
Macros from Beginning to Mend
A Simple and Practical Approach to the SAS® Macro Facility

Michael G. Sadof, MGS Associates, Inc., Bethesda, MD.

ABSTRACT

The macro facility is an important feature of the SAS
Language. Mastering this facility will enable the
novice user to become an accomplished
programmer. This tutorial session will use a building
block approach taking the user from the most basic
%LET statements to parameter driven, code
generating macros that can save time and effort. The
use of Macros will reduce the repetitiveness of
manipulating data and will facilitate uniform and easy
maintenance of the system. This paper will use step
by step examples to show the user how to use macro
substitution to provide simple yet powerful SAS code.
 The user will learn how to create variables on the fly,
and how to use the macro facility to generate code as
well as how to save sections of macro code for future
use.

INTRODUCTION

This paper will discuss an easy way to get started
with the SAS macro facility. It will help the novice
SAS user bridge the gap between beginner and
expert programmer. The SAS® Macro Language:
Reference, First Edition states that: "The macro
facility is a tool for extending and customizing the
SAS system and for reducing the amount of text you
must enter to do common tasks." It is a method of
creating shortcuts in SAS programs. It enhances the
SAS programming facilities and works with existing
code. Macros can be used in the data step, in
procedures, and Screen Control Language (SCL)
code. The Macro facility works with all operating
systems and comes as part of base SAS. It can be
used as a way to create streamlined code. It will not
necessarily make code in the data step run faster or
more efficiently (although the stored compiled macro
facility will eliminate the need for run time
compilation). In some cases it may slow down the
program due to the need to compile code at
execution time. However it will reduce the amount of
coding you actually have to write to accomplish data
tasks. It will provide for easier maintenance,
parameter driven, modularized code. It is true that
the code looks more complicated and requires more
testing but once you learn it, it will be easy and you
will learn to rely upon it and enjoy using the SAS
macro facility. This paper will not cover every aspect

of the macro facility. It will, however, assist the
novice user in developing familiarity and expertise
with SAS macros.

%LET

There are several types of macro statements. The
simplest, but very useful, form of the macro language
is the assignment statement. The assignment
statement in its simplest form looks like:

%LET macvar = text_string ;

This statement creates a macro variable named
macvar and assigns it the value of text_string. Under
most conditions (some of which will be discussed
later) this newly created macro variable is available to
every DATA step and PROC step to follow in the
program. It must be referred to as &macvar and will
evaluate to whatever is in text_string. The %LET
statement may be used outside or within a data step.
 First let us see how you use the macro variable in a
program. Since we are all familiar with the TITLE
statement it will be used to demonstrate the evaluation
of macro variables in programs. Please note that
quotation marks are very significant in working with
macros but there are a few tricks that will help you
code efficiently without errors. Consider program
fragment:

%LET city = Washington ;
TITLE “This city is &city” ;

When the TITLE statement executes it produces the
title:

This city is Washington

Double quotes (") rather than single quotes(') are
significant and necessary and the TITLE statement
with single quotes (') would evaluate with an
undesirable result at execution time as:

This city is &city

If you use quotes when creating a macro variable in
an assignment statement the quotes will be saved as
part of the macro but this may be the desired result:

Code:
%LET city = ‘Washington, DC’ ;
TITLE “The address is &city” ;

The resulting title will look like this:

The address is ‘Washington, DC’

It generally a good idea not to use quotes when
assigning macro variables with the %LET statement
but rather use them as needed when recalling the
macro value. Once assigned in a program (but not
necessarily within a macro definition) the %LET
statement creates a GLOBAL variable that is available
for your use almost anywhere in your program after
the assignment statement. (Global and local variables
will be discussed subsequently under the subheading
of SCOPE.) The macro is recalled by placing an
ampersand(&) before the macro name. To insure
that a macro variable will be available for the entire
SAS session you may mention the variable in a
%GLOBAL statement. Before we go into the scope
of macro variables, it is important to look at some
examples.

The most common uses for macro variables are as
data file names or targets of logical-if statements.
Consider the code:

%LET filemac = WASH ;
%LET city = Washington ;
%LET select = 14;

DATA &filemac; SET scores ;
IF age = &select ;
IF city = “&city”;

The code produced by this set of macro statements is
as follows:

DATA WASH; SET scores;
IF age = 14 ;
IF city = “Washington”;

When executed the program produces a dataset
named WASH with information from the scores
database where age = 14 for the city of Washington.
 The age variable has been defined as numeric in the
Scores dataset. Notice that quotes are not used
because we want the statement to evaluate as:

IF age = 14 ;

Rather than:

IF age = "14" ;

This will prevent numeric to character conversion.
However double quotes are used in the IF “&city” ;

statement because we want it to evaluate with the
quotes as:

If city = "Washington";

There are many macro quoting and unquoting
functions that will facilitate coding character strings
under the most complex situations but these are not
the subject of this paper. Some simple tricks, which
work most of the time concerning the use of quotes,
are as follows:

1. Do not use quotes in assigning macro
variables with the %LET statement.

2. When using the ampersand variables in code
use quotes if the expression should evaluate
to a character string.

3. Do not use quotes if it should evaluate to a
number.

4. Do not use quotes when invoking macro
variables as file names.

In its most basic form the %LET assignment
statements assigns a series of characters to a macro
variable and places that GLOBAL variable into the
global symbol table and makes that GLOBAL variable
(or colloquially referred to as amper-variable)
available to the rest of the program.

What is the advantage of using the %LET statement if
it only substituting character strings in other places in
the program? The macro variable will allow you to
structure your programs in a more readable and
maintainable fashion. Consider multiple TITLE
statements scattered around in many places
throughout your program along with multiple 'select
IFs' or 'WHERE clauses' that subset the data. You
would like the ability to identify the various subsets of
data with an appropriate TITLE statement. By placing
the %LET statements at the beginning of the code
you can easily change cities or selections throughout
the program.

%LET city = ‘Washington, DC’ ;
%LET filen = %substr(&city,2,4);
. . .
DATA &filen; SET scores ;
IF city = "&city";
. . .
PROC PRINT;
TITLE
“Data for the city of &city";

As you build more and more complex programs and
the programs get turned over to others to run the
advantage of this syntax becomes more evident. This
construction will simplify changes and might prevent

errors especially those reruns of long data intensive
programs because the title was displaying the wrong
month or selection criteria.

CONCATENATION

Sometimes we want to build complex expressions with
macro substitutions and combine macros in a linked
series with static text. A simple example would be
building dataset names with an embedded year for
identification. Let’s say we want to build the code
that evaluates to the following:

 DATA Sale1999 Sale1998;
 SET AllSales;
 IF year=1999 then OUTPUT Sale1999;
 ELSE
 IF year=1998 THEN OUTPUT Sale1998;

Converting to macros and parameterizing the code
would look like this:

 %LET curyr=1999;
 %LET preyr=1998;

 DATA Sale&curyr Sale&preyr;
 SET Allsales;
 IF year=&curyr THEN OUTPUT Sale&curyr;
 ELSE
 IF year=&preyr then output sale&preyr;

Note that when Sale&curyr evaluates the result is
Sale1999. There are no spaces in the resulting text
which is exactly what we want. Now let’s build a two
part dataset name for a permanent SAS dataset.

Data Sale&yr..data; set temp;

In this instance we need two consecutive periods
because the first period indicates to the macro word
scanner that it is the end of the macro name
(&curyr.) and the second period is treated as static
text. “In a macro variable reference, the word
scanner recognizes that a macro variable name has
ended when it encounters a character that is not
allowed in a SAS name.”1 The most common
character used is the period. Two macros may be
placed adjacent to each other and will evaluate
properly such as:

%LET pyr=98;
%LET cyr=99;

Data Sale&pyr&cyr;

which evaluates to:

Data Sale9899;

The period is not needed here since the second
ampersand indicates the end of one macro name and
the beginning of another but it may be used for
clarification such as:

Data Sale&pyr.&cyr. ;

Linking macros together in this fashion is very
important in building complex macro expressions.
With these techniques you can build programs that
will always read data for the current and previous
years without having to recode the actual year values
each time you run.

CALL SYMPUT

Before we go on to macro definitions let us remember
that the %LET statement assigns static (non-data step
dependent) text to macro variables. However to put
data from a DATA step into a macro variable you
may use a macro function "SYMPUT". It looks and
sounds complicated but it is really very simple. This
function takes a data value from a DATA step and
puts it into the GLOBAL or LOCAL macro symbol
table. The syntax to get the value of the variable
State from a DATA step into an amper-variable
named mystate is as follows:

DATA one; SET two;
WHERE zipcode='12345';
CALL SYMPUT ('mystate',state);
RUN; ** required ;

PROC PRINT;
TITLE “Zip: 12345 State: &mystate”;

The RUN statement is required in this case. This
code will extract the state value for a particular
zipcode (assuming zipcode and state are variables in
the SAS dataset two) and place it in a GLOBAL
variable for your later use. The evaluation will take
place each time a record is read but only the last
value will be maintained. Therefore, if there are
several records in dataset one only the last
occurrence of state in zipcode '12345' will be kept.
The syntax of CALL SYMPUT looks slightly strange at
first. Remember to use single quotes surrounding the
macro variable name as 'mystate' and place a
variable name or expression as the second
parameter. In the previous example the variable state
was used. As you become more familiar with the
macros and the CALL SYMPUT function you will use
expressions and formats in place of simple variable
names. The following expression will create a macro
variable &mydate that can be used in TITLE
statements or reports. The result is a formatted date
that can enhance the look of output. This example

uses the &sysdate automatic macro variable and
reformats it since the automatic macro variable
&sysdate is in the form 04OCT99. The following
code will convert &sysdate to a longer more readable
format:

data _null_;
CALL SYMPUT ('mydate',
TRIM(PUT("&sysdate"d,worddate22.)));
run;
%put &mydate;

Result: October 4, 1999

Observe the use of the expression “&sysdate”d and
notice the use of double quotes. The expression will
expand to “04OCT99”d when run which is then
reformatted with the PUT() function which is
described in the next section.

%PUT

Another statement that is quite simple but very useful
is the %PUT statement. This statement is very helpful
in debugging code. It may be used virtually anywhere
and will write to the SAS Log any values of user
defined or system defined macro variables such as:

%PUT “City: &city State: &mystate” ;
%PUT “Day of Week: &sysday” ;

This %PUT statement will write to the SAS log:

City: Washington State: DC
Day of Week: Monday

Notice the use of an automatic system generated
macro variable &sysday. Automatic system variables
can always be used in code by preceding the name
with an ampersand as in: &sysdate to get the current
date. Several keywords may be used with the %PUT
statement to write all or part of the GLOBAL symbol
table. These are very helpful in debugging and
testing macros within programs.

To write all global macro variables to the log:

%PUT _GLOBAL_;

To write all user defined global variables to the log:

%PUT _USER_;

To write all user defined local variables (those built
inside macro definitions).

%PUT _LOCAL_;

Each SAS session maintains a series of automatic,
system defined variable such as date and time and

operating system. To write all system defined
automatic variables to the log:

%PUT _AUTOMATIC_

To see the effect of these %PUT statements just
place them anywhere in your code and submit. The
evaluation of the macro will be written to the SAS log
next to the name of the variable.

MACRO DEFINITIONS

Now that you are familiar with GLOBAL variables
such as &city, &sysday (a system defined variable),
and &filemac let us go on to developing macro
definitions which can be used as subroutines in your
program that can be executed at various places and
under various conditions. The simplest form of the
macro definition begins with %MACRO and ends with
%MEND.

%MACRO firstmac;
 %PUT Hello World - ;

 %PUT This is my first ‘Macro’
;

%MEND firstmac;

This macro can be executed or called in a program
with the following line:

%firstmac;

And will produce the following message to the SAS
log:

Hello World –
This is my first 'Macro'

Remember a macro definition begins with %MACRO
mac_name; and ends with %MEND mac_name; The
invocation of that macro somewhere else in the code
is %mac_name. The macro must be defined before
it can be invoked or executed in a program.

Note here that macro definition executions use the
percent(%) in front of the name and macro variables
use ampersands (&). For uncomplicated macros it is
generally easier to use the amper-variable rather than
the %MACRO definition however as you build more
intricate macros the value of the definition style
macro become more evident. Within the macro
definition (between the %MACRO and the %MEND)
you can place any valid SAS code statements or
statement fragments. The macro name

(%mac_name) will expand out when it is executed.
Consider the following sample, which will create code
shorthand for your programs:

%LET avars = height age city ;
%MACRO bvars;
 score1 score2 midterm final
%MEND bvars;

DATA one;
SET two (KEEP = &avars %bvars);

PROC SUMMARY;
CLASS &avars;
VAR %bvars;
OUTPUT OUT = three sum=;

PROC PRINT DATA = three;
VAR &avars %bvars; run;

The code produced by the above macro statements is
as follows:

DATA one;
SET two (KEEP = height age city

score1 score2 midterm
final);

PROC SUMMARY;
CLASS height age city;
VAR score1 score2 midterm final;
OUTPUT OUT = three sum=;

PROC PRINT data = three;
VAR height age city

score1 score2 midterm final;
RUN;

The above example shows that the %LET statement
and the %MACRO statement are similar. Both are
used to define a string of variables that will be used
later in the program. Notice semicolons (;) are not
used inside these macro definitions because we are
trying to generate strings of variable names not full
statements. The main difference between the two
forms of macros(amper- or percent-) is the way they
are invoked. When invoking the macro defined with
the %LET statement you must use an ampersand (as
in &avars) while the %MACRO-%MEND definition
uses a percent sign (as in %bvars). You can place
either version in various places inside the program to
save time and assist in maintaining or modifying
programs. In this case either form is essentially
equivalent and suggests a type of programming style
rather than a correct or incorrect method. It is
generally advisable to use the %LET statement for
simpler definitions and reserve the %MACRO-
%MEND construct for more involved definitions. A
good rule of thumb is to use the %LET statement for
single variables and the %MACRO-%MEND definition
for complicated or just long definitions. An easy way

to build macros and remember the %MEND statement
is to start the macro by coding:

%MACRO mymac ;
%MEND mymac ;

and then fill in the center later. In this manner you
will never forget the %MEND. I always do the same
for if-thens, and do-ends. To say that I never get the
'Unclosed DO blocks’ error message would be lying
but it does cut down on errors.

PARAMETER DRIVEN MACRO DEFINITIONS

The next step is to introduce parameters into the
macro definition that will make them more flexible and
pave the way for data driven selection of code.
Parameters are values that are passed to the macro
at the time of invocation. They are defined in a set of
parentheses following the macro name. When
referred to inside the definition they need preceding
ampersands. There are two styles for coding the
%MACRO parameters: positional and keyword. This
next example shows the positional style:

%MACRO second (xx,yy,zz);
 %PUT Second Mac with &xx &yy &zz;

 PROC PRINT;
 VAR &xx &yy;
 FORMAT &xx &zz. &yy 5.0;
%MEND second;

To invoke the macro use the following syntax with the
variables to be substituted in the proper position:

%second (age,height,3.0);

Notice that you can place variable names or values in
the parameter list when calling the macro. When
executed the &xx, &yy, and &zz are replaced with
the variables and literals that are in the macro calling
statement. When the program executes the
processor sees the code:

%put Second Mac with age height
3.0;

 PROC PRINT;
 VAR age height;

SUM age height;
FORMAT age 3.0 height 5.0;

Note that the format statement evaluates correctly with
the inclusion of a period(.) after the &zz in the code.
You can invoke the macro again with:

%second (height,age,4.2);

to produce another section of code with different
parameters. Remember that the macro definitions
produce 'code'. They do not execute until they are
invoked in the appropriate place in the program with
the %MACRO-name invocation.
SCOPE

When the %LET statements are placed in open code
(outside of any DATA step or %MACRO definition)
the variables they define become GLOBAL. That is to
say they are available to any and all statements that
follow within that SAS session. When a %LET
statement is found within a %MACRO definition and
the same variable has not been previously defined the
variable becomes LOCAL to that %MACRO definition
and is not available outside of that macro unless it is
defined with the %GLOBAL statement such as:

%GLOBAL x ;

If you define a macro variable within a %MACRO-
%MEND definition with the %LOCAL statement that
variable is local to that macro subroutine and will be
placed in the LOCAL symbol table. Its value will not
be passed outside of the definition subroutine to the
main program. The exact hierarchy of global and
local variables and how the buffers are maintained is
complicated but be aware that if you defined a
variable and then get the message: “Apparent
symbolic reference not resolved” then the macro
might have been defined locally and is not available in
the GLOBAL symbol table at the time of invocation.
Be sure the macro was spelled correctly. Be sure
there are run statements after any CALL SYMPUT’s,
and be sure to mention the macro in a %GLOBAL
statement if it was defined inside a %MACRO
definition.

EXPANDING MACRO DEFINITIONS

In the previous example you can see how parameters
can be used to execute code differently in different
places in your program. Now let us see how we can
build macros that will create different code depending
upon the data. For instance let's say you want to
execute a PROC PRINT if there are records in the
dataset but print an error message if there is an
empty dataset. Or you might want to execute a
frequency for one type of data or a means for
another type of data. You can build if-then logic into
the macro definition thereby selectively building code.
 Notice that in the following example several
statements are outside the %IF-%THEN-%DO-%END
logic and will execute for any value of &type. The

correct syntax for IF-THEN logic within a macro
requires a percent (%) before the following elements:
 (%IF, %THEN, %ELSE, %DO, %END). This tells
the macro processor to interpret the %IF's as macro
statements and conditionally generate program code.

%MACRO thirdmac (type , title);
 %PUT Mac3 type=&type Title=&title;

DATA three; SET one ;
IF dat_type = &type;

%IF &type = 1 %THEN %DO;
PROC PRINT;
TITLE “Report for: &title”;
%END;

%ELSE %DO;
PROC MEANS;
TITLE “Sample Statistics for:
&title”;

%END;

run;
%PUT Mac3 Now Finished ;
%MEND thirdmac;

To execute or invoke this macro you might use the
following statement to invoke a PROC MEANS on the
dataset three:

%thirdmac(2,Type 2 Data) ;

The expanded code will look like this at execution
time:

%PUT Mac3 type=2 Title=Type 2 Data;

DATA three; SET one ;
IF dat_type = 2;
PROC MEANS;
TITLE
“Sample Statistics for: Type 2

Data”;
run;
%PUT Mac3 Now Finished ;

PORTABILITY

So far we have discussed simple code and simple
invocations of macros which may well have been
performed without macros and may be just easier to
replicate code instead of trying to be fancy. Now we
will begin to look at situations where macros really
make things easier. Let’s say you want to develop
code that will run in both a Unix and a Windows
environment. No problem for the SAS System, you
say, just remember to change the file names. Well
when you have hundreds of files it becomes a
problem. You can develop a series of macros that

determine which operating system is active and build
the file names accordingly. These macros are
slightly tricky and require some testing but can save
many hours of changing LIBNAMEs and FILENAMEs
each time you run since the programs become truly
portable. Here is a simplified example:

%MACRO nameit ;
%LET path = mypath;
%LET file = FILENAME;
%IF &sysscp = WIN
%THEN %LET DLM = \ ;
%ELSE %LET DLM = / ;

%IF &sysscp = WIN
%THEN %LET DIR = c:\sas;
%ELSE %LET DIR = m:/unix/direc ;

%LET libnm = &dir.&dlm;
%LET flnm =

&dir.&dlm.&path.&dlm.&file..dat;

FILENAME file1 “&flnm”; ** note double
quotes;
LIBNAME lib1 “&libnm”;
%MEND nameit ;

The macro variable &sysscp is a SAS automatic
macro variable that contains the name of the
operating system. Notice the period(.) after the
invocation of the &dir variable. This is necessary to
indicate the end of the local variable &dir and the
start of the next variable &dlm. If you actually want a
period in the file name such as FILENAME.ext you
must use two periods as in the flnm definition. When
invoked the macro %nameit will produce the correct
LIBNAME and FILENAME statements depending
upon the operating system. The double quotes will
enable the macro to evaluate properly in a SAS
program, which requires FILENAMEs to be in quoted
strings. When invoked with %nameit the following
code results:

For Windows:

FILENAME file1
“c:\sas\mypath\mydata.dat”

;
LIBNAME lib1 “c:\sas\” ;

For UNIX:

FILENAME file1
“m:/unix/direc/mypath/mydata.dat”

;
LIBNAME lib1 “m:/unix/direc/”;

MACRO ARRAYS

As we have seen the %DO and %IF statements in the
macro facility enable us to create long statements
and code with little effort. The %DO statement has
various forms (%DO-%WHILE, %DO-%UNTIL) and
the iterative %DO as shown below:

%MACRO arrayme;
%DO i = 1 %TO 5;

file&i
%END;

%MEND arrayme;

DATA one; SET %arrayme;

The macro evaluates to the following at execution
time:

DATA one;
SET file1 file2 file3 file4

file5;

In this macro we generate a list of 5 file names. The
values of 1 to 5 are substituted in the expression
file&i to produce (file1 file2 file3 file4 file5). The
above code will set five files into dataset one.

DOUBLE AMPERSANDS

In our previous example our files were named file1,
file2, file3, file4, and file5. Let us suppose that our
files are named for the state data that they contain. It
will be necessary to build code that has amper
variables in it. If we have 5 macro variables defined
as follows:

%LET a1=KS;
%LET a2=MD;
%LET a3=CA;
%LET a4=NY;
%LET a5=KY;

We can generate code that will set all these files into
one file as before but with the correct file names.

%MACRO stname;
%DO i = 1 %TO 5 ;
 &&a&i
%END;

%MEND stname;

DATA one; SET %stname;

The first pass of the macro processor creates the
variables &a1-&a5 and the second pass evaluates the

amper-variables to their text strings (KS MD CA NY
KY). We actually want to build code that looks like:

&a1 &a2 &a3 &a4 &a5

The macro processor evaluates each occurrence of
multiple ampersands on a separate pass so the
double ampersands give the desired effect.
Consider this example of census data and its solution.
We have a data file of several million records
containing the names, information and zipcodes of
residents a region of the US. We want to merge this
with zipcode information. The zipcode information is
divided into 50 files, one for each state. You
guessed it the file names are the names of the states
like AZ, KS, NY etc. These zipcode files are too big
to set together and merge with the regional resident
file so we use macros to select only those state
zipcode files of the states that are contained in the
regional residents file. Of course there are many
approaches but this is just one using macros.

DATA _NULL_;
SET region(KEEP=state) END=eof;
LENGTH st_mac $ 150 ;
RETAIN st_mac ' ' num_st 0 ;
IF INDEX(st_mac,state)=0 THEN DO;

 num_st=num_st+1;
 st_mac=trim(st_mac)||'
'||state;

END;
IF eof THEN

CALL SYMPUT ('st_mac',st_mac);
RUN;

 ** now select only state zipcode files
we need **;

DATA regzip;
SET &st_mac ;

PROC SORT;
BY zip;

DATA region;
MERGE region regzip;
BY zip;

RUN;

The DATA _NULL_ step builds a string of state file
names with each new state it reads from the region
dataset. It checks with the index function to be sure it
has not already added that state to the string. The
amper-variable &st_mac becomes a string of unique
state names like (AK KS CA NY) depending upon
which states are in the regional residents file. You
must set the initial length to 150 to leave enough room
for 50 states. Also you must trim the result before
added a new state otherwise the string will be greater
than 150. In this manner we can build macro strings
based upon the data without knowing ahead of time

what states are in the dataset. As we combine these
various techniques we can build programs that
generate code based upon the incoming data.

STORING MACRO DEFINITIONS

Normally when you submit a program containing a
macro definition the macro processor compiles and
stores the executable version of the macro in a
catalog in the WORK library. These “session
compiled macros” will not be saved when the session
ends. There are several ways, however, that you
may save macros for reuse at a later time. The
simplest way would be to save the macro in a library
and %INCLUDE that saved macro when needed. A
slightly more sophisticated approach is to use the
“autocall library”. On directory based systems like
Unix and Windows you can build autocall library by
creating a separate subdirectory and save definition
style macro source code in this directory. Each
macro (as defined by the standard %MACRO-MEND
construct) should be stored in an individual and
separate file named the same as the name of the
macro. The steps are as follows:

1. Build and test a macro named macname.
2. Insure that all variables are created with the

appropriate scope so that variables designed
outside of the macro are not unknowingly
changed.

3. Save macname to subdirectory c:\sas\mymacs
(or any valid subdirectory on your system).
Macros can also be saved in SAS catalogs as
source entries.

4. When needed in a subsequent program define
the autocall library and turn on the autocall facility
with:

OPTIONS MAUTOSOURCE
SASAUTOS=‘c:\sas\mymacs’;

** for catalog entries use this
*;
LIBNAME mymacs ‘c:\sas\mymacs’;
FILENAME mimac catalog
‘mymacs.macname’;
OPTIONS MAUTOSOURCE
SASAUTOS=mimac;

5. Call the macro with:

%macname

6. Subsequent Macros in the library may be called
throughout the session.

Another way to save macros for future use is with the
stored compiled macro facility. This method stores
only a compiled version of the macro. The macro is
not recompiled at execution time and can be more
efficient for production systems. The exact syntax

may vary from platform to platform but looks similar to
this windows example:

%MACRO macname / store ;
 %put Hello World ;
%MEND;

Invocation is accomplished with:

LIBNAME lib1 ‘c:\sas\compiled’;
OPTIONS MSTORED SASMSTORE=lib1;

The stored compiled macro facility should only be
used for well tested macros that will be used over and
over on a regular basis. The source code must be
stored separately and can not be recovered from the
compiled version.

DEBUGGING TECHNIQUES

Debugging a macro is about the same as debugging
regular SAS code. Many times the error can be
masked or compounded. Here are a few tips:
• Make sure statements match such as %MACRO-

%MEND, %DO-%END, %IF-%THEN-%ELSE.
• CALL SYMPUTS will not execute until a RUN or

another step is encountered.
• Be careful about balancing single and double

quotes.
• Use %LOCAL and %GLOBAL when clarification

of scope is necessary.
• Use the SYMBOLGEN and MACROGEN options

to trace what the macro is doing.
• Use %PUT statements during testing including

%PUT _USER_ ;
• Be careful to spell all keywords including

macronames correctly.
•

CONCLUSION

We have seen how you can use the SAS Macro
Facility to enhance your programs. Starting with the
%LET statement and advancing to macro definitions
we have learned that macros enable you to build
complex and repetitive code with ease. Macro
variables and macro definitions must be defined
before they can be invoked. Macros are essentially
strings of data saved in a buffer available to every

subsequent data step or procedure in the current
SAS session (or job step). The execution of macros
in code is simply a replacement of the code
generated by the macro definition at the point where
it is invoked. The use of macros in SAS code can
streamline your programs and enable you to
modularize your code. It will assist you in developing
parameter driven and data driven programs that will
require less maintenance. I hope this short
presentation will assist you in developing elaborate
and convenient reusable code. The use of macros
should only be limited by your imagination.

FOOTNOTES

1. p29: SAS Institute Inc., SAS® Guide to Macro
Processing, Version 6. Second Edition, Cary,
NC: SAS Institute Inc., 1990

2.

REFERENCES

SAS Institute Inc., SAS® Guide to Macro Processing,
Version 6. Second Edition, Cary, NC: SAS Institute
Inc., 1990

SAS Institute Inc., SAS® Macro Language:
Reference, First Edition, Cary, NC: SAS Institute
Inc., 1997

Michael G. Sadof
MGS Associates, Inc. A SAS® Quality Partner
6203 Yorkshire Terrace
Bethesda, MD 20814
(301) 530-2353
msadof@ix.netcom.com

SAS is a registered trademark or a trademark of the
SAS Institute Inc. in the USA and other countries. ®
indicates USA registration.

Other brand and product names are registered
trademarks or trademarks of their respective
companies.

