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Abstract

We consider causality as a domain-general intuitive theory
and ask whether this intuitive theory can be learned from co-
occurrence of events. We begin by phrasing the causal Bayes
nets theory of causality, and a range of alternatives, in a logi-
cal language for relational theories. This allows us to explore
simultaneous inductive learning of an abstract theory of causal-
ity and a causal model for each of several causal systems. We
find that the correct theory of causality can be learned rela-
tively quickly, often becoming available before specific causal
theories have been learned—an effect we term the “blessing of
abstraction”. We then explore the effect of providing a vari-
ety of auxiliary evidence, and find that a collection of simple
“input analyzers” can help to bootstrap abstract knowledge.
Together these results suggest that the most efficient route to
causal knowledge may be to build in not an abstract notion of
causality, but a powerful inductive learning mechanism and a
variety of perceptual supports. While these results are purely
computational, they have implications for cognitive develop-
ment, which we explore in the conclusion.

Keywords: Causality, hierarchical Bayesian model, innate-
ness.

Introduction

What allows us to extract stable causal relations from the
stream of experience? Hume believed that it was the princi-
ple of association: constant conjunction of events follow from
an underlying association; from this principle, and observed
events, one may infer a causal association. Recent research
in psychology (Pearl, 2000; Gopnik et al., 2004) and philos-
ophy (Woodward, 2003) has established the interventionist
or causal Bayes nets (henceforth CBN) account of causality
as a description of the principles by which causal reasoning
proceeds. These principles include a directed, probabilistic
notion of causal dependence, and a privileged role for un-
caused manipulation—the interventions, which include ac-
tions and experimental manipulations. The CBN framework
leads to quicker, more reliable learning than weaker assump-
tions about the nature of causation, and has been successful
at predicting human learning (e.g. Gopnik et al., 2004). In
recent discussions of the psychological basis of causality it is
often assumed that the principles of CBN, or some variant,
are an innate resource. In this paper we will argue there is
an alternative: that the principles guiding causal understand-
ing in humans can be seen as an intuitive theory, learnable
from evidence out of more primitive representations. Our ar-
gument, which will proceed via an ideal learner analysis, can
be seen as both an investigation into the psychological basis
of causality, and a case-study of abstract learning and the role
of innate structure in Bayesian approaches to cognition.

We have previously proposed that intuitive theories—
systems of abstract concepts and laws relating them—can be
represented in a “language of thought” which includes as-

pects of probability and logic (Kemp, Goodman, & Tenen-
baum, 2008; Tenenbaum, Griffiths, & Niyogi, 2007; Good-
man, Tenenbaum, Griffiths, & Feldman, 2007). Because the
assumptions of CBN are formalizable via probability and
logic, they are potentially expressible in such a language for
intuitive theories. This suggests the hypothesis that CBN
is not an innate resource, but is itself an intuitive theory of
causality, learned inductively from evidence and represented
in a more basic language of theories.

A theory of causality would have several properties un-
usual for an intuitive theory. First, it would be domain-
general knowledge. Intuitive theories are typically thought of
as domain-specific knowledge systems, organizing our rea-
soning about domains such as physics or psychology, but
there is no a priori reason to rule out domain-general knowl-
edge. Second, a theory of causality would have to be acquired
remarkably early in development. There are intriguing hints
that aspects of causal knowledge are present from early in-
fancy, but little evidence that a full notion of cause is innate
(Saxe & Carey, 2006). Yet if a theory of causality is to un-
derly the acquisition of specific causal knowledge it must be
available within the first year of life. Could such an abstract
theory be learned from evidence so rapidly, even in principle?
To investigate this question we turn to hierarchical Bayesian
modeling.

The formalism of hierarchical Bayesian modeling makes
it possible to express the assumptions relating knowledge at
multiple levels of abstraction (Gelman, Carlin, Stern, & Ru-
bin, 1995), and Bayesian inference over such a model de-
scribes an ideal learner of abstract knowledge (Tenenbaum,
Griffiths, & Kemp, 2006). Though real learning is undoubt-
edly resource-constrained, the dynamics of an ideal learner
can uncover unexpected properties of what it is possible to
learn from a given set of evidence. For instance, it has
been reported (e.g. Kemp, Perfors, & Tenenbaum, 2007) that
learning at the abstract level of a hierarchical Bayesian model
is often surprisingly fast in relation to learning at the more
specific levels. We term this effect the blessing of abstrac-
tion': abstract learning in an HBM is often achieved before
learning in the specific systems it relies upon, and, as a result,
a learner who is simultaneously learning abstract and specific
knowledge is almost as efficient as a learner with an innate
(i.e. fixed) and correct abstract theory. Hierarchical Bayesian
models have been used before to study domain-specific ab-
stract causal knowledge (Kemp, Goodman, & Tenenbaum,
2007), and simple relational theories (Kemp et al., 2008).
Here we combine these approaches to study knowledge of

ICf. the “curse of dimensionality”.



Law #1: Vx ¥y A(x) — =R(y,x)

Law #2: Vx A(x) — Ay R(x,y)

Law #3: Vx Fi(x) — A(x)

Law #4: Vx B (x) — A(x)

Law #5: Vx Vy R(x,y) V R(y,x) V x=y
Law #6: Vx ¥y =R(x,y)

Law #7: Vx Ay R(x,y)

Law #8: Vx Ay R(y,x)

Law #9:  Vx Vy Vz R(x,y) AR(y,z) — R(x,z)
Law #10: Vx Vy A(x) — —R(x,y)

Law #11: Vx dy =A(y) AR(y,x)

Interventions are exogenous.
Interventions have at most one child.
Feature 1 is diagnostic for interventions.
Feature 2 is diagnostic for interventions.
Dependence graph is fully connected.
Dependence graph is unconnected.
Variables have at most one child.
Variables have at most one parent.
Dependence graph is transitive.
Interventions have no children.
Variables have at most one non-intervention parent.

Figure 1: Eleven laws that can be expressed in the language for theories. The informal gloss on the right describes what each law might mean

within a theory of causality.

causality at the most abstract, domain general level.

We will also explore the possibility that learning at the ab-
stract level in an HBM, and the blessing of abstraction, can
be substantially aided by providing appropriate low-level fea-
tures in the input. Our motivation for considering this possi-
bility is a suggestion by Carey (2009) that part of infants’
core knowledge is in the form of perceptual input analyzers:
modules that perform simple transformations of raw percep-
tual input, making it suitable for conceptual cognition. We
hypothesize that these perceptual input analyzers do not pro-
vide abstract conceptual knowledge directly, but instead serve
to make latent abstract concepts more salient and thus more
learnable. For instance, the feeling of self-efficacy, advo-
cated by Maine de Biran as a foundation of causality (see
discussion in Saxe & Carey, 2006), could be an analyzer
which highlights events resulting from one’s own actions,
making the latent concept of intervention more salient. Al-
together this suggests a novel take on nativism—a “minimal
nativism”—in which strong, but domain-general, inference
and representational resources are aided by weaker, domain-
specific perceptual input analyzers.

In the following sections we first formalize aspects of CBN
within a logical language for intuitive theories. We then study
the ideal learner of causal knowledge, investigating the speed
of learning at different levels of abstraction, and the effect of
perceptual input analyzers on learning speed.

Theories of causality

Causality governs the relationship between events. Formaliz-
ing this, the world consists of a collection of causal systems,
in each causal system there is a set of observable causal vari-
ables. Causal systems are observed on a set of trials—on
each trial, each causal variable has a value. (We will call an
observation of a causal variable on a particular trial an event.)

The causal Bayes nets theory of causation (Pearl, 2000) de-
scribes the structure of dependence between events, isolating
a special role for a set of interventions. CBN can be seen as a
collection of assumptions about causal dependence: (CBN1)
Dependence is directed, acyclic, and can be quantified as con-
ditional probability. (CBN2) There is independence / indirect

dependence. (CBN3) There is a preferred set of variables, the
“interventions”, which are outside the system—they depend
on nothing. (CBN4) Interventions influence only one vari-
able. (CBN5) The intervention set is known for each causal
system. In addition, assumptions are often made about the
functional form of dependence (for instance, that interven-
tions are “arrow breaking”). For simplicity we will address
only the aspects of this theory that determine the structure of
the dependency relation and will assume (CBN1).

A language for theories of causal dependence

We wish to specify a hypothesis space of alternative theo-
ries of the dependency relation, R. This space should contain
CBN and a wide set of alternative theories, and should build
these theories by combining simple primitive units. Kemp et
al. (2008) proposed a very flexible language for expressing
relational theories, which is a small extension of first-order
logic, and used this language to predict the inductive gener-
alization of human learners in a novel domain. We propose
that a version of this language can be used to capture domain-
general knowledge, including (aspects of) a theory of causal-
ity.

The language we use contains logical operators: quanti-
fiers over causal variables—“for all” (V), “there exists” (3),
and “there exists at most one” (4)—and logical connectives—
not (—), and (A), or (V), if (+). In addition to the logical
operators, and the causal dependence relation R(-, -), the lan-
guage contains invented predicates and observed predicates.
Invented predicates are not observable, or pre-defined, but
have a conceptual role in the theory. We restrict in this paper
to at most one invented predicate, A(-); this predicate need
not a priori relate to causality in an interesting way, but it
will play the role of defining intervention in the correct the-
ory. Finally, the two predicates, F;(-), are observable features
of variables. These can be thought of as perceptual input ana-
lyzers extracting some feature of events?, which may or may
not be useful in a theory of causality.

21t is most realistic to think of input analyzers operating at the
level of specific events; we idealize them as features of causal vari-
ables (i.e. types of events).



Fig. 1 gives examples of laws that can be expressed in this
language. These laws include those needed to capture the
CBN theory of causality, as well as a variety of plausible vari-
ants describing alternative restrictions on dependency. Within
this set of laws (CBN3) corresponds to Law #1; (CBN4) cor-
responds to Law #2; (CBNS5) follows from Laws #3 and/or
#4 when the features can be used to identify interventions;
(CBN2) is the lack of Laws #5 or #9.

A hierarchical Bayesian model

To ground this language for theories into observed events in
a set of causal systems, we construct a hierarchical Bayesian
model with theories of causality at the most abstract level and
events at the most specific level (Fig. 2). We first describe the
generative process of this model, then we describe the ideal
learner by inverting this process using Bayes’ rule.

Generating a theory A causal theory—represented in the
theory language described in the previous section—is drawn
from the prior distribution over theories, P(T'). We take P(T)
to be uniform over theories (of size less than some maxi-
mum). While a representation-length prior (see Kemp et al.,
2008) would naturally capture a bias for simpler theories, we
choose a uniform prior in order to focus on the dynamics of
learning driven entirely by the hierarchical setup.

Generating causal models Next a causal model is gener-
ated for each causal system s. A causal model is an instantia-
tion of each predicate in the theory—R; and, if it is used, A;.
Following (Kemp et al., 2008), we will assume that the distri-
bution on causal models, P(Ay,R;|T), is uniform over those
consistent with 7—that is, the instantiations of R, and A, that
satisfy the logical laws of T'.

Generating events Each causal model in turn generates ob-
served events (a value for each variable) for a set of trials.
The probability of generating a series of trials D = {d, } from
a system with causal relation R is given by:

P(D|R) = / [1P(d|R, ©)P(6]0)d® 0

Where the conditional probability tables, ®, list the probabil-
ity of each event given each set of values for its parents in R.
We make the weak assumption that each entry of ® is drawn
independently from a symmetric-beta distribution with hyper-
parameter o. The integral in Eq. 1 is a product of standard
beta-binomial forms, which can be integrated analytically.

Theory induction

The ideal Bayesian learner infers a posterior belief distribu-
tion over theories from a set of observed trials across a range
of causal systems. The posterior probability of a theory, T,
given data, D = {D;} is given by:

P(T|D) o< P(D|T)P(T) 2
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Figure 2: The hierarchical Bayesian model, and examples of the
information at each level. The causal dependence relation R(-,-)
is shown as directed edges between variables (circles), the latent
predicate A(-) is shown as shading of the variables. Binary events
for each system, trial, and variable are shown as contingency tables.

Where the likelihood is given by:
P(D|T) = []P(D,|T)
N

=TTY P(DiJAR)P(ARIT) 3)

s AR

= HZP(DAR)P(A,R‘T)
s AR
System marginals The effect of an abstract theory on
learning in a specific system, s, may be described by the pos-
terior belief distribution over R;. If we fix a theory, T, and
use this to provide the prior over Ry, the posterior is given by:

P(Rs|T,Dy) o P(Ds|Rs)P(Rs|T) )

If the theory is not fixed, but is learned simultaneously with
the causal systems, we may still want to capture what has
been learned about one specific system within the hierarchical
setup. This is given by the posterior marginal of R;:

P(R|D) = ZT:P(RSIT,D)P(TID)

=Y P(R,|T,D;)P(T|D) (5)
T

Ideal learner simulations

To investigate the dynamics of learning in the theory induc-
tion framework outlined above, we performed a series of sim-
ulation studies.

The probability landscape of this model is complex, mak-
ing it difficult to accurately characterize learning at all levels
of abstraction. To ensure correct results, we chose to imple-
ment the learning model by explicit enumeration over theo-
ries and causal structures. To make this enumeration possible
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Figure 3: (a) Rank of the correct theory, mean and 10th/90th percentiles across 100 model runs. (b) Rank of the correct causal structure
(mean over systems and runs), given no theory, fixed correct theory, and simultaneously learned theory. Learning abstract knowledge always
helps relative to not having a theory, and is quickly as useful as an innate, correct theory. (c) The probability of correct learning: the fraction
of systems in which the correct structure has been learned (is at rank 1), and the fraction of runs in which the correct theory has been learned.
(In each run there were 50 systems, and one feature perfectly diagnostic of interventions. Hyperparameter a=0.5.)

we restricted to theories which can be formed as a conjunc-
tion of at most five of the laws shown in Fig. 1, and to sys-
tems of only four variables. (Counting only theories with a
satisfying causal model, there are 691 theories in the set we
considered. There are 543 possible causal structures R, and
16 possible intervention sets A.)

For each run of the model we generated evidence for the
learner by first choosing one variable in each system to be
an intervention, then generating a causal model for each sys-
tem (consistent with the correct, CBN, theory of causality)
and data for each trial according to the generative process de-
scribed above. We initially fixed the number of systems to
50, and included one feature which correlates perfectly with
intervention and another which is uncorrelated with interven-
tion; we consider the effect of varying these conditions below.

We explore the dynamics of learning by varying the
amount of evidence given to the learner, as measured by the
total number of samples (i.e. trials) across all systems, with
each system given the same number of samples. The ideal
Bayesian learner is able to learn the correct theory, given suf-
ficient evidence (Fig. 3a). This, by itself, is unsurprising—
indeed, Bayesian induction is guaranteed to converge to the
correct hypothesis in the limit of an infinite amount of evi-
dence. It is more interesting to see that learning the correct
theory appears relatively quick in this model (being achieved
with fewer than 30 samples per system in most runs).

The blessing of abstraction

Abstract knowledge acts as an inductive bias, speeding the
learning of specific causal structure. Fig. 3b shows the mean
rank of the correct causal structure across systems with no
abstract theory (i.e. a uniform prior over causal relations),
with innate (i.e. fixed) correct theory, and with learned the-
ory (i.e. with the theory learned simultaneously with spe-
cific causal models). We see, as expected, that the correct
abstract theory results in quicker learning of causal struc-

ture than having no theory. Comparing the learned-theory
curve to the no-theory curve, we see that abstract knowl-
edge helps at all stages of learning, despite having to learn
it. Comparing the learned-theory curve with the innate-theory
curve shows that by around 60 samples per system the theory
learner has matched the performance of a learner endowed
with an innate, correct theory. Thus, the abstract layer of
knowledge can serve a role as inductive bias even when the
abstract knowledge itself must be learned—Ilearning a theory
of causality is as good (from the perspective of causal model
learning) as having an innate theory of causality.
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Figure 4: The posterior log-probability of the correct theory as a
function of total number of samples across systems, for different
numbers of systems. Each curve starts at 2 samples per system.
Learning is best when evidence is gathered from many systems, even
when only a few samples are taken in each system.

How can abstract knowledge appropriately bias specific
learning, when it must be learned itself? Comparing Fig. 3a
to Fig. 3b suggests that the correct theory is learned before
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Figure 5: Learning curves for the eleven laws of Fig. 1.

most of the correct causal structures. In Fig. 3¢ we have in-
vestigated this by plotting the probability of learning (defined
as the correct hypothesis being most probable), at the lev-
els of both systems and theories. We see that learning at the
abstract theory level is much faster than at the system level.
Further, the time to correct learning at the system level is al-
most identical for innate-theory and learned-theory, which are
both faster than no-theory. This illustrates the fact that ab-
stract learning is not bottom-up, waiting on specific learning;
instead, learning is being carried out at all levels simultane-
ously, and here abstract knowledge is often learned before
specific knowledge. Note that this effect is not due to the
relative size of hypothesis spaces (we consider 691 theories
and 542 specific causal structures), nor a “helpful” choice of
prior (we use a maximum entropy—uniform—prior on the-
ories, and for the no-theory case a similar prior on specific
systems). Rather, this effect is driven by the ability of the
higher level of the model to learn from a wide range of evi-
dence drawn from multiple systems.

To confirm that breadth of evidence is important, we con-
sider the effect of distributing the same amount of evidence
among a different number of systems—is it better to spend ef-
fort becoming an expert in a few systems, or to be a dilettante,
learning only a small amount about many systems? Fig. 4
shows the result of varying the number of systems, while
matching the total number of samples (resulting in differing
numbers of samples per system). Learning is fastest when
evidence is drawn from a broad array of causal systems, even
when only a few samples are observed in each system. In-
deed, at one extreme learning is very slow when only five
systems are available. At the other extreme, learning from
500 systems is quick overall, and ““catches up” to other con-
ditions after only three samples per system.

Turning to the dynamics of learning for individual laws,
Fig. 5 shows the marginal probability of each of the eleven
laws in Fig. 1. Law #3, relating interventions to the ob-

served predicate Fi, is learned first, but is closely followed
by Law #1, which defines the main role of interventions in
CBN. Slightly later, Law #2—specifying that interventions
effect only one variable—is learned. All other laws slowly
drop off as the correct theory becomes entrenched. The grad-
ual learning curves of Fig. 5, which are averaged over 100
runs of the model, belie the fact that learning of the laws was
actually quite abrupt in most runs. Though the exact timing
of these learning events was distributed widely between runs,
the order of acquisition of the laws was quite consistent: in
two-thirds of runs Laws #1 and #3 were learned almost simul-
taneously, followed later by Law #2. (To be precise, in 92%
of runs Law #2 was learned last, as measured by number of
samples required to cross probability 0.75; of these runs, Law
#1 led Law #3 on 59% of runs, but the two laws were learned
within one step of each other on 74% of runs.) This obser-
vation may be significant given that cognitive development is
characterized by wide variation in timing of acquisition, but
remarkable consistency in order of acquisition.

A minimal nativism

Thus far we have assumed that there is an observed feature
which can be used to tell when a variable is an interven-
tion. We can imagine that this feature provides informa-
tion extracted from perception of the observed events—that
is, it results from an input analyzer (Carey, 2009): an in-
nate mechanism that performs simple transformations of per-
ceptual evidence. A number of relatively simple input ana-
lyzers could provide features useful for identifying interven-
tions. For instance, the feeling of self-efficacy discussed by
Maine de Biran, or, more broadly, an innate agency-detector
able to identify the actions of intentional agents (see Saxe &
Carey, 2006). Critically, none of these simple input analyzers
is likely to identify all interventions (or even most), and they
are likely to be mixed together with features quite un-useful
for causal learning.

We simulated learning under several different “input ana-
lyzer” conditions varying in: the number of useful features
(the remaining feature(s) were distractors), what portion of
intervention variables could be identified from the useful fea-
tures, and the overlap between features. In Fig. 6 we have
plotted the marginal probability of the “intervention” portion
of the correct theory—Laws #1 and #2, which govern the role
of interventions in determining causal dependency, indepen-
dent of the identification of interventions. We see that learn-
ing is extremely slow when no features are available to help
identify interventions. In contrast, learning is about equally
quick in all other conditions, depending slightly on the cov-
erage of features (the portion of interventions they identify)
but not on how this coverage is achieved (via one or multi-
ple features). Thus, even a patchwork collection of partial
input analyzers, which pick out only a portion of intervention
variables, is sufficient to bootstrap abstract causal knowledge;
learning can be relied on to pick the useful features from the
distractors and to sort out the underlying truth that each par-
tially represents.
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Figure 6: The marginal probability of the correct theory of interven-
tion (i.e. Laws #1 and #2) given different sets of “input analyzers”:
each condition has two features which are diagnostic of intervention
variables to the extent indicated (e.g. “F1 50%” indicates that the
first feature covers half of interventions). In the 50%/25% case the
two features overlap, otherwise they are disjoint. Learning is diffi-
cult when no diagnostic features are present, but quite rapid under
all other conditions.

Discussion and conclusion

We have studied an ideal Bayesian learner acquiring aspects
of a domain-general intuitive theory of causality. This the-
ory and a wide set of alternatives were represented in a “lan-
guage of thought” for relational theories, based upon first-
order logic. We found that the correct theory of causality can
be learned from little evidence, often becoming available be-
fore specific causal models have been learned. This enabled
the learned abstract knowledge to act as an inductive bias
on specific causal models nearly as efficiently as an innately
specified theory. However, this “blessing of abstraction” it-
self relied on a set of observed event features that served to
make the latent concept of intervention more salient.

The abstractness of a theory of causality proved not to hin-
der learning, given a rich language of thought and a pow-
erful inductive learning mechanism. We found that abstract
learning was fastest when evidence was drawn from a wide
variety of causal systems, even if only a small number of ob-
servations was available for each system. Because a domain-
general theory is able to draw evidence from the widest set of
experiences, this suggests that domain-general intuitive theo-
ries may, in some cases, be easier to learn than their domain-
specific counterparts. In future work we plan to investigate
further the effects of distribution and variety of evidence.

Though we have argued that causality may be learnable,
our results should not be taken to support an entirely empiri-
cist viewpoint. We endow our learner with a rich language
for expressing theories and a strong inductive learning mech-
anism. These are both significant innate structures, though
ones that may be required for many learning tasks. In ad-
dition, we have shown that the domain-general mechanisms

for learning and representation are greatly aided by a col-
lection of domain-specific “perceptual input analyzers”. It
may be ontogenetically cheap to build innate structures that
make some intervention events salient, but quite expensive
to build an innate abstract theory (or a comprehensive ana-
lyzer). Since a powerful learning mechanism is present in
human cognition, the most efficient route to abstract knowl-
edge would then be by bootstrapping from these simple, non-
conceptual mechanisms. Thus we are suggesting a kind of
minimal nativism: strong domain-general inference and rep-
resentational resources, aided by weak domain-specific per-
ceptual input analyzers.

Our results are purely computational, at the level of ideal
learning, but they provide a viewpoint that we believe will
be useful for empirical research in cognitive development.
When young infants behave as if they have a piece of abstract
knowledge, it is tempting to conclude that this knowledge is
innate. This tendency may misguide—we have shown that
abstract knowledge of causality, at least, can be learned so
quickly that it might seem to be innate. On the other side,
where innate structure is required to explain complex cogni-
tion, it is often assumed to be abstract conceptual knowledge
(Carey, 2009). This should also be approached with care—
simpler innate structures, without conceptual content, may be
sufficient when paired with a powerful learning mechanism.
Finally, the most obviously acquired systems of conceptual
knowledge are coherent explanations of a single domain, yet
it may often be the broader domain-general intuitive theories
which are acquired earliest and are most fundamental.
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