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ABSTRACT

We present a cryptographically sound formal method for imigpv
correctness of key exchange protocols. Our main tool is g fra
ment of a symbolic protocol logic. We demonstrate that moof
of key agreement and key secrecy in this logic imply simiikta
ity in Shoup’s secure multi-party framework for key exchang\s
part of the logic, we present cryptographically sound ausitbns

of CMA-secure digital signatures and a restricted form dfi&i
Hellman exponentiation, which is a technical result of peledent
interest. We illustrate our method by constructing a prdafezu-
rity for a simple authenticated Diffie-Hellman protocol.

Categories and Subject Descriptors
C.2.2Network Protocols]: Protocol verification; K.6.5pecurity
and Protection]: Authentication; F.3.1$pecifying and Verifying
and Reasoning about Programp Logics of programs

General Terms Security

KeyWOI’dS: Cryptographic protocols, Symbolic analysis, Pro-
tocol logic, Computational soundness

1. INTRODUCTION

Cryptographic protocols are the fundamental building kéoof
secure communication systems. Key exchange protocolsarin p
ticular, are commonly used to implemesgcure sessionsSecure
session establishment is the main objective of widely degzigro-
tocols such as Kerberos [29], SSL/TLS [21] and IKE [28]. Ther
fore, ensuring correctness and security of key exchangedstn
cal importance. Intuitively, a key exchange protocol isusedf it
providesagreement{upon completion of the protocol, the parties
correctly know each other’s identity and agree on the vafube
established key) ankiey secrecyfor anyone but the participants,
the established key is indistinguishable from a randomejalu

Design and analysis of provably correct key exchange potgoc
has a long history [8, 22, 7, 9, 6, 34, 15, 16]. Cryptographaofs
of security for key exchange are usually carried out in thealted
simulatability paradigm €.g, [5, 10]), using standard techniques

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

FMSE'05,November 11, 2005, Fairfax, Virginia, USA.

Copyright 2005 ACM 1-59593-231-3/05/0011$5.00.

for secure multi-party computation [24]. Informally, this/olves
defining anideal functionalityfor key exchange which is secure by
design because, in the ideal functionality, a trusted théandy gen-
erates the key as a true random value and distributes it toquwio
participants. The actual, real-world protocol is securthdéfre ex-
ists an efficienti(e., probabilistic polynomial-time) simulator, that,
with access only to the ideal functionality, can “fool” arffi@ent
adversary into thinking that the latter is engaged in théweeald
protocol. If the ideal-world simulation and the real-wogcbtocol
are indistinguishable, then no more information can beaekd
from real-world protocol sessions than from the ideal fiorelity.
Since the latter is secure by design, security of the realehypvoto-
col follows. Simulatability-based definitions are appeglbecause
they provide a natural way of specifying the abstractioe.,(the
ideal functionality) that the key exchange protocol is saggal to
present to higher-level applications.

Constructing proofs of simulatability is, in general, a trowial
task. Validity arguments for the simulator often rely on main
case analysis and informal reasoning “by the logic of thegsro
col” (e.g, [34]). We show that, for a certain class of key exchange
protocols, the simulator can be constructed automaticalatid-
ity of the simulator is then proved using a simple, purely byfit
deductive system which does not involve probabilities. iSgym-
bolic inference systems for reasoning about security aosvknn
the literature as “Dolev-Yao” models.

We use a fragment of thprotocol composition logiof Dur-
gin, Dattaet al. [23, 19], containing abstract digital signatures,
but not encryption. We also introduce a formal abstractiba o
particular usage of Diffie-Hellman exponentiation, namdbriva-
tion of a shared key from authenticated Diffie-Hellman valué/e
prove that this fragment is “computationally” sound: evieaugh
the logic represents cryptographic primitives as abssgatbolic
terms, the existence of a symbolic proof implies securityhia
standard cryptographic model.

Our second contribution is symbolic, computationally sbari-
teria for proving security of key exchange protocols in Siisu
simulatability-based framework [34] with static corrugts. Our
approach thus combines the ease of reasoning (and poseible a
tomation) provided by purely symbolic deductive technijuéth
the strong security guarantees implied by simulatabilitf illus-
trate our approach by constructing a proof of security foman
thenticated Diffie-Hellman protocol.

Our choice of Shoup’s framework is somewhat arbitrary. We
were attracted by its conceptual simplicity, which alloweslto
carry out symbolic reasoning solely on the basis of standard
sumptions about the underlying cryptography, namely, teeiD
sional Diffie-Hellman assumption and security of the digstia-



nature scheme against existential forgery. Shoup’s maunked dot
separate authentication from key exchange, thus avoitimgéeed
for hybrid ideal functionalities, nor does it require thesusf any
specific cryptographic library. We believe that the techek de-
veloped in this paper can be applied to other simulataHiaged
frameworks for key exchange.

Related work. The protocol composition logic used in this paper is
due to Durgin, Datt&t al.[23, 19]. Computational soundness for a
different complementary fragment of this logic (containing encryp-
tion, but not signatures) is established in [20]. Our teghat are
similar, but (i) we extend the logic with axioms modeling the-
cisional Diffie-Hellman assumption and the use of universsh
functions for randomness extraction from joint Diffie-Heén val-
ues, (i) our cryptographic definitions of security are siatability-
based, and thus substantially different from the gameebdséni-
tions considered in [20].

Bridging the gap between symbolic models and the computa-
tional model used in modern cryptography has been a subject o
very active research [1, 31, 30, 32]. Our proof techniques ar
inspired by the work of Micciancio and Warinschi [32]. The re
sults of [31, 32], however, simply show the existence of anslou
symbolic abstraction for protocol traces in the presenc8©A2-
secure encryption, and cannot be used to demonstrate &abilda
ity of Diffie-Hellman-based protocols.

Canettiet al. [11, 12, 16, 17, 13] and Backes, Pfitzmann, and
Waidner [33, 3, 4] proposed simulatability-based definisiof se-
curity for cryptographic primitives and protocols that areserved
under arbitrary or universal composition (UC). We view owrkv
as complementary. Instead of alternative definitions, voppse
cryptographically sound symbolic methods for proving thatro-
tocol is simulatable in a particular ideal functionality.

Another important difference is that symbolic proofs caly re
on UC cryptographic primitives only if the primitives’ idefunc-
tionalities are purely “Dolev-Yao.” Informally, this mesuthatev-
ery computation using a given cryptographic primitive mustéav
sound symbolic abstraction, as is the casg, for the “universally
composable cryptographic library” [3]. By contrast, wddal [20]
in requiring only that evenprovable symbolic theorem hold for
the overwhelming majority of computational instantiasoriFor a
class of key establishment protocols based on autherdiifee-
Hellman, this enables us to obtain computationally sound-sy
bolic proofswithout coming up with a general-purpose “Dolev-
Yao” functionality for Diffie-Hellman exponentiation (wth is a
challenging open problem).

Limitations of our approach are as follows. We only consiaer
small class of protocols, in which Diffie-Hellman exponatitin is
used solely for key derivation. If our symbolic criteria can be
proved for a particular protocol, this does not mean thattiree-
sponding computational criteria do not hold (unlike UC diéifins,
our criteria do not provide an exact characterization). sTikiin-
evitable in any expressive deductive system. Finally, inmadel,
the adversary is not allowed to corrupt participants in thddhe
of protocol execution. Therefore, symbolically proved siatabil-
ity is not necessarily preserved under arbitrary compmsitiThis
is the price we pay for extending computational soundnesdtee
to cryptographic primitives such as Diffie-Hellman with redard
(non-UC) definitions of security. In the future, we plan teesti-
gate symbolic proof methods for stronger notions of combpitisa
such as security in the presence of adaptive corruptions.

Canetti and Herzog proposed a symbolic criterion for usigty
composable key exchange [14], while Backes and Pfitzmann [2]
proposed an alternative symbolic criterion for key secreBgpth
papers consider classes of protocols which are substgrditier-

ent from ours, with cryptographic primitives that includeceyp-

tion, but not Diffie-Hellman. We view this paper, along wi0],

as one of the first steps towards development of cryptogcafii

sound proof methods for criteria such as those proposedtir?]1
We are not aware of other computational soundness results fo

protocols using Diffie-Hellman. A computational soundness

sult for symbolic digital signatures appears in [18]. Altigh [18]

claims to rely on standard CMA security [25], the reductiofli8,

p. 21] makes a stronger assumption that the adversary caomst

pute a valid signature which had not been previously proditge

an honest party. By contrast, our model for digital signegusnly

assumes CMA security, and thus permits the adversary te forg

new signatures on plaintexts which had been previouslyesiday

a honest party.

Organization of the paper. We explain the cryptographic assump-
tions in section 2, then define the symbolic protocol modelac-

tion 3, and the computational model in section 4. In sectipn 5
we give the fragment of the protocol composition logic of §ar
Dattaet al. that we are using in this paper, and the associated infer-
ence system in section 6. Section 7 contains the main refsthieo
paper: automated construction of the simulator and symipotiof

of validity, illustrated by the example in section 8. We dése
future research directions in section 9.

2. CRYPTOGRAPHIC BACKGROUND

Our cryptographic definitions are standard. We discuss them
more detail in the full version of this paper [26].

A digital signature scheme consists of a key generatiorriatgo
K which produces a public/private key pair, a signing aldonitS,
and a verification algorithnv. The signature scheme is assumed
to be secure against existential forgery under the adapkiosen-
message attack [25]. Informally, this means that is contjmurtally
infeasible for the adversary to produce a signature on arssage
which had not been previously signed by an honest signer.

We formalize the Decisional Diffie-Hellman (DDH) assumptio
as a game. LeB be a group of large prime ordgrand letg € G
be a generator. L&d®" denote a “Diffie-Hellman oracle.” In the
learning phasethe adversary can make a polynomial number of
distinct queries of the forri, j) (i # j). In response to a query, the
oracle returns thég“, g, g%), wherex;, X are chosen uniformly
at random fronZq. In thetesting phasgthe adversary makes a sin-
gle query of the forndi, ) (i # j), where(i,]) is different from any
pair used in the learning phase. A randomhig chosen by the ora-
cle. Ifb = 0, then the tuplég*, g%, g9) is returned, else the tuple
(g9,99,g%) is returned, wherg; is random. The DDH assump-
tion says that no efficient adversary can comguéth probability
that is greater thaé by more than a negligible amount.

Finally, letH be analmost universafamily of hash functions
mapping{0, 1}" to {0, 1}' and indexed by a s, i.e., for every
xy € {0,1}", x # vy, the probability thati(x) = hi(y) for an
elementh € H selected uniformly fronH is at most}; + . Let
X c {0,1}",| X |> 2'. The leftover hash lemma [27] states that
the distribution{hi(x)} is statistically indistinguishable from the
uniform distribution for a uniformly random hash functiordexi.

Definition of security for key exchange We adopt Shoup’s model
of secure key exchange [34] due to its conceptual simplicity
is specific to key exchange, unlike general-purpose modalsh
as universal composability [12, 16] and reactive simulditgtp4],
that aim to give new definitions for cryptographic primitvand
multi-party protocols which are preserved under generalpzsi-
tion. It also allows us to demonstrate the power of symbelason-
ing directly, and to avoid the difficulties inherent in comiap with



a universally composable model of Diffie-Hellman exporetidi.

Shoup’s framework is based on the standard notion of multi-

party simulatability. Here we give a concise summary of [34]
more detailed exposition can be found in the full versiontos t
paper [26]. For simplicity, we consider the case of two-parbto-
cols. First, arideal-world models defined, in which key exchange
is carried out with the help of a trusted third party, calledring
masterin [34], but perhaps better referred to as ttleal key ex-
change functionalityln the ideal world, the adversary may instruct
the ideal functionality to create a truly random key (“cefatper-
ation), chosen by the ideal key exchange functionality, anse-
curely distribute the created key to both user instancesn(fect”
operation). Clearly, this ideal-world key exchange is sediy def-
inition, since the key is a random value which is known to hatér
instances but hidden from the adversary. In this paper, wi diur
attention tostatic corruptions, and only permit the ideal-world ad-
versary to compromise user instances that are engagedatce
session with a corrupt user.

In the real-world model there is no trusted third party and keys
are established by executing the actual key exchange jptofear
both the real-world and ideal-world adversaries, a trapsis cre-
ated, recording all observable events as they happen.

A key exchange protocol is correct in this framework if it tias
properties otermination livenessandsimulatability Termination
requires that any real-world user instance terminate afgaiyno-
mially bounded number of messages are delivered to it. keigen
requires that, for every efficient real world-adversatywhenever
the adversary faithfully delivers all messages betweervbeaiser
instances, both user instances successfully terminatprttecol
and generate a session key. Simulatability requires tbatey-
ery real-world adversary, there exists an ideal-world simulatSr
such that their transcript®ealWorld.4) andldealWorldS), re-
spectively, are computationally indistinguishable.

3. SYMBOLIC MODEL

Agent identities

idu= X variable name
A constant name
Indices
ixn= i index of a hash function family
Terms
t = variable term
c constant term
id agent identity
r random term
ix index
(t,t) tuple of terms (pair)
d(r) exponeng’
d(r, 1) joint exponent valug' '
{t}Ha signature ifid
Internal terms
iti= ot term
hi(.) unary hash function
Actions
al= € the null action
(vx) generate nonce
(vi) generate index
(t) send a term
t) receive a term
X=x equality test
(t/t) match a term to a pattern
(create) “key created”
(connect) “key agreement reached”
List of actions, strands and roles
AList = €| a,AList
Thread ::= (i d, sessionld
Role ::= [ALiSt]Thread

Figure 1: Syntax of the symbolic model

Our symbolic protocol model is essentially the same as in the ticipant and the point after which both participants arepsisied to

protocol composition logic of Dattat al. [19]. Therefore, we
only give the main definitions and indicate where our modié¢ri
from [19]. Informally, protocolll is a set of roles, each describing
a sequence of actions to be executed by a participant in aqmiot
session. A role can be thought of asteandin the Strand Space
Model [35]. In this paper, we focus on two-party protocols.

Protocol syntax is given in fig. 1. Note that terms representi
signatures have labets which are used to differentiate between
different signatures on the same plaintext. (Recall thaidx¥cu-
rity does not guarantee uniqueness of signatures, and tsettmai
adversary to forge new signatures on plaintexts previosigiged
by honest participants). The terafx, y) denotes Diffie-Hellman
exponentiatiorg™” for some basg (generator of some large cyclic
groupG under multiplication). Note that(x, y) is same ad(y, x)
since multiplication is commutative. We abuse notation rafelr to
both terms byi(x, y). We also use the same symbdior (syntacti-
cally different) generation of new random non¢es) and genera-
tion of new indicegv1i) for the universal family of hash functions.

To simplify the logic for the purposes of this paper, we omit
encryption. Internal terms are used in the internal contjmrts of
protocol participants and include, in addition to normaits, hash
functions. Participants are not allowed to send terms dang
hash functions as part of protocol messages (but they ac@atim
proving secrecy of the derived key).

Actions include special annotatiofjsreate) and (connect),
which mark, respectively, the point in the protocol whemgad-
ing to the specification, the key is first computed by an hopast

share the computed key. These are further explained irosettl.

A symbolic trace of protocoll is a sequence of steps denot-
ing, in the order of execution, all honest participantsiaw and
send/receive actions of the attacker. Formally, this is etexti as
a symbolicexecution strand ExecStrand:= Start(Init), AList,
wherelnit is some initial configuration, ankl.ist is the sequence
of actions. Theadversarial viewof a symbolic trace is a projec-
tion which lists, in the order of execution, send and recast®ns.
For a symbolic tracé € ExecStrangd, IetAd\/gm A)(ts) (or simply

Adu(ts)) denote the corresponding adversarial view.

4. COMPUTATIONAL MODEL

To link the abstract symbolic model described in sectionthi¢o
full computational model, in which cryptographic primits are
implemented as actual computational algorithms, we (tpintsate
the abstract actions of honest protocol participants todgational
actions and the abstract symbolic terms sent by honestipanits
to corresponding bitstrings, and (ii) construct symbolisteactions
for all messages generated by the computational adversary.

We emphasize that, unlike other work on computational sound
ness of symbolic models [32, 12, 3], we dot claim that every
computational trace has a sound symbolic abstractionigusfi-
cult to achieve in the presence of malleable Diffie-Hellmapce
nentiation). Our computational soundness is a weaker tondi
any property thatan be provedn the symbolic model using the
logic of section 5 is guaranteed to hold in the computatiomadiel.



This is the same general approach as in [20], but the pregerti
considered in this paper are substantially different. \Waalg the
soundness requirement allows us to handle key exchangecptst
based on Diffie-Hellman.

As in [32, 20], we fix the protocdll, adversary4, security pa-
rametem, and some randomneBof size polynomially bounded in
1, which is divided into the randomness used by honest ppatits
and that used by the adversary. The symbolic protocol exetigt
converted into a concrete execution by mapping every atisyan-
bol into the corresponding bitstring and instantiatingrgwabstract
action of the honest participants with the correspondingmata-
tional action.

Details of this mapping are given in the full version of th& p
per [26]. For example, symbolic termmsdenoting random values
are mapped into the bitstrings drawn from the appropriate qgfa
randomnes®R. Diffie-Hellman symbolic termsi(x), d(x,y) are
mapped into elements, g*¥ € G whereG belongs to a family of
large cyclic groups (indexed by the security paramejesf prime
orderg whose generator ig, and so on. Symbolic actions are in-
stantiated similarlye.g, (vx) is instantiated in the concrete model
as generation of a random nonce using randomRess

The only difficult part is defining a symbolic abstraction foes-
sages sent by the adversary. As in [32], this is done by matlsem
and replacing every bitstring which is neither an instdigiaof a
symbolic constant, nor generated by an honest participéthtav
new symbol, denoting an adversarial nonce. We handle tefms o
the formg" as follows. Whenever an honest participant receives a
value representing* for somex which is known to the recipient,
we abstract the corresponding termddg) (because the recipient
can computey* and check if it matches the received value)x 1§
not known, we create a new symbolic tedfx’) wherex’ is a new
symbolic name.

Informally, the resulting symbolic abstraction of Diffieehman
terms isnot “Dolev-Yao.” Because Diffie-Hellman exponents are
malleable, the adversary can convert sogiesent by an honest

participant intog-‘/, and this computation does not have a symbolic
equivalent. Note, however, that our theorem 1 guaranteepgo
tational soundness only for properties thatm@vablein the sym-
bolic logic. As we demonstrate below, a symbolic proof foresg
ment in a Diffie-Hellman-based key exchange protocol onlgsgo
through if the protocol ensures non-malleabilig.d, all Diffie-
Hellman terms are signed), and thiis class of protocols the sym-
bolic abstraction is sound.

A computational tracer, 4 (n, R) (for some fixed protocdl, ad-
versary.A, security parametef and randomnesR) is defined as a
tuple (ts, f, R), wherets € ExecStrang is the corresponding sym-
bolic trace,f is the function fromVar(ts) U Const(whereVar(ts)
denotes the set of variables occurringtdrand Constis the set of
symbolic constants) to bitstrings (of size polynomiallyubded in
7). We denote byCExecStrand the set of all computational (con-
crete) traces of the protocal.

Given a concrete trace we denote byR(t) = (Ra,Rn) the
randomness used in We say that a concrete trateis an imple-
mentation ofts (or inversely,ts is an abstraction af.), denoted by
te = Exec?H’A) (ts), iff tc = (ts, T, R(tc)). The adversarial view of a
computational tracé, denoted aﬁd\lgmm)(tc) (simply Adv(t¢)),

is given byExec?H’ ) (AdU(ts)) wherete = (ts, f, R(tc)).

5. PROTOCOL LOGIC

The syntax of the logic is given in fig. 2, whepedenotes a role
(see fig. 1), whilec andP denote a term and a thread, respectively.
The only substantial addition to [19] is thadistRand predicate.

a = Send(P,m) | Receive(P,m)
| New(P,t) | Verify(P,t)
¢ == a | Has(P,t) | Fresh(P,t)
| Honest(P) | Contains(ty,t2)
| IndistRand(it) | o Ay | ¢ | Ixgp
| start(P) | ©¢ | O¢
Y= ppe

Figure 2: Syntax of the protocol logic

In the rest of this paper, we ugeand+ to indicate predicate
formulas andm to denote a generic term called a “message.” A
messagem is a 4-tuple (source, destination, session id, content).
Since we model the network as controlled by the adversagy, th
source and destination fields may not denote the real identf
the principals and may be altered by the adversary at will.

Action formulas refer to honest participants’ actions. Exam-
ple, Send(P,m), Receive(P,m), New(P, t), Verify(P,t) mean
that the last action taken in the protocol execution waspees
tively, sending, receiving, generating a new value andfyied a
signature by the ageift on message. Formuladas (P, t) means
that threadP knows termt, while Fresh(P, t) means that term
t is freshly generated in thredd and has not been sent out in
an outgoing messagélonest(P) means that part is honest at
the start of the protocol and remains honest throughoutxbeue
tion of the protocol (we only consider static corruptionSprmula
Contains(ti, t2) means that the terre, is contained in the term
t1. Formulas$p and O are temporal formulas which say, re-
spectively, thatp was true sometime or immediately before in the
past. Start(P) simply says that th® has not performed any ac-
tions in the past. Finally, the modal formuéR]x is in the style
of Floyd-Hoare logic and states that in a threaafter actionsR
are executed, starting from a state in which the forndubas true,
formulay is true in the resulting state.

For the purposes of this paper, the definition of the subtetas r
tion C defined on terms coincides with the definitionadfosure,
i.e, t1 C t,iff t1 € closure(t.), where the closure of termis
defined as the least set of terms derivable using the folipwites:

t € closure(t)

t € closure((t, s)), s € closure((t, s))

t € closure({t}x), d(x,y) € closure(d(y, x))

r € closure(s) A's € closure(t) = r € closure(t)

Symbolic semantics. Symbolic semantics is the same as previ-
ously published in [19]. We repeat it in the full version ofsth
paper [26]. Formulg is true in a symbolic tracR € ExecStrang

of the protocolll, denoted asl,R = ¢ or R(II) |= ¢, if ¢ holds
true at the end of the trade TraceR may be a complete or an
incomplete trace in which some of the parties have not caiegle
the protocol. For a given protoc#l, let init(II) denote the set of
all possible initial configurations. Thdn satisfiesp, denoted by
I = ¢, if RE ¢, VR € ExecStrand.

Computational semantics. We now define what it means for a
formula ¢ to hold over the set of concrete computational trates
of protocolII. Our definitions follow closely those of [32, 20]. For
all formulasnotinvolving IndistRand, we define semantics on a
single concrete trace. We say that a concrete executioe ttrafc
a protocolll satisfies a formule if 3ts € ExecStrangd such that
t= ExecE’H’A) (ts) andts satisfiesp, i.e., ¢ is true (in the symbolic
semantics) on the symbolic abstraction of the concretetrac

The semantics of a formula over asetof computational traces
T is defined as the subs& C T whose elements satisfy the
formula p. We say that a formule holds for protocolll in the



computational model, denoted by = ¢, if the semantics of the
formula ¢ is an overwhelming subset of all possible traces of the
protocolII. More precisely, given a formula and a protocoll,
we associate withp the setp]; C CExecStrand of traces in
which the formulay is satisfied. Now]I . ¢, if, by definition,
| [l | / | CExecStrand |> 1—v(n), wherev is some negligible
function in the security parametgr

Computational semantics for tiadistRand predicate is quite
subtle because it cannot be defined for a single concrete titazan
only be defined ovefamiliesof traces (a similar issue arises when
modeling real-or-random indistinguishability of valuesder en-
cryption [20]). Before we can define the computational seinan
of IndistRand, we define a mappinBand : it — it. Intuitively,
Rand maps an internal termto a “random” ternRand(u) that has
the same structure.

DEFINITION 1. LetRand(u) denote a random term of the same
structure as the (internal) term. We defineRand(u) by induc-
tion over the term structure as follows (assuming that timaneed
variables are unique up ta-renaming):

- Nonce:Rand(r) = r’

- Pairing: Rand((u1,u2)) = (Rand(u;),Rand(u2))
- Signature:Rand({u}is) = {Rand(u)}is

- Exponential:Rand(d(r)) = d(z’)

- Diffie-Hellman valueRand(d(r:, r2)) = d(z’)

- Hash function:Rand(h; (u)) = r

- Default: Rand(u) = u

We now define the computational semantics ofthéistRand
predicate. For a protocdll, letts € ExecStrand denote the
symbolic trace according to the protocol specification atd,|=
Adu(ts) be the corresponding adversarial view (recall that theradve
sarial view contains only observable actions). i,gt — u| denote
a view in which every occurence of the (internal) tetms replaced
by u. For a symbolic view, and randomnesg, letcondt,) denote
the corresponding computational vieve. condt,) = (t,f,R),
wheref is the concretization function defined in section 4.

We say that protocdl satisfiesIndistRand(u) in the concrete
model, denoted byl = IndistRand(u), if two families (over
randomnes®) T, T’ are computationally indistinguishable, where

e T = {condt,),f(u)}r
e T' = {conqt,[Vt.t Cu:t — Rand(t)]),f(Rand(u))}r

For technical reasongndistRand needs to be defined over a
family of computational traces. Instead, we defihelistRand
over a family of computationatiews(recall that a view is a pro-
jection of a trace on observable actions), and saythai stRand
holds for a family of computational tracé$ it holds over the cor-
responding family of computational views.

Let us now examine the definition. Intuitively, it says thas set
of concrete instantiations of the symbolic viéwis computation-
ally indistinguishable from the set of computational imstations
of the symbolic viewt, in which every subterm afi has been re-
placed by the corresponding random term. Note that in thefpro
system of section @ndistRand(u) appears only when the term
is the established key, or the joint Diffie-Hellman valuenfravhich
the key is derived.

We emphasize that, when satisfied, this definition of inalisti
guishability guarantees thany (pptime-computable) usage of the
established key is secure in the sense of simulatability ése-
tion 2). In the proof of theorem 2, we use it to show that the ad-
versary cannot distinguish between the transcript of takwerld

AA1 vlaxoa
AA2 Fresh(X, t)[@x©(a A ©Fresh(X,t))
AN2 plvnxHas(Y,n) = (Y = X)
AN3 p[vn|xFresh(X, n)
ARP  OReceive(X, p(x))[(a(x)/a(t))lx
OReceive(X,p(t))
ORIG ©New(X,n) = Has(X,n)
REC  OReceive(X,n) = Has(X,n)
TUP Has(X,X) A Has(X,y) = Has(X, (X, ¥))
PROJ Has(X,(X,y)) = Has(X,Xx) A Has(X,y)
VER  Honest(X) A Verify(Y, {t}%)
AX #£Y = IX.Im. 3I'(SSend (X, m)
AContains(m, {t}¥ ))
N1 ONeuw (X, n) A ONeu(Y,n) = (X =Y)
N2 After(New(X,ny), New(X, nz)) =
(n1 75 nz)
F1 OFresh(X,t) A OFresh(Y,t) =
(X=Y)
CON1 Contains((X,Y),X) A Contains((X,Y),Y)
CON2  Contains({t};(),t)

After(a,b) = S(b A OOa)
ActionsInOrder(ai,...,a,) = After(as, as)
A...N\After(an—1,2an)

Figure 3: Basic axioms and axioms for protocol actions

P1
P2

Persist(X,t)[@xPersist(X,t)
Fresh(X, t)[@xFresh(X,t),
wheret ¢ aora# (m)
HasAlone(X, n)[@]xHasAlone (X, n),
wheren ¢, aora# (m)

F  O[(m)]x—Fresh(X,t),

where(t C (m))

Fresh(X,s) = Fresh(X,1t),
wheres C t

P3

F2

Persist € {Has, O},
HasAlone(X,t) = Has(X,t) A (Has(Y,t) = (X=Y))

Figure 4: Preservation and freshness loss axioms

protocol, and the (simulated) ideal-world transcript inethall op-
erations involving the key have been performed using a atméom
value instead. Even if one of the honest participants ostiet key
in the clear after it has been established (note that theskexlic-
itly appended to the adversary’s view of the protocol in oefi-d
nition), the adversary has only a negligible probabilitycofrectly
telling the difference between the real world, where thidéas key
is a pseudo-random number extracted from the joint Diffidlshin
value, and the ideal world, where the leaked key had beenafeade
as a true random number.

6. SYMBOLIC PROOF SYSTEM

Our proof system is based on the proof system in the original
protocol logic of Datteet al.[23, 19, 20], but we omit the axioms
for encryption and extend the logic with several new axioWER
(signature verification axiomPDH1 andDDH?2 (Diffie-Hellman
axioms), and_HL (leftover hash lemma, for reasoning about hash
functions). We prove that the new axioms are computatignall
sound under standard cryptographic assumptions.

Our symbolic inference system is given in figs. 3-7. $ay ¢
if o is provable using this system.



TL O(pAY) = Qe AOY

T2 O(pVY) = OpV Oy

T3 O =0

AF0  start(X)[[x—©a(X,t)

AF1l  Ofa;...an|xAfter(as, as)
A...NAfter(an—1,2an)

AF2 (& (bi(X,t1) A ©Fresh(X,t))

NSO (Y, t2)) = After(bi (X, t1), (b2(Y, t2)),
wheret C t, andX £Y

Figure 5: PLTL axioms and temporal ordering of actions

DDH1 Fresh(Y,y) A NotSent(Y,d(x,y)) A Honest(Y)
A(FX. (X # Y) A Honest(X) A Fresh(x, X))A
NotSent(X,d(x,y)) = IndistRand(d(x,y))

DDH2 1IndistRand(d(x,y))[axIndistRand(d(x,7y)),
where ifa = (t) thend(x,y), X,y € closure(t)

LHL IndistRand(d(X,y)) A 3 X.Honest(X) A S[vilx =

IndistRand(hi(d(X,Y)))
NotSent(X,t) =Va.(©GaAa= (m) =t ¢ closure(m)

Figure 6: Diffie-Hellman and hash function axioms

Note Existential quantification oveX on the right-hand side of
implication in theVER axiom simply means that there exists an
instance of the protocol rols.

THEOREM1 (COMPUTATIONAL SOUNDNESS. LetII be an
executable protocol and a formula. If the protocol is implemented
with a digital signature scheme which is secure againsttertsal
forgery under the adaptive chosen message attack and asgumi
the Decisional Diffie-Hellman assumption holds, thén

NFep=MEce

The proof follows from computational soundness of all axgom
and inference rules of the logic, which is proved in the feltsion
of this paper [26].

7. PROVING SIMULATABILITY

We now show how to automatically construct the simulator for
Shoup’s framework for key exchange [34], and prove its viglid
using the purely symbolic logic described in sections 5 ar8iGice
our main goal is establishingecurityof key exchange, we focus
only on the simulatability requirement, and omit terminatiand
liveness for the purposes of this paper.

We emphasize that the simulator and twmputationalproof
of its validity are essentially the same as in Shoup’s oabjra-
per [34]. The proofs in [34], however, are hand-crafted aasel
on informal reasoning that “follows easily from the logic thfe
protocol” (seeg.g, [34, p. 25]). Our contribution is to take a rig-
orously defined, computationally sound protocol logic ahdve
that a simplesymbolicproof in this logic implies the computational
proof of [34], thus opening the road to automated formal fs @
security for key exchange protocols.

7.1 Construction of the simulator

The complete algorithm for constructing the simulator ivegi
in the full version of this paper [26], and summarized heres A
in [34], the ideal-world simulator runs the real-world acsary A
as a subroutine, simulating execution of real-world hopestici-
pants to him. The simulator computes the appropriate caiamec
assignmentsi.g., it figures out which ideal-world user instances to

G1 if T1 |= 0[P]xe andII = 6[P)x1
thenII = 6[P)xp A ¢
G2 if IT = 0[P]xp andd’ = 0 andp = ¢’
thenII = ¢’ [P]x¢’
G3 if II = ¢ thenlIl = 0[P]xp
TGEN if II | ¢ thenll E =S
HON  if IT |= Start[]xp andV P € S(II), I |= ¢[P]x¢

thenII = Alive(X) A Honest(X) = ¢

whereS(II) denotes all possible starting
configurations ofI andAlive(X) means that
the threadX has not completed the protocol yet.

Figure 7: Rules for the proof system

connect based on which user instances are talking to eaehiath
the real world), except that in the ideal world the ideal timtal-

ity substitutes computed real-world keys with random ideatld
keys. WheneveS compromises an ideal-world user instance, it
does so by supplying the session key extracted from thexedd
user instance thaf is simulating to the real-world adversas.
Any record placed in the real-world transcript by the reala ad-
versary is copied bys to the ideal-world transcript. Finally, any
appl i cat i on operation, which in Shoup’s framework models
arbitrary higher-level protocols or applications makirgg of the
exchanged key, is evaluated in the real world using the ctedpu
real-world key, and in the ideal world using the random ideatld
key.

7.2 Validity of the simulator

To prove that the simulata® is valid, it is necessary to establish
that the connection assignments madeSbare legal and that the
substitutions of real-world keys with random ideal-workeyk are
not detectable. We demonstrate that symbolicconditions — one
modeling agreement between the participants, the otheelingd
key secrecy — are sufficient for tlewmputationalvalidity of the
simulator.

Agreement in the symbolic model.Following [7], our definition

is based on matching records of runs, which is slightly wettien
usual. The signature received by one party may be different f
that sent by the other party, as long as it's on the same phint
For a symbolic trac&R of a two-party protocoll, a record ofR

by an honest party (i € [1, 2]) consists of a sequence of actions
performed byA; duringR.

DEFINITION 2. Messagesn;,m, containing termst,, to, re-
spectively arenatchingin the two records if; is incoming for one
record, m is outgoing for the other record,e., thesourcefield of
one matches thdestinatiorfield of other, and the terms, andt,
in the two records, matchp-to-randomnesis the following sense:

- If £, and t, do not contain a subterm which is a signature, then
they match exactly.

-If t1 = {s}}4,, thent, matches any term, which is a signature

of the same term under the same private key (maybe with sediffe
label),i.e., t = {s}}éi for some .

- All subterms ot; match up-to-randomness with the correspond-
ing subterms of.,.

We say that two recordsiatchif their messages can be parti-
tioned into sets of matching messages with one message dicdm e
record in each set, such that messages originated by eitmsicp
pant appear in the same order in both records.

Key secrecy in the symbolic model.To model key secrecy, we



say that the key should be indistinguishable from a random-nu
ber,i.e., we require thalndistRand(t) hold, wheret is the sym-
bolic term representing the key derived by the participaMsre
formally, letRealandldeal denote the real- and ideal- world views,
recording the interaction of the adversary with the honestig-
pants and the simulator, respectively. In the ideal-wortvy all
occurences of the established key are replaced by a random nu
ber. LetRealKeyandldealKeydenote the key in the real and ideal
world, respectively. The adversary is given eithele@l,|dealKey
or (RealRealKey depending on the value of a secret bif0 or
1). The adversary wins the game if he can correctly gbhesih a
probability non-negligibly greater tha%‘t

The main step of the proof of theorem 2 below involves showing
that a distinguisher between the real-world and ideal-avardn-
scripts in Shoup’s framework can be used to win the above game

THEOREM 2. LetII be a protocol. If there exists a symbolic
proof of agreement according to definition 2 and a symbolaopr
of theIndistRand(t) formula wheret is the symbolic term rep-
resenting the key, then the simulator constructed by therign
of section 7.1 is valid for an overwhelming subset of all fmies
executions ofI.

The validity argument rests on the following two conditio(ik)
if two user instances share a key in the ideal world, then tiese
sponding real-world user instances must agree upon thesloe
for the key, (2) the keys generated in the ideal world and ¢ad r
world are computationally indistinguishable. We shalkereb the
first condition akey agreemendnd to the second condition as
distinguishability

Supposdl violates key agreement. By assumption, there exists
a symbolic proof of agreement féf in the logic. From the compu-
tational soundness of the logic (theorem 1), a proof of agesd
in the symbolic model implies a proof of agreement in the cetec
model. Hence, a contradiction.

We now consider the case whé&hviolates indistinguishability.
We separate two cases: (1) both parties are honest, (2) ahe of
parties is (statically) corrupt. If both parties are honéisén the
ideal-world key is a random value, and indistinguishapitif the
real-world key from a random value follows from the computa-
tional soundness of the proof dfidistRand(t).

Now suppose one of the participants is corrupt. Accordirtpe¢o
construction of the simulator, the simula®in this case simulates
the other (honest) real-world participant to the real-datver-
sary. The simulator faithfully executes all actions of trenést
participant according to the protocol specification anah tetracts
the generated key from this participant. He then uses thracted
key to “compromise” the ideal-world user instance corresiiog
to the honest real-world participant (intuitively, this/alid because
in the real-world protocol, an honest participant who igited to
a corrupt participant will end up generating key which is\kndo
the adversary). Thus, the key generated in the ideal woegsistly
the same as in the real world. Hence, a contradiction.

To establish simulator validity, it remains to show that deex-
sary can tell the difference between the real-world trapsand
the simulated ideal-world transcript except with a nedligiprob-
ability. In addition to observable protocol actions, a senipt may
contain records added via appl! i cat i on operation, which in
Shoup’s framework models any usage of the established key.

Suppose thalndistRand(t) holds, but there exists a distin-
guisherB between the real- and ideal-world transcripts. We ob-
tain a contradiction by constructing another distinguishewhich
wins theIndistRand game (see section 5) with a non-negligible
probability. Recall that in this gamed receives a pair consisting

1

it 5= (A A 00 (A Ao, (), (), Ao ).
EA27A17d()X)7{,k,Z).(Z/{d(X)>Y7k>A1}A2)
connect)|a,

Resp = {(A Ao)[(vy).(vK).(Ar1, A2, X, 2).

(2/{X, A2}z )(create).

(A, A1, X, d(y), k, X, d(y), k A2 a, }
wherek is a hash function index;

the derived key isw(g?) for hash function
hindexed byk.

Figure 8: Symbolic specification of the DHKE protocol.

of a view and a key, and must determine whether they come from a
real-world or ideal-world protocol.

Since the view contains all observable actions, and the agal
ideal-world views are indistinguishable (becaus@istRand(t)
holds), the only additional information in the transcriptieh al-
lows B to distinguish between the real and ideal worlds must be
the presence of some application operation. a&pl i cat i on
operation is a polynomially computable function of the KEere-
fore, all application operations can be efficiently compubg A,
enabling it to uses as a resource to win thendistRand game.

A runs a copy ofB3 internally, applies the functions used in the
appl i cati on operations to the key he received as a challenge
in the IndistRand game, creates a transcript, givedoand uses
B’s answer as his own answer in thedistRand game.A’s prob-
ability of winning the game is the same &'s probability of distin-
guishing real- and ideal-world transcripts. Hence, a @afittion.

8. EXAMPLE: DHKE PROTOCOL

We illustrate our method by proving security of the two-mave
thenticated Diffie-Hellman protocoDHKE). The symbolic speci-
fication of the protocol appears in fig. 8.

Let A; denote the initiator of the protocol amh the respon-
der. Assume that the certificates for public signhature \atifbn
keys are known and not sent as part of the protocol. Recall tha
cr eat e andconnect are special markers denoting, respectively,
the points in the protocol execution where the key is firstveer
by one (respectively, both) participants.

We prove agreement for the initiator role of the protocol.eTh
proof for the responder is similar. The property is stategras
[actions] post wherepre is the precondition before the actions in
theactionslist are executed angbstis the postcondition.

pre ;= Fresh(Aq,X)
actions = [Init]a,
post := Honest (A2) = 3As.ActionsInOrder(

Send(A17 {Al s A, d(x)7 {d(x)7 AQ}/lkll })

Receive(Ag, {A1, A, X,
{xX,A2}i)})

Send(Az, {Az7 AL X, a(y), k,
{X,d(y), kAl

Receive(Ar, {A2, A1,d(x),Y, kK,
{d(x)7 )”7 k7 Au i\2 }))7

wherex' = d(x) andy = d(y).

The actions in the formula are the actions of thi¢ role of the
DHKE protocol. The precondition specifies thais freshly gen-
erated byA; before sending or receiving any messages. The post-
condition captures the notion of agreement for the initiadde of
the protocol (according to definition 2). The symbolic probthis
property is given in appendix A.



In fig. 9, we give a symbolic proof of key secrecy (in the sense tures. This would require establishing computational sioess for

of real-or-random indistinguishability) for the initiatoole of the
protocol under the assumption that both parties are hombstkey
secrecy property is specified as:

pre
actions
post

Here the postcondition specifies thatifis honest, too, then the

Honest (A1) A Fresh(Ai,X)

[|nit]A]

JAz.Honest(Az2) A S[vKla, =
IndistRand(hk(d(x,y)))

wherehy is some hash function and

r denotes a random term

value of the derived key is indistinguishable from a rand@iue.
According to theorem 2, these two conditions are sufficienttie

existence of a valid simulator for the DHKE protocol in Shsup

model [34].

P2
Agreement

HON

(2-3)

NotSent
NotSent, (2)

(1),(4-6)

DDH1-2,(7)

LHL ,(8)

Fresh(A, X)[Init]a, Fr esh(A.,X)
Fresh(Aq, X)[Init]a, Honest (Az) =
JA.ActionsInOrder (
Send (A1, {A1, Az, d(x),
{a(x), Aota })
Receive(Az, {A1, Az, d(x),
{ax), Acka })
Send(Az, {A2, A1, d(x),d(y), K,
{a(x), d(y), k AL} })
Receive(Ar, {Az, A1, d(x),d(y), K,
{a(x), a(y), k ALz })
Honest(A2) A Send(Aq, {Az, A1,d(x),Y, K,
{d(X),y7 K, Al}/lfg}) =
3y.(y = a(y) A Fresh(As, )
Fresh(A, X)[Init s, Honest (A2) =
JA2.3y.(Y = d(y) A Fresh(Az,Y))
Fresh(Ai, X)[Init]a, NotSent (A1, d(x,y))
Fresh(Aq, X)[Init]a, Honest (Az) =
JAz.(NotSent(A2,d(x,y)))
Honest (A1) A Fresh(Ai, X)[Init o, ]
Honest(A;) A Fresh(Ai,X)
ANotSent (Ar,d(x,y)) A (Honest(Az) =
3A;. Jy.Fresh(Ag,y)
ANotSent (Az, d(x,y)))
Honest (A1) A Fresh(Ai, X)[Init o, ]
JA;.Honest(Az) = IndistRand(d(X,Y))
Honest (A1) A Fresh(Ai, X)[Init a, ]
JAz.Honest (A2) A S[vilx =
IndistRand(hi(d(x,y)))

Figure 9: Proof of key secrecy for DHKE protocol

9. FUTURE DIRECTIONS

This paper is but a first step towards development of computa- [11]
tionally sound symbolic methods for proving correctneskef
exchange protocol. The next step is to find symbolic critéarad
appropriate deductive systems for proving them) that wqad
mit symbolic proofs of simulator validity for key exchangethv
adaptive corruptions [34] and weaker forms of universatdignpos-

able key exchange. In the full version [26], we show that sym-

@

)

@)

(4)
(6)

(6)

@)
8)

9)

bolic proofs in our model imply simulatability in the relakdey
exchange functionality of Canetti and Krawczyk [16].

Another challenge is to extend the method proposed in tiispa

to key exchange protocols that use encryption in additicigoa-

a fragment of the symbolic protocol logic that includes gption.
Logical characterization of real-or-random indistinduaibility of
values under encryption is a nontrivial task, although pgseg has
been recently made by Datal.[20].

10.
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APPENDIX

A. PROOF OF AGREEMENT FOR DHKE
PROTOCOL

Fig. 10 contains the symbolic proof of agreement for the DHKE
protocol.



AA2,P1
AA1,P1

AF1,ARP

Fresh(Aq, X)[Init]a,
S (Send(Aq, {Ar, Az, d(x), {d(x), Ag},lAl1 }) A ©Fresh(Aq, X))
Fresh(Aq, X)[Init]a,
Verify(Ai, {d(x),Y,k A}
Fresh(Aq, X)[Init]a,
ActionsInOrder(
Send(Ar, {A1, A, d(x), {d(x), Ao} })
Receive(Ar, {As,A1,d(x),Y, k {d(x),Y, k As };22 )

(3),F1,P1,G2 Fresh(As, x)[Init]a, ~<Fresh(Ag, X)

VER

HON

(4-6),G1-3

(1)AF2

(1)AF2

(7-9) AF2

Honest (A2) A ©Verify(Ar, {d(x),Y, Kk Ai}22) =
5 A2. 3m. 315 (Send(Ag, M) A Contains(m, {d(x), Y, k A} )
Honest(Az) = (((©Send(Az, M)A
Contains(m, {d(x),Y,k, Al},léz) A =SFresh(Az,X) =
(M= {As, A1, d(x),¥', K {d(x). K AL }A

& (Send(Az, m) A OFresh(Ag,Y)) A (Y = d(y))A
ActionsInOrder(

Receive(Ag, {A1, A, d(x), {d(x), A2}/1A/11 b,

Send(A27 {A27 A, d(x)7 ylv k, {d(x)v )/7 K, Al}/]:\i })))))
Fresh(Ai, X)[Init]a, Honest (Az) =

3 A0.& (Send(As, {As, Ar, d(x), d(y), k {d(x), d(y), k A} }) A

OFresh(Az,Y))A /
After(Receive(Az, {A1, Az, d(x), {d(x), A2}11%11 1 ,
Send(Az, {A2, A1,d(x),d(y), k, {d(x),d(y), k, As },1A22 })
Fresh(Ai, X)[Init]a,
OReceive(Ag, {A1, Az, d(x), {d(x), A2 };11 b=
After(Send(Aq, {A1, Az, d(x), {d(x), A }All 1)
Receive(Az, {Ar, Az, d(x), {d(x), Az }}\11 b,
Fresh(Ai, X)[Init]a, ,
Send(Ag, {Az, A1, d(x),d(y), k {d(x),d(y), k, A1 }/132 bA
OFresh(A2,y) = /
After(Send(As, {Az, A1, d(x),d(y), k, {d(x),d(y), k, AL 1R }),
Receive(Ar, {A2,Ar,d(x),Y, k {d(x),Y, k A },1A22 3]
Fresh(Aq, X)[Init]a, Honest (Az) =
FAz.ActionsInOrder(
Send(Aq, {A1, Az, d(x), {d(x), A }:1&11 ) ,
Receive(Az, {A1, As,d(x), {d(x), A };11 ) ,
Send(Az, {Az, A1, d(X): d(Y)v k7 {d(x)v d(Y)v kv Ay },152 })
Receive(Ar, {A2, A1, d(x),d(y), k, {d(x),d(y), k A }/132}))

Figure 10: Proof of mutual authentication for DHKE protocol
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