
UML Class Diagrams - Introduction

UML class diagrams allow us to denote the static contents of — and the relationships between — classes.
This reading is adapted from Robert Martin’s book.

UML class diagrams allow us to denote the static contents of — and the relationships between — classes.
In a class diagram we can show the member variables, and member functions of a class. We can also show
whether one class inherits from another, or whether it holds a reference to another. In short, we can depict
all the source code dependencies between classes.
This can be valuable. It can be much easier to evaluate the dependency structure of a system from a
diagram than from source code. Diagrams make certain dependency structures visible. We can see
dependency cycles, and determine how best to break them. We can see when abstract classes depend
upon concrete classes, and determine a strategy for rerouting such dependencies.
The Basics
Classes

Above shows an elementary form of class diagram. The class named Dialer is represented as a rectangle.
This diagram represents nothing more than the code shown to its right.

This is the most common way you will represent a class. The classes on most diagrams don't need any
more than their name to make clear what is going on.

A class icon can be subdivided into compartments. The top compartment is for the name of the class, the
second is for the variables of the class, and the third is for the methods of the class. This example shows
these compartments and how they translate into code.

Class icon compartments with corresponding code.

Notice the character in front of the variables and functions in the class icon. A dash (–) denotes private, a
hash (#) denotes protected, and a plus (+) denotes public.

UML Class Diagrams - Introduction

The type of a variable, or a function argument is shown after the colon following the variable or argument
name. Similarly, the return value of a function is shown after the colon following the function.

This kind of detail is sometimes useful, but should not be used very often. UML diagrams are not the
place to declare variables and functions. Such declarations are better done in source code. Use these
adornments only when they are essential to the purpose of the diagram.

Association
Associations between classes most often represent instance variables that hold references to other objects.
For example, below we see an association between Phone and Button. The direction of the arrow tells us
that Phone holds a reference to Button. The name near the arrowhead is the name of the instance variable.
The number near the arrowhead tells us how many references are held.

Above we saw that 15 Button objects were connected to the Phone object. In the next example below, we
see what happens when there is no limit. A Phonebook is connected to many PhoneNumber objects. The
star means many. In Java this is most commonly implemented with a Vector, a List, or some other
container type.

Noticed we avoid using the word “has”. We could have said: “A Phonebook has many PhoneNumbers.”
This was intentional. The common OO verbs HASA and ISA have special meanings. Some people
engage in “hasa” and “isa” analyses that identify what properties an object has (“tom has a cat”) and what
an object is (“the cat is a kind of animal). Consequently, we try to find more precise verbs to describe the
action: terms that are descriptive of what actually happens in software, such as: “is connected to.”

Inheritance
There are many kinds of arrows used in UML - be aware!

UML Class Diagrams - Introduction

The little arrowhead pointing at Employee denotes inheritance [or “generalization” in C++]. If you draw
your arrowheads carelessly, it may be hard to tell whether you mean inheritance or association. To make
it clearer, I often make inheritance relationships vertical and associations horizontal.

In UML all arrowheads point in the direction of source code dependency. Since it is the
SalariedEmployee class that mentions the name of Employee, the arrowhead points at Employee. So,
in UML, inheritance arrows point at the base class.

UML has a special notation for the kind of inheritance used between a Java class and a Java interface. It is
shown blow as a dashed inheritance arrow. [Some people just skip using dashes that point to interfaces.
Dashes are used often UML, tho, for other purposes.

Below is another way to convey the same idea. Interfaces can be drawn as little lollipops on the classes
that implement them. We often see this kind of notation in COM (Communications) designs.

An Example Class Diagram
Here is a class diagram of part of a bank’s ATM system. This diagram is interesting both for what it
shows, and for what it does not show. Note that all the interfaces. [Some designers believe this ensures
that programmers know what classes are intend to be interfaces and which are intended to be
implemented. For example, the diagram immediately tells you that WithdrawalTransaction talks to a
CashDispenser interface. Clearly some class in the system will have to implement the
CashDispenser, but in this diagram we don’t care which class it is.

UML Class Diagrams - Introduction

Note that this all is kinda sloppy ‘cause we have not been particularly thorough in documenting the
methods of the various UI interfaces. Certainly WithdrawalUI will need more than just the two methods
shown there. What about promptForAccount or informCashDispenserEmpty? Putting those methods in
the diagram would just clutter it. By providing a representative batch of methods, I've given the reader
the idea. That's all that's really necessary. [UML designers often drop what seems unnecessary in favor of
simplicity of design (tho some designs can be awfully complicated!).

UML Class Diagrams - Introduction

Again note the convention of horizontal association and vertical inheritance. This helps to differentiate
these vastly different kinds of relationships. Without a convention like this it can be hard to tease the
meaning out of the tangle.

Notice the three distinct zones. The transactions and their actions are on the left, the various UI interfaces
are all on the right, and the UI implementation is on the bottom. Note also that the connections between the
grouping are minimal and regular. In one case it is three associations, all pointing the same way. In the
other case it is three inheritance relationships all merged into a single line. The grouping, and the way
they are connected help the reader to see the diagram in coherent pieces.

You should be able to see the code as you look at the diagram. Is this code listing below close to what you
expected for the implementation of UI?

public class UI implements

 WithdrawalUI, DepositUI, TransferUI

{

 private Screen itsScreen;

 private MessageLog itsMessageLog;

 public void displayMessage(String message)

 {

 itsMessageLog.logMessage(message);

 itsScreen.displayMessage(message);

 }

}

The Details
There are a vast number of details and adornments that can be added to UML class diagrams.

Most of the time these details and adornments should not be added. But there are times when they can be
helpful.

Class stereotypes
Class stereotypes appear between guillemet characters « », usually above the name of the class. You’ve
seen them before above in the «interface» denotation as a class stereotype. «interface» is one of two
standard stereotypes that can be used by Java programmers. The other is «utility».

«interface»
All the methods of classes marked with this stereotype are abstract. None of the methods can be
implemented. Moreover, «interface» classes can have no instance variables. The only variables they can
have are static variables. This corresponds exactly to Java interfaces. See below image.

UML Class Diagrams - Introduction

I draw interfaces so often that spelling the whole stereotype out at the white board can be pretty
inconvenient. So I often use the shorthand in the lower part of Figure 3-9 to make the drawing easier. It's
not standard UML, but it's much more convenient.
«utility»
All the methods and variables of a «utility» class are static. [Earlier authors call these class utilities.}

You can make your own stereotypes if you like. Some people often use stereotypes like «persistent», «C-
API», «struct», or «function». You just have to make sure that the people who are reading your diagrams
know what your stereotype means.

Abstract classes
In UML there are two ways to denote that a class or a method is abstract. You can write the name in
italics, or you can use the {abstract} property. Both options are shown below:

UML Class Diagrams - Introduction

Rather than write out all the details (such as during a meeting) some people use a shorthand version that
is not standard UML. But there it is.

non-standard way of the same diagram above.

Properties
Properties, like {abstract} can be added to any class. They represent extra information that’s not usually
part of a class. You can create your own properties at any time.
Properties are written in a comma separated list of name–value pairs, like this:
{author=Martin, date=20020429, file=shape.java, private}

The properties in the preceding example are not part of UML. The {abstract} property is the only defined
property of UML that Java programmers would find useful. If a property does not have a value, it is
assumed to take the boolean value true. Thus, {abstract} and {abstract = true} are synonyms.

Properties are written below and to the right of the name of the class, as shown in Figure 3-13.

Other than the {abstract} property, , the class properties activity is pretty rare.

Aggregation
Aggregation is a special form of association that connotes a “whole/part” relationship. Below image
shows how it is drawn and implemented. Notice that the implementation shown here is indistinguishable
from association. That’s a hint.

Unfortunately, UML does not provide a strong definition for this relationship. This leads to confusion
because various programmers and analysts adopt their own pet definitions for the relationship. For that

UML Class Diagrams - Introduction

reason many people don't use the relationship at all. In fact, this relationship has been dropped from
UML 2.0.

The one hard rule that UML gives us regarding aggregations is this: A whole cannot be its own part.
Therefore instances cannot form cycles of aggregations. A single object cannot be an aggregate of itself,
two objects cannot be aggregates of each other, three objects cannot form a ring of aggregation, and so on.
See below for what not to do.

Illegal cycles of aggregation between instances.

I don't find this to be a particularly useful definition. How often am I concerned about making sure that
instances form a directed acyclic graph? Not very often. Therefore I find this relationship useless in the
kinds of diagrams I draw.

Composition
Composition is a special form of aggregation, as shown in below. Again, notice that the implementation is
indistinguishable from association. However, this time the reason is not due to a lack of definition; this
time it’s because the relationship does not have a lot of use in a Java program. C++ programmers, on the
other hand, find a lot of use for it.

The same rule applies to composition that applied to aggregation. There can be no cycles of instances. An
owner cannot be its own ward. However, UML provides quite a bit more definition.

An instance of a ward cannot be owned simultaneously by two owners. The object diagram
below is illegal. Note, however, that the corresponding class diagram is not illegal. An owner can transfer
ownership of a ward to another owner.

no. don’t do this.

UML Class Diagrams - Introduction

Illegal design above!
The owner is responsible for the lifetime of the ward. If the owner is destroyed, the ward must be

destroyed with it. If the owner is copied, the ward must be copied with it.
In Java destruction happens behind the scenes by the garbage collector, so there is seldom a need

to manage the lifetime of an object. Deep copies are not unheard of, but the need to show deep copy
semantics on a diagram is rare. So, though I have used composition relationships to describe some Java
programs, such use is infrequent.

The next figure shows how composition is used to denote deep copy. We have a class named Address
that holds many Strings. Each string holds one line of the address. Clearly, when you make a copy of
the Address, you want the copy to change independently of the original. Thus, we need to make a deep
copy. The composition relationship between the Address and the Strings indicates that copies need to be
deep.

Multiplicity
Objects can hold arrays or vectors of other objects, or they can hold many of the same kind of objects in
separate instance variables. In UML this can be shown by placing a multiplicity expression on the far end

UML Class Diagrams - Introduction

of the association. Multiplicity expressions can be simple numbers, ranges, or a combination of both. For
example, Figure 3-19 shows a BinaryTreeNode, using a multiplicity of 2.

Here are the allowable forms:

Association stereotypes
Associations can be labeled with stereotypes that change their meaning. Figure 3-20 shows the ones that I
use most often.

• Digit.

• * or 0..*

• 0..1

• 1..*

• 3..5

• 0, 2..5, 9..*

The exact number of elements.

Zero to many.

Zero or one. In Java this is often implemented
with a reference that can be null.

One to many.

Three to five.

Silly, but legal.

UML Class Diagrams - Introduction

The «create» stereotype indicates that the target of the association is created by the source. The
implication is that the source creates the target and then passes it around to other parts of the system. In
the example I've shown a typical factory.
The «local» stereotype is used when the source class creates an instance of the target and holds it in a
local variable. The implication is that the created instance does not survive the member function that
creates it. Thus, it is not held by any instance variable nor passed around the system in any way.
The «parameter» stereotype shows that the source class gains access to the target instance though the
parameter of one of its member functions. Again, the implication is that the source forgets all about this
object once the member function returns. The target is not saved in an instance variable.
Using dashed dependency arrows, as the diagram shows, is a common and convenient idiom for
denoting parameters. I usually prefer it to using the «parameter» stereotype.
The «delegate» stereotype is used when the source class forwards a member function invocation to the
target. There are a number of design patterns where this technique is applied, such as PROXY,
DECORATOR, and COMPOSITE . You might find this notation useful - or not - notice that your analyses
will tend to follow the same paths of thought.

Inner classes
Inner (nested) classes are represented in UML with an association adorned with a crossed circle, as shown
in Figure 3-21.

Anonymous inner classes
One of Java’s more interesting features is anonymous inner classes. This notation is concise and
descriptive. The anonymous inner class is shown as a nested class that is given the «anonymous»
stereotype, and is also given the name of the interface it implements.

Association classes
Associations with multiplicity tell us that the source is connected to many instances of the target, but the
diagram doesn’t tell us what kind of container class is used. This can be depicted by using an association
class:

UML Class Diagrams - Introduction

Association classes show how a particular association is implemented. On the diagram they appear as a
normal class connected to the association with a dashed line. As Java programmers we interpret this to
mean that the source class really contains a reference to the association class, which in turn contains
references to the target.
Association classes can also be used to indicate special forms of references, such as weak, soft, or
phantom references. The first figure below is the weak relationship.

Association qualifiers
Association qualifiers are used when the association is implemented through some kind of key or token,
instead of with a normal Java reference. The next figure shows a LoginServlet associated with an
Employee. The association is mediated by a member variable named empid, which contains the
database key for the Employee.

I find this notation useful in rare situations. Sometimes it's convenient to show that an object is associated
to another through a database or dictionary key. It is important, however, that all the parties reading the
diagram know how the qualifier is used to access the actual object. This is not something that's
immediately evident from the notation.

Conclusion

UML Class Diagrams - Introduction

UML covers so much in detail, but skips a lot, too, that only an overview and practicing some areas that
are comfortable to you and will likely be part of your future work can be addressed in class. Using too
little of UML is almost always better than using too much.

Booch, G. (1994). Object Oriented Analysis and Design with Applications. Redwood City, CA.: Benjamin
Cummings.
Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns. Reading, Mass.: Addison-
Wesley.

