
Towards Computationally Sound Symbolic Analysis
of Key Exchange Protocols

(extended abstract)

Prateek Gupta and Vitaly Shmatikov
The University of Texas at Austin

{prateek,shmat}@cs.utexas.edu

ABSTRACT
We present a cryptographically sound formal method for proving
correctness of key exchange protocols. Our main tool is a frag-
ment of a symbolic protocol logic. We demonstrate that proofs
of key agreement and key secrecy in this logic imply simulatabil-
ity in Shoup’s secure multi-party framework for key exchange. As
part of the logic, we present cryptographically sound abstractions
of CMA-secure digital signatures and a restricted form of Diffie-
Hellman exponentiation, which is a technical result of independent
interest. We illustrate our method by constructing a proof of secu-
rity for a simple authenticated Diffie-Hellman protocol.

Categories and Subject Descriptors:
C.2.2[Network Protocols]: Protocol verification; K.6.5[Security
and Protection]: Authentication; F.3.1[Specifying and Verifying
and Reasoning about Programs]: Logics of programs

General Terms: Security

Keywords: Cryptographic protocols, Symbolic analysis, Pro-
tocol logic, Computational soundness

1. INTRODUCTION
Cryptographic protocols are the fundamental building blocks of

secure communication systems. Key exchange protocols, in par-
ticular, are commonly used to implementsecure sessions. Secure
session establishment is the main objective of widely deployed pro-
tocols such as Kerberos [29], SSL/TLS [21] and IKE [28]. There-
fore, ensuring correctness and security of key exchange is of criti-
cal importance. Intuitively, a key exchange protocol is secure if it
providesagreement(upon completion of the protocol, the parties
correctly know each other’s identity and agree on the value of the
established key) andkey secrecy(for anyone but the participants,
the established key is indistinguishable from a random value).

Design and analysis of provably correct key exchange protocols
has a long history [8, 22, 7, 9, 6, 34, 15, 16]. Cryptographic proofs
of security for key exchange are usually carried out in the so-called
simulatabilityparadigm (e.g., [5, 10]), using standard techniques

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FMSE’05,November 11, 2005, Fairfax, Virginia, USA.
Copyright 2005 ACM 1-59593-231-3/05/0011 ...$5.00.

for secure multi-party computation [24]. Informally, thisinvolves
defining anideal functionalityfor key exchange which is secure by
design because, in the ideal functionality, a trusted thirdparty gen-
erates the key as a true random value and distributes it to protocol
participants. The actual, real-world protocol is secure ifthere ex-
ists an efficient (i.e., probabilistic polynomial-time) simulator, that,
with access only to the ideal functionality, can “fool” any efficient
adversary into thinking that the latter is engaged in the real-world
protocol. If the ideal-world simulation and the real-worldprotocol
are indistinguishable, then no more information can be extracted
from real-world protocol sessions than from the ideal functionality.
Since the latter is secure by design, security of the real-world proto-
col follows. Simulatability-based definitions are appealing because
they provide a natural way of specifying the abstraction (i.e., the
ideal functionality) that the key exchange protocol is supposed to
present to higher-level applications.

Constructing proofs of simulatability is, in general, a nontrivial
task. Validity arguments for the simulator often rely on manual
case analysis and informal reasoning “by the logic of the proto-
col” (e.g., [34]). We show that, for a certain class of key exchange
protocols, the simulator can be constructed automatically. Valid-
ity of the simulator is then proved using a simple, purely symbolic
deductive system which does not involve probabilities. Such sym-
bolic inference systems for reasoning about security are known in
the literature as “Dolev-Yao” models.

We use a fragment of theprotocol composition logicof Dur-
gin, Dattaet al. [23, 19], containing abstract digital signatures,
but not encryption. We also introduce a formal abstraction of a
particular usage of Diffie-Hellman exponentiation, namely, deriva-
tion of a shared key from authenticated Diffie-Hellman values. We
prove that this fragment is “computationally” sound: even though
the logic represents cryptographic primitives as abstractsymbolic
terms, the existence of a symbolic proof implies security inthe
standard cryptographic model.

Our second contribution is symbolic, computationally sound cri-
teria for proving security of key exchange protocols in Shoup’s
simulatability-based framework [34] with static corruptions. Our
approach thus combines the ease of reasoning (and possible au-
tomation) provided by purely symbolic deductive techniques with
the strong security guarantees implied by simulatability.We illus-
trate our approach by constructing a proof of security for anau-
thenticated Diffie-Hellman protocol.

Our choice of Shoup’s framework is somewhat arbitrary. We
were attracted by its conceptual simplicity, which allowedus to
carry out symbolic reasoning solely on the basis of standardas-
sumptions about the underlying cryptography, namely, the Deci-
sional Diffie-Hellman assumption and security of the digital sig-

nature scheme against existential forgery. Shoup’s model does not
separate authentication from key exchange, thus avoiding the need
for hybrid ideal functionalities, nor does it require the use of any
specific cryptographic library. We believe that the techniques de-
veloped in this paper can be applied to other simulatability-based
frameworks for key exchange.

Related work. The protocol composition logic used in this paper is
due to Durgin, Dattaet al. [23, 19]. Computational soundness for a
different, complementary fragment of this logic (containing encryp-
tion, but not signatures) is established in [20]. Our techniques are
similar, but (i) we extend the logic with axioms modeling theDe-
cisional Diffie-Hellman assumption and the use of universalhash
functions for randomness extraction from joint Diffie-Hellman val-
ues, (ii) our cryptographic definitions of security are simulatability-
based, and thus substantially different from the game-based defini-
tions considered in [20].

Bridging the gap between symbolic models and the computa-
tional model used in modern cryptography has been a subject of
very active research [1, 31, 30, 32]. Our proof techniques are
inspired by the work of Micciancio and Warinschi [32]. The re-
sults of [31, 32], however, simply show the existence of a sound
symbolic abstraction for protocol traces in the presence ofCCA2-
secure encryption, and cannot be used to demonstrate simulatabil-
ity of Diffie-Hellman-based protocols.

Canettiet al. [11, 12, 16, 17, 13] and Backes, Pfitzmann, and
Waidner [33, 3, 4] proposed simulatability-based definitions of se-
curity for cryptographic primitives and protocols that arepreserved
under arbitrary or universal composition (UC). We view our work
as complementary. Instead of alternative definitions, we propose
cryptographically sound symbolic methods for proving thata pro-
tocol is simulatable in a particular ideal functionality.

Another important difference is that symbolic proofs can rely
on UC cryptographic primitives only if the primitives’ ideal func-
tionalities are purely “Dolev-Yao.” Informally, this means thatev-
ery computation using a given cryptographic primitive must have a
sound symbolic abstraction, as is the case,e.g., for the “universally
composable cryptographic library” [3]. By contrast, we follow [20]
in requiring only that everyprovablesymbolic theorem hold for
the overwhelming majority of computational instantiations. For a
class of key establishment protocols based on authenticated Diffie-
Hellman, this enables us to obtain computationally sound sym-
bolic proofswithout coming up with a general-purpose “Dolev-
Yao” functionality for Diffie-Hellman exponentiation (which is a
challenging open problem).

Limitations of our approach are as follows. We only considera
small class of protocols, in which Diffie-Hellman exponentiation is
used solely for key derivation. If our symbolic criteria cannot be
proved for a particular protocol, this does not mean that thecorre-
sponding computational criteria do not hold (unlike UC definitions,
our criteria do not provide an exact characterization). This is in-
evitable in any expressive deductive system. Finally, in our model,
the adversary is not allowed to corrupt participants in the middle
of protocol execution. Therefore, symbolically proved simulatabil-
ity is not necessarily preserved under arbitrary composition. This
is the price we pay for extending computational soundness results
to cryptographic primitives such as Diffie-Hellman with standard
(non-UC) definitions of security. In the future, we plan to investi-
gate symbolic proof methods for stronger notions of composability,
such as security in the presence of adaptive corruptions.

Canetti and Herzog proposed a symbolic criterion for universally
composable key exchange [14], while Backes and Pfitzmann [2]
proposed an alternative symbolic criterion for key secrecy. Both
papers consider classes of protocols which are substantially differ-

ent from ours, with cryptographic primitives that include encryp-
tion, but not Diffie-Hellman. We view this paper, along with [20],
as one of the first steps towards development of cryptographically
sound proof methods for criteria such as those proposed in [14, 2].

We are not aware of other computational soundness results for
protocols using Diffie-Hellman. A computational soundnessre-
sult for symbolic digital signatures appears in [18]. Although [18]
claims to rely on standard CMA security [25], the reduction in [18,
p. 21] makes a stronger assumption that the adversary cannotcom-
pute a valid signature which had not been previously produced by
an honest party. By contrast, our model for digital signatures only
assumes CMA security, and thus permits the adversary to forge
new signatures on plaintexts which had been previously signed by
a honest party.

Organization of the paper. We explain the cryptographic assump-
tions in section 2, then define the symbolic protocol model insec-
tion 3, and the computational model in section 4. In section 5,
we give the fragment of the protocol composition logic of Durgin,
Dattaet al. that we are using in this paper, and the associated infer-
ence system in section 6. Section 7 contains the main result of the
paper: automated construction of the simulator and symbolic proof
of validity, illustrated by the example in section 8. We describe
future research directions in section 9.

2. CRYPTOGRAPHIC BACKGROUND
Our cryptographic definitions are standard. We discuss themin

more detail in the full version of this paper [26].
A digital signature scheme consists of a key generation algorithm

K which produces a public/private key pair, a signing algorithmS ,
and a verification algorithmV. The signature scheme is assumed
to be secure against existential forgery under the adaptivechosen-
message attack [25]. Informally, this means that is computationally
infeasible for the adversary to produce a signature on any message
which had not been previously signed by an honest signer.

We formalize the Decisional Diffie-Hellman (DDH) assumption
as a game. LetG be a group of large prime orderq and letg ∈ G
be a generator. LetODH denote a “Diffie-Hellman oracle.” In the
learning phase, the adversary can make a polynomial number of
distinct queries of the form(i, j) (i 6= j). In response to a query, the
oracle returns the(gxi , gxj , gxi xj), wherexi , xj are chosen uniformly
at random fromZq. In thetesting phase, the adversary makes a sin-
gle query of the form(i, j) (i 6= j), where(i, j) is different from any
pair used in the learning phase. A random bitb is chosen by the ora-
cle. If b = 0, then the tuple(gxi , gxj , gxi xj) is returned, else the tuple
(gxi , gxj , gzij) is returned, wherezij is random. The DDH assump-
tion says that no efficient adversary can computeb with probability
that is greater than1

2
by more than a negligible amount.

Finally, let H be analmost universalfamily of hash functions
mapping{0, 1}n to {0, 1}l and indexed by a setI, i.e., for every
x, y ∈ {0, 1}n, x 6= y, the probability thathi(x) = hi(y) for an
elementhi ∈ H selected uniformly fromH is at most1

2l + 1
2n . Let

X ⊂ {0, 1}n, | X |≥ 2l . The leftover hash lemma [27] states that
the distribution{hi(x)} is statistically indistinguishable from the
uniform distribution for a uniformly random hash function indexi.

Definition of security for key exchange.We adopt Shoup’s model
of secure key exchange [34] due to its conceptual simplicity. It
is specific to key exchange, unlike general-purpose models,such
as universal composability [12, 16] and reactive simulatability [4],
that aim to give new definitions for cryptographic primitives and
multi-party protocols which are preserved under general composi-
tion. It also allows us to demonstrate the power of symbolic reason-
ing directly, and to avoid the difficulties inherent in coming up with

a universally composable model of Diffie-Hellman exponentiation.
Shoup’s framework is based on the standard notion of multi-

party simulatability. Here we give a concise summary of [34]. A
more detailed exposition can be found in the full version of this
paper [26]. For simplicity, we consider the case of two-party proto-
cols. First, anideal-world modelis defined, in which key exchange
is carried out with the help of a trusted third party, called the ring
masterin [34], but perhaps better referred to as theideal key ex-
change functionality. In the ideal world, the adversary may instruct
the ideal functionality to create a truly random key (“create” oper-
ation), chosen by the ideal key exchange functionality, andto se-
curely distribute the created key to both user instances (“connect”
operation). Clearly, this ideal-world key exchange is secure by def-
inition, since the key is a random value which is known to bothuser
instances but hidden from the adversary. In this paper, we limit our
attention tostaticcorruptions, and only permit the ideal-world ad-
versary to compromise user instances that are engaged in a protocol
session with a corrupt user.

In the real-world model, there is no trusted third party and keys
are established by executing the actual key exchange protocol. For
both the real-world and ideal-world adversaries, a transcript is cre-
ated, recording all observable events as they happen.

A key exchange protocol is correct in this framework if it hasthe
properties oftermination, liveness, andsimulatability. Termination
requires that any real-world user instance terminate aftera polyno-
mially bounded number of messages are delivered to it. Liveness
requires that, for every efficient real world-adversaryA, whenever
the adversary faithfully delivers all messages between thetwo user
instances, both user instances successfully terminate theprotocol
and generate a session key. Simulatability requires that, for ev-
ery real-world adversaryA, there exists an ideal-world simulatorS
such that their transcripts,RealWorld(A) and IdealWorld(S), re-
spectively, are computationally indistinguishable.

3. SYMBOLIC MODEL
Our symbolic protocol model is essentially the same as in the

protocol composition logic of Dattaet al. [19]. Therefore, we
only give the main definitions and indicate where our model differs
from [19]. Informally, protocolΠ is a set of roles, each describing
a sequence of actions to be executed by a participant in a protocol
session. A role can be thought of as astrand in the Strand Space
Model [35]. In this paper, we focus on two-party protocols.

Protocol syntax is given in fig. 1. Note that terms representing
signatures have labelsr, which are used to differentiate between
different signatures on the same plaintext. (Recall that CMA secu-
rity does not guarantee uniqueness of signatures, and permits the
adversary to forge new signatures on plaintexts previouslysigned
by honest participants). The termd(x, y) denotes Diffie-Hellman
exponentiationgx.y for some baseg (generator of some large cyclic
groupG under multiplication). Note thatd(x, y) is same asd(y, x)
since multiplication is commutative. We abuse notation andrefer to
both terms byd(x, y). We also use the same symbolν for (syntacti-
cally different) generation of new random nonces(νx) and genera-
tion of new indices(νi) for the universal family of hash functions.

To simplify the logic for the purposes of this paper, we omit
encryption. Internal terms are used in the internal computations of
protocol participants and include, in addition to normal terms, hash
functions. Participants are not allowed to send terms containing
hash functions as part of protocol messages (but they are crucial in
proving secrecy of the derived key).

Actions include special annotations(create) and (connect),
which mark, respectively, the point in the protocol where, accord-
ing to the specification, the key is first computed by an honestpar-

Agent identities
id ::= X variable name

A constant name
Indices

ix ::= i index of a hash function family
Terms

t ::= x variable term
c constant term
id agent identity
r random term
ix index
(t, t) tuple of terms (pair)
d(r) exponentgr

d(r, r) joint exponent valuegr.r

{t}lid signature ifid
Internal terms

it ::= t term
hi(.) unary hash function

Actions
a ::= ǫ the null action

(νx) generate nonce
(νi) generate index
〈t〉 send a termt
(t) receive a termt
x = x equality test
(t/t) match a term to a pattern
(create) “key created”
(connect) “key agreement reached”

List of actions, strands and roles
AList ::= ǫ | a, AList
Thread ::= 〈 id, sessionId〉
Role ::= [AList]Thread

Figure 1: Syntax of the symbolic model

ticipant and the point after which both participants are supposed to
share the computed key. These are further explained in section 7.1.

A symbolic trace of protocolΠ is a sequence of steps denot-
ing, in the order of execution, all honest participants’ actions and
send/receive actions of the attacker. Formally, this is modeled as
a symbolicexecution strand ExecStrandΠ ::= Start(Init), AList,
whereInit is some initial configuration, andAList is the sequence
of actions. Theadversarial viewof a symbolic trace is a projec-
tion which lists, in the order of execution, send and receiveactions.
For a symbolic tracets ∈ ExecStrandΠ, let Advη

(Π,A)
(ts) (or simply

Adv(ts)) denote the corresponding adversarial view.

4. COMPUTATIONAL MODEL
To link the abstract symbolic model described in section 3 tothe

full computational model, in which cryptographic primitives are
implemented as actual computational algorithms, we (i) instantiate
the abstract actions of honest protocol participants to computational
actions and the abstract symbolic terms sent by honest participants
to corresponding bitstrings, and (ii) construct symbolic abstractions
for all messages generated by the computational adversary.

We emphasize that, unlike other work on computational sound-
ness of symbolic models [32, 12, 3], we donot claim that every
computational trace has a sound symbolic abstraction (thisis diffi-
cult to achieve in the presence of malleable Diffie-Hellman expo-
nentiation). Our computational soundness is a weaker condition:
any property thatcan be provedin the symbolic model using the
logic of section 5 is guaranteed to hold in the computationalmodel.

This is the same general approach as in [20], but the properties
considered in this paper are substantially different. Weakening the
soundness requirement allows us to handle key exchange protocols
based on Diffie-Hellman.

As in [32, 20], we fix the protocolΠ, adversaryA, security pa-
rameterη, and some randomnessRof size polynomially bounded in
η, which is divided into the randomness used by honest participants
and that used by the adversary. The symbolic protocol execution is
converted into a concrete execution by mapping every abstract sym-
bol into the corresponding bitstring and instantiating every abstract
action of the honest participants with the corresponding computa-
tional action.

Details of this mapping are given in the full version of this pa-
per [26]. For example, symbolic termsr denoting random values
are mapped into the bitstrings drawn from the appropriate part of
randomnessR. Diffie-Hellman symbolic termsd(x), d(x, y) are
mapped into elementsgx, gx.y ∈ G whereG belongs to a family of
large cyclic groups (indexed by the security parameterη) of prime
orderq whose generator isg, and so on. Symbolic actions are in-
stantiated similarly,e.g., (νx) is instantiated in the concrete model
as generation of a random nonce using randomnessR.

The only difficult part is defining a symbolic abstraction formes-
sages sent by the adversary. As in [32], this is done by parsing them
and replacing every bitstring which is neither an instantiation of a
symbolic constant, nor generated by an honest participant with a
new symbol, denoting an adversarial nonce. We handle terms of
the formgx as follows. Whenever an honest participant receives a
value representinggx for somex which is known to the recipient,
we abstract the corresponding term asd(x) (because the recipient
can computegx and check if it matches the received value). Ifx is
not known, we create a new symbolic termd(x′) wherex′ is a new
symbolic name.

Informally, the resulting symbolic abstraction of Diffie-Hellman
terms isnot “Dolev-Yao.” Because Diffie-Hellman exponents are
malleable, the adversary can convert somegy sent by an honest
participant intogy′ , and this computation does not have a symbolic
equivalent. Note, however, that our theorem 1 guarantees compu-
tational soundness only for properties that areprovablein the sym-
bolic logic. As we demonstrate below, a symbolic proof for agree-
ment in a Diffie-Hellman-based key exchange protocol only goes
through if the protocol ensures non-malleability (e.g., all Diffie-
Hellman terms are signed), and forthis class of protocols the sym-
bolic abstraction is sound.

A computational tracetΠ,A(η,R) (for some fixed protocolΠ, ad-
versaryA, security parameterη and randomnessR) is defined as a
tuple(ts, f ,R), wherets ∈ ExecStrandΠ is the corresponding sym-
bolic trace,f is the function fromVar(ts) ∪ Const(whereVar(ts)
denotes the set of variables occurring ints andConstis the set of
symbolic constants) to bitstrings (of size polynomially bounded in
η). We denote byCExecStrandΠ the set of all computational (con-
crete) traces of the protocolΠ.

Given a concrete tracet, we denote byR(t) = (RA,RΠ) the
randomness used int. We say that a concrete tracetc is an imple-
mentation ofts (or inversely,ts is an abstraction oftc), denoted by
tc = Exec

η

(Π,A)(ts), iff tc = (ts, f ,R(tc)). The adversarial view of a
computational tracetc, denoted asAdvη(Π,A))(tc) (simply Adv(tc)),
is given byExecη

(Π,A)
(Adv(ts)) wheretc = (ts, f ,R(tc)).

5. PROTOCOL LOGIC
The syntax of the logic is given in fig. 2, whereρ denotes a role

(see fig. 1), whilet andP denote a term and a thread, respectively.
The only substantial addition to [19] is theIndistRand predicate.

a ::= Send(P, m) | Receive(P, m)
| New(P, t) | Verify(P,t)

ϕ ::= a | Has(P,t) | Fresh(P, t)
| Honest(P) | Contains(t1, t2)
| IndistRand(it) | ϕ ∧ ϕ | ¬ϕ | ∃ x.ϕ
| Start(P) | −3ϕ | ©©−©ϕ

ψ ::= ϕρϕ

Figure 2: Syntax of the protocol logic

In the rest of this paper, we useϕ andψ to indicate predicate
formulas andm to denote a generic term called a “message.” A
messagem is a 4-tuple (source, destination, session id, content).
Since we model the network as controlled by the adversary, the
source and destination fields may not denote the real identities of
the principals and may be altered by the adversary at will.

Action formulas refer to honest participants’ actions. Forexam-
ple, Send(P,m), Receive(P, m), New(P, t), Verify(P, t) mean
that the last action taken in the protocol execution was, respec-
tively, sending, receiving, generating a new value and verifying a
signature by the agentP on messagem. FormulaHas(P, t) means
that threadP knows termt, while Fresh(P, t) means that term
t is freshly generated in threadP and has not been sent out in
an outgoing message.Honest(P) means that partyP is honest at
the start of the protocol and remains honest throughout the execu-
tion of the protocol (we only consider static corruptions).Formula
Contains(t1 , t2) means that the termt2 is contained in the term
t1. Formulas−3ϕ and©©−©ϕ are temporal formulas which say, re-
spectively, thatϕ was true sometime or immediately before in the
past. Start(P) simply says that theP has not performed any ac-
tions in the past. Finally, the modal formulaθ[R]Xϕ is in the style
of Floyd-Hoare logic and states that in a threadX after actionsR
are executed, starting from a state in which the formulaθ was true,
formulaϕ is true in the resulting state.

For the purposes of this paper, the definition of the subterm rela-
tion ⊆ defined on terms coincides with the definition ofclosure,
i.e., t1 ⊆ t2 iff t1 ∈ closure(t2), where the closure of termt is
defined as the least set of terms derivable using the following rules:

t ∈ closure(t)
t ∈ closure((t, s)), s ∈ closure((t, s))
t ∈ closure({t}lX), d(x, y) ∈ closure(d(y, x))
r ∈ closure(s) ∧ s ∈ closure(t) ⇒ r ∈ closure(t)

Symbolic semantics. Symbolic semantics is the same as previ-
ously published in [19]. We repeat it in the full version of this
paper [26]. Formulaϕ is true in a symbolic traceR∈ ExecStrandΠ
of the protocolΠ, denoted asΠ,R |= ϕ or R(Π) |= ϕ, if ϕ holds
true at the end of the traceR. TraceR may be a complete or an
incomplete trace in which some of the parties have not completed
the protocol. For a given protocolΠ, let init(Π) denote the set of
all possible initial configurations. ThenΠ satisfiesϕ, denoted by
Π |= ϕ, if R |= ϕ, ∀R∈ ExecStrandΠ.

Computational semantics. We now define what it means for a
formulaϕ to hold over the set of concrete computational tracesT
of protocolΠ. Our definitions follow closely those of [32, 20]. For
all formulasnot involving IndistRand, we define semantics on a
single concrete trace. We say that a concrete execution trace t of
a protocolΠ satisfies a formulaϕ if ∃ ts ∈ ExecStrandΠ such that
t = Exec

η

(Π,A)(ts) andts satisfiesϕ, i.e., ϕ is true (in the symbolic
semantics) on the symbolic abstraction of the concrete trace.

The semantics of a formulaϕ over asetof computational traces
T is defined as the subsetT′ ⊆ T whose elements satisfy the
formulaϕ. We say that a formulaϕ holds for protocolΠ in the

computational model, denoted byΠ |=c ϕ, if the semantics of the
formulaϕ is an overwhelming subset of all possible traces of the
protocolΠ. More precisely, given a formulaϕ and a protocolΠ,
we associate withϕ the set[ϕ]ηΠ ⊆ CExecStrandΠ of traces in
which the formulaϕ is satisfied. Now,Π |=c ϕ, if, by definition,
| [ϕ]ηΠ | / | CExecStrandΠ |≥ 1−ν(η), whereν is some negligible
function in the security parameterη.

Computational semantics for theIndistRand predicate is quite
subtle because it cannot be defined for a single concrete trace. It can
only be defined overfamiliesof traces (a similar issue arises when
modeling real-or-random indistinguishability of values under en-
cryption [20]). Before we can define the computational semantics
of IndistRand, we define a mappingRand : it → it. Intuitively,
Rand maps an internal termu to a “random” termRand(u) that has
the same structure.

DEFINITION 1. LetRand(u) denote a random term of the same
structure as the (internal) termu. We defineRand(u) by induc-
tion over the term structure as follows (assuming that the renamed
variables are unique up toα-renaming):
- Nonce:Rand(r) = r′

- Pairing: Rand((u1, u2)) = (Rand(u1), Rand(u2))
- Signature:Rand({u}lid) = {Rand(u)}lid
- Exponential:Rand(d(r)) = d(r′)
- Diffie-Hellman value:Rand(d(r1, r2)) = d(r′)
- Hash function:Rand(hi(u)) = r

- Default: Rand(u) = u

We now define the computational semantics of theIndistRand

predicate. For a protocolΠ, let ts ∈ ExecStrandΠ denote the
symbolic trace according to the protocol specification and let tv =
Adv(ts) be the corresponding adversarial view (recall that the adver-
sarial view contains only observable actions). Lettv[t → u] denote
a view in which every occurence of the (internal) termt is replaced
by u. For a symbolic viewtv and randomnessR, let conc(tv) denote
the corresponding computational view,i.e., conc(tv) = (tv, f ,R),
wheref is the concretization function defined in section 4.

We say that protocolΠ satisfiesIndistRand(u) in the concrete
model, denoted byΠ |=c IndistRand(u), if two families (over
randomnessR) T,T′ are computationally indistinguishable, where

• T = {conc(tv), f (u)}R

• T′ = {conc(tv[∀ t.t ⊆ u : t → Rand(t)]), f (Rand(u))}R

For technical reasons,IndistRand needs to be defined over a
family of computational traces. Instead, we defineIndistRand

over a family of computationalviews(recall that a view is a pro-
jection of a trace on observable actions), and say thatIndistRand

holds for a family of computational tracesiff it holds over the cor-
responding family of computational views.

Let us now examine the definition. Intuitively, it says that the set
of concrete instantiations of the symbolic viewtv is computation-
ally indistinguishable from the set of computational instantiations
of the symbolic viewt′v in which every subterm ofu has been re-
placed by the corresponding random term. Note that in the proof
system of section 6,IndistRand(u) appears only when the termu
is the established key, or the joint Diffie-Hellman value from which
the key is derived.

We emphasize that, when satisfied, this definition of indistin-
guishability guarantees thatany (pptime-computable) usage of the
established key is secure in the sense of simulatability (see sec-
tion 2). In the proof of theorem 2, we use it to show that the ad-
versary cannot distinguish between the transcript of the real-world

AA1 ϕ[a]X−3a

AA2 Fresh(X, t)[a]X−3(a ∧©©−©Fresh(X, t))
AN2 ϕ[νn]XHas(Y, n) ⇒ (Y = X)
AN3 ϕ[νn]XFresh(X, n)
ARP −3Receive(X, p(x))[(q(x)/q(t))]X

−3Receive(X, p(t))
ORIG −3New(X, n) ⇒ Has(X, n)
REC −3Receive(X, n) ⇒ Has(X, n)
TUP Has(X, x) ∧ Has(X, y) ⇒ Has(X, (x, y))
PROJ Has(X, (x, y)) ⇒ Has(X, x) ∧ Has(X, y)
VER Honest(X) ∧ Verify(Y, {t}lX)

∧X 6= Y ⇒ ∃X.∃ m. ∃ l′(−3Send(X, m)
∧Contains(m, {t}l

′

X))
N1 −3New(X, n) ∧ −3New(Y,n) ⇒ (X = Y)
N2 After(New(X, n1), New(X, n2)) ⇒

(n1 6= n2)
F1 −3Fresh(X, t) ∧ −3Fresh(Y, t) ⇒

(X = Y)
CON1 Contains((x, y), x) ∧ Contains((x, y), y)
CON2 Contains({t}l

sk(i), t)

After(a, b) ≡ −3(b ∧©©−©−3a)
ActionsInOrder(a1 , . . . , an) ≡ After(a1, a2)

∧ . . . ∧ After(an−1, an)

Figure 3: Basic axioms and axioms for protocol actions

P1 Persist(X, t)[a]XPersist(X, t)
P2 Fresh(X, t)[a]XFresh(X, t),

wheret * a or a 6= 〈m〉
P3 HasAlone(X, n)[a]XHasAlone(X, n),

wheren*v a or a 6= 〈m〉
F θ[〈m〉]X¬Fresh(X, t),

where(t ⊆ 〈m〉)
F2 Fresh(X, s) ⇒ Fresh(X, t),

wheres⊆ t

Persist ∈ {Has,−3ϕ},
HasAlone(X, t) ≡ Has(X, t) ∧ (Has(Y,t) ⇒ (X = Y))

Figure 4: Preservation and freshness loss axioms

protocol, and the (simulated) ideal-world transcript in which all op-
erations involving the key have been performed using a true random
value instead. Even if one of the honest participants outputs the key
in the clear after it has been established (note that the key is explic-
itly appended to the adversary’s view of the protocol in our defi-
nition), the adversary has only a negligible probability ofcorrectly
telling the difference between the real world, where this leaked key
is a pseudo-random number extracted from the joint Diffie-Hellman
value, and the ideal world, where the leaked key had been generated
as a true random number.

6. SYMBOLIC PROOF SYSTEM
Our proof system is based on the proof system in the original

protocol logic of Dattaet al. [23, 19, 20], but we omit the axioms
for encryption and extend the logic with several new axioms:VER
(signature verification axiom),DDH1 andDDH2 (Diffie-Hellman
axioms), andLHL (leftover hash lemma, for reasoning about hash
functions). We prove that the new axioms are computationally
sound under standard cryptographic assumptions.

Our symbolic inference system is given in figs. 3-7. SayΠ ⊢ ϕ
if ϕ is provable using this system.

T1 −3(ϕ ∧ ψ) ⇒ −3ϕ ∧ −3ψ
T2 −3(ϕ ∨ ψ) ⇒ −3ϕ ∨ −3ψ
T3 ©©−©¬ϕ ⇒ ¬©©−©ϕ
AF0 Start(X)[]X¬−3a(X, t)
AF1 θ[a1 . . . an]XAfter(a1, a2)

∧ . . . ∧ After(an−1 , an)
AF2 (−3(b1(X, t1) ∧©©−©Fresh(X, t))

∧−3b2(Y, t2)) ⇒ After(b1(X, t1), (b2(Y,t2)),
wheret ⊆ t2 andX 6= Y

Figure 5: PLTL axioms and temporal ordering of actions

DDH1 Fresh(Y, y) ∧ NotSent(Y,d(x, y)) ∧ Honest(Y)
∧(∃X. (X 6= Y) ∧ Honest(X) ∧ Fresh(x,X))∧
NotSent(X, d(x, y)) ⇒ IndistRand(d(x, y))

DDH2 IndistRand(d(x, y))[a]XIndistRand(d(x, y)),
where ifa = 〈t〉 thend(x, y), x, y 6∈ closure(t)

LHL IndistRand(d(x, y)) ∧ ∃X.Honest(X) ∧ −3[ν i]X ⇒
IndistRand(hi(d(x, y)))

NotSent(X, t) ≡ ∀ a.(−3a ∧ a = 〈m〉) ⇒ t 6∈ closure(m)

Figure 6: Diffie-Hellman and hash function axioms

Note. Existential quantification overX on the right-hand side of
implication in theVER axiom simply means that there exists an
instance of the protocol roleX.

THEOREM 1 (COMPUTATIONAL SOUNDNESS). Let Π be an
executable protocol andϕ a formula. If the protocol is implemented
with a digital signature scheme which is secure against existential
forgery under the adaptive chosen message attack and assuming
the Decisional Diffie-Hellman assumption holds, thenA

Π ⊢ ϕ⇒ Π |=c ϕ

The proof follows from computational soundness of all axioms
and inference rules of the logic, which is proved in the full version
of this paper [26].

7. PROVING SIMULATABILITY
We now show how to automatically construct the simulator for

Shoup’s framework for key exchange [34], and prove its validity
using the purely symbolic logic described in sections 5 and 6. Since
our main goal is establishingsecurityof key exchange, we focus
only on the simulatability requirement, and omit termination and
liveness for the purposes of this paper.

We emphasize that the simulator and thecomputationalproof
of its validity are essentially the same as in Shoup’s original pa-
per [34]. The proofs in [34], however, are hand-crafted and based
on informal reasoning that “follows easily from the logic ofthe
protocol” (see,e.g., [34, p. 25]). Our contribution is to take a rig-
orously defined, computationally sound protocol logic and show
that a simplesymbolicproof in this logic implies the computational
proof of [34], thus opening the road to automated formal proofs of
security for key exchange protocols.

7.1 Construction of the simulator
The complete algorithm for constructing the simulator in given

in the full version of this paper [26], and summarized here. As
in [34], the ideal-world simulator runs the real-world adversaryA
as a subroutine, simulating execution of real-world honestpartici-
pants to him. The simulator computes the appropriate connection
assignments (i.e., it figures out which ideal-world user instances to

G1 if Π |= θ[P]Xϕ andΠ |= θ[P]Xψ
thenΠ |= θ[P]Xϕ ∧ ψ

G2 if Π |= θ[P]Xϕ andθ′ ⇒ θ andϕ ⇒ ϕ′

thenΠ |= θ′[P]Xϕ
′

G3 if Π |= ϕ thenΠ |= θ[P]Xϕ
TGEN if Π |= ϕ thenΠ |= ¬−3¬ϕ
HON if Π |= Start[]Xϕ and∀P ∈ S(Π),Π |= ϕ[P]Xϕ

thenΠ |= Alive(X) ∧ Honest(X) ⇒ ϕ

whereS(Π) denotes all possible starting
configurations ofΠ andAlive(X) means that
the threadX has not completed the protocol yet.

Figure 7: Rules for the proof system

connect based on which user instances are talking to each other in
the real world), except that in the ideal world the ideal functional-
ity substitutes computed real-world keys with random ideal-world
keys. WheneverS compromises an ideal-world user instance, it
does so by supplying the session key extracted from the real-world
user instance thatS is simulating to the real-world adversaryA.
Any record placed in the real-world transcript by the real-world ad-
versary is copied byS to the ideal-world transcript. Finally, any
application operation, which in Shoup’s framework models
arbitrary higher-level protocols or applications making use of the
exchanged key, is evaluated in the real world using the computed
real-world key, and in the ideal world using the random ideal-world
key.

7.2 Validity of the simulator
To prove that the simulatorS is valid, it is necessary to establish

that the connection assignments made byS are legal and that the
substitutions of real-world keys with random ideal-world keys are
not detectable. We demonstrate that twosymbolicconditions – one
modeling agreement between the participants, the other modeling
key secrecy – are sufficient for thecomputationalvalidity of the
simulator.

Agreement in the symbolic model.Following [7], our definition
is based on matching records of runs, which is slightly weaker than
usual. The signature received by one party may be different from
that sent by the other party, as long as it’s on the same plaintext.
For a symbolic traceR of a two-party protocolΠ, a record ofR
by an honest partyAi (i ∈ [1, 2]) consists of a sequence of actions
performed byAi duringR.

DEFINITION 2. Messagesm1, m2 containing termst1, t2, re-
spectively arematchingin the two records ifm1 is incoming for one
record, m2 is outgoing for the other record,i.e., thesourcefield of
one matches thedestinationfield of other, and the termst1 andt2
in the two records, matchup-to-randomnessin the following sense:
- If t1 andt2 do not contain a subterm which is a signature, then
they match exactly.
- If t1 = {s}lAi

, thent1 matches any termt2 which is a signature
of the same term under the same private key (maybe with a different
label), i.e., t2 = {s}l

′

Ai
for some l′.

- All subterms oft1 match up-to-randomness with the correspond-
ing subterms oft2.

We say that two recordsmatch if their messages can be parti-
tioned into sets of matching messages with one message from each
record in each set, such that messages originated by either partici-
pant appear in the same order in both records.

Key secrecy in the symbolic model.To model key secrecy, we

say that the key should be indistinguishable from a random num-
ber, i.e., we require thatIndistRand(t) hold, wheret is the sym-
bolic term representing the key derived by the participants. More
formally, letRealandIdealdenote the real- and ideal- world views,
recording the interaction of the adversary with the honest partici-
pants and the simulator, respectively. In the ideal-world view, all
occurences of the established key are replaced by a random num-
ber. LetRealKeyandIdealKeydenote the key in the real and ideal
world, respectively. The adversary is given either (Ideal,IdealKey)
or (Real,RealKey) depending on the value of a secret bitb (0 or
1). The adversary wins the game if he can correctly guessb with a
probability non-negligibly greater than1

2
.

The main step of the proof of theorem 2 below involves showing
that a distinguisher between the real-world and ideal-world tran-
scripts in Shoup’s framework can be used to win the above game.

THEOREM 2. Let Π be a protocol. If there exists a symbolic
proof of agreement according to definition 2 and a symbolic proof
of theIndistRand(t) formula wheret is the symbolic term rep-
resenting the key, then the simulator constructed by the algorithm
of section 7.1 is valid for an overwhelming subset of all possible
executions ofΠ.

The validity argument rests on the following two conditions: (1)
if two user instances share a key in the ideal world, then the corre-
sponding real-world user instances must agree upon the samevalue
for the key, (2) the keys generated in the ideal world and the real
world are computationally indistinguishable. We shall refer to the
first condition askey agreementand to the second condition asin-
distinguishability.

SupposeΠ violates key agreement. By assumption, there exists
a symbolic proof of agreement forΠ in the logic. From the compu-
tational soundness of the logic (theorem 1), a proof of agreement
in the symbolic model implies a proof of agreement in the concrete
model. Hence, a contradiction.

We now consider the case whenΠ violates indistinguishability.
We separate two cases: (1) both parties are honest, (2) one ofthe
parties is (statically) corrupt. If both parties are honest, then the
ideal-world key is a random value, and indistinguishability of the
real-world key from a random value follows from the computa-
tional soundness of the proof ofIndistRand(t).

Now suppose one of the participants is corrupt. According tothe
construction of the simulator, the simulatorS in this case simulates
the other (honest) real-world participant to the real-world adver-
sary. The simulator faithfully executes all actions of the honest
participant according to the protocol specification and then extracts
the generated key from this participant. He then uses the extracted
key to “compromise” the ideal-world user instance corresponding
to the honest real-world participant (intuitively, this isvalid because
in the real-world protocol, an honest participant who is talking to
a corrupt participant will end up generating key which is known to
the adversary). Thus, the key generated in the ideal world isexactly
the same as in the real world. Hence, a contradiction.

To establish simulator validity, it remains to show that no adver-
sary can tell the difference between the real-world transcript and
the simulated ideal-world transcript except with a negligible prob-
ability. In addition to observable protocol actions, a transcript may
contain records added via anapplication operation, which in
Shoup’s framework models any usage of the established key.

Suppose thatIndistRand(t) holds, but there exists a distin-
guisherB between the real- and ideal-world transcripts. We ob-
tain a contradiction by constructing another distinguisher A, which
wins theIndistRand game (see section 5) with a non-negligible
probability. Recall that in this game,A receives a pair consisting

Init ::= {(A1 A2)[(νx).〈A1,A2, d(x), {d(x),A2}
l
′

1

A1
〉.

(A2,A1, d(x), y′, k, z).(z/{d(x), y′, k,A1}
l2

A2
)

(connect)]A1
}

Resp ::= {(A1 A2)[(νy).(νk).(A1,A2, x′, z).
(z/{x′,A2}

l1

A1
)(create).

〈A2,A1, x′, d(y), k, {x′, d(y), k,A1}
l
′

2

A2
〉]A2

}
wherek is a hash function index;
the derived key ishk(gxy) for hash function
h indexed byk.

Figure 8: Symbolic specification of the DHKE protocol.

of a view and a key, and must determine whether they come from a
real-world or ideal-world protocol.

Since the view contains all observable actions, and the real- and
ideal-world views are indistinguishable (becauseIndistRand(t)
holds), the only additional information in the transcript which al-
lows B to distinguish between the real and ideal worlds must be
the presence of some application operation. Anapplication
operation is a polynomially computable function of the key.There-
fore, all application operations can be efficiently computed by A,
enabling it to useB as a resource to win theIndistRand game.
A runs a copy ofB internally, applies the functions used in the
application operations to the key he received as a challenge
in theIndistRand game, creates a transcript, gives toB, and uses
B’s answer as his own answer in theIndistRand game.A’s prob-
ability of winning the game is the same asB’s probability of distin-
guishing real- and ideal-world transcripts. Hence, a contradiction.

8. EXAMPLE: DHKE PROTOCOL
We illustrate our method by proving security of the two-moveau-

thenticated Diffie-Hellman protocol (DHKE). The symbolic speci-
fication of the protocol appears in fig. 8.

Let A1 denote the initiator of the protocol andA2 the respon-
der. Assume that the certificates for public signature verification
keys are known and not sent as part of the protocol. Recall that
create andconnect are special markers denoting, respectively,
the points in the protocol execution where the key is first derived
by one (respectively, both) participants.

We prove agreement for the initiator role of the protocol. The
proof for the responder is similar. The property is stated aspre
[actions] post, wherepre is the precondition before the actions in
theactionslist are executed andpostis the postcondition.

pre ::= Fresh(A1, x)
actions ::= [Init]A1

post ::= Honest(A2) ⇒ ∃A2.ActionsInOrder(
Send(A1, {A1,A2, d(x), {d(x),A2}

l1

A1
})

Receive(A2, {A1,A2, x′,

{x′,A2}
l
′

1

A1
)})

Send(A2, {A2,A1, x′, d(y), k,
{x′, d(y), k,A1}

l2

A2
})

Receive(A1, {A2,A1, d(x), y′, k,

{d(x), y′, k,A1}
l
′

2

A2
})),

wherex′ = d(x) andy′ = d(y).

The actions in the formula are the actions of theInit role of the
DHKE protocol. The precondition specifies thatx is freshly gen-
erated byA1 before sending or receiving any messages. The post-
condition captures the notion of agreement for the initiator role of
the protocol (according to definition 2). The symbolic proofof this
property is given in appendix A.

In fig. 9, we give a symbolic proof of key secrecy (in the sense
of real-or-random indistinguishability) for the initiator role of the
protocol under the assumption that both parties are honest.The key
secrecy property is specified as:

pre ::= Honest(A1) ∧ Fresh(A1, x)
actions ::= [Init]A1

post ::= ∃A2.Honest(A2) ∧ −3[νk]A2
⇒

IndistRand(hk(d(x, y)))
wherehk is some hash function and
r denotes a random term

Here the postcondition specifies that, ifA2 is honest, too, then the
value of the derived key is indistinguishable from a random value.
According to theorem 2, these two conditions are sufficient for the
existence of a valid simulator for the DHKE protocol in Shoup’s
model [34].

P2 Fresh(A1, x)[Init]A1
Fresh(A1, x) (1)

Agreement Fresh(A1, x)[Init]A1
Honest(A2) ⇒

∃A2.ActionsInOrder(
Send(A1, {A1,A2, d(x),

{d(x),A2}
l1

A1
})

Receive(A2, {A1,A2, d(x),

{d(x),A2}
l
′

1

A1
})

Send(A2, {A2,A1, d(x), d(y), k,

{d(x), d(y), k,A1}
l
′

2

A2
})

Receive(A1, {A2,A1, d(x), d(y), k,
{d(x), d(y), k,A1}

l2

A2
})) (2)

HON Honest(A2) ∧ Send(A2, {A2,A1, d(x), y′, k,

{d(x), y′, k,A1}
l
′

2

A2
}) ⇒

∃ y.(y′ = d(y) ∧ Fresh(A2, y′)) (3)
(2-3) Fresh(A1, x)[Init]A1

Honest(A2) ⇒
∃A2.∃ y.(y′ = d(y) ∧ Fresh(A2, y)) (4)

NotSent Fresh(A1, x)[Init]A1
NotSent(A1 , d(x, y)) (5)

NotSent, (2) Fresh(A1, x)[Init]A1
Honest(A2) ⇒

∃A2.(NotSent(A2 , d(x, y))) (6)
(1),(4-6) Honest(A1) ∧ Fresh(A1, x)[Init A1

]
Honest(A1) ∧ Fresh(A1, x)
∧NotSent(A1, d(x, y)) ∧ (Honest(A2) ⇒

∃A2.∃ y.Fresh(A2, y)
∧NotSent(A2, d(x, y))) (7)

DDH1-2,(7) Honest(A1) ∧ Fresh(A1, x)[Init A1
]

∃A2.Honest(A2) ⇒ IndistRand(d(x, y)) (8)
LHL ,(8) Honest(A1) ∧ Fresh(A1, x)[Init A1

]
∃A2.Honest(A2) ∧ −3[ν i]X ⇒
IndistRand(hi(d(x, y))) (9)

Figure 9: Proof of key secrecy for DHKE protocol

9. FUTURE DIRECTIONS
This paper is but a first step towards development of computa-

tionally sound symbolic methods for proving correctness ofkey
exchange protocol. The next step is to find symbolic criteria(and
appropriate deductive systems for proving them) that wouldper-
mit symbolic proofs of simulator validity for key exchange with
adaptive corruptions [34] and weaker forms of universally compos-
able key exchange. In the full version [26], we show that sym-
bolic proofs in our model imply simulatability in the relaxed key
exchange functionality of Canetti and Krawczyk [16].

Another challenge is to extend the method proposed in this paper
to key exchange protocols that use encryption in addition tosigna-

tures. This would require establishing computational soundness for
a fragment of the symbolic protocol logic that includes encryption.
Logical characterization of real-or-random indistinguishability of
values under encryption is a nontrivial task, although progress has
been recently made by Dattaet al. [20].

10. ACKNOWLEDGMENTS
We are very grateful to the anonymous reviewers of the 3rd ACM

Workshop on Formal Methods in Security Engineering for their in-
sightful comments, corrections, and suggestions that havegreatly
improved this paper.

11. REFERENCES
[1] M. Abadi and P. Rogaway. Reconciling two views of

cryptography (the computational soundness of formal
encryption).J. Cryptology, 15(2):103–127, 2002.

[2] M. Backes and B. Pfitzmann. Relating symbolic and
cryptographic secrecy. InProc. IEEE Symposium on Security
and Privacy, pages 171–182. IEEE, 2005.

[3] M. Backes, B. Pfitzmann, and M. Waidner. A composable
cryptographic library with nested operations. InProc. 10th
ACM Conference on Computer and Communications
Security (CCS), pages 220–230. ACM, 2003.

[4] M. Backes, B. Pfitzmann, and M. Waidner. A general
composition theorem for secure reactive systems. InProc.
1st Theory of Cryptography Conference (TCC), volume 3378
of LNCS, pages 336–354. Springer-Verlag, 2004.

[5] D. Beaver. Secure multiparty protocols and zero-knowledge
proof systems tolerating a faulty minority.J. Cryptology,
4(2):75–122, 1991.

[6] M. Bellare, R. Canetti, and H. Krawczyk. A modular
approach to the design and analysis of authentication and key
exchange protocols. InProc. 30th Annual ACM Symposium
on Theory of Computing (STOC), pages 419–428. ACM,
1998.

[7] M. Bellare and P. Rogaway. Entity authentication and key
distribution. InProc. Advances in Cryptology – CRYPTO
1993, volume 773, pages 232–249. Springer-Verlag, 1993.

[8] R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutton,
R. Molva, and M. Yung. Systematic design of two-party
authentication protocols. InProc. Advances in Cryptology –
CRYPTO 1991, volume 576 ofLNCS, pages 44–61.
Springer-Verlag, 1991.

[9] S. Blake-Wilson, D. Johnson, and A. Menezes. Key
agreement protocols and their security analysis. InProc. 6th
IMA International Conference on Cryptography and Coding,
pages 30–45, 1997.

[10] R. Canetti.Studies in secure multiparty computation and
applications. PhD thesis, The Weizmann Institute of Science,
1995.

[11] R. Canetti. Security and composition of multiparty
cryptographic protocols.J. Cryptology, 13(1):143–202,
2000.

[12] R. Canetti. Universally composable security: a new
paradigm for cryptographic protocols. InProc. 42nd Annual
Symposium on Foundations of Computer Science (FOCS),
pages 136–145. IEEE, 2001. Full version at
http://eprint.iacr.org/2000/067.

[13] R. Canetti. Universally composable signature, certification,
and authentication. InProc. 17th IEEE Computer Security
Foundations Workshop (CSFW), pages 219–233. IEEE,

2004. Full version at
http://eprint.iacr.org/2003/329.

[14] R. Canetti and J. Herzog. Universally composable symbolic
analysis of cryptographic protocols (the case of
encryption-based mutual authentication and key exchange).
http://eprint.iacr.org/2004/334, 2005.

[15] R. Canetti and H. Krawczyk. Analysis of key-exchange
protocols and their use for building secure channels. InProc.
Advances in Cryptology - EUROCRYPT 2001, volume 2045
of LNCS, pages 453–474. Springer-Verlag, 2001.

[16] R. Canetti and H. Krawczyk. Universally composable
notions of key exchange and secure channels. InProc.
Advances in Cryptology - EUROCRYPT 2002, volume 2332
of LNCS, pages 337–351. Springer-Verlag, 2002. Full
version athttp://eprint.iacr.org/2002/059.

[17] R. Canetti and T. Rabin. Universal composition with joint
state. InProc. Advances in Cryptology – CRYPTO 2003,
volume 2729 ofLNCS, pages 265–281. Springer-Verlag,
2003.

[18] V. Cortier and B. Warinschi. Computationally sound,
automated proofs for security protocols. InProc. 14th
European Symposium on Programming (ESOP), volume
3444 ofLNCS, pages 157–171. Springer-Verlag, 2005.

[19] A. Datta, A. Derek, J.C. Mitchell, and D. Pavlovic. A
derivation system for security protocols and its logical
formalization. InProc. 16th IEEE Computer Security
Foundations Workshop (CSFW), pages 109–125. IEEE,
2003.

[20] A. Datta, A. Derek, J.C. Mitchell, V. Shmatikov, and
M. Turuani. Probabilistic polynomial-time semantics for a
protocol security logic. InProc. 32nd International
Colloquium on Automata, Languages and Programming
(ICALP) - to appear, 2005.

[21] T. Dierks and C. Allen. The TLS protocol Version 1.0.
Internet RFC:
http://www.ietf.org/rfc/rfc2246.txt,
January 1999.

[22] W. Diffie, P. van Oorschot, and M. Wiener. Authentication
and authenticated key exchange.Designs, Code, and
Cryptography, 2(2):107–125, 1992.

[23] N. Durgin, J.C. Mitchell, and D. Pavlovic. A compositional
logic for proving security properties of protocols.J.
Computer Security, 11(4):677–722, 2003.

[24] O. Goldreich.Foundations of Cryptography: Volume II
(Basic Applications). Cambridge University Press, 2004.

[25] S. Goldwasser, S. Micali, and R. Rivest. A digital signature
scheme secure against adaptive chosen-message attack.
SIAM J. Computing, 17(2):281–308, 1988.

[26] P. Gupta and V. Shmatikov. Towards computationally sound
symbolic analysis of key exchange protocols.
http://eprint.iacr.org/2005/171, 2005.

[27] R. Impagliazzo and D. Zuckerman. How to recycle random
bits. InProc. 30th Annual Symposium on Foundations of
Computer Science (FOCS), pages 248–253. IEEE, 1989.

[28] C. Kaufman (ed.). Internet key exchange (IKEv2) protocol.
Internet draft:
http://www.ietf.org/internet-drafts/
draft-ietf-ipsec-ikev2-17.txt, September
2004.

[29] J. Kohl and C. Neuman. The Kerberos network
authentication service (V5). Internet RFC:
http://www.ietf.org/rfc/rfc1510.txt,
September 1993.

[30] P. Laud. Symmetric encryption in automatic analyses for
confidentiality against active adversaries. InProc. IEEE
Symposium on Security and Privacy, pages 71–85. IEEE,
2004.

[31] D. Micciancio and B. Warinschi. Completeness theoremsfor
the Abadi-Rogaway language of encrypted expressions.J.
Computer Security, 12(1):99–130, 2004.

[32] D. Micciancio and B. Warinschi. Soundness of formal
encryption in the presence of active adversaries. InProc. 1st
Theory of Cryptography Conference (TCC), volume 3378 of
LNCS, pages 133–151. Springer-Verlag, 2004.

[33] B. Pfitzmann and M. Waidner. A model for asynchronous
reactive systems and its application to secure message
transmission. InProc. IEEE Symposium on Security and
Privacy, pages 184–200. IEEE, 2001.

[34] V. Shoup. On formal models for secure key exchange
(version 4).http://shoup.net/papers/skey.pdf,
November 1999.

[35] F. Thayer, J. Herzog, and J. Guttman. Strand spaces: proving
security protocols correct.J. Computer Security, 7(1), 1999.

APPENDIX

A. PROOF OF AGREEMENT FOR DHKE
PROTOCOL

Fig. 10 contains the symbolic proof of agreement for the DHKE
protocol.

AA2,P1 Fresh(A1, x)[Init]A1

−3(Send(A1, {A1,A2, d(x), {d(x),A2}
l1

A1
}) ∧©©−©Fresh(A1, x)) (1)

AA1,P1 Fresh(A1, x)[Init]A1

Verify(A1, {d(x), y′, k,A1}
l2

A2
(2)

AF1,ARP Fresh(A1, x)[Init]A1

ActionsInOrder(
Send(A1, {A1,A2, d(x), {d(x),A2}

l1

A1
})

Receive(A1, {A2,A1, d(x), y′, k, {d(x), y′, k,A1}
l2

A2
})) (3)

(3),F1,P1,G2 Fresh(A1, x)[Init]A1
¬−3Fresh(A2, x′) (4)

VER Honest(A2) ∧ −3Verify(A1, {d(x), y′, k,A1}
l2

A2
) ⇒

∃A2.∃m.∃ l′2(Send(A2,m) ∧ Contains(m, {d(x), y′, k,A1}
l
′

2

A2
) (5)

HON Honest(A2) ⇒ (((−3Send(A2,m)∧

Contains(m, {d(x), y′, k,A1}
l
′

2

A2
) ∧ ¬−3Fresh(A2, x′) ⇒

(m = {A2,A1, d(x), y′, k, {d(x), y′, k,A1}
l
′

2

A2
}∧

−3(Send(A2,m) ∧©©−©Fresh(A2, y)) ∧ (y′ = d(y))∧
ActionsInOrder(

Receive(A2, {A1,A2, d(x), {d(x),A2}
l
′

1

A1
}),

Send(A2, {A2,A1, d(x), y′, k, {d(x), y′, k,A1}
l2

A2
}))))) (6)

(4-6),G1-3 Fresh(A1, x)[Init]A1
Honest(A2) ⇒

∃A2.−3(Send(A2, {A2,A1, d(x), d(y), k, {d(x), d(y), k,A1}
l
′

2

A2
}) ∧

©©−©Fresh(A2, y))∧

After(Receive(A2, {A1,A2, d(x), {d(x),A2}
l
′

1

A1
}),

Send(A2, {A2,A1, d(x), d(y), k, {d(x), d(y), k,A1}
l
′

2

A2
})) (7)

(1),AF2 Fresh(A1, x)[Init]A1

−3Receive(A2, {A1,A2, d(x), {d(x),A2}
l
′

1

A1
}) ⇒

After(Send(A1, {A1,A2, d(x), {d(x),A2}
l1

A1
})

Receive(A2, {A1,A2, d(x), {d(x),A2}
l
′

1

A1
}), (8)

(1),AF2 Fresh(A1, x)[Init]A1

Send(A2, {A2,A1, d(x), d(y), k, {d(x), d(y), k,A1}
l
′

2

A2
})∧

©©−©Fresh(A2, y) ⇒

After(Send(A2, {A2,A1, d(x), d(y), k, {d(x), d(y), k,A1}
l
′

2

A2
}),

Receive(A1, {A2,A1, d(x), y′, k, {d(x), y′, k,A1}
l2

A2
}) (9)

(7-9),AF2 Fresh(A1, x)[Init]A1
Honest(A2) ⇒

∃A2.ActionsInOrder(
Send(A1, {A1,A2, d(x), {d(x),A2}

l1

A1
})

Receive(A2, {A1,A2, d(x), {d(x),A2}
l
′

1

A1
})

Send(A2, {A2,A1, d(x), d(y), k, {d(x), d(y), k,A1}
l
′

2

A2
})

Receive(A1, {A2,A1, d(x), d(y), k, {d(x), d(y), k,A1}
l2

A2
})) (10)

Figure 10: Proof of mutual authentication for DHKE protocol

