
CHAPTER 10

Mathematical Induction

This chapter explains a powerful proof technique called mathematical
induction (or just induction for short). To motivate the discussion,

let’s first examine the kinds of statements that induction is used to prove.
Consider the following statement.

Conjecture. The sum of the first n odd natural numbers equals n2.

The following table illustrates what this conjecture says. Each row
is headed by a natural number n, followed by the sum of the first n odd
natural numbers, followed by n2.

n sum of the first n odd natural numbers n2

1 1= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 1+3= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 1+3+5= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4 1+3+5+7= . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5 1+3+5+7+9= . . . . . . . . . . . . . . . . . . . . . . . . 25
...

...
...

n 1+3+5+7+9+11+·· ·+ (2n−1)= . . . . . . . n2

...
...

...

Note that in the first five lines of the table, the sum of the first n odd
numbers really does add up to n2. Notice also that these first five lines
indicate that the nth odd natural number (the last number in each sum)
is 2n−1. (For instance, when n = 2, the second odd natural number is
2 ·2−1= 3; when n = 3, the third odd natural number is 2 ·3−1= 5, etc.)

The table raises a question. Does the sum 1+3+5+7+·· ·+(2n−1) really
always equal n2? In other words, is the conjecture true?

Let’s rephrase this as follows. For each natural number n (i.e., for each
line of the table), we have a statement Sn, as follows:
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S1 : 1= 12

S2 : 1+3= 22

S3 : 1+3+5= 32

...
Sn : 1+3+5+7+·· ·+ (2n−1)= n2

...
Our question is: Are all of these statements true?

Mathematical induction is designed to answer just this kind of question.
It is used when we have a set of statements S1,S2,S3, . . . ,Sn, . . ., and we
need to prove that they are all true. The method is really quite simple.
To visualize it, think of the statements as dominoes, lined up in a row.
Imagine you can prove the first statement S1, and symbolize this as
domino S1 being knocked down. Additionally, imagine that you can prove
that any statement Sk being true (falling) forces the next statement Sk+1

to be true (to fall). Then S1 falls, and knocks down S2. Next S2 falls and
knocks down S3, then S3 knocks down S4, and so on. The inescapable
conclusion is that all the statements are knocked down (proved true).

The Simple Idea Behind Mathematical Induction

Statements are lined up like dominoes.

(1) Suppose the first statement falls (i.e. is proved true);

(2) Suppose the kth falling always causes the (k+1)th to fall;

Then all must fall (i.e. all statements are proved true).
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This picture gives our outline for proof by mathematical induction.

Outline for Proof by Induction
Proposition The statements S1,S2,S3,S4, . . . are all true.

Proof. (Induction)
(1) Prove that the first statement S1 is true.
(2) Given any integer k ≥ 1, prove that the statement Sk ⇒ Sk+1 is true.
It follows by mathematical induction that every Sn is true. ■

In this setup, the first step (1) is called the basis step. Because S1 is
usually a very simple statement, the basis step is often quite easy to do.
The second step (2) is called the inductive step. In the inductive step
direct proof is most often used to prove Sk ⇒ Sk+1, so this step is usually
carried out by assuming Sk is true and showing this forces Sk+1 to be true.
The assumption that Sk is true is called the inductive hypothesis.

Now let’s apply this technique to our original conjecture that the sum
of the first n odd natural numbers equals n2. Our goal is to show that for
each n ∈N, the statement Sn : 1+3+5+7+·· ·+ (2n−1)= n2 is true. Before
getting started, observe that Sk is obtained from Sn by plugging k in for n.
Thus Sk is the statement Sk : 1+3+5+7+·· ·+(2k−1)= k2. Also, we get Sk+1

by plugging in k+1 for n, so that Sk+1 : 1+3+5+7+·· ·+(2(k+1)−1)= (k+1)2.

Proposition If n ∈N, then 1+3+5+7+·· ·+ (2n−1)= n2.

Proof. We will prove this with mathematical induction.

(1) Observe that if n = 1, this statement is 1= 12, which is obviously true.

(2) We must now prove Sk ⇒ Sk+1 for any k ≥ 1. That is, we must show
that if 1+3+5+7+·· ·+(2k−1)= k2, then 1+3+5+7+·· ·+(2(k+1)−1)= (k+1)2.
We use direct proof. Suppose 1+3+5+7+·· ·+ (2k−1)= k2. Then

1+3+5+7+·· · · · · · · · · · · · · ·+ (2(k+1)−1) =
1+3+5+7+·· ·+ (2k−1) + (2(k+1)−1) =(
1+3+5+7+·· ·+ (2k−1)

)+ (2(k+1)−1) =
k2 + (2(k+1)−1) = k2 +2k+1

= (k+1)2.

Thus 1+3+5+7+·· ·+ (2(k+1)−1)= (k+1)2. This proves that Sk ⇒ Sk+1.

It follows by induction that 1+3+5+7+·· ·+ (2n−1)= n2 for every n ∈N. ■
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In induction proofs it is usually the case that the first statement
S1 is indexed by the natural number 1, but this need not always be so.
Depending on the problem, the first statement could be S0, or Sm for any
other integer m. In the next example the statements are S0,S1,S2,S3, . . .
The same outline is used, except that the basis step verifies S0, not S1.

Proposition If n is a non-negative integer, then 5 | (n5 −n).

Proof. We will prove this with mathematical induction. Observe that the
first non-negative integer is 0, so the basis step involves n = 0.

(1) If n = 0, this statement is 5 | (05 −0) or 5 | 0, which is obviously true.

(2) Let k ≥ 0. We need to prove that if 5 | (k5 −k), then 5 | ((k+1)5 − (k+1)).
We use direct proof. Suppose 5 | (k5 −k). Thus k5 −k = 5a for some a ∈Z.
Observe that

(k+1)5 − (k+1) = k5 +5k4 +10k3 +10k2 +5k+1−k−1

= (k5 −k)+5k4 +10k3 +10k2 +5k

= 5a+5k4 +10k3 +10k2 +5k

= 5(a+k4 +2k3 +2k2 +k).

This shows (k+1)5−(k+1) is an integer multiple of 5, so 5 | ((k+1)5−(k+1)).
We have now shown that 5 | (k5 −k) implies 5 | ((k+1)5 − (k+1)).

It follows by induction that 5 | (n5 −n) for all non-negative integers n. ■

As noted, induction is used to prove statements of the form ∀n ∈N,Sn.
But notice the outline does not work for statements of form ∀n ∈ Z,Sn

(where n is in Z, not N). The reason is that if you are trying to prove
∀n ∈Z,Sn by induction, and you’ve shown S1 is true and Sk ⇒ Sk+1, then
it only follows from this that Sn is true for n ≥ 1. You haven’t proved
that any of the statements S0,S−1,S−2, . . . are true. If you ever want to
prove ∀n ∈Z,Sn by induction, you have to show that some Sa is true and
Sk ⇒ Sk+1 and Sk ⇒ Sk−1.

Unfortunately, the term mathematical induction is sometimes confused
with inductive reasoning, that is, the process of reaching the conclusion
that something is likely to be true based on prior observations of similar
circumstances. Please note that that mathematical induction, as intro-
duced here, is a rigorous method that proves statements with absolute
certainty.
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To round out this section, we present four additional induction proofs.

Proposition If n ∈Z and n ≥ 0, then
n∑

i=0
i · i!= (n+1)!−1.

Proof. We will prove this with mathematical induction.
(1) If n = 0, this statement is

0∑
i=0

i · i!= (0+1)!−1.

Since the left-hand side is 0 ·0!= 0, and the right-hand side is 1!−1= 0,
the equation ∑0

i=0 i · i!= (0+1)!−1 holds, as both sides are zero.
(2) Consider any integer k ≥ 0. We must show that Sk implies Sk+1. That
is, we must show that

k∑
i=0

i · i!= (k+1)!−1

implies
k+1∑
i=0

i · i!= ((k+1)+1)!−1.

We use direct proof. Suppose
k∑

i=0
i · i!= (k+1)!−1. Observe that

k+1∑
i=0

i · i! =
(

k∑
i=0

i · i!
)
+ (k+1)(k+1)!

=
(
(k+1)!−1

)
+ (k+1)(k+1)!

= (k+1)!+ (k+1)(k+1)!−1

= (
1+ (k+1)

)
(k+1)!−1

= (k+2)(k+1)!−1

= (k+2)!−1

= ((k+1)+1)!−1.

Therefore
k+1∑
i=0

i · i! = ((k+1)+1)!−1.

It follows by induction that
n∑

i=0
i · i!= (n+1)!−1 for every integer n ≥ 0. ■
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The next example illustrates a trick that is occasionally useful. You
know that you can add equal quantities to both sides of an equation without
violating equality. But don’t forget that you can add unequal quantities to
both sides of an inequality, as long as the quantity added to the bigger
side is bigger than the quantity added to the smaller side. For example, if
x ≤ y and a ≤ b, then x+a ≤ y+b. Similarly, if x ≤ y and b is positive, then
x ≤ y+b. This oft-forgotten fact is used in the next proof.
Proposition For each n ∈N, it follows that 2n ≤ 2n+1 −2n−1 −1.

Proof. We will prove this with mathematical induction.

(1) If n = 1, this statement is 21 ≤ 21+1 − 21−1 − 1, which simplifies to
2≤ 4−1−1, which is obviously true.

(2) Suppose k ≥ 1. We need to show that 2k ≤ 2k+1 − 2k−1 − 1 implies
2k+1 ≤ 2(k+1)+1−2(k+1)−1−1. We use direct proof. Suppose 2k ≤ 2k+1−2k−1−1,
and reason as follows:

2k ≤ 2k+1 −2k−1 −1

2(2k) ≤ 2(2k+1 −2k−1 −1) (multiply both sides by 2)
2k+1 ≤ 2k+2 −2k −2

2k+1 ≤ 2k+2 −2k −2+1 (add 1 to the bigger side)
2k+1 ≤ 2k+2 −2k −1

2k+1 ≤ 2(k+1)+1 −2(k+1)−1 −1.

It follows by induction that 2n ≤ 2n+1 −2n−1 −1 for each n ∈N. ■
We next prove that if n ∈N, then the inequality (1+ x)n ≥ 1+nx holds

for all x ∈R with x >−1. Thus we will need to prove that the statement

Sn : (1+ x)n ≥ 1+nx for every x ∈R with x >−1

is true for every natural number n. This is (only) slightly different from
our other examples, which proved statements of the form ∀n ∈ N, P(n),
where P(n) is a statement about the number n. This time we are proving
something of form

∀n ∈N, P(n, x),

where the statement P(n, x) involves not only n, but also a second variable x.
(For the record, the inequality (1+ x)n ≥ 1+ nx is known as Bernoulli’s
inequality.)
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Proposition If n ∈N, then (1+ x)n ≥ 1+nx for all x ∈R with x >−1.

Proof. We will prove this with mathematical induction.

(1) For the basis step, notice that when n = 1 the statement is (1+ x)1 ≥
1+1 · x , and this is true because both sides equal 1+ x.

(2) Assume that for some k ≥ 1, the statement (1+ x)k ≥ 1+kx is true for
all x ∈R with x >−1. From this we need to prove (1+ x)k+1 ≥ 1+ (k+1)x.
Now, 1+ x is positive because x >−1, so we can multiply both sides of
(1+ x)k ≥ 1+kx by (1+ x) without changing the direction of the ≥.

(1+ x)k(1+ x) ≥ (1+kx)(1+ x)

(1+ x)k+1 ≥ 1+ x+kx+kx2

(1+ x)k+1 ≥ 1+ (k+1)x+kx2

The above term kx2 is positive, so removing it from the right-hand side
will only make that side smaller. Thus we get (1+ x)k+1 ≥ 1+ (k+1)x. ■

Next, an example where the basis step involves more than routine
checking. (It will be used later, so it is numbered for reference.)
Proposition 10.1 Suppose a1,a2, . . . ,an are n integers, where n ≥ 2. If p
is prime and p | (a1 ·a2 ·a3 · · ·an), then p | ai for at least one of the ai.

Proof. The proof is induction on n.
(1) The basis step involves n = 2. Let p be prime and suppose p | (a1a2).
We need to show that p | a1 or p | a2, or equivalently, if p - a1, then
p | a2. Thus suppose p - a1. Since p is prime, it follows that gcd(p,a1)= 1.
By Proposition 7.1 (on page 126), there are integers k and ` for which
1= pk+a1`. Multiplying this by a2 gives

a2 = pka2 +a1a2`.

As we are assuming that p divides a1a2, it is clear that p divides the
expression pka2+a1a2` on the right; hence p | a2. We’ve now proved that
if p | (a1a2), then p | a1 or p | a2. This completes the basis step.

(2) Suppose that k ≥ 2, and p | (a1 ·a2 · · ·ak) implies then p | ai for some ai.
Now let p | (a1 ·a2 · · ·ak ·ak+1). Then p | ((a1 ·a2 · · ·ak) ·ak+1

)
. By what we

proved in the basis step, it follows that p | (a1 ·a2 · · ·ak) or p | ak+1. This
and the inductive hypothesis imply that p divides one of the ai. ■
Please test your understanding now by working a few exercises.
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10.1 Proof by Strong Induction
This section describes a useful variation on induction.

Occasionally it happens in induction proofs that it is difficult to show
that Sk forces Sk+1 to be true. Instead you may find that you need to use
the fact that some “lower” statements Sm (with m < k) force Sk+1 to be true.
For these situations you can use a slight variant of induction called strong
induction. Strong induction works just like regular induction, except that
in Step (2) instead of assuming Sk is true and showing this forces Sk+1

to be true, we assume that all the statements S1,S2, . . . ,Sk are true and
show this forces Sk+1 to be true. The idea is that if it always happens that
the first k dominoes falling makes the (k+1)th domino fall, then all the
dominoes must fall. Here is the outline.

Outline for Proof by Strong Induction
Proposition The statements S1,S2,S3,S4, . . . are all true.

Proof. (Strong induction)
(1) Prove the first statement S1. (Or the first several Sn.)
(2) Given any integer k ≥ 1, prove (S1 ∧S2 ∧S3 ∧·· ·∧Sk)⇒ Sk+1. ■

Strong induction can be useful in situations where assuming Sk is true
does not neatly lend itself to forcing Sk+1 to be true. You might be better
served by showing some other statement (Sk−1 or Sk−2 for instance) forces
Sk to be true. Strong induction says you are allowed to use any (or all) of
the statements S1,S2, . . . ,Sk to prove Sk+1.

As our first example of strong induction, we are going to prove that
12 | (n4 −n2) for any n ∈ N. But first, let’s look at how regular induction
would be problematic. In regular induction we would start by showing
12 | (n4 −n2) is true for n = 1. This part is easy because it reduces to 12 | 0,
which is clearly true. Next we would assume that 12 | (k4 −k2) and try to
show this implies 12 | ((k+1)4−(k+1)2). Now, 12 | (k4−k2) means k4−k2 = 12a
for some a ∈Z. Next we use this to try to show (k+1)4 − (k+1)2 = 12b for
some integer b. Working out (k+1)4 − (k+1)2, we get

(k+1)4 − (k+1)2 = (k4 +4k3 +6k2 +4k+1)− (k2 +2k+1)

= (k4 −k2)+4k3 +6k2 +6k

= 12a+4k3 +6k2 +6k.

At this point we’re stuck because we can’t factor out a 12. Now let’s see
how strong induction can get us out of this bind.
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Strong induction involves assuming each of statements S1,S2, . . . ,Sk is
true, and showing that this forces Sk+1 to be true. In particular, if S1

through Sk are true, then certainly Sk−5 is true, provided that 1≤ k−5< k.
The idea is then to show Sk−5 ⇒ Sk+1 instead of Sk ⇒ Sk+1. For this to
make sense, our basis step must involve checking that S1,S2,S3,S4,S5,S6

are all true. Once this is established, Sk−5 ⇒ Sk+1 will imply that the other
Sk are all true. For example, if k = 6, then Sk−5 ⇒ Sk+1 is S1 ⇒ S7, so S7 is
true; for k = 7, then Sk−5 ⇒ Sk+1 is S2 ⇒ S8, so S8 is true, etc.

Proposition If n ∈N, then 12 | (n4 −n2).

Proof. We will prove this with strong induction.

(1) First note that the statement is true for the first six positive integers:
If n = 1, 12 divides n4 −n2 = 14 −12 = 0.
If n = 2, 12 divides n4 −n2 = 24 −22 = 12.
If n = 3, 12 divides n4 −n2 = 34 −32 = 72.
If n = 4, 12 divides n4 −n2 = 44 −42 = 240.
If n = 5, 12 divides n4 −n2 = 54 −52 = 600.
If n = 6, 12 divides n4 −n2 = 64 −62 = 1260.

(2) Let k ≥ 6 and assume 12 | (m4 −m2) for 1 ≤ m ≤ k. (That is, assume
statements S1,S2, . . . ,Sk are all true.) We must show 12 | ((k+1)4−(k+1)2)

.
(That is, we must show that Sk+1 is true.) Since Sk−5 is true, we have
12 | ((k−5)4 − (k−5)2). For simplicity, let’s set m = k−5, so we know
12 | (m4−m2), meaning m4 −m2 = 12a for some integer a. Observe that:

(k+1)4 − (k+1)2 = (m+6)4 − (m+6)2

= m4 +24m3 +216m2 +864m+1296− (m2 +12m+36)

= (m4 −m2)+24m3 +216m2 +852m+1260

= 12a+24m3 +216m2 +852m+1260

= 12
(
a+2m3 +18m2 +71m+105

)
.

As (a+2m3+18m2+71m+105) is an integer, we get 12 | ((k+1)4− (k+1)2).

This shows by strong induction that 12 | (n4 −n2) for every n ∈N. ■
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Our next example involves mathematical objects called graphs. In
mathematics, the word graph is used in two contexts. One context involves
the graphs of equations and functions from algebra and calculus. In
the other context, a graph is a configuration consisting of points (called
vertices) and edges which are lines connecting the vertices. Following
are some pictures of graphs. Let’s agree that all of our graphs will be in
“one piece,” that is, you can travel from any vertex of a graph to any other
vertex by traversing a route of edges from one vertex to the other.

v0

v1

v2 v3

v4

Figure 10.1. Examples of Graphs

A cycle in a graph is a sequence of distinct edges in the graph that
form a route that ends where it began. For example, the graph on the
far left of Figure 10.1 has a cycle that starts at vertex v1, then goes to v2,
then to v3, then v4 and finally back to its starting point v1. You can find
cycles in both of the graphs on the left, but the two graphs on the right do
not have cycles. There is a special name for a graph that has no cycles;
it is called a tree. Thus the two graphs on the right of Figure 10.1 are
trees, but the two graphs on the left are not trees.

Figure 10.2. A tree

Note that the trees in Figure 10.1 both have one fewer edge than vertex.
The tree on the far right has 5 vertices and 4 edges. The one next to it
has 6 vertices and 5 edges. Draw any tree; you will find that if it has n
vertices, then it has n−1 edges. We now prove that this is always true.
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Proposition If a tree has n vertices, then it has n−1 edges.

Proof. Notice that this theorem asserts that for any n ∈N, the following
statement is true: Sn : A tree with n vertices has n−1 edges. We use strong
induction to prove this.
(1) Observe that if a tree has n = 1 vertex then it has no edges. Thus it
has n−1= 0 edges, so the theorem is true when n = 1.
(2) Now take an integer k ≥ 1. We must show (S1 ∧S2 ∧·· ·∧Sk) ⇒ Sk+1.
In words, we must show that if it is true that any tree with m vertices
has m−1 edges, where 1 ≤ m ≤ k, then any tree with k+1 vertices has
(k+1)−1= k edges. We will use direct proof.
Suppose that for each integer m with 1≤ m ≤ k, any tree with m vertices
has m−1 edges. Now let T be a tree with k+1 vertices. Single out an
edge of T and label it e, as illustrated below.

· · ·
· · · · · ·· · ·

T1 T2

T
e

· · ·
· · · · · ·· · ·

Now remove the edge e from T, but leave the two endpoints of e. This
leaves two smaller trees that we call T1 and T2. Let’s say T1 has x
vertices and T2 has y vertices. As each of these two smaller trees has
fewer than k+1 vertices, our inductive hypothesis guarantees that T1

has x−1 edges, and T2 has y−1 edges. Think about our original tree T.
It has x+ y vertices. It has x−1 edges that belong to T1 and y−1 edges
that belong to T2, plus it has the additional edge e that belongs to
neither T1 nor T2. Thus, all together, the number of edges that T has is
(x−1)+ (y−1)+1= (x+ y)−1. In other words, T has one fewer edges than
it has vertices. Thus it has (k+1)−1= k edges.

It follows by strong induction that a tree with n vertices has n−1 edges. ■

Notice that it was absolutely essential that we used strong induction
in the above proof because the two trees T1 and T2 will not both have k
vertices. At least one will have fewer than k vertices. Thus the statement
Sk is not enough to imply Sk+1. We need to use the assumption that Sm

will be true whenever m ≤ k, and strong induction allows us to do this.
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10.2 Proof by Smallest Counterexample
This section introduces yet another proof technique, called proof by small-
est counterexample. It is a hybrid of induction and proof by contradiction.
It has the nice feature that it leads you straight to a contradiction. It
is therefore more “automatic” than the proof by contradiction that was
introduced in Chapter 6. Here is the outline:

Outline for Proof by Smallest Counterexample
Proposition The statements S1,S2,S3,S4, . . . are all true.

Proof. (Smallest counterexample)
(1) Check that the first statement S1 is true.
(2) For the sake of contradiction, suppose not every Sn is true.
(3) Let k > 1 be the smallest integer for which Sk is false.
(4) Then Sk−1 is true and Sk is false. Use this to get a contradiction. ■

Notice that this setup leads you to a point where Sk−1 is true and
Sk is false. It is here, where true and false collide, that you will find a
contradiction. Let’s do an example.

Proposition If n ∈N, then 4 | (5n −1).

Proof. We use proof by smallest counterexample. (We will number the
steps to match the outline, but that is not usually done in practice.)
(1) If n = 1, then the statement is 4 | (51 −1), or 4 | 4, which is true.
(2) For sake of contradiction, suppose it’s not true that 4 | (5n−1) for all n.
(3) Let k > 1 be the smallest integer for which 4 - (5k −1).
(4) Then 4 | (5k−1−1), so there is an integer a for which 5k−1−1= 4a. Then:

5k−1 −1 = 4a

5(5k−1 −1) = 5 ·4a

5k −5 = 20a

5k −1 = 20a+4

5k −1 = 4(5a+1)

This means 4 | (5k−1), a contradiction, because 4 - (5k−1) in Step 3. Thus,
we were wrong in Step 2 to assume that it is untrue that 4 | (5n −1) for
every n. Therefore 4 | (5n −1) is true for every n. ■
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We next prove the fundamental theorem of arithmetic, which says
any integer greater than 1 has a unique prime factorization. For example,
12 factors into primes as 12= 2 ·2 ·3, and moreover any factorization of 12
into primes uses exactly the primes 2, 2 and 3. Our proof combines the
techniques of induction, cases, minimum counterexample and the idea of
uniqueness of existence outlined at the end of Section 7.3. We dignify this
fundamental result with the label of “Theorem.”

Theorem 10.1 (Fundamental Theorem of Arithmetic) Any integer n > 1
has a unique prime factorization. That is, if n = p1 · p2 · p3 · · · pk and n =
a1 ·a2 ·a3 · · ·a` are two prime factorizations of n, then k = `, and the primes
pi and ai are the same, except that they may be in a different order.

Proof. Suppose n > 1. We first use strong induction to show that n has a
prime factorization. For the basis step, if n = 2, it is prime, so it is already
its own prime factorization. Let n ≥ 2 and assume every integer between 2
and n (inclusive) has a prime factorization. Consider n+1. If it is prime,
then it is its own prime factorization. If it is not prime, then it factors as
n+1= ab with a,b > 1. Because a and b are both less than n+1 they have
prime factorizations a = p1 · p2 · p3 · · · pk and b = p′

1 · p′
2 · p′

3 · · · p′
`
. Then

n+1= ab = (p1 · p2 · p3 · · · pk)(p′
1 · p′

2 · p′
3 · · · p′

`)

is a prime factorization of n+1. This competes the proof by strong induction
that every integer greater than 1 has a prime factorization.

Next we use proof by smallest counterexample to prove that the prime
factorization of any n ≥ 2 is unique. If n = 2, then n clearly has only one
prime factorization, namely itself. Assume for the sake of contradiction that
there is an n > 2 that has different prime factorizations n = p1 · p2 · p3 · · · pk
and n = a1 ·a2 ·a3 · · ·a`. Assume n is the smallest number with this property.
From n = p1 · p2 · p3 · · · pk, we see that p1 | n, so p1 | (a1 · a2 · a3 · · ·a`). By
Proposition 10.1 (page 160), p1 divides one of the primes ai. As ai is prime,
we have p1 = ai. Dividing n = p1 · p2 · p3 · · · pk = a1 · a2 · a3 · · ·a` by p1 = ai

yields
p2 · p3 · · · pk = a1 ·a2 ·a3 · · ·ai−1 ·ai+1 · · ·a`.

These two factorizations are different, because the two prime factorizations
of n were different. (Remember: the primes p1 and ai are equal, so the
difference appears in the remaining factors, displayed above.) But also the
above number p2 · p3 · · · pk is smaller than n, and this contradicts the fact
that n was the smallest number with two different prime factorizations. ■
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One word of warning about proof by smallest counterexample. In proofs
in other textbooks or in mathematical papers, it often happens that the
writer doesn’t tell you up front that proof by smallest counterexample
is being used. Instead, you will have to read through the proof to glean
from context that this technique is being used. In fact, the same warning
applies to all of our proof techniques. If you continue with mathematics,
you will gradually gain through experience the ability to analyze a proof
and understand exactly what approach is being used when it is not stated
explicitly. Frustrations await you, but do not be discouraged by them.
Frustration is a natural part of anything that’s worth doing.

10.3 Fibonacci Numbers
Leonardo Pisano, now known as Fibonacci, was a mathematician born
around 1175 in what is now Italy. His most significant work was a book
Liber Abaci, which is recognized as a catalyst in medieval Europe’s slow
transition from Roman numbers to the Hindu-Arabic number system. But
he is best known today for a number sequence that he described in his
book and that bears his name. The Fibonacci sequence is

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, . . .

The numbers that appear in this sequence are called Fibonacci numbers.
The first two numbers are 1 and 1, and thereafter any entry is the sum
of the previous two entries. For example 3+5= 8, and 5+8= 13, etc. We
denote the nth term of this sequence as Fn. Thus F1 = 1, F2 = 1, F3 = 2,
F4 = 3, F7 = 13 and so on. Notice that the Fibonacci Sequence is entirely
determined by the rules F1 = 1, F2 = 1, and Fn = Fn−1 +Fn−2.

We introduce Fibonacci’s sequence here partly because it is something
everyone should know about, but also because it is a great source of induc-
tion problems. This sequence, which appears with surprising frequency in
nature, is filled with mysterious patterns and hidden structures. Some of
these structures will be revealed to you in the examples and exercises.

We emphasize that the condition Fn = Fn−1+Fn−2 (or equivalently Fn+1 =
Fn + Fn−1) is the perfect setup for induction. It suggests that we can
determine something about Fn by looking at earlier terms of the sequence.
In using induction to prove something about the Fibonacci sequence, you
should expect to use the equation Fn = Fn−1 +Fn−2 somewhere.

For our first example we will prove that F2
n+1 −Fn+1Fn −F2

n = (−1)n for
any natural number n. For example, if n = 5 we have F2

6 −F6F5 −F2
5 =

82 −8 ·5−52 = 64−40−25= −1= (−1)5.
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Proposition The Fibonacci sequence obeys F2
n+1 −Fn+1Fn −F2

n = (−1)n.

Proof. We will prove this with mathematical induction.
(1) If n = 1 we have F2

n+1−Fn+1Fn−F2
n = F2

2 −F2F1−F2
1 = 12−1 ·1−12 =−1=

(−1)1 = (−1)n, so indeed F2
n+1 −Fn+1Fn −F2

n = (−1)n is true when n = 1.

(2) Take any integer k ≥ 1. We must show that if F2
k+1−Fk+1Fk−F2

k = (−1)k,
then F2

k+2 − Fk+2Fk+1 − F2
k+1 = (−1)k+1. We use direct proof. Suppose

F2
k+1 −Fk+1Fk −F2

k = (−1)k. Now we are going to carefully work out the
expression F2

k+2 − Fk+2Fk+1 − F2
k+1 and show that it really does equal

(−1)k+1. In so doing, we will use the fact that Fk+2 = Fk+1 +Fk.

F2
k+2 −Fk+2Fk+1 −F2

k+1 = (Fk+1 +Fk)2 − (Fk+1 +Fk)Fk+1 −F2
k+1

= F2
k+1 +2Fk+1Fk +F2

k −F2
k+1 −FkFk+1 −F2

k+1

= −F2
k+1 +Fk+1Fk +F2

k

= −(F2
k+1 −Fk+1Fk −F2

k)

= −(−1)k (inductive hypothesis)
= (−1)1(−1)k

= (−1)k+1

Therefore F2
k+2 −Fk+2Fk+1 −F2

k+1 = (−1)k+1.
It follows by induction that F2

n+1 −Fn+1Fn −F2
n = (−1)n for every n ∈N. ■

Let’s pause for a moment and think about what the result we just
proved means. Dividing both sides of F2

n+1−Fn+1Fn−F2
n = (−1)n by F2

n gives
(

Fn+1

Fn

)2
− Fn+1

Fn
−1= (−1)n

F2
n

.

For large values of n, the right-hand side is very close to zero, and the
left-hand side is Fn+1/Fn plugged into the polynomial x2 − x−1. Thus, as
n increases, the ratio Fn+1/Fn approaches a root of x2 − x−1 = 0. By the
quadratic formula, the roots of x2−x−1 are 1±p5

2 . As Fn+1/Fn > 1, this ratio
must be approaching the positive root 1+p5

2 . Therefore

lim
n→∞

Fn+1

Fn
= 1+p

5
2

. (10.1)

For a quick spot check, note that F13/F12 ≈ 1.618025, while 1+p5
2 ≈ 1.618033.

Even for the small value n = 12, the numbers match to four decimal places.
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The number Φ= 1+p5
2 is sometimes called the golden ratio, and there

has been much speculation about its occurrence in nature as well as
in classical art and architecture. One theory holds that the Parthenon
and the Great Pyramids of Egypt were designed in accordance with this
number.

But we are here concerned with things that can be proved. We close by
observing how the Fibonacci sequence in many ways resembles a geometric
sequence. Recall that a geometric sequence with first term a and
common ratio r has the form

a, ar, ar2, ar3, ar4, ar5, ar6, ar7, ar8, . . .

where any term is obtained by multiplying the previous term by r. In
general its nth term is Gn = arn, and Gn+1/Gn = r. Equation (10.1) tells
us that Fn+1/Fn ≈ Φ. Thus even though it is not a geometric sequence,
the Fibonacci sequence tends to behave like a geometric sequence with
common ratio Φ, and the further “out” you go, the higher the resemblance.

Exercises for Chapter 10
Prove the following statements with either induction, strong induction or proof
by smallest counterexample.

1. For every integer n ∈N, it follows that 1+2+3+4+·· ·+n = n2 +n
2

.

2. For every integer n ∈N, it follows that 12 +22 +32 +42 +·· ·+n2 = n(n+1)(2n+1)
6

.

3. For every integer n ∈N, it follows that 13 +23 +33 +43 +·· ·+n3 = n2(n+1)2

4
.

4. If n ∈N, then 1 ·2+2 ·3+3 ·4+4 ·5+·· ·+n(n+1)= n(n+1)(n+2)
3

.

5. If n ∈N, then 21 +22 +23 +·· ·+2n = 2n+1 −2.

6. For every natural number n, it follows that
n∑

i=1
(8i−5)= 4n2 −n.

7. If n ∈N, then 1 ·3+2 ·4+3 ·5+4 ·6+·· ·+n(n+2)= n(n+1)(2n+7)
6

.

8. If n ∈N, then 1
2!

+ 2
3!

+ 3
4!

+·· ·+ n
(n+1)!

= 1− 1
(n+1)!

9. For any integer n ≥ 0, it follows that 24 | (52n −1).
10. For any integer n ≥ 0, it follows that 3 | (52n −1).
11. For any integer n ≥ 0, it follows that 3 | (n3 +5n+6).
12. For any integer n ≥ 0, it follows that 9 | (43n +8).
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13. For any integer n ≥ 0, it follows that 6 | (n3 −n).
14. Suppose a ∈Z. Prove that 5 | 2na implies 5 | a for any n ∈N.
15. If n ∈N, then 1

1 ·2 + 1
2 ·3 + 1

3 ·4 + 1
4 ·5 +·· ·+ 1

n(n+1)
= 1− 1

n+1
.

16. For every natural number n, it follows that 2n +1≤ 3n.
17. Suppose A1, A2, . . . An are sets in some universal set U, and n ≥ 2. Prove that

A1 ∩ A2 ∩·· ·∩ An = A1 ∪ A2 ∪·· ·∪ An.
18. Suppose A1, A2, . . . An are sets in some universal set U, and n ≥ 2. Prove that

A1 ∪ A2 ∪·· ·∪ An = A1 ∩ A2 ∩·· ·∩ An.

19. Prove that 1
1
+ 1

4
+ 1

9
+·· ·+ 1

n2 ≤ 2− 1
n
.

20. Prove that (1+2+3+·· ·+n)2 = 13 +23 +33 +·· ·+n3 for every n ∈N.
21. If n ∈N, then 1

1
+ 1

2
+ 1

3
+ 1

4
+ 1

5
+·· ·+ 1

2n −1
+ 1

2n ≥ 1+ n
2
.

(Note: This problem asserts that the sum of the first 2n terms of the harmonic
series is at least 1+n/2. It thus implies that the harmonic series diverges.)

22. If n ∈N, then
(
1− 1

2

)(
1− 1

4

)(
1− 1

8

)(
1− 1

16

)
· · ·

(
1− 1

2n

)
≥ 1

4
+ 1

2n+1 .

23. Use mathematical induction to prove the binomial theorem (Theorem 3.1 on
page 80). You may find that you need Equation (3.2) on page 78.

24. Prove that
n∑

k=1
k

(n
k
)= n2n−1 for each natural number n.

25. Concerning the Fibonacci sequence, prove that F1+F2+F3+F4+. . .+Fn = Fn+2−1.

26. Concerning the Fibonacci sequence, prove that
n∑

k=1
F2

k = FnFn+1.

27. Concerning the Fibonacci sequence, prove that F1+F3+F5+F7+ . . .+F2n−1 = F2n.
28. Concerning the Fibonacci sequence, prove that F2 + F4 + F6 + F8 + . . .+ F2n =

F2n+1 −1.
29. In this problem n ∈N and Fn is the nth Fibonacci number. Prove that(n

0
)+ (n−1

1
)+ (n−2

2
)+ (n−3

3
)+·· ·+ ( 0

n
)= Fn+1.

(For example,
(6

0
)+ (5

1
)+ (4

2
)+ (3

3
)+ (2

4
)+ (1

5
)+ (0

6
)= 1+5+6+1+0+0+0= 13= F6+1.)

30. Here Fn is the nth Fibonacci number. Prove that

Fn =
(

1+p5
2

)n −
(

1−p5
2

)n

p
5

.

31. Prove that
n∑

k=0

(
k
r
)= (n+1

r+1
)
, where 1≤ r ≤ n.

32. Prove that the number of n-digit binary numbers that have no consecutive
1’s is the Fibonacci number Fn+2. For example, for n = 2 there are three such
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numbers (00, 01, and 10), and 3= F2+2 = F4. Also, for n = 3 there are five such
numbers (000, 001, 010, 100, 101), and 5= F3+2 = F5.

33. Suppose n (infinitely long) straight lines lie on a plane in such a way that no
two of the lines are parallel, and no three of the lines intersect at a single
point. Show that this arrangement divides the plane into n2+n+2

2 regions.

34. Prove that 31 +32 +33 +34 +·· ·+3n = 3n+1 −3
2

for every n ∈N.
35. Prove that if n,k ∈N, and n is even and k is odd, then

(n
k
)
is even.

36. Prove that if n = 2k−1 for some k ∈N, then every entry in the nth row of Pascal’s
triangle is odd.

The remaining odd-numbered exercises below are not solved in the back of the
book.

37. Prove that if m,n ∈N, then
n∑

k=0
k
(m+k

m
)= n

(m+n+1
m+1

)− (m+n+1
m+2

)
.

38. Prove that if n is a positive integer, then
(n
0
)2 + (n

1
)2 + (n

2
)2 +·· ·+ (n

n
)2 = (2n

n
)
.

39. Prove that if n is a positive integer, then
(n+0

0
)+ (n+1

1
)+ (n+2

2
)+·· ·+ (n+k

k
)= (n+k+1

k
)
.

40. Prove that
p∑

k=0

(m
k
)( n

p−k
)= (m+n

p
)
for positive integers m,n and p.

41. Prove that
m∑

k=0

(m
k
)( n

p+k
)= (m+n

m+p
)
for positive integers m,n and p.


