivalent on all UXML
inputs andK is a distributive lattice then the queries are equivalent
on all K-annotated UXML inputs.

5. INCOMPLETE AND PROBABILISTIC K-
UXML

Commutative semirings can also be used to model incomplete
and probabilistic databases for unordered XML data, even with
repetitions. An incomplete UXML database is a set of possible
worlds, each of which is itself a UXML (i.e. a B-UXML) database.
For repetitions (multiplicities) the possible worlds are N-UXML
databases. More generally, we treat here incomplete K-UXML
databases for arbitrary commutative semirings K. It turns out that
by using provenance annotations we can construct a powerful sys-
tem for representing and querying incompleteK-UXML databases.

Recall that provenance polynomials are elements of the com-
mutative semiring (N[X],+, ·, 0, 1)—i.e. polynomial expressions
over variables X with natural number coefficients [16]. For any
commutative semiring K, provenance polynomials are “universal”

in the sense that any function f : X → K (we call f a valuation)
extends uniquely to a semiring homomorphism f? : N[X] → K.
We exploit this to construct a representation system for incom-
plete K-UXML data. We first fix a semiring K, and a set of
variables X . We call a v in N[X]-UXML a representation. Next
we define a function ModK that maps a representation v in N[X]-
UXML to the set of K-UXML instances that can be obtained by
applying K-valuations to the variables in X—i.e., ModK(v) is
{f?(v) : f : X → K}, the set of possible worlds v represents.

As an example, let v be the source tree in Figure 4. To streamline
the example, we will set the x1 and x2 annotations to 1, leaving just
the annotations y1, y2, y3 on the subtrees labeled c.

For K = B, the set of possible worlds represented by v is the
following set of UXML values:

ModB(v) =

8>>>><>>>>:
a

b

a

c d

c

d

a

c b ,

a

b

a

c d

,

a

b

a

c d

c

d

a

b ,

a

b

a

d

c

d

a

c b ,

a

b

a

d

,

a

b

a

d

c

d

a

b

9>>>>=>>>>;
Each tree in ModB(v) is obtained using a valuation from the yis to
B—e.g., for the rightmost tree in this display, the valuation maps
y1 to true and y2 and y3 to false.

Now consider querying such an incomplete UXML database. In
general, given an XQuery p, we would like the answer to be (se-
mantically) the set of all K-UXML instances obtained by evaluat-
ing p over each K-UXML instance in the set of possible worlds
represented by v—i.e., p(ModK(v)) is {p(v ′) : v ′ ∈ ModK(v)}.
Returning to the representation v above and using p, the query in
Figure 4, we have:

p(ModB(v)) =

8>>>><>>>>:
Q

c c

d

a

c b ,
Q

c ,

Q

c c

d

a

b ,

Q

c

d

a

c b ,
Q
,

Q

c

d

a

b

9>>>>=>>>>;
As usual in incomplete databases, we do not wish to return this

set, which may be large in general. Instead, we would like a repre-
sentation of it. By Corollary 1 below, it turns out that such a repre-
sentation is obtained by evaluating p over v with N[X]-UXQuery
semantics. In general, we have that p(ModK(v)) = ModK(p(v)).
Indeed, the specific answer for this example shown in Figure 4 is
the representation of p(ModB(v)). Using the terminology of in-
complete databases, we say that N[X]-UXML is a strong represen-
tation system [19, 1] for K-UXQuery and K-UXML data.

For simpler K, the full power of N[X] may not be needed. For
example, when K = B, we can use annotations from the semir-
ing (PosBool(B),∨,∧, false, true) of positive Boolean expres-
sions over a setB of variables (i.e., the expressions involve onlyB,
disjunction, conjunction, and constants for true and false).8 This
corresponds to an XML analogue of the Boolean c-tables [19] used
in incomplete databases. Valuations ν : B → B extend uniquely to
homomorphisms ν? : PosBool(B) → B, so the definition above
of ModB still makes sense. Indeed, it follows (again from the com-
mutation with homomorphisms in § 6.4) that PosBool(B)-UXML
is a strong representation system for UXQuery and B-UXML (i.e.,
ordinary UXML) and that we can transform an N[B]-UXML repre-
sentation into PosBool(B)-UXML representation by applying the
obvious homomorphism. It can be shown that PosBool works not
8We also identify those expressions which yield the same truth
value for all Boolean assignments of the variables in B (to permit
simplifications).

just for B but for incomplete L-UXML for any distributive lattice
L, in particular the ones used for the security application in §4.

Another instance of our general result is that N[X]-UXML also
provides a strong representation system for UXML with repeti-
tions. For example, if we let v be the same tree as above, and
pick K = N, then the set of possible worlds is the following:

ModN(v) =

8>>>><>>>>:
a

b

a

d

,

a

b

a

c d

,

a

b

a

c c d

, . . . ,

a

b

a

d

c

d

a

c b, . . . ,

9>>>>=>>>>;
Note that children may be repeated—e.g., the third tree in this dis-
play has a subtree with two children c; this is obtained from a val-
uation that maps y2 to 2.

Probabilistic data can also be modeled using semiring annota-
tions. Again we use as representations N[X]-UXML values and all
the worlds corresponding to valuations f : X → K. But now we
consider such a valuation as the conjunction of independent events,
{f(x) = k} one for each x. The probability of each indepen-
dent event can be computed from some probability distribution on
K. For example, if K = B we can use Bernoulli distributions, if
K = N we can use Pr[f(x) = n] = 1/2n for n > 0, and 0 for
f(x) = 0, etc. It follows again that we have a strong representation
system this time for probability distributions on all the possible in-
stances. For K = B, more generally for distributive lattices, it suf-
fices again to use PosBool expressions. Since tree pattern queries
are expressible in UXQuery, we get the query evaluation algorithm
in [27] as a particular case.

6. SEMANTICS VIA COMPLEX VALUES
In this section we develop our formal semantics forK-UXQuery

by translation into a data model and query language for complex
values. Trees can be understood as data values built recursively
using pairing and collection constructions (see e.g., [6, 26]). For
UXML trees, the collections are sets. This suggests defining trees
as complex values, as data values built using pairing and sets, nested
arbitrarily.

We develop our semantics in several steps. First, we general-
ize the semantics of NRC to handle semiring-annotated values. We
then extend the calculus with a recursive tree type and structural
recursion operator on trees. This operator is needed to express the
descendant operator of K-UXQuery.9 Finally, we use this cal-
culus as a compilation target for K-UXQuery. At the end of the
section, we prove a correctness theorem, stating that the semantics
commutes with semiring homomorphisms, and explore some of its
broader implications.

6.1 Complex Values and Trees
We start from the (positive) Nested Relational Calculus [8]. The

types of NRC are:

t ::= label | t × t | {t}

Complex values are built with the following constructors:

v ::= l | (v, v) | {v} | v ∪ v | {}

We abbreviate {v1}∪· · ·∪{vn} as {v1, . . . , vn}—e.g., (l1, {l2, l3})
is a complex value of type label × {label}.

9When the nesting depth of the XML documents is bounded, the
structural recursion operator (and the recursive tree type) are not
needed, see [10].

The restriction to the positive fragment of the calculus is em-
bodied in the typing rule for conditionals—we only compare label
values. It is shown in [8] that equality tests for arbitrary sets can be
used to define non-monotonic operations (i.e., difference, intersec-
tion, membership, and nesting). This restriction is essential for the
semantics of NRC on annotated complex values because semirings
do not contain features for representing negation.

The crucial NRC operation is the big-union operator: ∪(x ∈
e1) e2. It computes the union of the family of sets defined by e2
indexed by x, where x takes each value in the set e1. For example,
the first relational projection is expressed as follows

project1 R , ∪(x ∈ R) {π1(x)}.

To represent trees, we extend the calculus with a constructor
Tree(a,C) where a is the label and C the set of immediate sub-
trees. Trees of the form Tree(a, {}) are leaves. The typing rule for
the tree constructor is given by:

Γ ` v1 : label Γ ` v2 : {tree}
Γ ` Tree(v1, v2) : tree

where tree is a new type. It is easy to see that the values of type tree
and label × {tree} are in a 1-1 correspondence. In one direction
this isomorphism is witnessed by Tree(π1(P), π2(P)), where P
is a pair. To express the other direction, we extend the calculus
with two new operations, tag(−) and kids(−) that return the root
tag and the set of subtree children of the root, respectively. The
mapping from trees to pairs is then given by (tag(T), kids(T)),
where T is a tree. Hence, semantically, the tree type is recursive.10

In the spirit of [26] we add an operation for structural recursion on
trees:

Γ, x : label , y : {t} ` e1 : t Γ ` e2 : tree

Γ ` (srt(x, y). e1) e2 : t

Its semantics obeys the equation

(srt(x, y). e1) Tree(e2, e3) =
e1[x := e2, y := ∪(z ∈ e3) (srt(x, y). e1) z]

(1)

where the notation e[x := e′] denotes substitution of e′ for x in e.
For example, the query

(srt(x, y). {x} ∪ flatten y) t

where flatten W , ∪(w ∈ W) w returns the set of atoms in t.
We denote this query language by NRC + srt .

6.2 Semantics for NRC + srt

Next we show how to decorate complex values (and trees) with
semiring annotations, and generalize NRC+srt to operate on anno-
tated values. Again we fix a commutative semiring (K,+, ·, 0, 1).
Dealing with complex values annotated with elements from K re-
quires a different semantics for the type {t}. The usual semantics
is the set of finite subsets of [[t]]. Instead, the semantics of [[{t}]]K
is defined as the set of functions f : [[t]]K → K with finite support,
i.e., such that supp(f) := {a ∈ [[t]]K | f(a) 6= 0} is finite. We
call elements of [[{t}]]K K-collections. WithK = B we obtain the
usual semantics as finite subsets; with K = N we get bags.
K-complex values are obtained by arbitrarily nesting pairing and

K-collections. We define new semantics for the NRC constructors:
the singleton constructor [[{v}]]K is the function that maps [[v]]K
to 1 and everything else to 0; [[{}]]K is the constant function that
maps everything to 0; and [[v1 ∪ v2]]K is the pointwise K-addition

10Tree(−,−), tag(−) and kids(−) are an instance of a standard
technique for handling recursive types in functional languages.

[[l]]ρK = l [[x]]ρK = ρ(x) [[{}]]ρK(x) = 0K

[[{e}]]ρK(x) = if x = [[e]]ρK then 1K else 0K

[[e1 ∪ e2]]ρK(x) = [[e1]]
ρ
K(x) + [[e2]]

ρ
K(x)

[[e1]]
ρ
K = s1

[[∪(x ∈ e1) e2]]ρK(y) =
X

v∈dom(s1)

s1(v) · [[e2]]ρ[x←v]
K (y)

if [[e1]]
ρ
K = [[e2]]

ρ
K then [[e3]]

ρ
K else [[e4]]

ρ
K = v

[[if e1 = e2 then e3 else e4]]
ρ
K = v

[[e1]]
ρ
K = v1 [[e2]]

ρ
K = v2

[[(e1, e2)]]
ρ
K = (v1, v2)

[[e]]ρK = (v1, v2) i ∈ {1, 2}
[[πi(e)]]

ρ
K = vi

[[e1]]
ρ
K = l [[e2]]

ρ
K = s

[[Tree(e1, e2)]]
ρ
K = Tree(l, s)

[[e]]ρK = Tree(l, s)

[[kids(e)]]ρK = s

[[e]]ρK = Tree(l, s)

[[tag(e)]]ρK = l

[[e2]]
ρ
K = Tree(l, s) [[∪(z ∈ s) (srt(x, y). e1) z]]

ρ
K = s′

[[(srt(x, y). e1) e2]]
ρ
K = [[e1]]

ρ[x:=l,y:=s′]
K

Figure 8: Semantic Equations for NRCK + srt

of [[v1]]K and [[v2]]K . In order to express all K-collections in the
calculus, we extend NRC with an operation for multiplying the an-
notations on the elements of K-collections by the “scalar” k in K.
It is written k e and has the following typing rule:

Γ ` k ∈ K Γ ` e : {t}
Γ ` k e : {t}

We call the calculus extended with this operator NRCK . The set of
K-complex values are constructed using:

v ::= l | (v, v) | k {v} | v ∪ v | {}

and, as above, we abbreviateK-collections using the following no-
tation: {vk1

1 , . . . , vkn
n } , k1 {v1} ∪ · · · ∪ kn {vn}. Determining

the right semantics for the ∪(x ∈ e1) e2 operation is more chal-
lenging. In Appendix A we explain this semantics in the context
of a general theory of collection types [8, 21]. Here we give the
semantics semi-formally.

Let e1 have type {t1} and e2 have type {t2} (whenever x has
type t1). LetX = [[t1]]K and Y = [[t2]]K . Then [[e1]]K is a function
f : X → K with finite support supp(f) = {x1, . . . , xn}. In
general e2 depends on x so for each xi we have a corresponding
semantics for e2, i.e., a function gi : Y → K. Using this function
we define for each y ∈ Y

[[∪(x ∈ e1) e2]]K(y) ,
nX

i=1

f(xi) · gi(y)

Since each gi has finite support, so does [[∪(x ∈ e1) e2]]K .
The semantics of the other operations inherited from positive

NRC is straightforward (it is essential that the equality test does not
involve K-collections and therefore additional annotations). For

example,

flatten {{ap, br}u, {bs}v} = {au·p, bu·r+v·s}
{ap, br}× {cu} = {(a, c)p·u, (b, c)r·u}

where R× S , ∪(x ∈ R)∪(y ∈ S) (x, y).
We take the fact that the semantics of NRCK is an instance of

the general approach to collection languages promoted in e.g., [8,
21, 9] as evidence for the robustness of our semantics. Appendix A
gives a set of equational axioms for NRCK that follow from the
general approach just mentioned. These axioms also form a foun-
dation for query optimization for NRCK andK-UXQuery (e.g., see
[25]).

As positive NRC strictly extends the positive relational algebra
(RA+), the following sanity check is also in order.

PROPOSITION 4. Let NRC(RA+) be the usual encoding of pro-
jection, selection, cartesian product and union in (positive) NRC.
The semantics of NRC(RA+) onK-complex values representingK-
relations coincides with the semantics of RA+ onK-relations given
in [16].

As another sanity check, observe that NRCN corresponds to the pos-
itive fragment of the Nested Bag Calculus [22].

Finally, we extend the semantics to NRCK +srt . The semantics,
given with respect to an environment to variables ρ, is summarized
by the equations in Figure 8. The meaning of Tree(−,−), tag(−)
and kids(−) are all straightforward (similar to pairing and projec-
tions). For srt , we require that Equation (1) continues to hold.
Indeed, since K-collections have finite support, even in the pres-
ence ofK-annotations, values of type tree have a finitary recursive
structure. The semantics of ∪(− ∈ −) − and Equation (1) above
uniquely determines the semantics of srt .

6.3 Compiling UXQuery to NRC + srt

We define the semantics ofK-UXQuery onK-UXML values by
translation (compilation) to NRCK + srt. Since K-UXML values
can be expressed with the constructors inK-UXQuery it suffices to
translate K-UXQuery. The compilation function is written p e.
Here we discuss some of the more interesting cases; more details
can be found in the long version of this paper. Many of the op-
erators in K-UXQuery have a direct analog in NRCK + src and
therefore have a simple translation, for example if p1 e1 and
p2 e2 then for $x in p1 return p2 ∪(x ∈ e1) e2. The
most interesting compilation rules concern navigation steps. The
compilation of a step ax::nt , written e ax::nt

 e′, describes by e′

the set of trees that results from applying the given step to the set of
trees described by e. Navigation compilation is then used in query
compilation: if p e and e ax::nt

 e′ then p/ax::nt e′.
Here is an example of XPath compilation for the self axis com-

bined with a node test a; it returns the trees whose root node is
labeled by a:

e
self::a
 ∪(x ∈ e) if tag(x) = a then {x} else {}

The compilation of the descendant axis is the only place where
we make use of structural recursion: we use srt to recursively walk
down the structure of the tree and build up a set containing all
of the matching nodes. As an example, the compilation rule for
descendant::* is:

e′ = ∪(x ∈ e) π1((srt(b, s). f) x)
where f = let self = Tree(b,∪(x ∈ s) {π2(x)}) in

let matches = ∪(x ∈ s) {π1(x)} in
(matches ∪ {self }, self)

e
descendant::*
 e′

The s argument accumulates a set of pairs whose first component
is the set of descendants below the immediate subtree contained in
the second component of the pair. At each step, the body of the
srt expression constructs a new pair using the current node and the
accumulator. The descendants are obtained by projecting the first
component of the final result.

6.4 Commutation with Homomorphisms
A semiring homomorphism h : K1

hom−→ K2 can be lifted to a
transformation H from NRCK1 + srt expressions to NRCK2 + srt
expressions by replacing every occurrence of a scalar k with h(k).
Since every K-complex value can be expressed with the construc-
tors of NRCK + srt , this gives us in particular a transformation
from K1-complex values to K2-complex values.

A fundamental property of NRC+srt is that query evaluation on
K-complex values commutes with such transformations induced
by homomorphisms.

THEOREM 1. If h : K1
hom−→ K2 is a homomorphism of semir-

ings, denote by H its lifting as explained above. Then for any K1-
complex value v and NRCK1+srt query e,H(e(v)) = H(e)(H(v)).

The proof is by induction on e.
In the same way, a homomorphism h can be lifted to a trans-

formation H from K1-UXQuery to K2-UXQuery (and from K1-
UXML values to K2-UXML values). Based on our compilation
semantics for K-UXQuery, we conclude from the theorem above
that a similar commutation holds for K-UXML and K-UXQuery:

COROLLARY 1. If h : K1
hom−→ K2 is a semiring homomor-

phism, denote byH its lifting to a transformation fromK1-UXQuery
to K2-UXQuery. Then for any K1-UXML value v and any K1-
UXQuery query p, H(p(v)) = H(p)(H(v)).

We already mentioned several applications of the commutations
with homomorphisms theorem (cf. §3, §4, and §5). Another simple
but practically useful application involves the “duplicate elimina-
tion” homomorphism † : N → B defined as †(0) , false and
†(n + 1) , true. Lifting † to K-complex values and trees or to
K-UXML values we obtain that evaluation of ordinary values can
be factored through that of values with multiplicities, with dupli-
cate elimination deferred to a final step (in the style of commercial
relational database systems).

7. SEMANTICS VIA RELATIONS
We sketch in this section an encoding of K-UXML into K-

relations and an accompanying compilation of XPath into Datalog
(extended with Skolem functions) which has the important prop-
erty that the answer to the Datalog program corresponds to the an-
swer to the XPath query with identical annotations. This provides
an alternative definition of the semantics of XPath on K-UXML
which agrees with that of §6. The availability of such a compila-
tion scheme is an important concern in practice, where XML data
is often “shredded” into relations, with queries over the data com-
piled into SQL for execution by an RDBMS [12, 28]. However,
the focus here is not on practicality, but on demonstrating a basic
proof-of-concept scheme.

We encode a (set of) K-UXML trees using a single K-relation
E(pid, nid, label). Each tuple in E corresponds to a single K-
UXML node, and carries the same annotation as the K-UXML
node.

As opposed to UXML in which an item is an entire tree identified
by its value, in this encoding an item is identified by its node id.

Thus pid is the identifier of the node’s parent, nid is the identifier
of the node itself, and label is the node’s label. The special pid 0
is reserved and indicates that the node corresponds to a (top-level)
root of a tree in the set.

Node ids are invented as needed during translation of the K-
UXML into relational form. During subsequent query processing,
additional node ids may be needed to represent nodes in the query
result; we use Skolem functions for this purpose. Recursive Dat-
alog rules are used to implement the XPath descendant operator.
To give a flavor of the query translation, we show the rule for one
important case, the descendant axis:

e
descendant::a

R(n, l) :- E(0, n, l)
R(n, l) :- R(p, _), E(p, n, l)

E′(f(p), f(n), l) :- E(p, n, l)
E′(0, f(n),a) :- R(n,a)

E encodes the set of input trees and E′ encodes the set of output
trees. f is a Skolem function. To illustrate, the XPath query //c on
the source tree in Figure 4 with x1 := 0 (to simplify the example)
yields:

E′ =

pid nid label
0 f(2) c y1
0 f(5) c y1 · y2

f(0) f(1) a 1
f(1) f(2) c y1
f(2) f(3) d 1
f(3) f(4) a 1
f(2) f(5) c y2
f(2) f(6) b x2

The K-UXML tree which would have been produced by executing
the query directly on the input tree is encoded by the tuples reach-
able from the root tuples (which have pid 0). Note that there are
also some “garbage” tuples in the table that are unreachable from
any root: e.g., (f(0), f(1),a). An additional step is required to
remove these tuples; see [13] for details. We summarize with the
following theorem:

THEOREM 2. There is a 1-1 translation φ of K-UXML to K-
relations and a translationψ of XPath to Datalog with Skolem func-
tions, such that for every K-UXML value v and XPath query p, we
have φ(p(v)) = ψ(φ(p)).

8. RELATED WORK
The original why/where provenance paper [7] actually used an

XML-related data model. However, the model was tag-deterministic
and the annotations were in effect paths from the root. Its query
language relies on a deep-union construct that seems incompara-
ble with what we do. In addition, the related work in [16] surveys
work on semirings, other models of provenance, and probabilistic
and incomplete relations that we do not repeat here.

Among proposed models for probabilistic and incomplete XML,
closest to our work is [3, 27], which uses unordered XML decorated
with Boolean combinations of probabilistic events. A model for in-
complete XML was developed in [2]. In both systems the query
language is tree patterns, and the main focus is on handling updates
and complexity results. By contrast, our goal is a general-purpose
annotation framework with a richer query language in which prob-
abilistic and incomplete XML are obtained as special cases. Other
models for probabilistic XML include probabilistic interval annota-
tions [18], probabilistic trees for data integration [29], and numeric
probability annotations [23]; for incomplete XML we add the max-
imal matchings approach of [20].

The focus of [5] is to compare a semantics for NRC on annotated
complex values to the semantics of an update language but the data
model and the query semantics is different from ours. In particular,
query-constructed values are annotated with “unknown.” Another
provenance model for NRC, tracing operational executions for sci-
entific dataflows, is described in [17].

Semirings are used to provide semantics for regular path queries
decorated with preference annotations over graph-structured data
in [14]. It is unclear whether there is any connection with our
semiring-annotated data.

We note that, as in the conclusion to [16], we still don’t know
how to incorporate negative (more generally, non-monotonic) oper-
ations gracefully into this framework. Dealing with ordered XML
is a separate but equally troublesome issue. Unlike sets and bags,
lists are not immediately representable as the functions of finite
support into some commutative (or even non-commutative) semir-
ing. Still we believe that, based on our semantics for UXML, a
practical, albeit somewhat ad-hoc, provenance semantics for or-
dered XQuery could be devised and then tested for user acceptance.

9. CONCLUSION AND FURTHER WORK
The framework for annotated XML we have described here seems

to be flexible and potentially useful in practical applications. We
are thinking in particular about using semirings of confidentiality
levels in an RDBMS by hiding the out-of-model calculations from
users and also about recording jointly provenance, security, and un-
certainty (the product of several semirings is also a semiring!).

We have given very general strong representation systems in Sec-
tion 5. This opens a whole set of questions about their (relative)
completeness/expressive power. Another set of theoretical ques-
tions has to do with equivalence and perhaps containment wrt. an-
notated semantics, with applications to query optimization.

Acknowledgements We are grateful to Tova Milo for suggesting
that we compare our first semantics with the “shredding” one. We
also thank Zack Ives, Greg Karvounarakis, James Cheney, Jérôme
Siméon, Giorgio Ghelli, and Kristoffer Rose for useful discussions,
and the anonymous referees for many helpful comments. Our work
is supported by the NSF under grants IIS-0534592, IIS-0447972,
IIS-0629846 and IIS-05137782.

10. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.
[2] S. Abiteboul, L. Segoufin, and V. Vianu. Representing and

querying xml with incomplete information. TODS,
31(1):208–254, 2006.

[3] S. Abiteboul and P. Senellart. Querying and updating
probabilistic information in XML. In EDBT, 2006.

[4] P. Buneman, J. Cheney, W.-C. Tan, and S. Vansummeren.
Curated databases. In PODS, 2008.

[5] P. Buneman, J. Cheney, and S. Vansummeren. On the
expressiveness of implicit provenance in query and update
languages. In ICDT, 2007.

[6] P. Buneman, M. F. Fernandez, and D. Suciu. UnQL: A query
language and algebra for semistructured data based on
structural recursion. VLDB J., 9(1):76–110, 2000.

[7] P. Buneman, S. Khanna, and W. C. Tan. Why and where: A
characterization of data provenance. In ICDT, 2001.

[8] P. Buneman, S. A. Naqvi, V. Tannen, and L. Wong.
Principles of programming with complex objects and
collection types. TCS, 149(1):3–48, 1995.

[9] P. Buneman and V. Tannen. A structural approach to query
language design. In The Functional Approach to Data
Management Modeling, Analyzing, and Integrating
Heterogenous Data. Springer, 2004.

[10] J. V. den Bussche, D. V. Gucht, and S. Vansummeren.
Well-definedness and semantic type-checking in the nested
relational calculus and XQuery. In ICDT, 2005.

[11] D. Draper, P. Fankhauser, M. F. Fernández, A. Malhotra,
K. Rose, M. Rys, J. Siméon, and P. Wadler. XQuery 1.0 and
XPath 2.0 Formal Semantics. W3C, Jan. 2007.

[12] D. Florescu and D. Kossmann. Storing and querying XML
data using an RDMBS. IEEE Data Engineering Bulletin,
22(3), 1999.

[13] J. N. Foster, T. J. Green, and V. Tannen. Annotated XML:
Queries and provenance. Technical Report TR-CIS-08-06,
University of Pennsylvania, 2008.

[14] G. Grahne, A. Thomo, and W. W. Wadge. Preferentially
annotated regular path queries. In ICDT, 2007.

[15] T. J. Green, G. Karvounarakis, Z. G. Ives, and V. Tannen.
Update exchange with mappings and provenance. In VLDB,
2007.

[16] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance
semirings. In PODS, 2007.

[17] J. Hidders, N. Kwasnikowska, J. Sroka, J. Tyszkiewicz, and
J. V. den Bussche. A formal model of dataflow repositories.
In DILS, 2007.

[18] E. Hung, L. Getoor, and V. S. Subrahmanian. Probabilistic
interval XML. ACM TOCL, 8(4), 2007.

[19] T. Imieliński and W. Lipski. Incomplete information in
relational databases. JACM, 31(4), 1984.

[20] Y. Kanza, W. Nutt, and Y. Sagiv. Queries with incomplete
answers over semistructured data. In PODS, 1999.

[21] S. K. Lellahi and V. Tannen. A calculus for collections and
aggregates. In Category Theory and Computer Science,
1997.

[22] L. Libkin and L. Wong. Query languages for bags and
aggregate functions. JCSS, 55(2):241–272, 1997.

[23] A. Nierman and H. V. Jagadish. ProTDB: Probabilistic data
in XML. In VLDB, 2002.

[24] D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath:
Looking forward. In EDBT Workshops, 2002.

[25] C. Ré, J. Simèon, and M. Fernández. A complete and
efficient algebraic compiler for xquery. In ICDE, page 14,
2006.

[26] E. L. Robertson, L. V. Saxton, D. V. Gucht, and
S. Vansummeren. Structural recursion on ordered trees and
list-based complex objects. In ICDT, 2007.

[27] P. Senellart and S. Abiteboul. On the complexity of
managing probabilistic XML data. In PODS, 2007.

[28] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J.
DeWitt, and J. F. Naughton. Relational databases for
querying XML documents: Limitations and opportunities. In
VLDB J., 1999.

[29] M. van Keulen, A. de Keijzer, and W. Alink. A probabilistic
XML approach to data integration. In ICDE, 2005.

APPENDIX
A. MONADS OF SEMIMODULES AS COL-

LECTION TYPES
Let (K,+, ·, 0, 1) be a commutative semiring. A semimodule

over K (a K-semimodule) is an algebraic structure (M,+, 0, λ)
where (M,+, 0) is a commutative monoid, and λ : K ×M →M
is a scalar multiplication operation, written (as usual) λ(k, x) =
k x such that

k (x+ y) = k x+ k y

k 0 = 0

(k1 + k2)x = k1 x+ k2 x

(k1 · k2)x = k1 (k2 x)

0x = 0

1x = x

K-semimodules and their homomorphisms form a category K-
SMod. The forgetful functor U :K−SMod → Set has a left
adjoint that is very easy to describe: the freeK-semimodule gener-
ated by a set X is the set XK

f of functions X → K that have finite
support (see Section 6.2 and note that in NRCK [[{t}]]K is precisely
([[t]]K)K

f), with the obvious pointwise addition and pointwise mul-
tiplicationK-semimodule structure. This adjunction yields a (strong)
monad on Set, which can be enriched [21] with a K-semimodule
structure on each monad algebra. Therefore, we have a collection
and aggregates query language, as in [8, 21, 9]. In fact, it is easy to
see that any commutative monoid is an N-semimodule and that the
B-semimodules are exactly the commutative-idempotent monoids,
so the finite sets and finite bags collections are included here 11.
Properties like the commutation with homomorphisms theorem (1)
have a very general category-theoretic justification, based on the
fact that all the query language constructs in such query languages
come from functorial constructs and natural transformations.

We can also capture some of this theory through an equational
axiomatization for NRCK

PROPOSITION 5. The semantics of NRCK satisfies the follow-
ing equational axioms:

• ∪, {} and multiplication with scalars from K satisfy the ax-
ioms of a semimodule over K.

• ∪(x ∈ e1) e2 satisfies the axioms:

∪(x ∈ ∪(y ∈ R) S) T = ∪(y ∈ R)∪(x ∈ S) T
∪(x ∈ S) {x} = S
∪(x ∈ {e}) S = S[x := e]

∪(x ∈ k1R1 ∪ k2R2) S = k1 (∪(x ∈ R1) S) ∪
k2 (∪(x ∈ R2) S)

∪(x ∈ R)∪(y ∈ S) T = ∪(y ∈ S)∪(x ∈ R) T
∪(x ∈ R) (k1 S1 ∪ k2 S2) = k1 (∪(x ∈ R) S1) ∪

k2 (∪(x ∈ R) S2)

(In particular, the 4th and 6th axioms state its bilinearity w.r.t. the
semimodule structure).

11It is not clear how to include finite lists in this semiring-based
family of collection types

